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Abstract 

Tools that attribute system-wide risk to individual institutions are key elements of an 
operational macroprudential approach to financial stability. We propose to measure 
institutions’ systemic importance via an attribution methodology that is based on a game 
theoretic construct: the Shapley value. This methodology has a number of appealing 
features. First, owing to weak underlying assumptions, it can be used in conjunction with all 
popular risk measures. Second, it provides an exact allocation of risk that satisfies a concrete 
fairness criterion. Third, it accommodates easily uncertainty about model parameters and, 
more generally, uncertainty about the validity of the risk model. 

We apply this methodology to a number of stylised banking systems and two risk metrics, 
value-at-risk and expected shortfall. This allows us to study the interaction of different drivers 
of systemic importance: size, risk profile and common-risk-factor exposures of individual 
institutions. We also prove a theorem that, under mild conditions, the systemic importance of 
an institution increases more than proportionately with its size. An implication of this finding is 
that a policy intervention calibrated to be proportional to the size of an institution would 
understate the systemic importance of large firms relative to that of small ones. In addition, 
we demonstrate how the Shapley value attribution methodology can be used for the 
calibration of macroprudential capital requirements that have an objective defined at the level 
of the overall system but are applied at the level of individual institutions. Finally, we argue 
that different policy tools call for using different applications of the general Shapley value 
methodology. 
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Introduction 

A key policy lesson from the recent financial crisis has been the need to put greater 

emphasis on a systemic approach to financial stability. The chain of events that started with 

problems with portfolios of sub-prime mortgages quickly developed into a systemic crisis that 

engulfed financial institutions and markets across the world, triggering a severe recession. 

Building better defences against systemic risk has emerged as a policy priority and the 

objective of strengthening the macroprudential orientation of financial stability frameworks 

has risen to the top of the international policy agenda.3  

An operational macroprudential policy framework requires a gauge of the systemic 

importance of individual institutions. The reason is that key aspects of the instruments 

available to policymakers are determined at the firm level. This is true of tools to mitigate ex 

ante the risk of systemic disruptions, such as regulatory minimum capital and liquidity 

requirements, and of ex post supervisory interventions to contain the systemic externalities 

from distress in specific institutions. The decision of US authorities to take the unprecedented 

step of offering emergency financial support to AIG provides a case in point. The decision 

was motivated by concerns about the repercussions of the failure of this institution on its 

extensive list of counterparties in the credit derivatives market. In other words, it was a 

concern about the systemic importance of the institution that guided the intervention.  

Measuring systemic importance by attributing system-wide risk to individual institutions is 

akin to a problem already tackled by game theorists. In his search of a solution to 

cooperative games, Lloyd Shapley (1953) developed an attribution methodology that carries 

his name: Shapley value. The portion of the overall value (e.g. output) that this methodology 

attributes to each player in a game equals the average of this player’s marginal contributions 

to the value created by all possible subsets of players. This results in a fair allocation of value 

in the sense that the value created jointly by two players is split equally between them. 

In order to measure individual institutions’ systemic importance, this paper transposes the 

Shapley value methodology to the field of risk attribution. In addition to its fairness property – 

whereby the risk created jointly by two institutions is split equally between them – the 

methodology possesses a number of other desirable features. It is simple, yet efficient in the 

                                                 
3  See BIS (2009), G20 (2009), De Larosiere (2009), FSB (2009). The main distinction between the macro- and 

microprudential perspectives is that the former focuses on the financial system as a whole, whereas the latter 
focuses on individual institutions. See Crockett (2000), Knight (2006), and Borio (2003 and 2009) for an 
elaboration of the macroprudential approach and progress in its implementation. 
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sense that the shares of systemic risk attributed to individual institutions add up exactly to the 

total. It is flexible since the sufficient conditions for its application are so weak that it can be 

applied to any measure of risk that treats the system as a portfolio of institutions. It also 

encompasses all attribution procedures that have been studied in different contexts in the 

literature. Finally, it can deal with model and parameter uncertainty as it can easily combine 

information from different risk models and address estimation noise in order to produce 

robust assessments of systemic importance.  

Besides introducing the Shapley value to the field of systemic risk, the paper makes three 

main contributions.4  The first contribution relates to the analysis of different drivers of 

systemic importance. We apply the Shapley value methodology in a number of stylised 

settings in order to highlight the role that an institution’s size, risk profile and strength of 

exposure to a common risk factor play in shaping the institution’s contribution to system-wide 

risk. Quite intuitively, greater size, probability of default (PD) and exposure to systematic risk 

raise the systemic importance of an institution, with the impact of one driver being reinforced 

by that of others.5 A more subtle finding of the analysis is a non-linear – convex – 

relationship between institution size and contribution to system-wide risk. This is a general 

result that is derived in the form of a theorem, drawing on the Shapley methodology. It 

implies that a policy intervention calibrated to be proportional to the size of an institution 

would understate the systemic importance of large firms relative to that of small ones. From a 

methodological perspective, the result also demonstrates the usefulness of the Shapley 

value. By casting the attribution problem in terms of a set of marginal contributions, the 

Shapley value makes it possible to analyse the impact of individual drivers of risk in a 

                                                

tractable way. 

A second contribution of the paper is to illustrate, in a stylised setting, the implications of 

different policy tools that are based on minimum capital requirements and target financial 

stability. The three tools we consider are applied at the level of individual institutions and 

share one objective: a particular level of risk at the level of the overall system. The first tool 

attains this objective while equalising the riskiness of individual institutions. The second tool 

conditions on the same level of systemic risk but equalises the systemic importance of 

 
4  Strictly speaking the Shapley methodology can also be used to attribute any portfolio risk measure to the 

components that constitute the portfolio. We do not pursue these extensions because their analysis would 
require the examination of the implications of the specific institutional context in which these attributions are 
performed.  

5  Throughout the paper there is a distinction between the terms systemic risk and systematic risk. The former 
refers to the risk that problems will arise that will impede the ability of the financial system to function. The 
latter refers to the commonality in risk exposures of financial institutions (in the same spirit as the “market” is 
analysed in the CAPM). This means that systemic risk can have systematic and idiosyncratic components. 
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individual institutions (controlling for their size). Finally, the third tool minimises aggregate 

capital holdings, given the target level of systemic risk. An interesting result is that, when 

institutions differ only with respect to their exposures to a common risk factor, the capital 

charges that equalise institutions’ systemic importance are: (i) associated with a lower level 

of aggregate capital than the charges that equalise individual riskiness; (ii) quite close to the 

 to use in deriving 

portance, which is 

respectively, how different aspects of the system affect its overall risk and the systemic 

charges that explicitly target a minimum level of aggregate capital. 

As a third contribution, the paper analyses, within a common framework, two alternative 

attribution procedures. The two procedures, which have been studied separately in the 

literature, are seen to be special applications of the Shapley value methodology. We show 

that one of the procedures captures the contribution of individual institutions to systemic risk, 

whereas the other one reflects institutions’ participation in systemic events. In gauging 

systemic importance, the first procedure combines the risk that an institution generates on its 

own with the incremental risk generated by this institution in any possible subset of the 

system. The procedure thus captures the impact of the institution on system-wide risk, i.e. on 

the likelihood and severity of systemic events. It is, therefore, suited for the calibration of 

macroprudential tools that are designed to limit this impact. By contrast, the second 

procedure calculates the expected contribution of an institution to the overall cost of systemic 

events, taking such events as given. This makes it the procedure

actuarially fair premia for insurance against systemic events. 

The objective of the paper is not to propose a measure of systemic risk but to present a 

methodology of attributing this risk, however it is measured, to individual institutions. For the 

purposes of our numerical analysis and only as an illustration, we use a specific model of 

system-wide losses and specific metrics that we apply within this model in order to gauge 

systemic risk. The metrics we choose – value-at-risk (VaR) and expected shortfall (ES) – 

essentially measure risk as the (expected) loss on the aggregate exposure to the institutions 

in a system, conditional on certain tail events. We argue that ES is an intuitively appealing 

approach to measuring systemic risk but we also analyse VaR as an alternative. Most results 

of the analysis do not depend on our choice of a model and risk metrics. A notable exception 

is the result on the convex relationship between size and systemic im

independent of the chosen model but is derived only in the context of ES. 

The rest of this paper is organized as follows. Section 1 reviews existing methods for the 

measurement of systemic risk and the attribution of this risk to individual institutions. Section 

2 develops a stylised model of systemic risk and then specifies two alternative metrics for 

this risk. The section also presents and studies three attribution procedures that deliver 

alternative measures of each institution’s systemic importance. Section 3 and 4 analyse, 
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importance of individual institutions. Finally, Section 5 provides examples of how the 

attribution of systemic risk can be used in prudential policy tools. 

1. Related literature 

The related literature can be divided into two streams. The first stream focuses on measuring 

total system-wide risk when the system is considered as a portfolio of institutions. The 

second stream studies procedures for attributing total system-wide risk to individual 

institutions. A key contribution of our paper is to propose a general attribution methodology 

that (i) can be applied to all of the systemic risk measures developed in the first stream of the 

literature and (ii) subsumes as special cases all previously studied attribution procedures. 

Measuring overall risk: from investment portfolios to financial systems 

The literature has developed several measures of systemic risk. Of particular interest are 

those that treat explicitly the financial system as a portfolio of institutions. Examples include 

the measures used in Geluk et al (2009), Kuritzkes et al (2005), BIS (2008, 2009), Goodhart 

and Segoviano (2008), and IMF (2008, 2009). In the context of the methodology developed 

in this paper, these measures of systemic risk are relevant for two reasons. First, they all 

provide a single metric of systemic risk that encompasses all institutions in the system. 

