Towards a financial stability-oriented monetary policy? Some evidence

Claudio Borio
Head of the Monetary and Economic Department

86th Annual General Meeting
Theme and takeaways

- One Annual Report theme:
 - Should monetary policy (MP) take financial stability into account?
 - If so, what would such a policy look like?

- Takeaways
 - A financial stability-oriented MP (FSOMP) can yield net benefits
 - But it would need to respond systematically...
 - ...during both booms and busts (whole financial cycle (FC))
 - Need to avoid being too far away from financial equilibrium (FE)
 - Occasional leaning against the wind (LAW) could backfire
Structure of the remarks

- Outline basic analytical approaches
 - Similarities and differences

- Summarise main results of ongoing BIS research
 - Two studies

- Draw some broader implications
 - Caveats and conjectures
I – Basic analytical approaches

* Standard approach (Graph 1)
 - Standard interest rate/output/inflation model
 - Crisis module: add financial variables as leading indicators of crises
 - Credit growth is the chosen indicator
 - Adjust interest rate policy
 - Estimate cost/benefit

* A number of assumptions reduce the benefits of a FSOMP (Table)
 - Crises do not cause permanent output losses
 - In some cases, MP can “clean” at no cost
 - Leaning affects the crisis probability but not its cost
 - No possible benefits unless crises occur
 - Critically, risks do not grow over time
Costs and benefits of LAW: standard approach

Do benefits exceed costs?

↓ Crises tomorrow → ↑ output → ↓ output today

Standard model
policy rate/output/inflation

+

Crisis module
policy rate → financial variable → crisis → output

+

Evaluation
one-off deviation from standard rule → optimal policy

LAW = leaning against the wind
Costs and benefits of LAW: assumptions

<table>
<thead>
<tr>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent output losses</td>
</tr>
<tr>
<td>Cleaning is costly</td>
</tr>
<tr>
<td>LAW reduces crisis costs</td>
</tr>
<tr>
<td>Benefits possible without crises</td>
</tr>
<tr>
<td>Risks build up</td>
</tr>
</tbody>
</table>

LAW = leaning against the wind
I - Basic analytical approaches (cont)

- Assumption that risks do not grow over time has big implications
 - There is little or no cost to waiting
 - Encourages narrow view of FSOMP
 - Follow a traditional policy most of the time
 - Deviate only when large financial imbalances emerge
 - Obvious risk of doing too little too late

- BIS work relaxes these assumptions: common features (Table)
 - Risks build up over time during boom phase of FC
 - MP has larger impact on probability and cost of financial busts
 - Crises are not necessary for benefits to arise
Costs and benefits of LAW: assumptions

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>BIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent output losses</td>
<td>NO</td>
<td>NO/YES</td>
</tr>
<tr>
<td>Cleaning is costly</td>
<td>NO/YES</td>
<td>YES</td>
</tr>
<tr>
<td>LAW reduces crisis costs</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Benefits possible without crises</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Risks build up</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

LAW = leaning against the wind
II – BIS research: first study

- Main features
 - Standard stylised economy...
 - ...but with recurrent FCs in the crisis module
 - Based on credit/property prices/credit-to-GDP ratio (Graph 2)
 - Estimated on US data

- Key results
 - Generally desirable to lean against financial booms
 - It pays to lean early: otherwise costs grow
 - Risks build over time if no action is taken...
 - ...in contrast to credit growth (variable in other studies) (Graph 2)
 - This returns quickly to the mean: no/little cost
 - Result would also hold with credit gap (Basel III): stock vs flow
 - The larger the imbalance, the greater the benefit
 - Because the bust is larger
Two different processes: the financial cycle and credit growth

(Graph 2)

Bank credit growth (lhs)1 Financial cycle (rhs)2

1 Bank credit to the private non-financial sector; year-on-year changes, in per cent. 2 Measured by frequency-based (bandpass) filters capturing medium-term cycles in real credit, credit-to-GDP ratio and real house prices.

Sources: BIS calculations; based on US data.
II – BIS research: second study

- Main feature: more granular estimated description of economy (US example)
- Three steps (Graph 3)
 1. Decompose FC into two key variables
 - debt service burden and leverage proxies
 - their deviations from long-run (gaps) drive economy and generate FC
 - Gaps measure deviations from FE
 - Help trace the Great Depression out of sample
 - Can generate permanent output losses
 - No separate crisis module
 - FC fully integrated in economy’s dynamics
 2. Use financial gaps to estimate the natural interest rate and output gap
 - Natural rate is intercept in reaction function (Taylor rule)...
 - ...but now needs to be consistent also with FE
 3. Carry out a counterfactual experiment (2003 onwards)
 - Based on augmented Taylor rule: includes FC proxy
Costs and benefits: an alternative approach

Model: basic structure
- Decompose the financial cycle
 - debt service burden
 - leverage

Model: policy rule
- Estimate financial cycle-adjusted inputs
 - output gap
 - natural interest rate

Counterfactual experiment
- New policy rule: output gap, inflation and financial cycle proxy
II – BIS research: second study (cont)

- Key results
 - Gaps are key in estimates of output gaps and natural interest rate
 - New reaction function leads to output gains at no inflation cost (Graph 4)
 - Important to lean early and respond systematically to the FC (Graph 5)
 - Allows faster normalisation of policy
 - Gains arise because the policy smooths the FC (Graph 6)
 - The earlier the counterfactual begins, the larger the gains
 - The natural interest rate (Graph 7)...
 - ...is higher than commonly estimated
 - ...falls by less when the central bank responds to the FC
 - Sizeable deviations of policy rate from natural rate may be needed
 - Larger than in standard Taylor rule
An illustrative experiment: higher output and similar inflation

(Graph 4)

Sources: M Juselius, C Borio, P Disyatat and M Drehmann, "Monetary policy, the financial cycle and ultra-low interest rates", BIS, mimeo, 2016; based on US data.
An illustrative experiment: output and interest rate paths

Sources: M Juselius, C Borio, P Disyatat and M Drehmann, "Monetary policy, the financial cycle and ultra-low interest rates", BIS, mimeo, 2016; based on US data.

(Graph 5)
An illustrative experiment: smoothing the financial cycle

Sources: M Juselius, C Borio, P Disyatat and M Drehmann, "Monetary policy, the financial cycle and ultra-low interest rates", BIS, mimeo, 2016; based on US data.
Comparing interest rates: standard and financial cycle-adjusted

Sources: M Juselius, C Borio, P Disyatat and M Drehmann, "Monetary policy, the financial cycle and ultra-low interest rates", BIS, mimeo, 2016; based on US data.
III – Broader policy considerations

○ Important to stress
 ▪ All such exercises face serious analytical/econometric challenges
 ▪ Many considerations excluded from the analysis
 - Use of alternative policies (eg prudential)
 - Richer characterisation of the economy and uncertainty
 • Eg no explicit treatment of the exchange rate
 ▪ Work is just one contribution to the bigger debate

○ But two conjectures are expected to survive further scrutiny
 ▪ There are likely to be potential gains from a more FSOMP
 ▪ Any such policy would need to respond systematically to FC
 - In both good and bad times
 - Need to avoid being too far away for too long from FE
 - Policy of “selective attention” would fall short of the mark