

The Use of DSGE Models for Monetary Policy Analysis at Sveriges Riksbank with a discussion of Optimal Policy Projections

BANK INDONESIA and BANK FOR INTERNATIONAL SETTLEMENTS WORKSHOP "STRUCTURAL DYNAMIC MACROECONOMIC MODELS IN ASIA-PACIFIC ECONOMIES" Bali, Indonesia, June 3 - 4, 2008

Stefan Laséen

SVERIGES RIKSBANK

Purpose of Presentation

- Brief description of the DSGE model that has been developed at the Riksbank during the last years
- Describe how the model is used in the forecasting process and for policy analysis
- Ramses = Riksbank Aggregate Macromodel for
 Studies of the Economy in Sweden

Agenda

- Models used for forecasting at the Riksbank
- 1. Ramses: model overview
- 2. Forecasting
 - Forecasting performance
 - Ramses role in the forecasting process
 - Ramses forecasting impact
- 3. Policy analysis with Ramses
 - Optimal Policy Projections

Models used at the Riksbank

- DSGE = Ramses
- BVARs & DSGE-VAR
- Large data set models (nowcasting)
 - Forecast combinations (classic + Bayesian model averaging)
 - Static factor (principal components) routines
 - Early information/forward looking information models
- Other partial information models and judgements (sector experts)

Ramses Model Overview I

- Small open economy version of the CEE (JPE 2005)-model
- Adding more shocks (Smets & Wouters)
- Model estimated on Swedish data 1986Q1-2007Q4
 - Allow for break in policy to account for monetary policy regime shift

SVERIGES RIKSBANK

Ramses Model Overview II

- Model we use in practice is very similar to the one presented in Adolfson et al. (*JEDC* 2008, forthcoming)
- Modified version of the UIP condition to improve on fitting exchange rate dynamics
- Monetary policy described by simple rule
 - Not loss function based approach for the moment – work in progress

Closed Economy Aspects

- Households
 - Utility from consumption, leisure
 - Capital accumulation
- Domestic intermediate goods firms
 - Cobb-Douglas (capital and labour)
 - Imperfect competition
- Competitive final goods firms
- Central bank
 - Taylor-type rule, interest rate 'smoothing'
- Government: distortionary fiscal policy
 - exogenous VAR for taxes and government expenditures

Open Economy Aspects

- Consumption and investment baskets of foreign and domestic goods
- Importing (consumption, investment) firms and exporting firms
 - Imperfect competition
 - Brand naming technology
 - Local currency price setting
 - \Rightarrow Incomplete exchange rate pass-through (sticky prices)
- Trade in foreign bonds with endogenous risk-premium
- Foreign economy exogenous
 - (SVAR for inflation, GDP, nominal interest rate)

SVERIGES RIKSBANK

Frictions

Nominal

- Domestic prices, import and export prices (Calvo)
- Wage stickiness (Calvo)
- Working capital channel
- Real
 - Capital adjustment costs (investment)
 - Habit persistence in consumption
 - Imperfect competition
 - Distortionary taxes

SVERIGES RIKSBANK

Estimated Shocks

- Technology (stationary and permanent), investment specific, asymmetric (domestic vs foreign)
- Markup shocks (4)
- Preference shocks (2)
- Risk premium shock
- Monetary policy shocks (2)

Forecasting Performance I

- Bayesian estimation of key model parameters (pertaining to dynamics)
 - Steady state parameters typically calibrated
- Forecasting properties in line with BVARs
- Forecasting properties in line with Riksbank's own forecasts
 - Pseudo out-of-sample comparison (no real time data)
 - Riksbank forecasts conditional on constant interest rate assumption

Forecasting Performance II

Forecasting Performance III

Forecasting and Communication

- 6 forecast rounds and interest rate decisions per year
 - 3 forecasts published in "Monetary Policy Report" (February, June, October)
 - 3 internal forecasts
 - Press conference after every interest rate decision (previously only when interest rate had been changed)
 - Names of Executive Board Members appear in the minutes

Ramses' Role in the Forecasting Process I

- Meeting 1 : International developments & world economy forecast (TCW)
- Meeting 2 : Financial markets (repo rate expectations, exchange rate...)
- Meeting 3: Assessment of initial conditions
- Alternative Macro Scenarios Meeting
- Meeting 4: Macro forecast

Ramses' Role in the Forecasting Process II

- Meeting 5: Disaggregated macro forecast
- Monetary Policy Meeting (Executive Board & Monetary Policy Dep. (MPD), Financial Stability Dep.)
- Meeting 6: The Executive Board Main Scenario