Second, they can be applied to any subset of institutions in the system. Given these two 

features, the quantum or risk implied by a given measure can be allocated across institutions 

on the basis of the Shapley value methodology. 

Attributing risk 

An attribution method decomposes the aggregate quantum of risk in order to allocate it 

across individual contributors. Even though a number of such methods have been discussed 

in the literature, they have been applied mostly in the context of investment portfolios. As 

pointed out by Acharya and Richardson (2009), however, the close correspondence between 

measures of portfolio risk and measures of systemic risk leads naturally to a correspondence 

between the respective attribution methods. In this section we discuss attribution methods 

that have been applied to either of the two types of risk measures. 

The most popular method for allocating risk across individual investment exposures 

considers the losses each one of them is expected to generate in an event of general 

distress (Praschnik et al (2001), Hallerbach (2002), Kurth and Tasche (2003) and 

Glasserman (2005)). The method has been recently used by Acharya et all (2009) to obtain 

indirect measures of the systemic importance of financial institutions. It is also used by 
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Huang et al (2009) in the context of Asia-Pacific banks. An appealing feature of this method 

is that the portions of risk it attributes to different exposures add up exactly to the chosen 

measure of portfolio risk. A disadvantage is that the method cannot be applied to cases 

where system-wide risk is not measured by reference to a fixed set of events. This would be 

the case when the choice of risk metric is the variance or higher moments of the portfolio 

(system) loss distribution. We show below that this attribution method is a specific application 

of the Shapley value methodology.  

Koyluoglu and Stoker (2002) decompose the variance of losses on an investment portfolio 

using several approaches, one of which is based on the Shapley value. This, alternative, 

application of the Shapley value averages the contributions of an exposure to the variance of 

the losses on all sub-portfolios to which this exposure belongs. A key difference between 

Koyluoglu and Stoker (2002) and this paper is that they do not focus on tail risk and thus do 

not condition the risk measure on extreme losses or situations of generalised distress. 

Another decomposition method has been proposed by Gordy and Lütkebohrmert (2007). 

They make use of the asymptotic single risk factor (ASRF) model and a so-called "granularity 

adjustment" (GA). In addition to incorporating a single common risk factor, the ASRF model 

hinges on the assumption that the portfolio is perfectly granular, in the sense that there is a 

large number of exposures and the size of the largest exposure is vanishingly small 

(Gordy (2003)). When the measure of systemic risk is VaR, the GA provides an approximate 

correction for the inaccuracies that arise from violations of the perfect-granularity 

assumption. Developed in the context of portfolio risk, the ASRF-GA method has not been 

previously considered for the attribution of systemic risk. We analyse this method as an 

approximation to a specific application of the Shapley value methodology and, in line with 

Martin and Wilde (2002), we find that it works well when the violation of the perfect-

granularity assumption is not too strong. 

A rather different approach underpins CoVaR, which has been applied by Adrian and 

Brunnermeier (2008) to the market risk of an investment portfolio and suggested as a way to 

measure the systemic importance of institutions. Applied to a financial system, CoVaR would 

gauge the severity of distress in one institution, conditional on distress in another institution 

or in a group of institutions. For example, a CoVaR measure could equal the VaR of losses in 

bank A conditional on the losses in the entire banking system being equal to their VaR level. 

Since CoVaR captures the tail interdependence between losses on bank A and those on the 

banking system, it is a specific measure of the systemic importance of bank A. 

The approach embedded in CoVaR and the one we take in this paper are fundamentally 

different. In this paper, we adopt a top-down approach that gauges systemic importance by 
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attributing system-wide risk to individual institutions. By contrast, CoVaR focuses directly on 

individual institutions (or groups of institutions) and is not based on a specific measure of 

system-wide risk. It is a bottom-up approach that does not deliver components that add up to 

the total. In terms of the above example, adding the CoVaRs of all the banks in a system will 

not deliver the system-wide VaR. 

2. Systemic risk and systemic importance 

This section lays out the analytic foundations of the analysis. The first subsection defines two 

popular measures of risk, which the paper focuses on. The second subsection specifies the 

stochastic environment that drives the probability distribution of losses in the system. Then, 

the third subsection presents the Shapley value methodology as a tool for attributing 

systemic risk to individual institutions. The fourth subsection considers three concrete 

attribution procedures, two of which are particular applications of the Shapley value 

methodology. 

2.1 Two concrete measures of systemic tail risk 

Let a financial system be populated by n institutions (henceforth, “banks”), indexed by 

 ni ,,2,1  , and incur losses only when one or several of these banks default. The loss 

associated with bank i equals 

iiii ILGDsL  ,        (1) 

where  stands for the size of the liabilities of bank i,  is the share of bank i liabilities 

lost if it defaults, and  is an indicator variable that equals unity when bank i is in default and 

zero otherwise. 

is iLGD

iI

A measure of systemic risk should incorporate the joint probability distribution of losses, 

 ni LLL ,,, 2  . As stressed in Section 2.3 below, the Shapley value methodology can be 

applied to any such measure as long as it is defined on each subset of  ni LLL ,,, 2  .  

In this paper, we derive numerical results for two popular measures of tail risk: value-at-risk 

(VaR) and expected shortfall (ES). Each of these measures is defined by a different set of tail 

events. VaR at confidence level qVaR equals the level of losses that is exceeded with 

probability (1- qVaR). Thus, the tail events under the VaR measure are those associated with 

the qVaR quantile of the probability distribution of losses. For the numerical exercises below, 

we assume that qVaR=0.999. In turn, ES is the expectation of losses, conditional on them 

being above the qES quantile of their distribution. Thus, a tail event under the ES measure 
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materialises if and only if losses exceed this quantile. For the numerical exercises below, we 

assume that qES=0.998.6 When either of the two measures is applied to the overall system, 

the underlying tail events will be referred to as “systemic events”. 

This paper does not take a stand on whether VaR or ES is the appropriate measure of 

systemic tail risk. Being focused on a specific quantile, VaR reveals the smallest loss in the 

tail of the loss distribution but provides no information about the overall severity of the losses 

in this tail. This issue is addressed by ES, which yields a summary statistic (the mean) of loss 

severity in the tail.7 However, an important drawback of ES is that it is estimated with 

substantial noise in real-world applications that rely on actual data of losses. This drawback 

is substantially smaller in the case of the VaR, precisely because its estimation is that of a 

quantile, as opposed to a mean (Heyde et al (2006)). 

2.2 Towards a probability distribution of systemic losses 

We apply the VaR and ES measures to a probability distribution of systemic losses, which 

we define on the basis of the following stochastic environment. In line with the tradition of 

structural credit risk models, we assume that bank i defaults if and only if its assets  fall 

below the default point . Specifically: 

iV

iDP

otherwise 0 and  if only and if   1  iiii IDPVI      (2) 

In addition, it will be assumed that  is driven by one risk factor that is common to all banks, 

, and another risk factor that is specific to bank i, . Concretely:  

iV

M iZ

iiii ZMV 21   , for all  ni ,,2,1        (3) 

where each risk factor is a standard normal variable and all factors are mutually 

independent.8 The common-factor loadings (or exposures),  1,0i  for all  ni ,,2,1  , 

imply that the asset correlation for any two banks i and j equals ji   . Common-factor 

exposures, which explain how shocks external to the system can systematically give rise to 

joint failures, parallel a key building block of portfolio credit risk models. 

                                                 
6  The adopted difference between the two quantiles qVaR and qES renders the values of VaR and ES measures 

comparable. None of the conclusions in this article hinges on the relative values of qVaR and qES. 
7  A related issue that the so-called “sub-additivity” property is violated by VaR but not by ES (see Hull (2006)). 
8  This assumption circumvents important empirical questions related to the shape of probability distributions of 

asset returns and the associated uncertainty (see, for example, Hull and White (2004) and Tarashev and Zhu 
(2008)). As discussed below, however, such uncertainty can be incorporated in the Shapley value 
methodology that is at the heart of the paper. 
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We acknowledge that such a setup is likely to miss an important feature of financial systems 

that distinguishes them from investment portfolios. Concretely, banks may be related not only 

via their exposure to common risk factors that are external to the system but also via 

interbank exposures, which propagate shocks within the system and create so-called domino 

effects. Interbank exposures, which imply that the financial system should be considered not 

only as a portfolio but also as a network of intuitions,9 are likely to have a material impact on 

the level of systemic risk and on the systemic importance of individual institutions. We 

abstract from this impact in order to illustrate the Shapley value methodology in a 

parsimonious setting. 

Expressions (1)-(3) define the joint probability distribution of losses,  ni LLL ,,, 2  . Two 

additional assumptions limit the computation burden without influencing the main messages 

of the analysis. First, loss-given-default is set to %55iLGD  for all i. Second, the overall size 

of the system is normalised to unity, , without loss of generality. 1
1




n

i
is

The inputs required for the calculation of any the above measures of systemic risk are the 

size of each institution, its probability of default, the loss given default in each case, and an 

estimate of the likelihood of joint defaults. The likelihood of joint defaults is typically derived 

from the correlation of banks’ asset returns, which can be estimated from equity and debt 

prices (as done, for example, by Moody’s KMV in their GCorr model). This practice, however, 

may change in the future, given evidence from the current crisis that, at a time of stress, the 

degree of interconnectedness in the banking system is largely determined by features of the 

liability side of balance sheets. This issue notwithstanding, any specific data that are relevant 

for the estimation of default correlations may be complemented with information from 

supervisory assessments. 

2.3 The Shapley value approach: a general attribution procedure 

The Shapley value methodology was developed in the context of cooperative games, in 

which the collective effort of a group of players generates a shared “value” (e.g. wealth) for 

the group as a whole.10 Given such a value, the methodology decomposes it in order to 

allocate it across players according to their individual contributions. The share of the 

aggregate value attributed to a particular player is this player’s Shapley value. 

