DSGE Modeling at the Bank of Thailand

by
Surach Tanboon
Monetary Policy Department
Bank of Thailand

Presented at the Conference on

STRUCTURAL DYNAMIC MACROECONOMIC MODELS IN ASIA PACIFIC EMERGING MARKET ECONOMIES

Organized by Bank Indonesia and the Bank for International Settlements

Bali, Indonesia

June 3, 2008

Outline of Presentation

I. Model

II. Preliminary simulation results

I. Model

- Model features: Phase I Model (Benes, 2006) augmented with
 - Capital and investment; wage rigidity (undertaken by modelers)
 - Consumption basket, previously consisting of domestically produced and imported goods, expands to include part of exports (suggested by senior staff)
- Parameterization: calibration
- Model solution and simulation: IRIS

1 Households

The representative household maximizes

$$\mathsf{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ (1-\chi) \log \left[\frac{1}{1-\chi} (C_{t}^{T} - \chi H_{t}^{T})^{\omega^{T}} (C_{t}^{X} - \chi H_{t}^{X})^{\omega^{X}} \right] - \zeta \frac{L_{t}^{1+\eta}}{1+\eta} \right\}$$

$$\times (C_{t}^{N} - \chi H_{t}^{N})^{1-\omega^{T} - \omega^{X}} \right]$$
(1)

subject to

$$\frac{1}{P_{t}} (P_{t}^{T} C_{t}^{T} + P_{t}^{X} C_{t}^{X} + P_{t}^{N} C_{t}^{N}) + \frac{P_{t}^{T}}{P_{t}} I_{t} + \frac{B_{t}}{P_{t}}$$

$$\leq \frac{B_{t-1}}{P_{t}} (1 + i_{t-1}) + \frac{W_{t}}{P_{t}} L_{t} + \frac{R_{t}^{K}}{P_{t}} K_{t} + \sum_{j} \Phi_{j} \qquad (2)$$

$$K_{t+1} \leq (1 - \delta) K_{t} + F(I_{t}, I_{t-1}) \qquad (3)$$

where

$$F(I_t, I_{t-1}) = \left[1 - \Phi_I\left(\frac{I_t}{I_{t-1}}\right)\right] I_t = \left[1 - \frac{\phi_I}{2}\left(\frac{I_t}{I_{t-1}} - \check{\alpha}^X\right)^2\right] I_t \quad (4)$$

Wage determination

The labor aggregator solves

$$\min_{W_{jt}} \mathsf{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\xi^W (W_{jt} - W_{jt}^*)^2 + (\Delta W_{jt} - \Delta W_{t-1})^2 \right] \tag{5}$$

where W_t^* is the flexible-price optimal nominal wage

The FOC and symmetric equilibrium yield

$$\Delta W_t - \Delta W_{t-1} = \beta \mathsf{E}_t (\Delta W_{t+1} - \Delta W_t) + \xi^W (W_t^* - W_t) \tag{6}$$

2 Firms

2.1. Exporters

$$\mathcal{L}^{X} = (1 + i_{t}^{L})W_{t}L_{t}^{X} + P_{t}^{T}M_{t}^{X} + R_{t}^{K}K_{t}^{X} + \phi_{t}^{X} \left[X_{t} - \left(A_{t}^{X}L_{t}^{X} \right)^{\gamma_{1}^{X}} \left(M_{t}^{X} \right)^{\gamma_{2}^{X}} \left(K_{t}^{X} \right)^{1 - \gamma_{1}^{X} - \gamma_{2}^{X}} \right]$$
(7)

Exporters have to borrow from banks to pay for labor Senior staff: To finance capital?

2.2. Importers

2.3. Nontradable firms

3 Banks

• The representative bank lends exporters to finance wage bills

$$B_t^L = W_t L_t^X \tag{8}$$

• Assume loans are proportional to deposits $(B_t^L = \zeta_t^L B_t)$, with factor of proportionality depending on export growth relative to its steady state growth

$$\zeta_t^L = \left(\frac{X_t}{\check{\alpha}^X X_{t-1}}\right)^{\tau} \tag{9}$$

4 Government

The monetary authority solves

$$\min_{i_t} \mathsf{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\xi^i (i_t - i_t^*)^2 + (i_t - i_{t-1})^2 \right] \tag{10}$$

where

$$i_t^* = \bar{\imath} + \kappa (\pi_t - \bar{\pi}) \tag{11}$$

such that $\bar{\imath}$ is the steady state level of nominal interest rate

• The FOC is given by

$$i_t - i_{t-1} = \beta \mathsf{E}_t(i_{t+1} - i_t) + \xi^i(i_t^* - i_t)$$
 (12)

II. Preliminary simulation results: interest rate shock

II. Preliminary simulation results: productivity shock in export sector

Future Works

	Present model	Future model
Capital	Used by exporters	Used by exporters and nontradable firms
Financial intermediation	Loaned to finance labor costs	Loaned to finance capital costs
Parameter specification	Calibration	Estimation