Ramses' Role in the Forecasting Process III

Initial conditions (Meeting 3)

Unconditional forecasts

- Focus on starting conditions e.g. what shocks have hit the economy?
- Implications for the unconditional forecast (e.g. interest rate setting according to Ramses estimated policy rule)

Ramses' Role in the Forecasting Process III

Example: How Ramses is used to analyze initial conditions

- GDP forecast high initially?
 - Why?
- Positive imported consumption markup shock
 - Higher prices on imported goods
 - Relatively cheap domestic goods
 - Net-export and production increase

BNP

Ramses' Role in the Forecasting Process IV

Macro forecast (Meeting 4)

- Conditional forecast, conditioned on
 - MPD assessment of initial conditions (current quarter) monitoring rather than conditioning
 - MPD view on world (TCW) economy forecast
 - MPD initial repo rate assessment
- Conditional forecasts using Waggoner-Zha (mix of shocks, historically relevant)
- Ramses & BVAR forecasts used to update previous forecast (e.g. in MPR or Update)
- DSGE-VAR (Del Negro & Schorfheide)
- Optimal Policy Projections

Ramses' Role in the Forecasting Process V

- Disaggregated macro forecast (Meeting 5)
 - "Consistency check" of forecast
 - Ramses forecast conditioned on major domestic real variables (Y, C, I, X, M, H) and ROW (Y*, PI*, R*) in forecast
 - Implications for inflation, repo rate?
 - WZ what are the driving forces (shocks)?

Ramses' Forecasting Impact I

- Ramses has been used as a forecasting and policy tool since 2005.
- One way to assess Ramses forecasting impact is to examine how the final forecasts for key variables relate to Ramses conditional forecasts
 - Ramses forecasts are conditional on sector experts' assessment of the current stance in the economy (current quarter)

Ramses' Forecasting Impact II

Can assess this by running the following regression:

$$F_{t+h}^{New} = \omega_R F_{t+h}^R + \omega_B F_{t+h}^B + (1 - \omega_R - \omega_B) F_{t+h}^{old} + e_{t+h}$$

- In the equation above
 - ω_R is the weight on Ramses forecast h periods ahead
 - ω_B is the weight on BVAR forecast h periods ahead
 - $1-\omega_R-\omega_B$ is the weight on the old forecast
 - et is a measure of judgement
- $1 R^2$ is a measure of the degree of new judgements added to the forecast
- Plot R^2 contours for different variables and jointly using data for 6 forecast occasions 2005-
 - All horizons h are considered together

Ramses' Forecasting Impact III

Current GDP forecasts vs. lagged forecasts Current GDP forecasts vs. BVAR forecasts urrent GDP forecasts vs. RAMSES forecasts

Ramses' Forecasting Impact IV: GDP

SVERI RIKSB

Ramses' Forecasting Impact V: Inflation

Ramses' Forecasting Impact VI: Worked Hours

Policy Analysis with Ramses I Effects of monetary policy I

- Impulse response functions in the DSGE and the BVAR (Minnesota prior, recursiveness assumption)
- BVAR with Minnesota prior not a very useful tool to get precise effects of policy shocks => use
 DSGE model when assessing the effects of alternative interest rate paths
 - Choice supported by DSGE-VAR analysis
 - DSGE-VAR an interesting alternative to Minnesota BVAR and DSGE in forecasting

Policy Analysis with Ramses I Effects of monetary policy II

Policy Analysis with Ramses II

- Macro risks (Alternative macro scenarios meeting)
 - Alternative macro development (risks to world economy forecast, domestic risks – higher wages scenario, effects of labour market reforms, productivity)
- Example from Monetary Policy Report 2007:1: Higher nominal wage growth
 - Study effects on GDP, inflation, nominal interest rate

Policy Analysis with Ramses II Scenario: Higher Wages y/y

Policy Analysis with Ramses II Scenario: Higher Wages -> GDP y/y

RIKSBAN

Policy Analysis with Ramses II Scen.: Higher Wages -> Inflation y/y

SVERIGES RIKSBANK

Policy Analysis with Ramses II Scen.: Higher Wages -> Interest Rate

Policy Analysis with Ramses III

- Monetary Policy Meeting
 - How should the repo rate path change relative to initial assumption to achieve inflation projections in line with target while taking real considerations
 - Alternative repo rate projections generated with monetary policy shocks