                                                 
9  For an in-depth analysis of the network structure of a national interbank market, see Boss et al (2004).  
10  The discussion of Shapley value in this paper draws heavily on Mas-Colell et al (1995), pages 679-684. The 

Shapley value was first introduced in Shapley (1953). 
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The Shapley value methodology can be applied directly to a financial system. In this context, 

the players are institutions which engage in interrelated risky activities that drive systemic 

risk. Then, in the light of Section 2.1, the “value” of this risk is system-wide VaR or ES. 

Finally, the systemic importance of each institution is its Shapley-value. 

This subsection first outlines the Shapley value methodology, stating explicitly the limited 

sufficient conditions for its applicability and listing its properties, which carry much intuitive 

appeal. Then, the section turns to the fact that the generality of the methodology makes it 

possible to decompose a given system-wide VaR or ES in different ways. The section 

concludes by arguing that the applicability of different decompositions – and, thus, different 

measures of systemic importance – depends on the problem at hand. 

In order to apply the Shapley value methodology to a financial system, it is sufficient to define 

a so-called “characteristic function.” This function is the same for all possible subgroups of 

banks (or subsystems) and maps each subsystem into a risk measure. Given the setup 

developed since the beginning of Section 2, the characteristic function,  , should accept as 

input any one of the 2n subsystems of banks11 and should deliver the system-wide VaR or 

ES when applied to the entire system. That said, it should be noted that   could alternatively 

be based on any one of the existing measures of systemic risk presented in Section 1.1, 

simply because each one of them is defined for any subgroup of institutions in a financial 

 

io

 wh

system. 

The derivation of the Shapley values involves the following thought process. Suppose that 

banks are ordered at random and consider the subsystem S  that comprises all the banks in 

front of bank i as well as bank i. The contribut n of bank i to the risk of subsystem S  equals 

the difference between the risk of subsystem S  and the risk of this subsystem en bank i is 

excluded from it:     iSS   . The Shapley value of bank i, henceforth iShV , equals the 

expected value of such a contribution when the n! possible orderings occur with an equal 

In the special case of a system comprising three banks, the Shapley value of bank 1 equals: 

probability. 

             
             



















3,21,3,2231,3

21,2012

6

1
3,2,11




ShV  

where 1/n! = 1/6 is the probability of each of the six possible orderings. The first difference in 

the last expression is associated with two orderings, [1,2,3] and [1,3,2]. The second and third 

                                                 
11  These subsystems are: Ø, {1}, {2}, {3}, …, {n}, {1,2}, {1,3}, …, {n-1,n}, …, {1,2,3,…,n}. 
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differences are associated with one ordering each: [2,1,3] and [3,1,2], respectively. Finally, 

the fourth iated with two orderings, [2,3,1] and [3,2,1].  It incorporates the 

fact that 

 difference is assoc

     1,2,31,3,2    or, more generally, that the value of the characteristic function 

does not depend on how banks are ordered in the subsystem (see the symmetry property 

Most generally, the Shapley value – or the systemic importance – of any bank i equals: 

below). 

          
 snSs ||

where  enotes the entire financial system, iS

 iS

n

Sn
i iSS

ncn
ShV

1

11       (4) 

d   are all the subsystems in   containing 

bank i, || S  stands for the number of banks in subsystem S , and  snc  is mt nu ber of 

12 In ad

he 

 subsystems comprising sn  banks. dition, the empty set carries no risk: 0Ø  . 

For a given characteristic function  , the Shapley values of individual banks are a unique set 

r efficiency): The sum of Shapl ggregate measure of 

systemic risk: 

tr

functions 

of measures of systemic importance. This set possesses the following properties: 

1) Additivity (o ey values equals the a

    
n

ShV . 
i

i
1

2) Symme y: The labelling of banks does not matter. More precisely, if the characteristic 

  and iffer only in that the roles of banks i and h are permuted, then ~  d

   ~;;  hi ShVShV . 

3) “Dummy axiom”: If a bank carries no risk, then its Shapley value is zero. 

4) Linearity of characteristic functions: Suppose that initially there is a set of alternative 

characteristic functions, a linear combination of which delivers a new characteristic function. 

The new Shapley value of any bank equals the same linear combination of the Shapley 

r this bank by the initial set of characteristic functions. For example, if values implied fo

21    and   and   are constants, then 

     21 ,,,   iii ShVShVShV  for any bank i. 

The linearity property of the Shapley value methodology implies that measures of systemic 

importance can account in an internally consistent manner for the ubiquitous issue of model 

and parameter uncertainty. For instance, there is no clear evidence whether the vulnerability 

                                                 

       !1!
!1




ss
s nnn

nn12  Concretely, c . 
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of financial systems is associated mainly with institutions’ assets (credit exposures) or 

liabilities (funding exposures). Likewise, there is no consensus whether shocks exogenous to 

the financial system or the propagation of shocks within the system are the primary drivers of 

systemic events. Given this, it becomes inherently difficult to pinpoint the statistical properties 

of these shocks and to restrict the estimation noise in the parameters of data generating 

processes. Ultimately, all these different sources of uncertainty would imply that a prudential 

authority may want to consider a range of alternative measures of systemic risk, i.e. a range 

of alternative characteristic functions. The linearity property of Shapley values would then 

allow the authority to incorporate all these chara teristic functions in a single attribution 

procedure, with the associated weights, i.e. 

c

 ,   in the above example, reflecting the 

 i he Shapley value is defined on any subgroup of institutions in 

the entire financial system : 

authority’s perception of the validity of any given function. 

A different perspective on the Shapley value methodology reveals that it satisfies an intuitive 

fairness criterion. Namely, the decomposition is such that the portion of systemic risk caused 

by the simultaneous presence of any two institutions in the system is split equally between 

them. As illustrated in MasCollel et al (1995), a specific implication of this is that the 

increment of the Shapley value of institution i caused by the presence of institution k equals 

the increment of the Shapley value of institution k caused by the presence of institution i. 

Moreover, this is true even f t

 

         iSShVSShVkSShVSShV kkii        (5) 

SkiSki  , that such , all and ; and  all for . 

Besides its intuitive appeal, the property of Shapley values in expression (5) helps bring to 

the fore differences between alternative applications of the general Shapley value 

methodology. We develop this point in the next subsection. 

analytic approximation of one of the first two. Finally, we argue that the different measures of 

2.4 Three ways to measure systemic importance 

When the measure of systemic risk is VaR or ES, the Shapley values of individual institutions 

can be based on either of two different characteristic functions. The two characteristic 

functions coincide when applied to the entire system but differ, in terms of the underlying tail 

events, when applied to subgroups of institutions. The upshot is two different attribution 

procedures that decompose the same magnitude of systemic risk in different ways. We 

outline these two attribution procedures in turn. In order to alleviate the exposition, in this 

subsection, we discuss only the attribution of systemic VaR, keeping in mind that the ES 

case is conceptually equivalent. Then, we outline a third attribution procedure, which is an 
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systemic importance, delivered by the alternative attribution procedures, should be used in 

different settings. 

In exploring each procedure, it is important to keep in mind that the underlying stochastic 

environment generating default losses (recall Section 2.2) simplifies considerably the 

derivation of Shapley values. Since it is assumed that each bank is subject only to shocks 

external to the system, the statistical properties of the losses associated with a given bank 

are unaffected by the other banks and, thus, stay constant across subsystems. This property 

of default losses would be foregone if the system were considered as a network of 

institutions. Since, in this case, banks would propagate shocks from/to other banks, the 

losses associated with a given bank would depend on which other banks are in the 

subsystem in focus. 

Procedure 1: varying tail events 

This procedure is underpinned by the characteristic function , which is such that 

   SVaRS   for any possible subsystem S  in  . It is important to note that  defines the 

tail events at the level of each subsystem and these events typically differ from the systemic 

events, ie the tail events at the level of the entire financial system. Procedure 1 has been 

employed by Koyluoglu and Stoker (2002) but in a different context (see Section 1.2 above). 



A measure of systemic importance obtained under Procedure 1 reflects the contribution of 

individual banks to the severity of the systemic events. As implied by expression (4), 

Procedure 1 gauges the systemic importance of bank i by combining the VaR that bank i 

would generate on its own with the extra amount of losses at the qVAR quantile that would be 

generated if bank i were to be added to any possible group of other banks in the system. As 

a result, the Shapley value of bank i under this procedure is a direct reflection of the extent to 

which this bank affects the VaR of the system.  

To understand further the characteristic function , it is useful to revisit the fairness property 

in expression (5). Owing to its treatment of tail events,  reflects the extent to which the joint 

presence of two banks i and k raises the risk in a subsystem. The Shapley value 

methodology then splits the incremental amount of risk equally between the two banks. 

Specifically, provided that the risk factors affecting banks i and k relate positively, 




          0;;;;    iSShVkSShVSShV kkii

ki

SShV

S

 and the inequality is 

strict for a strictly positive number of subsystems S , that such , . 

Procedure 2: fixed tail events 

Pocedure 2 is another application of the Shapley-value methodology, based on a different 

characteristic function, . For any subsystem S,   S  equals the expected loss in this 
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subsystem conditional on the tail events in the entire system  , ie conditional on the 

systemic events. It is the different treatment of tail events that drives the difference between 

characteristic functions  and .  

A measure of systemic importance obtained under Procedure 2 captures the degree to which 

a bank is expected to participate in the systemic events. To see why, note first that  leads 

to a substantial simplification because 



      eventsystemicEiSS    Li | , which 

depends on i but not on S. Then, by expression (4), the Shapley value of bank i is simply the 

loss it is expected to generate, conditional on the systemic events: 

     eventsystemicLEShVSShV ii ;;    SSi  all and   all for . i |

The characteristic function  underpins an application of the Shapley value methodology 

that satisfies the letter but not the spirit of the fairness property in expression (5). The 

fundamental reason is that, since it takes systemic events as given,  cannot convey how 

bank k affects the contribution of bank i to these events and vice versa: 





         ;;;;    iSShVSShVSShVSShV kkii 0 k  for each S . 

Indeed, this is a manifestation of the fairness property but an uninformative one. 

A different issue, which arises only in the context of system-wide VaR, is that an application 

of Procedure 2 may give rise to non-trivial computational complications that necessitate 

approximations. The reason is that, if losses have a continuous probability distribution, the 

systemic events underpinning the VaR measure – i.e. those corresponding to the qVaR 

quantile of the probability distribution of losses – are of zero probability. Therefore, 

expectations conditional on such events are impossible to derive exactly. Hallerbach (2002) 

shows that the problem can be tackled numerically via a procedure in which there is a trade-

off between the accuracy and efficiency of the conditional expectation estimator. 

Procedure 2 has been a popular tool for the attribution of the risk of investment portfolios to 

individual exposures and has been recently used by Acharya and Richardson (2009) and 

Huang et al (2009) in the context of systemic risk (see Section 1.2 above). However, 

previous derivations of the procedure – such as those in Praschnik et al (2001), Hallerbach 

(2002), Kurth and Tasche (2003) and Glasserman (2005) – have been based on the linearity 

of the expectations operator, not on the Shapley value methodology. By extension, the 

properties of Procedure 2 have not been analysed alongside those of Procedure 1. In 

Section 2.4.1 below, we compare the two procedures and argue that they should be used in 

different contexts. 
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Procedure 3: ASRF model with a granularity adjustment 

This procedure, which does not make use of the Shapley value methodology and has been 

developed only for VaR measures, is an analytic approximation of Procedure 2. Under 

Procedure 3, the portion of system-wide VaR attributed to bank i equals 

. The first summand, , is derived in Gordy (2003) in 

the context of the asymptotic single risk factor (ASRF) model and, thus, incorporates the 

assumption that the system is perfectly granular (or asymptotic). The second summand, 

, is derived in Gordy and Lütkebohmert (2007) is an approximate correction for 

departures from this assumption, i.e. a “granularity adjustment”: 

i
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i
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where  stands for the standard normal CDF and the analytic function  f  and the 

parameters i  are defined in Gordy and Lütkebohrmert (2007). Given that the system-wide 

VaR has been estimated, it is typically possible to find unique i  that preserve the internal 

consistency of the model and result in .VaRMVaR
n

i

GAASRF

i 
1

, 13 

In the limit in which the granularity of the system is infinitely fine, and thus idiosyncratic risk is 

fully diversified away, the granularity adjustment declines to zero. In this limit, given that 

there is a single common risk factor, the ASRF model and attribution Procedure 2 coincide.14 

Thus, Procedure 3 can be viewed as an approximation to Procedure 2. Section 2.4.2 below 

studies the accuracy of this approximation, which, to the best of our knowledge, has not been 

done before. 

                                                 

i
13  The parameters   partially reconcile differences between the default generating process implied by the 

ASRF model and that implied by CreditRisk+, which is used for the granularity adjustment. In this paper, the 
parameters i  are calibrated so that there is a close match between the right tails of these distributions (see 

Gordy and Lütkebohrmert (2007), equation (18)). Importantly, any possible calibration of i  introduces a 

conceptual issue. Namely, in line with their intended purpose to account for the degree of diversification in the 
system (or portfolio), these parameter depend on the common factor loadings. However, contrary to economic 
logic, they are also affected by individual PDs, the VaR confidence level and an additional ad hoc parameter. 

14  The proof of Proposition 1 in Tarashev (2009) proves this claim as well. 
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2.4.1 Comparison between Procedures 1 and 2 

This section illustrates differences between measures of systemic importance obtained under 

Procedures 1 and 2 and then analyses the reasons for these differences. The analysis is 

centred around the following two possible objectives of a prudential authority, the first one of 

which calls for the use of Procedure 1 and the second for the use of Procedure 2: 

1. Attain a particular cross-sectional distribution of institutions’ contributions to a given 

level of systemic risk. Section 5 below motivates such an objective from a 

macroprudential point of view. 

2. Require banks to pay – at actuarially fair premia – for a scheme that insures against 

the losses in pre-specified systemic events. Being equal to the expected loss 

associated with a bank, conditional on the systemic events, the premium reflects the 

bank’s participation in these events. 

We consider the above two objectives in stylised examples that illustrate sharply that a 

bank’s contribution to systemic risk (captured by Procedure 1) could differ substantially from 

its expected participation in the systemic events (captured by Procedure 2). The first such 

example is provided by Table 1, in which systemic risk is measured by VaR and, thus, the 

systemic events occur when system-wide losses equal the  quantile of their probability 

distribution. In this example, the system comprises 10 banks that differ only with respect to 

their size. These banks are divided into two groups of five and each of the banks in the first 

(second) group accounts for 7% (13%) of the total size of the system. 

VaRq

The left-hand panel of the table illustrates clearly that the two procedures can deliver quite 

different measures of systemic importance. In the considered system, which features 

relatively low default correlations, the systemic events correspond to the failure of two large 

banks (and a VaR of 14.3 cents on the dollar). Since these events exclude losses from small 

banks, applying Procedure 2 leads to the conclusion that these banks are of no systemic 

importance. The reason for this conclusion can be traced to the fact that Procedure 2 fails to 

convey the impact of a given bank on the risk generated by other banks (recall the 

discussion in Section 2.4). For the system at hand, Procedure 2 fails to convey that the level 

of systemic risk is partly the result of the simultaneous presence of the two groups of banks 

in the system. For example, this level would have halved if the group of small banks had 

been excluded from the system. Such instances of the impact of small banks on systemic 

risk would be captured only if the procedure considered tail events at the level of each 

subgroup of banks. Since this is what Procedure 1 does, it attributes positive systemic 

importance to small banks. Procedure 1 is then the natural choice under the first of the above 

objectives, which calls for measuring banks’ contribution to systemic risk. 
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Comparison between Procedures 1 and 2: a VaR example 
All banks: PD = 0.27% and LGD = 55% 

Group A banks: nA = 5; sA = 0.07. Group B banks: nB = 5; sB = 0.13. 

 
Low default correlation 

ρA = ρB = 0.60 

High default correlation 

ρA = ρB = 0.724 

 Procedure 1 Procedure 2 Procedure 1 Procedure 2 

 Group A 
34.34% 0.0% 28.15% 100% 

 Group B 
65.66% 100% 71.85% 0.0% 

total VaR 14.3 

(100%) 

14.3 

(100%) 

15.4 

(100%) 

15.4 

(100%) 

Note: Each panel refers to a different banking system. Systemic risk is measured as total VaR at the 99.9% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total VaR, as allocated by the 
procedure specified in the column heading. The number of banks in group j equals nj, the size of a bank in group j is sj and the 
exposure of a bank in group j to the common factor is denoted by ρj. 

  Table 1 

 

That said, Procedure 2 is designed for the second of the above objectives, i.e. the calculation 

of actuarially fair insurance premia when the insurance is against losses incurred in systemic 

events. To see this, consider again the system in which correlation is low. Given that the 

systemic events occur when system-wide losses equal 14.3 cents on the dollar and big 

banks are the sole drivers of such losses, these banks should be the only ones to pay 

actuarially fair insurance premia. 

The picture is symmetric when higher default correlations lead to a system-wide VaR (15.4 

cents on the dollar) that corresponds to the losses from the failure of four small banks (see 

right-hand panel of Table 1). In this case, Procedure 2 implies that the systemic importance 

of big banks is nil. For the reasons discussed above, this outcome is simply another example 

of a mismatch between the expected losses generated by a bank in systemic events and the 

contribution of this bank to systemic risk. Again, the mismatch suggests that Procedure 1 

should be used for the first of the above objectives, even though Procedure 2 is the one to 

use for the second objective. 

It should be noted that allowing for stochastic LGD would alter the numerical results in Table 

1. For example, it would dampen the distinction between the two groups of banks under 

Procedure 2. To see why, note that, if the probability distribution of LGD is continuous, losses 

from each bank will enter the set of systemic events underpinning the VaR at any confidence 

level. This would guarantee a strictly positive level of systemic importance for each bank 

under Procedure 2. 
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That said, two points should be kept in mind. As discussed in Section 1.2, a departure from a 

step-wise loss distribution (which would result from a continuous PDF of LGD) raises 

significant computational issues when Procedure 2 is applied to a VaR measure of systemic 

risk. Second, keeping such issues aside, stochastic LGD does not alter the fact that 

Procedure 2 is not designed to convey the degree to which the interaction among different 

banks raises systemic risk. Numerical results, available upon request, reveal that the 

differences between Procedures 1 and 2 illustrated in Table 1 are maintained in qualitative 

terms even for a stochastic LGD with substantial variance. 

A second example illustrates sharply the fact that a bank’s contribution to system-wide ES is 

also not equal to the extent to which the bank is expected to participate in the corresponding 

systemic events (see Table 2). The 4 banks in the hypothetical system of this example differ 

with respect to their individual PDs and loadings on the common risk factor. In order to 

analyse differences between the two attribution procedures, it suffices to consider the bank 

with the highest and that with the lowest probability of default, dubbed C and D, respectively. 

Bank C also features the lowest exposure to the common factor, whereas bank D features 

the highest exposure. 