Policy Analysis with Ramses IV Interest Rate Scenarios

■ Repo rate meeting – MPR 07:1

Policy Analysis with Ramses IV Interest Rate Scenarios: Inflation y/y

Policy Analysis with Ramses IV Interest Rate Scenarios: GDP y/y

Positive Vs. Normative aspects

- The analysis described above has stong positive flavor
 - Policy response to various shocks according to historical behavior (Instrument rule)
- Ongoing work: More normative analysis (ALLS)
 - Operational loss function: Stabilize yearly CPI inflation rate, some gap measure + policy interest rate
- This is a difficult issue:
 - Theory: Central bank "loss function" n.e. to household welfare, how handle model misspecification, RE-ass.
 - Practical: How agree on a gap variable (used in internal and external communication)
- Optimal Policy Projections at the Riksbank

- Flexible inflation targeting: "Stabilize inflation around the inflation target, with some weight on stabilility of the real economy (output gap)"
- Construct optimal policy projections (OPPs) for Ramses, the Riksbank's open-economy medium-sized DSGE model for forecasting and policy analysis
- The Riksbank Aggregate Model for Studies of the Economy of Sweden (Adolfson, Laséen, Lindé, and Villani) (ALLV)
- OPP: Find instrument-rate path that minimizes quadratic loss function under commitment in a timeless perspective: Alternative to historical empirical or ad hoc instrument rule (Taylor-type rule)

Adolfson, Laséen, Lindé, and Svensson

- Flexible inflation targeting: "Stabilize inflation around the inflation target, with some weight on stabilility of the real economy (output gap)"
- Construct optimal policy projections (OPPs) for Ramses, the Riksbank's open-economy medium-sized DSGE model for forecasting and policy analysis
- The Riksbank Aggregate Model for Studies of the Economy of Sweden (Adolfson, Laséen, Lindé, and Villani) (ALLV)
- OPP: Find instrument-rate path that minimizes quadratic loss function under commitment in a timeless perspective: Alternative to historical empirical or ad hoc instrument rule (Taylor-type rule)

Adolfson, Laséen, Lindé, and Svensson

- Flexible inflation targeting: "Stabilize inflation around the inflation target, with some weight on stabilility of the real economy (output gap)"
- Construct optimal policy projections (OPPs) for Ramses, the Riksbank's open-economy medium-sized DSGE model for forecasting and policy analysis
- The Riksbank Aggregate Model for Studies of the Economy of Sweden (Adolfson, Laséen, Lindé, and Villani) (ALLV)
- OPP: Find instrument-rate path that minimizes quadratic loss function under commitment in a timeless perspective: Alternative to historical empirical or ad hoc instrument rule (Taylor-type rule)

Adolfson, Laséen, Lindé, and Svensson

- Flexible inflation targeting: "Stabilize inflation around the inflation target, with some weight on stabilility of the real economy (output gap)"
- Construct optimal policy projections (OPPs) for Ramses, the Riksbank's open-economy medium-sized DSGE model for forecasting and policy analysis
- The Riksbank Aggregate Model for Studies of the Economy of Sweden (Adolfson, Laséen, Lindé, and Villani) (ALLV)
- OPP: Find instrument-rate path that minimizes quadratic loss function under commitment in a timeless perspective: Alternative to historical empirical or ad hoc instrument rule (Taylor-type rule)

OPPs in DSGE model of this size

- Estimation requires combination of Klein and AIM algorithms for speed
- Test of whether past policy was optimal or not
- Alternative definitions of the output gap (potential output: trend output, conditional flexprice output, or unconditional flexprice output)
- Commitment in a timeless perspective: Alternative ways of computing initial Lagrange multipliers (past policy: optimal or just systematic)

Adolfson, Laséen, Lindé, and Svensson

OPPs in DSGE model of this size

- Estimation requires combination of Klein and AIM algorithms for speed
- Test of whether past policy was optimal or not
- Alternative definitions of the output gap (potential output: trend output, conditional flexprice output, or unconditional flexprice output)
- Commitment in a timeless perspective: Alternative ways of computing initial Lagrange multipliers (past policy: optimal or just systematic)

OPPs in DSGE model of this size

- Estimation requires combination of Klein and AIM algorithms for speed
- Test of whether past policy was optimal or not
- Alternative definitions of the output gap (potential output: trend output, conditional flexprice output, or unconditional flexprice output)
- Commitment in a timeless perspective: Alternative ways of computing initial Lagrange multipliers (past policy: optimal or just systematic)

OPPs in DSGE model of this size

- Estimation requires combination of Klein and AIM algorithms for speed
- Test of whether past policy was optimal or not
- Alternative definitions of the output gap (potential output: trend output, conditional flexprice output, or unconditional flexprice output)
- Commitment in a timeless perspective: Alternative ways of computing initial Lagrange multipliers (past policy: optimal or just systematic)