Comparison between Procedures 1 and 2: an ES example 
All banks: s = 0.25 and LGD = 55% 

 
Low risk system 

PDA = PDB = 0.31%,  

PDC = 0.62%, PDD = 0.28% 

ρA = ρB = 0.65, ρC = 0.10, ρD = 0.74 

High risk system 

PDA = PDB = 0.62%,  

PDC = 1.24%, PDD =0.56% 

ρA =  ρB = 0.65, ρC = 0.10, ρD = 0.74 

 Procedure 1 Procedure 2 Procedure 1 Procedure 2 

Banks A and B 
53% 49% 54% 57% 

Bank C 
20% 26% 17% 12% 

Bank D 
27% 25% 29% 31% 

Total ES 18.4 

(100%) 

18.4 

(100%) 

26.2 

(100%) 

26.2 

(100%) 

Note: Each panel refers to a different banking system. Systemic risk is measured as total ES at the 99.8% confidence level, in cents 
per dollar exposure to the system. The first three rows report the share of each bank (or group of banks) in total ES, as allocated by 
the procedure specified in the column heading. The size of a bank is denoted by s, the PD of bank j is PDj and the exposure of bank j 
to the common factor is denoted by ρj. 

  Table 2 

 

When the general level of banks’ PDs is low, Procedure 1 attributes a larger share of 

systemic risk to bank D than to bank C (left-hand panel). The underlying reason is that, with 
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its greater dependence on the common risk factor, bank D is more likely to be part of joint 

failures than is bank C. This raises the contribution of bank D to systemic risk relative to that 

of bank C. For example, removing bank D from the overall system makes the ES drop from 

18.4 to 15.3 cents on the dollar, while removing bank C induces a smaller drop, to 17.6 

cents. Procedure 1 incorporates such facts directly by considering the extent to which each 

bank raises the ESs of various subsystems. This makes the procedure a natural choice in 

the context of the first of the above objectives, which calls for gauging individual contributions 

to systemic risk. 

For the same system, Procedure 2 delivers a different conclusion: that the systemic 

importance of bank D is smaller than that of bank C. To see why, note first that the systemic 

events in the considered system correspond to losses generated by the failure of one or 

more banks. Then recall that the level of systemic importance under Procedure 2 equals the 

expected losses of each bank, conditional on the systemic events, but is independent of a 

bank’s propensity to participate in these events with other banks. Given this, the high 

likelihood of solo failures by bank C in the systemic events drives its measured level of 

systemic importance above that of bank D. Nonetheless, the levels of systemic importance 

obtained under Procedure 2 do equal the actuarially fair premia that banks should pay to a 

provider of insurance against the systemic events (which relates to the second of the above 

objectives). 

The distinction between Procedures 1 and 2 is less sharp if the banks in the system feature 

higher PDs and, as a result, the systemic events underpinning the system-wide ES is 

associated only with losses from the failure of two or more banks (right-hand panel of Table 

2). In this case, Procedure 2 joins Procedure 1 in attributing a higher portion of systemic risk 

to the bank with a higher exposure to the common factor, ie bank D. The qualitative similarity 

between the two procedures notwithstanding, Procedure 1 points to a smaller difference 

between banks C and D. This is because, while Procedure 2 focuses on a bank’s role in the 

ES of the overall system where only joint failures matter, Procedure 1 considers also 

subsystems where the level of ES is affected by losses from single failures. In comparison to 

the overall system, the contributions of banks C and D to the risk of such subsystems differ 

less because the two banks are assumed to be of equal sizes and to feature high PDs 

(concretely, PDC > 1-qES and PDD > 1-qES). 

2.4.2 Comparison between Procedures 2 and 3 

As stated above, Procedure 3 approximates well Procedure 2 when the granularity of the 

financial system is sufficiently fine, ie when there is a large number of banks and all bank 

sizes are similar. The left-hand and centre panels of Table 3 illustrate that this condition is 
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met by a system of 24 banks that differ only with respect to their PDs but not quite by an 

analogous system of 10 banks. A similar conclusion (not illustrated in the table) is reached in 

the context of banking systems in which banks differ from each other only with respect to 

their exposure to the common risk factor. Importantly, when banks’ relative sizes differ, the 

system may remain lumpy irrespective of the number of banks. In turn, this implies that 

Procedure 3 may approximate poorly Procedure 2 even for systems comprised of a large 

number of banks (Table 3, right-hand panel). 

 

Comparison between procedures 2 and 3 
All banks: PD = 0.3%, LGD = 55% 

 nA = nB = 5 

sA = sB = 0.1 

ρA = 0.5, ρB = 0.5 

nA = nB = 12 

sA = sB = 0.0417 

ρA = 0.5, ρB = 0.7 

nA = nB = 12 

sA = 0.0167, sB = 0.0667 

ρA = ρB = 0.6 

 Procedure 2 Procedure 3 Procedure 2 Procedure 3 Procedure 2 Procedure 3

Banks in 

group A 
39% 35% 33% 34% 5% 15% 

Banks in 

group B 
61% 65% 67% 66% 95% 85% 

Total VaR 11 

(100%) 

11 

(100%) 

9.17 

(100%) 

9.17 

(100%) 

11 

(100%) 

11 

(100%) 

Note: Each panel refers to a different banking system. Systemic risk is measured as total VaR at the 99.9% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total VaR, as allocated by the 
procedure specified in the column heading. The number of banks in group j equals nj, the size of a bank in group j is sj and the 
exposure of a bank in group j to the common factor is denoted by ρj. 

  Table 3 

 

3. Drivers of systemic tail risk 

This section moves away from methodological considerations in order to analyse the ES of 

concrete, albeit highly stylised and hypothetical, banking systems. The section documents 

the impact of four different drivers of systemic tail risk, as measured by ES: banks’ number, 

relative sizes, individual PDs and exposures to the common risk factor.15 

                                                 
15  An analysis of these drivers under the VaR measure yields similar insights. Importantly, the paper abstracts 

from a number of additional drivers of systemic risk, such as the relationship between the number of defaults 
and LGD and drivers stemming from the network structure of the financial system.  
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The properties of ES have been analysed at considerable length in the context of portfolio tail 

risk. Cast in the present context, one of these properties is that the level of systemic risk 

increases as the PDs of some or all of the banks rise. Another well-known feature is that 

higher exposure to common risk factors increases the likelihood of joint failures, which 

typically raises tail risk in the system and, thus, its ES. Further, greater lumpiness of the 

financial system – caused by a reduction in the number of banks or greater disparity of their 

relative sizes – raises tail risk by restricting diversification benefits. 

In order to illustrate additional properties of systemic risk (and, in the next sections, the 

attribution of systemic risk to individual banks), we resort to numerical examples that are 

based on specific values of banks’ PDs and common-factor loadings. With the goal of staying 

in line with real-world bank characteristics, we calibrate hypothetical financial systems that 

are largely consistent with Moody’s KMV estimates of the one-year PDs and asset-return 

correlations of 65 large internationally active banks at end-2007.16 These estimates suggest 

a typical (ie average) PD of 0.11% and a realistic high PD (ie average plus one standard 

deviation) of 0.3%. In addition, estimated asset-return correlations average 42% (consistent 

with a homogenous common factor loading,  , of 65.042.0  ) and range between 14% 

( 37.0 ) and 55% ( 74.0 ). 

Benchmarking our calibration choices to these parameter estimates, we investigate the joint 

impact of system lumpiness and banks’ exposure to the common factor on systemic tail risk. 

The results are portrayed in Graph 1, left-hand panel. In this panel, lumpiness is captured 

solely by the number of homogeneous banks in a hypothetical system and is held fixed (at 

one of three levels) in order to plot systemic risk as a function of the common-factor 

exposure.  

A key message is that a decrease in the lumpiness of the system depresses systemic risk by 

more when banks’ exposure to the common risk factor is smaller. In the limit case, in which 

all banks are exposed only to the common risk factor (i.e. when the asset-return correlations 

equal unity), changes in the lumpiness of the system are inconsequential. To see why, note 

that lower exposure to the common factor means greater importance of idiosyncratic risks. In 

turn, idiosyncratic risks are those that are diversified away at the level of the system when its 

lumpiness decreases (in this case, as the number of banks increases). 

                                                 
16  These estimates are delivered by the proprietary Credit Model and GCorr, respectively, and are based on 

market prices of banks’ equity and debt. 
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The flipside of this intuitive result reveals an important insight regarding the consequences of 

measurement error. Namely, the different slopes of the three lines in the left-hand panel of 

Graph 1 indicate that systemic risk tends to increase faster in the exposure to the common 

factor when there are more banks in the system. Thus, a given error in the estimate of banks’ 

exposures to the common factor is likely to result in a larger error in the measurement of 

systemic tail risk when the system is less lumpy. 

 

Systemic risk and systemic importance1 

The role of lumpiness2 Risk and size4,5 Risk and common exposures4,6 

 

 

0.00
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0.05 0.10 0.15 0.20 0.25 0.35
Probability of default

Total
10 small banks
5 big banks
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Exposure to the systematic factor3

4 banks 
10 banks
50 banks

0.00

0.04

0.08

0.12

0.05 0.10 0.15 0.20 0.25 0.35
Probability of default

Total
8 low-exposure banks
8 high-exposure banks

1  Total systemic risk is measured as ES at the 99.8% confidence level, in cents per dollar exposure to the system. LGD is assumed to 
be 55%.     2  Total systemic risk of systems comprising homogenous banks, whose PDs equal 0.3%.    3  Delete in label, left hand 
panel     4  The contributions of the two groups of banks to the total are plotted as shaded areas. Each group accounts for half of the 
overall system size. Probability of default (on the horizontal axes) is in percentage points.      5  The systematic (or common) risk factor 
accounts for 60% of each bank’s asset-return volatility.     6  The systematic (or common) risk factor accounts for 70% of the asset-
return volatility of high-exposure banks and 30% of that volatility for low-exposure banks. 

  Graph 1 

 

4. Drivers of systemic importance 

This section analyses drivers of systemic importance, measured here as the share of 

systemic ES attributed to individual banks by attribution Procedure 1.17 The four drivers 

considered below are those that were analysed in the context of systemic risk: i.e. banks’ 

number, relative sizes, PDs and exposures to the common risk factor. The stylised banking 

systems that underpin the analysis are designed to meet two criteria. First, these banking 

systems are largely in line with Moody’s KMV estimates of bank PDs and asset return 

correlations (see above). Second, the systems are populated by banks whose risk 

                                                 
17  Thus, in the light of the discussion in Section 2.2.1, systemic importance should be understood as being 

directly related to the institution’s contribution to systemic risk. 
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characteristics are such as to allow for isolating the impact of specific drivers of systemic 

importance in a straightforward fashion. 

4.1 The number of banks and their relative sizes 

Quite intuitively, larger size implies greater systemic importance. We illustrate this in Table 4, 

for which we consider systems that possess the following three features. First, all banks in a 

given system share the same PD and exposure to the common factor. Second, there are 3 

big banks of equal size, which account for 40% of the overall system. Third, a group of 

equally-sized small banks make up the rest of the system. In all of these systems, the 

systemic importance of a big bank is greater than that of a small one. More interestingly, as 

the number of small banks (but not their share in the overall size of the system) increases, 

their systemic importance declines both individually and as a group. The flipside of this is that 

the systemic importance of big banks rises. 

System lumpiness 
Systemic risk and systemic importance 

 Low risk system 

(all banks: PD = 0.1%) 

High risk system 

(all banks: PD = 0.3%) 

 
ns = 5 ns = 10 ns = 15 ns = 20 ns = 25 ns = 5 ns = 10 ns = 15 ns = 20 ns = 25

3 big banks 
43% 57% 63% 66% 68% 42% 52% 57% 59% 61% 

ns small banks 
57% 43% 37% 34% 32% 58% 48% 43% 41% 39% 

Total ES 9.8 

(100%) 

9.4 

(100%) 

9.3 

(100%) 

9.25 

(100%) 

9.23 

(100%) 

16.7 

(100%) 

15 

(100%) 

14.7 

(100%) 

14.4 

(100%) 

14.3 

(100%) 

Note: Each column refers to a different banking system. Systemic risk is measured as total ES at the 99.8% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total ES, as allocated by 
Procedure 1. The group of big banks accounts for 40% of the overall size of the system and the group of small banks accounts for 
60%. Each bank is assumed to have the same sensitivity to the common risk factor, implying a common asset return correlation 
of 42% (or ρ = 0.65), and features an LGD of 55%. 

  Table 4 

 

Further inspection of Table 4 reveals that the contribution to system-wide risk increases more 

than proportionately with relative size. To see this, consider the first column of the table, 

which relates to a system in which a big bank is 10% larger than a small one but is assigned 

a 23% greater share in systemic risk.18 This effect increases as banks’ sizes become more 

                                                 

       18  Concretely: smallbig s 11.15/6.0/3/4.0   25.15/%57/3/%43 s  and smallbig ShVShV . 
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disparate. In the fifth column of the table, which relates to a system where the sizes of big 

and small banks are roughly 5-to-1, the respective shares in systemic risk are 18-to-1. 

The basic intuition for the relationship between size and systemic importance is that systemic 

(ie tail) events are associated with extreme losses, in which large banks are more likely to 

participate than smaller ones. This is an important property and a concrete example of how 

the macro-prudential perspective may provide unique insights that would be missed by a 

micro-oriented approach. If systemic importance increases faster than size, then prudential 

tools that aim at mitigating systemic risk should be designed so that their impact on an 

institution also increases more than proportionately with its size. 

The convex, positive relationship between size and systemic importance is a robust result. It 

is supported by all the ES-related examples reported in the paper and by (unreported) 

extensive numerical investigation of the underlying risk model. Furthermore, we establish 

analytically that, when the metric of risk is ES, systemic importance increases at least 

proportionately with size under quite general conditions. To isolate the impact of size, we 

consider a general system and compare the relative contributions to system-wide risk of two 

banks that have identical risk profiles and differ from each other only in terms of their size. 

We then obtain the following result, which does not depend on specific assumptions about a 

number of drivers of systemic importance, such as the probability distribution of risk factors 

and the default correlation between institutions: 

Theorem: Let two banks differ only in terms of size. Suppose further that the contribution of 

either of these two banks to the ES of any other subgroup in the system decreases (weakly) 

as the number of banks in the subgroup increases. Then, the ratio of the Shapley value of 

the larger to that of the smaller bank is (weakly) bigger than the ratio of the respective sizes. 

The sufficient condition in the statement of the theorem is fairly weak and quite intuitive. In 

the appendix we show that it is a generalisation of the well-known sub-additivity of ES, or that 

the sum of the ESs of two portfolios is not smaller than the ES of a third portfolio that equals 

the sum of the first two. 

The formal proof of the theorem, which is presented in the appendix, makes repeated use of 

the following fact. If the joint failure of the smaller bank with a group of other banks is a tail 

event, then the joint failure of the larger bank with the same group of other banks would also 

be a tail event. However, the converse need not be true. Or, as stated above, a larger bank 

appears in tail events more often than a smaller bank with an identical risk profile. 
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4.2 The exposure of banks to the common factor and their PDs 

Another intuitive result is that systemic importance increases with the bank’s exposure to the 

common risk factor. This is illustrated in Table 5, in which each banking system is comprised 

of 20 banks, divided into two homogeneous groups, A and B, that differ only with respect to 

banks’ exposures to the common factor. Keeping the exposures to the common factor 

constant in group B but increasing them for group-A banks (across columns, in each panel) 

results in an increase in these banks’ share in systemic risk. In the specific example, their 

contribution rises from 44% to 60%. 

Exposure to a common risk factor 
Systemic risk and systemic importance 

 Low risk system  

(all banks: PD = 0.1%) 

High risk system  

(all banks: PD = 0.3%) 

 
ρA = 0.3 ρA = 0.4 ρA = 0.5 ρA = 0.6 ρA = 0.7 ρA = 0.3 ρA = 0.4 ρA = 0.5 ρA = 0.6 ρA = 0.7

10 banks in group A 
44% 46% 50% 54% 60% 42% 45% 50% 56% 63% 

10 banks in group B 
56% 54% 50% 46% 40% 58% 55% 50% 44% 37% 

Total ES 4.0 

(100%) 

4.4 

(100%) 

5.0 

(100%) 

5.8 

(100%) 

6.8 

(100%) 

6.6 

(100%) 

7.2 

(100%) 

8.2 

(100%) 

9.8 

(100%) 

11.5 

(100%) 

Note: Each column refers to a different banking system. Systemic risk is measured as total ES at the 99.8% confidence level, in cents 
per dollar exposure to the system. The first two rows report the overall share of each group of banks in total ES, as captured by 
Procedure 1. The exposure of each of the 10 banks in group A to the single common risk factor is as given in the row headings. The 
exposure of each of the 10 banks in group B to the common risk factor is held fixed at ρB = 0.5. All banks are of equal size, s = 0.05, 
and feature LGDs of 55%. 

  Table 5 

 

The reason for this result is straightforward. Higher exposures to the common factor result in 

a higher probability of joint failures in the system. In turn, a higher probability of joint failures 

means a higher likelihood of extreme losses, which leads to a higher level of systemic risk. 

Quite intuitively, the rise in the level of systemic risk is attributed mainly to the banks that are 

affected directly by the cause of this rise, ie those that experience an increase in their 

exposure to the common factor (ie group-A banks in Table 1). 

Anticipating the analysis in the next section, it is important to also record that greater size or 

exposure to the common risk factor strengthens the positive impact of a higher PD on 

systemic importance. In order to illustrate how size and PD interact, Graph 1 (centre panel) 

considers a system in which banks differ only in terms of size. As PDs increase uniformly 

across all banks in this system, the portion of the expected shortfall attributable to larger 

banks increases by a bigger amount than that attributable to smaller banks. The right-hand 

panel of Figure 1 illustrates a similar point in the context of a system comprised of banks that 
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differ only with respect to their exposures to the common risk factor. Given that all of these 

banks experience the same rise in their PDs, the resulting increase in the contributions to 

systemic risk is greater for banks with a larger common-factor exposure. 

5. Stylised policy tools 

This section discusses how tools that attribute system-wide risk to individual institutions can 

be used in conducting prudential policy. More specifically, the section illustrates differences 

between micro- and macro-prudential approaches to achieving a specific level of risk by 

means of regulatory capital requirements. The basic premise is that by affecting institutions’ 

risk profiles, capital charges affect the overall level of systemic risk and institutions’ 

contribution to it.  

We assume that the authorities apply capital charges to individual institutions with the 

objective of achieving a target for system-wide risk. We discuss three alternative approaches 

to calibrating these charges. The first approach equalises the risk at the level of each 

institution, ie attains the target level of systemic risk with a uniform PD across all institutions. 

We label this the “micro-prudential” approach in the sense that it is in the spirit of the current 

policy framework. The other two approaches take more of a “macro” perspective in attaining 

the same target for system-wide risk. One equalises the contributions of individual institutions 

to system-wide risk (ie equalises their Shapley values). The other minimises the overall level 

of capital in the system (ie makes sure that the marginal reduction of systemic risk by an 

extra unit of capital would be the same across institutions). 