OPPs in DSGE model of this size

- Estimation requires combination of Klein and AIM algorithms for speed
- Test of whether past policy was optimal or not
- Alternative definitions of the output gap (potential output: trend output, conditional flexprice output, or unconditional flexprice output)
- Commitment in a timeless perspective: Alternative ways of computing initial Lagrange multipliers (past policy: optimal or just systematic)

OPPs feasible in Ramses

- Parameter estimates relatively stable
- Past policy not optimal
- Estimated loss-function paramaters: $\lambda_y = 1.1$, $\lambda_{\Delta i} = 0.39$
- Output-gap (potential-output) definition matters
- Initial Lagrange multiplers matter (somewhat)

Adolfson, Laséen, Lindé, and Svensson

OPPs feasible in Ramses

Parameter estimates relatively stable

- Past policy not optimal
- Estimated loss-function paramaters: $\lambda_y = 1.1$, $\lambda_{\Delta i} = 0.39$
- Output-gap (potential-output) definition matters
- Initial Lagrange multiplers matter (somewhat)

Adolfson, Laséen, Lindé, and Svensson

- OPPs feasible in Ramses
- Parameter estimates relatively stable
- Past policy not optimal
- Estimated loss-function paramaters: $\lambda_y = 1.1$, $\lambda_{\Delta i} = 0.39$
- Output-gap (potential-output) definition matters
- Initial Lagrange multiplers matter (somewhat)

Adolfson, Laséen, Lindé, and Svensson

- OPPs feasible in Ramses
- Parameter estimates relatively stable
- Past policy not optimal
- Estimated loss-function paramaters: $\lambda_y = 1.1$, $\lambda_{\Delta i} = 0.39$
- Output-gap (potential-output) definition matters
- Initial Lagrange multiplers matter (somewhat)

Adolfson, Laséen, Lindé, and Svensson

- OPPs feasible in Ramses
- Parameter estimates relatively stable
- Past policy not optimal
- Estimated loss-function paramaters: $\lambda_y = 1.1$, $\lambda_{\Delta i} = 0.39$
- Output-gap (potential-output) definition matters
- Initial Lagrange multiplers matter (somewhat)

Adolfson, Laséen, Lindé, and Svensson

- OPPs feasible in Ramses
- Parameter estimates relatively stable
- Past policy not optimal
- Estimated loss-function paramaters: $\lambda_y = 1.1$, $\lambda_{\Delta i} = 0.39$
- Output-gap (potential-output) definition matters
- Initial Lagrange multiplers matter (somewhat)

2. The model

State space form:

$$\begin{bmatrix} X_{t+1} \\ Hx_{t+1|t} \end{bmatrix} = A \begin{bmatrix} X_t \\ x_t \end{bmatrix} + Bi_t + \begin{bmatrix} C \\ 0 \end{bmatrix} \varepsilon_{t+1}$$

- X_t predetermined variables in quarter t ($n_X = 71$), x_t forward-looking variables ($n_x = 23$), i_t instrument rate, ε_{t+1} i.i.d. shock ($n_{\varepsilon} = 23$), $x_{t+1|t} \equiv E_t x_{t+1}$
- A, B, C, H estimated with Bayesian methods, considered fixed and known for the optimal projections (certainty equivalence)

Adolfson, Laséen, Lindé, and Svensson

2. The model

Target variables

$$Y_t = D \left[egin{array}{c} X_t \ x_t \ i_t \end{array}
ight],$$

Period loss function

$$L_t \equiv Y'_t WY_t = (p_t^c - p_{t-4}^c - \pi^*)^2 + \lambda_y (y_t - \bar{y}_t)^2 + \lambda_{\Delta i} (i_t - i_{t-1})^2,$$

$$Y_t \equiv (p_t^c - p_{t-4}^c - \pi^*, y_t - \bar{y}_t, i_t - i_{t-1})'$$

Flexible inflation targeting: 4-qtr CPIX inflation, alternative definitions of potential output \bar{y}_t

• Intertemporal loss function ($0 < \delta < 1$)

$$\mathbf{E}_t \sum_{\tau=0}^{\infty} \delta^{\tau} L_{t+\tau}.$$

Adolfson, Laséen, Lindé, and Svensson

2. The model: Optimal policy

Minimize intertemporaral loss function under commitment in a timeless perspective. Solution:

$$\begin{bmatrix} x_t \\ i_t \end{bmatrix} = \begin{bmatrix} F_x \\ F_i \end{bmatrix} \begin{bmatrix} X_t \\ \Xi_{t-1} \end{bmatrix},$$
$$\begin{bmatrix} X_{t+1} \\ \Xi_t \end{bmatrix} = M \begin{bmatrix} X_t \\ \Xi_{t-1} \end{bmatrix} + \begin{bmatrix} C \\ 0 \end{bmatrix} \varepsilon_{t+1}.$$

 F_i policy function: depends on A, B, C, H, D, W, δ , but not on $\Sigma_{\varepsilon\varepsilon}$ (certainty equivalence) Ξ_{t-1} Lagrange multiplers for equations for forward-looking variables in period t - 1 ($n_{\Xi} \equiv n_x = 23$)

• Klein (2000) algorithm returns F_x , F_i , M

2. The model: Simple instrument rule

$$\begin{split} i_t &= \rho_R i_{t-1} + (1 - \rho_R) \left[\widehat{\pi}_t^c + r_\pi (\widehat{\pi}_{t-1}^c - \widehat{\pi}_t^c) + r_y \widehat{y}_{t-1} + r_x \widehat{x}_{t-1} \right. \\ &+ r_{\Delta \pi} (\widehat{\pi}_t^c - \widehat{\pi}_{t-1}^c) + r_{\Delta y} (\widehat{y}_t - \widehat{y}_{t-1}) + \varepsilon_{Rt} \end{split}$$

"Implicit" instrument rule

$$i_t = f_X X_t + f_x x_t$$

• Klein algorithm returns F_x , F_i , M

Adolfson, Laséen, Lindé, and Svensson

- $y^t \equiv \{y_{t+\tau,t}\}_{\tau=0}^{\infty}$ projection in period *t* for any variable y_t : mean forecast conditional on information in period *t*
- Projection model for projections (X^t, x^t, i^t, Y^t) in quarter *t* is

$$\begin{bmatrix} X_{t+\tau+1,t} \\ Hx_{t+\tau+1,t} \end{bmatrix} = A \begin{bmatrix} X_{t+\tau,t} \\ x_{t+\tau,t} \end{bmatrix} + Bi_{t+\tau,t}, \quad Y_{t+\tau,t} = D \begin{bmatrix} X_{t+\tau,t} \\ x_{t+\tau,t} \\ i_{t+\tau,t} \end{bmatrix}$$

for $\tau \geq 0$.

Adolfson, Laséen, Lindé, and Svensson

 Optimal projection (X^t, X^t, i^t, Y^t), minimizes the intertemporal loss function under commitment in a timeless perspective

$$\sum_{ au=0}^{\infty}\delta^{ au}L_{t+ au,t}$$
,

$$L_{t+\tau,t} = Y_{t+\tau,t}'WY_{t+\tau,t}.$$

• $0 < \delta \leq 1 \text{ OK}$

Adolfson, Laséen, Lindé, and Svensson

Optimal Monetary Policy
 Optimal Monetary
 Optimal
 Optima

4. Optimal policy projections

 Solve with Klein or AIM (Anderson-Moore) algorithms: Solution

$$\begin{bmatrix} \check{x}_{t+\tau,t} \\ \check{t}_{t+\tau,t} \end{bmatrix} = F\begin{bmatrix} \check{X}_{t+\tau,t} \\ \Xi_{t+\tau-1,t} \end{bmatrix},$$
$$\begin{bmatrix} \check{X}_{t+\tau+1,t} \\ \Xi_{t+\tau,t} \end{bmatrix} = M\begin{bmatrix} \check{X}_{t+\tau,t} \\ \Xi_{t+\tau-1,t} \end{bmatrix},$$

for $\tau \geq 0$, where $\check{X}_{t,t} = X_{t|t}$, $\Xi_{t-1,t}$ given

- Decision in quarter *t*
- Information in quarter *t* includes data up to *t* − 1, *X*_{t|t} estimated from *X*_{t−1|t} under the assumption of simple instrument rule in quarter *t* − 1

5. Results: Projections in 2006:3

Optimal policy for different output gaps, instrument rule

Adolfson, Laséen, Lindé, and Svensson

Optimal Monetary Policy

5. Results: Projections in 2006:3

Optimal policy for different output gaps, $\Xi_{t-1,t} = 0$

Adolfson, Laséen, Lindé, and Svensson

Optimal Monetary Policy

5. Results: Projections in 2007:4

Optimal policy for different output gaps, instrument rule

Adolfson, Laséen, Lindé, and Svensson

Optimal Monetary Policy

5. Results: Projections in 2006:3

Optimal policy, different loss functions (cond. output gap)

Adolfson, Laséen, Lindé, and Svensson

Optimal Monetary Policy