Our setup is parsimonious. We assume that there is a one-to-one mapping between the 

individual risk of a bank (its PD) and the amount of capital it holds. In addition, we assume 

that banks do not hold capital in excess of the level required by the authorities. Hence, 

changes in capital requirements have a direct effect on the leverage of banks and, ultimately, 

on their PDs. At the same time, we assume that capital requirements do not affect the size of 

balance sheets and banks’ exposure to the common risk factor. Concretely, the mapping 

between a bank’s capital and its probability of default, is given by: 
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where Vi is the level of the bank’s assets, σV stands for asset volatility, Ki is the level of equity 

capital and ψ is an adjustment factor.19 A policy intervention can alter K – and thus PD – at 

the level of each bank, but none of the other parameters. The analysis below is conducted 

with reference to systems populated by two groups of banks. Each of the groups accounts 

for half of the aggregate system assets and includes homogeneous banks. As detailed 

below, the two groups differ from each other in terms of specific risk parameters. 

In the first example, the two sub-groups differ only in terms of the intensity of the exposure of 

the banks to the systematic risk factor. Banks in one group have a lower exposure to 

systematic risk (in terms of equation 3, 30.0 ), while banks in the other group have higher 

exposure to the systematic risk factor ( 70.0 ). The two groups are identical to each other 

in terms of everything else.  

The policy experiment is depicted on the left-hand side panel of Graph 2. The curve labelled 

iso-ES corresponds to the combinations of capital charges – those on banks with a low (high) 

exposure to the systematic risk factor are on the horizontal (vertical) axis — that achieve the 

target level of system-wide risk. The first policy approach attains the target level of systemic 

risk for equal PDs (i.e. for equal capital charges) at point A: the intersection between the iso-

ES curve and the 45-degree line from the origin.  

Equal capital charges, however, do not imply that banks contribute equally to systemic risk. 

The dashed curve labelled equal ShV denotes all capital allocations that result in equal 

contributions to system-wide risk by banks in the two groups (ie equal Shapley values).20 

Equalisation of Shapley values across different banks requires that banks with a greater 

exposure to the common factor (and hence higher contribution to system-wide risk) face 

higher capital charges that reduce their PDs (recall Graph 1).  

The third approach to achieving the target level of system-wide risk is to seek an allocation 

that minimises the aggregate capital in the system. Graphically, this approach delivers the 

capital allocation given by the tangency point between the iso-ES curve and the straight line 

with a slope of -1 (ie the line perpendicular to the main diagonal) that is closest to the origin. 

This  corresponds to point C.  

                                                 
19  This equation is consistent with the model introduced in Section 2. Apparent differences stem from the fact 

that the formulae in Section 2 were designed to highlight how common-factor loadings enter the model, 
whereas here the emphasis is on the capital-to-asset ratio. To see the relationship between the alternative 

formulae, let the default point DP equal  KV   and the asset volatility V/1  and note that the level of 

asset .volatility is inconsequential for the analysis in previous sections. As initial conditions, we calibrate Ki/Vi = 
0.04, σV = 3.5%, and then set ψ so that PD = 0.3% for all banks. 

20  In the light of the discussion in Section 2.4.1, contributions to systemic risk are measured via Procedure 1. 
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Macroprudential policy interventions1 

Capital for two groups of banks 

Banks differ in one aspect2 Banks differ in two aspects3 
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1  Each panel corresponds to a specific system comprised of two groups of banks. Risk characteristics are identical across banks in each
group. The aggregate group-wide assets are the same across groups. Each axis measures the capital charge for a particular group of
banks, as per cent of the group’s aggregate assets. The lines labelled “iso-ES” plot the pairs of capital charges, which imply that the 
system-level expected shortfall at the 99.8% confidence level equals 10% (left-hand panel) or 8% (right-hand panel) of aggregate 
liabilities in the system (LGD = 55% for all banks). The lines labelled “equal ShV” plot the capital pairs which imply that Shapley values
are equal across the two groups of banks (equivalently, the ratios of Shapley values to corresponding bank sizes are equal across
banks).     2  The system comprises two groups of five banks each. The groups differ only with respect to the constituent banks’ exposure
to the common factor: ρlow = 0.30 vs. ρhigh = 0.70.     3  The system comprises 20 banks. The first group comprises 4 large banks with a 
low exposure to the common factor: slarge = 0.125, ρlow = 0.30. The second group comprises 16 small banks with a high exposure to the 
common factor: ssmall = 0.031, ρhigh = 0.70. 

                                                                                                                                                                                                          Graph 2 

 

In this example, both macroprudential approaches to achieving the target risk level (ie the 

second and third approaches) lead to efficiency gains in comparison to the microprudential 

approach (the first one). For the specific example used here, the aggregate level of capital in 

the system equals 4% of aggregate assets at point A, 3.8% at point B and 3.78% at point C 

(the minimum). The reason for this reduction in aggregate capital when going from A to B is 

related to the discussion in Section 4.2 about the interactions between size and PD in the 

determination of systemic importance. As illustrated in Graph 1 (right-hand panel), for a given 

change in PDs, banks that are more exposed to common risk factors experience a greater 

change in their contribution to systemic risk. Conversely, in equalising individual contributions 

to a fixed level of system-wide risk, the increase in the capital charge for banks with a greater 

common-factor exposure is smaller than the reduction for banks with a lower common-factor 

exposure. Hence, equalising contributions to systemic risk leads to a more efficient use of 

capital in this particular system than achieving the same risk with uniform capital levels. 
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The comparison between points B and C highlights the differences between the two 

macroprudential approaches. By construction, point C requires the lowest aggregate level of 

capital. By transferring more capital from the banks with a low systematic factor exposure to 

the group with a high exposure, this allocation exploits further the scope for efficiency than 

the one that equalises systemic risk contributions. That said, the two macroprudential 

approaches deliver the same ranking of the capital charges on the two types of banks: points 

B and C are on the same side of the 45-degree line. 

The ranking of the three approaches in terms of aggregate capital requirements may differ 

from the above example if banks in the two groups differ in more than one aspects. For 

example a system where banks with a higher exposure to the common factor are also 

smaller would reverse the ordering of the first and second approaches in terms of efficiency 

in capital utilisation. This is shown in the right-hand panel of Graph 2. In this example, size 

and loading on the systematic factor have counteracting effects on the systemic importance 

of each bank. Hence, it is the relative importance of these effects that determines whether 

aggregate capital increases or declines when moving from the first, microprudential, 

approach to the second one, which equalises Shapley values. The specific parameterisation 

in this example leads to higher capital charges on the group of larger banks under the 

second approach (point B) and results in a higher level of aggregate capital (4.6% of 

aggregate assets) than those imposed by the first intervention (point A: 4.4% of assets). The 

third intervention that achieves the target with the minimum level of aggregate capital (4.3%) 

imposes higher capital on smaller banks because of their higher exposure to the systematic 

factor. 

The policy examples in this subsection are intentionally cast in stylised settings that help 

highlight the interaction of different drivers of systemic importance. As such, the settings do 

not seek to capture particular empirical regularities and do not cover all possible ways in 

which institutions could respond to changing capital requirements. This leaves a number of 

important issues to future research. 

Conclusion 

Measures of the systemic importance of financial institutions are key inputs to 

macroprudential policy instruments. This paper proposes a general and flexible methodology 

for obtaining such measures by attributing systemic risk to individual institutions. The paper 

also demonstrates that different applications of the attribution methodology adopt different 

notions of systemic importance and, as a result, should be used for different macroprudential 

objectives. In addition, numerical examples highlight the importance of policy rules and 
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interventions that reflect not only the probability of a failure by an individual institution but 

also its exposure to common risk factors. The analysis also suggests that charges imposed 

on large institutions would need to reflect the more than proportionate impact of their size on 

systemic risk. 
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Appendix: Formal results on the impact of size on systemic importance 

This appendix provides formal analytical results on the non-linear relationship between the 

size of an institution and its contribution to system-wide risk, as captured by the Shapley 

value methodology. More specifically, it proves that, if two institutions are identical in all 

aspects but size, then the Shapley value of the larger institution divided by that of the smaller 

one is at least as large as the ratio of the respective sizes.  

All results are based on a common framework for the measurement of the risk of a system or 

subgroup of banks. Risk is driven exclusively by losses related to the failure (default) of 

individual banks. Given the assumption of a constant loss-given-default (LGD), the loss in the 

case of a failure of bank i is a constant proportion of the size of the bank: LGD*Si. Then, in 

addition to the size of each bank, the characteristics that drive its riskiness are: (a) the 

unconditional probability that it defaults, PDi = Prob{default i}; and (b) the set of conditional 

probabilities that i defaults given the default of any group {G} of other banks, PDi,G = 

Prob{default i | default by all GiGj  , }. The set of conditional PDs would capture any 

interdependency across banks, stemming from potential “domino effects” (chains of losses 

across banks) when banks are related via a network of interbank exposures or from the 

intensity of exposures to common risk factors. 

The chosen risk metric is expected shortfall (ES), which equals the expected loss from a 

given group of banks, conditional on a set of tail events. In turn, a tail event is a loss 

configuration that delivers extreme aggregate losses. In line with the discussion in Section 

2.4, we consider two different types of sets of tail events. A set of the first type is constant for 

all subgroups of banks and is comprised of tail events in which losses equal or exceed a 

given quantile of the distribution of losses in the entire system. Hence, the expected losses 

for any subgroup are calculated over the events defined at the level of the entire system. By 

contrast, a set of the second type is defined at the level of each subgroup of banks. In this 

case, a tail event is defined with respect to the distribution of losses in the subgroup in focus. 
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In terms of the notation used in the main body of the paper, the fixed set of systemic events 

gives rise to characteristic function , while the subgroup-specific set refers to 

characteristic function . 





Let T be the relevant set of tail events e: Te  . Associated with T there is a set of 

probabilities  for the constituent tail events. The ES of a generic group of banks {G} can 

then be expressed as:  

Tep 
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The following two theorems prove results related to the convex positive relationship between 

a bank’s size and its Shapley value. Theorem 1 refers to a constant set of tail events 

(characteristic function ), while Theorem 2 refers to the case where this set is specific to 

each subgroup of banks (characteristic function ).  





Theorem 1 (characteristic function: ): 

Consider two banks S and B, which differ in size, Bs ss  , but have the same risk 

characteristics: PDs = PDb , PDs,b = PDb,s and PDs,j = PDb,j. Then 
 
  S

B

s

s
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BShV
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Proof of Theorem 1 

In the present case, the set of tail events, T, is the same for all subgroups of banks, which 

simplifies greatly the Shapley value calculation. Given (A1), the marginal contribution of an 

individual bank i to the risk of a generic subgroup {G} equals: 
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which reflects the fact that T is the same for both subgroups {G,i} and {G}. Note that this 

marginal contribution is the expected loss associated with i across all tail events (defined at 

the level of the entire system) and is constant across all subgroups {G}. This implies that it 

would also be equal to the Shapley value of bank i, since the latter is a weighted average of 

such marginal contributions (see Section 2.3 above).  

The ratio of the Shapley values of B and S  is then given by: 
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The reason for the inequality is the following. For each tail event, Te  , that includes S but 

not B, there must be a corresponding event in T that includes B but not S and has the same 

probability of occurrence as the former event. This follows from the definition of the set of tail 

events, T, the size difference, , and the assumption that S and B have identical 

conditional default probabilities. However, since 

Bs ss 

Bs ss  , it is possible that: (i) there are tail 

events that include B but not S and (ii) there is no corresponding event that includes S but 

not B. This implies that     
e

eb1 
 T

se
Te

e pp 1 e , which establishes the above inequality 

and completes the proof of the theorem. ■ 

Theorem 2 (characteristic function: ) 

Consider two banks S and B, which differ in size, Bs ss  , but have the same risk 

characteristics: PDs = PDb , PDs,b = PDb,s and PDs,j = PDb,j. Let S and B have a positive 

marginal contribution to each subgroup {G} of other banks: 

    B or Si,0)(),(  GESiGES . Then, the following is a sufficient condition for the relative 

systemic importance of bank B to be larger than its relative size, ie for 
 
  S

B

s

s

SShV

BShV
 : 

1)        ),(),,()(),( GjESGjiESGESGiES  , where  BSji ,,   and  GBS , . 

This condition states that the marginal contribution of bank i to the ES of a subgroup should 

not decrease as the number of other banks in this subgroup increases. The condition is 

intuitive because, as the number of banks in the subgroup increases, idiosyncratic risk is 

diversified away and the impact of each individual bank on the (average) severity of tail 

events should be expected to decrease. The condition could also be seen as a 

generalisation of the sub-additivity of ES. Namely, it could be rewritten as 

       )(),,(),(),( GESGjiESGjESGiES  , which collapses to the sub-additivity property 

when subgroup {G} is empty. 

Proof of Theorem 2 

The proof incorporates the fact that, under characteristic function , tail events differ across 

subgroup of banks. Concretely, equation (4) above implies that the ratio of Shapley values 

that is at the centre of Theorem 2 equals: 



 
 

                 
                  

  






GG

GG

GBESGBSESGGESGSESG

GSESGBSESGGESGBESG

SShV

BShV

,,,~,

,,,~,




, where  is the 

set of all subgroups {G} that do not contain S or B, and the weights 



 G  and  G~  change 

 35
 
 



 

with the number of banks in {G}. In addition,    GG  ~  because, given {G}, the latter 

weight is associated with the ES of subgroups comprised of one more bank. 

Note next that, given any {G} and a marginal contribution       GSESGBS ,,, ES  entering 

the Shapley value of bank B, there is a corresponding marginal contribution 

     GESGBES ,  that also enters this Shapley value. Similarly for the Shapley value of 

bank S. This is a result of the Shapley value incorporating the marginal contribution of a bank 

to each subgroup it participates in. Then, the last equality can be rewritten as follows: 

 
 

               
   

             
                         






  

  








S

B

GG

GG

GESGSESGBESGGESGSESGG

GESGBESGSESGGESGBESGG

SShV

BShV

,,~,~

,,~,~









GBSES

GBSES

,,

,,

where the fact that the second sum in the numerator is equal to the second sum in the 

denominator is seen by a simple rearrangement of the summands. Lemma 1, which is stated 

and proved below, implies that 
S

B

S

B

s

s





. In turn, by condition (1) in the statement of 

Theorem 2,  . Then, since 0   0 ss SSShV  and Bs , it follows that 

 
 
    0

1
























S

s

B

s

B
SB

S

B s

s

s

s

s

s

SShV

BShV
. This proves the theorem. ■ 

Lemma 1 

Let banks S and B be as specified in Theorem 2 and {G} be any subgroup of banks that does 

not include either S or B. Then 
    
      S

B

s

s

G

G


ESGSES

ESGBES




,

,
. 

Proof of Lemma 1 

Let T{G} denote the set of  tail events for a generic subgroup {G}. Given (A1), for any 

subgroup of m banks {G} we can write    GskGES  , where k  is a  vector of 

probabilities that a bank in {G} belongs to the set of tail events, T{G}, and  is the 

m1

Gs 1m  

vector of respective sizes. Similarly, we can express    GsES 

ˆ m

B wts GB,

1

 and 

 where t  and t  are scalars and w  and w  are  vectors.    Gs swstGSES  ˆˆ, ˆ

The inequality in the statement of the Lemma can be expressed equivalently as a condition 

on the sign of the following expression: 
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     
     

     
 GGBS

GSGBGSBSB

S

B

GGB

GGB

S

B

skswsts

swsswssksssstt

s

s

skswst

skswts

s

s

GESGSES

GESGBES














ˆˆ
ˆˆ

ˆˆ,

,

      (A2) 

The Lemma is true if and only if the last expression is (weakly) positive. Given that bank S 

has positive marginal contributions, the denominator in (A2) is positive. Thus, it remains to 

prove that the numerator is (weakly) positive. We note the following fact: 

Fact 1: . In other words, the portion of the ES that is attributed to failures of 

banks in {G}  is smaller in the case of subgroup {B,G} than in that of {S,G}.  

GG swsw  ˆ

The reasoning behind this fact follows along the lines of the proof of Theorem 1. Each tail 

event that is in the set T{S,G} and includes bank S (and possibly banks in {G}) is matched by 

a corresponding tail event, in T{B,G}, in which B replaces S. However, the opposite need not 

be true: there may be some tail events in T{B,G} that feature B (and possibly banks in {G}) 

but are not matched by tail events in T{S,G}. If this is the case, then any such tail event, say 

 gB ˆ, , enters T{B,G} in the place of tail events in T{S,G}, denoted by  g~ , which feature only 

banks from {G}. 

We can establish two properties of tail events  g~ . First, the probability mass of  g~  in T{S,G} 

is equal to the probability mass of the “replacement” tail events  gB ˆ,  in T{B,G}. This is by 

virtue of the fact that the total probability mass of all tail events is constant. Second, the total 

size of banks in subgroup  ĝ  that enter a tail event  gB ˆ,  in the set T{B,g} is at most as large 

as the size of the banks in the tail event  g~ . To see why, note that, by definition, the 

aggregate size of banks in a tail event  g~  has to be grater than the corresponding size 

associated with any loss configuration that is not in the set of tail events  GST , . This would 

be contradicted if the aggregate size of banks in  ĝ  were larger than the aggregate size of 

banks in  g~  since, then, the aggregate size of banks in  gS ˆ, , which is not a tail event in 

 GST , , would be greater than the aggregate size of banks in  g~ . 

The two properties of tail events  g~  establish Fact 1. 

In turn, Fact 1 points to a lower bound for the numerator of the ratio in (A2): 

     
    GGSBSB

GSGBGSBSB

swsksssstt

swsswssksssstt





ˆˆ

ˆˆ
      (A3) 

The rest of the proof establishes that the right-hand side of inequality (A3) is non-negative.  
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First note that . In other words, the probability that B participates in the set of tail events tt ˆ

 GBT ,  is at least as high as the probability that S participates in  GST , . The proof of this 

inequality is identical to a reasoning behind Theorem 1: since banks S and B have identical 

risk characteristics but , B participates in at least as many tail events as S. This 

establishes the weak inequality, which implies that the first summand of the numerator in 

(A3) is positive.  

Bs ss 

Then note that , or that the ES for subgroup GG swsk  ˆ  G  is at least as large as the 

portion of the expected losses in  GST ,  associated with banks in  G . To see why, note that 

the probability that any loss configuration associated with subgroup {G} (be it in the tail or 

not) is equal to the sum of the probabilities of two loss configurations when the subgroup is 

{S,G}: one is identical to the original configuration and one adds bank S. This reflects the fact 

that the probability of any loss configuration is independent of the banks that are not in this 

configuration, even if they belong to the subgroup in focus. Then, an argument similar to that 

underpinning Fact 1 establishes that: (i) for each tail event that is in T{S,G} and involves 

banks in {G} (and thus enters the calculation of w ) there is a corresponding tail event that is 

in T{G} and features the same banks from {G} (which enters the calculation of k); and (ii) the 

opposite need not be true. This establishes the above inequality, which implies that the 

second summand of the numerator in (A3) is also positive and, thus, completes the proof of 

the lemma. ■ 

ˆ
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