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Abstract

Using two newly available ultrahigh-frequency datasets, we investigate empirically how frequently one can

sample certain foreign exchange and U.S. Treasury security returns without contaminating estimates of

their integrated volatility with market microstructure noise. We �nd that one can sample FX returns as

frequently as once every 15 to 20 seconds without contaminating volatility estimates; bond returns may be

sampled as frequently as once every 2 to 3 minutes on days without U.S. macroeconomic announcements,

and as frequently as once every 40 seconds on announcement days. With a simple realized kernel estimator,

the sampling frequencies can be increased to once every 2 to 5 seconds for FX returns and to about once

every 30 to 40 seconds for bond returns. These sampling frequencies, especially in the case of FX returns,

are much higher than those often recommended in the empirical literature on realized volatility in equity

markets. The higher sampling frequencies for FX and bond returns likely re�ects the superior depth and

liquidity of these markets.
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1 Introduction

Estimating the volatility of �nancial asset returns is important for many economic and �nancial applications,

including risk management, derivative pricing, and analyzing investment choices and policy alternatives. One

approach to estimating volatility is to use a parametric framework, such as the class of ARCH, GARCH,

and stochastic volatility models. If data on returns are available at su¢ ciently high frequencies, one can also

estimate volatility nonparametrically by computing the realized volatility, which is the natural estimator of

the ex post integrated volatility. This nonparametric method is appealing both because it is computationally

simple and because it is a valid estimator under fairly mild statistical assumptions. It is often desired to

estimate volatility on a daily basis. As Andersen, Bollerslev, Diebold and Labys (2001) and Barndor¤-Nielsen

and Shephard (2001, 2002) have noted, realized volatility estimates generally outperform their parametric

counterparts in terms of goodness of �t in regressions that attempt to explain actual volatility patterns.

Moreover, as Fleming et al. (2003) and Chan et al. (2006) have demonstrated, in a portfolio choice context risk-

averse investors may bene�t signi�cantly from using volatility estimates that are derived from intraday returns,

rather than using estimation methods that rely on daily data. Accurately estimating volatility therefore has

many bene�ts.

The higher the sampling frequency and thus the larger the sample size of intraday returns, the more

precise the daily estimates of integrated volatility should become. In practice, however, the presence of so-called

market microstructure features in returns, which are observed if the data are sampled at very high frequencies,

may create important complications. The �nance literature has identi�ed many such features. Among them

are the fact that �nancial transactions� and hence price changes and non-zero returns� arrive discretely rather

than continuously over time, the fact that buyers and sellers usually face di¤erent prices (separated by the

bid-ask spread), the presence of negative serial correlation of returns to successive transactions (including

the so-called bid-ask bounce), and the price impact of trades. For an overview of many of these market

microstructure issues and their importance for �nancial theory and practice, we refer the reader to Hasbrouck

(2006), O�Hara (1995), Campbell et al. (1997, Ch. 3), as well as to Roll (1984), Harris (1990, 1991), and

Hasbrouck (1991).

The presence of market microstructure features is generally found to elevate estimates of integrated volatil-

ity, especially at the very highest sampling frequencies, relative to the base case of no market microstructure

noise. However, this need not always be the case. For example, if an organized stock exchange has designated

market makers and specialists, and if these participants are slow in adjusting prices in response to shocks

(possibly because the exchange�s rules explicitly prohibit them from adjusting prices by larger amounts all at

once), it may be the case that realized volatility could drop if it is computed at those sampling frequencies for
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which this behavior is thought to be relevant.1 In any case, it is widely recognized that market microstructure

issues can contaminate estimates of integrated volatility in important ways, especially if the data are sampled

at ultra-high frequencies, as is becoming more and more common.

Two di¤erent approaches have emerged to dealing with the issue of contamination by market microstructure

when estimating integrated volatility. The �rst approach, which is reportedly the more common one, is simply

to sample su¢ ciently sparsely so that any market microstructure issues should not be a signi�cant concern.

This approach is appealing because it permits the use of the intuitive and simple standard realized volatility

estimator, and also because it does not require making any assumptions about the nature of the market

microstructure noise. However, the choice of sampling frequency is typically somewhat ad hoc, and it could

lead to ine¢ cient estimates of integrated volatility if the sampling frequency is chosen too conservatively, i.e.,

too low. In an attempt to address this concern, Aït-Sahalia et al. (2005) and Bandi and Russell (2006b) have

proposed optimal sampling frequency rules that are based on a bias-variance trade-o¤, viz., between sampling

more often and incurring a larger bias and sampling less often and incurring larger variance. Interestingly,

whereas much of the early empirical work on estimating integrated volatility was performed using FX market

data (e.g., Zhou, 1996, and Andersen, Bollerslev, Diebold, and Labys, 2001), much of the more recent work in

this �eld, especially on the optimal choice of sampling frequency, has been applied to markets for individual

stocks (e.g., Bandi and Russell, 2006b, and Hansen and Lunde, 2006).

The second approach is to design alternative estimators of integrated volatility that are less sensitive

than the basic realized volatility estimator to the presence of market microstructure noise. This approach,

which generally relies on kernel-based or subsampling methods to let researchers use returns sampled at higher

frequencies, potentially should allow for a more e¢ cient use of the data. A drawback is that the computation of

these estimators may be considerably more complicated than that of the standard realized volatility estimator.

Moreover, these more robust estimators may give up some of the standard estimator�s appealing simplicity

and intuitiveness. These concerns, however, may be overblown in practice. For instance, in this paper we �nd

that even a very simple version of a kernel-based estimator can substantially improve upon the performance of

the standard estimator, in the sense that it permits the use of much higher sampling frequencies to estimate

integrated volatility.

The �rst aim in the empirical section of our paper is to study, for two speci�c �nancial assets, how the

standard estimator of integrated volatility is a¤ected by the choice of sampling frequency and, as a result,

bias caused by market microstructure features. The two asset price series we study are obtained from some

of the deepest and most liquid �nancial markets in existence today. They are the spot exchange rate of the

1 In fact, Hansen and Lunde (2006) record as one of their empirical facts that market microstructure noise is negatively
correlated with the returns, and hence biases the estimated volatility downward. However, as we show in this paper, this stylized
fact� which is based on their analysis of high-frequency stock returns� does not seem to carry over to the foreign exchange and
bond markets.
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dollar/euro currency pair, provided by Electronic Broking Systems (EBS), and the price of the on-the-run

10-year U.S. Treasury note, which is traded on BrokerTec. Both of these markets are electronic order book

systems, which quite likely represent the future of wholesale �nancial trading systems. Both markets are

strictly inter-dealer. These markets are far larger in terms of total trading volume than markets for individual

stocks, even the handful of most liquid stocks traded on the New York Stock Exchange, and bid-ask spreads

are narrower than in typical stock markets. In 2005, bid-ask spreads averaged 1.04 basis points for dollar/euro

spot transactions on EBS and 1.68 basis points for 10-year Treasury note transactions on BrokerTec. The two

time series are available at ultra-high frequencies� up to the second-by-second frequency.

Our main hypothesis is that in such deep and liquid markets, microstructure noise should pose less of a

concern for volatility estimation, in the sense that it should be possible to sample returns on such assets more

frequently than, say, returns on individual stocks before estimates of integrated volatility encounter signi�cant

bias caused by the markets�microstructure features. This thesis is indeed borne out by our empirical work.

Using volatility signature plots, we �nd that it is possible to sample FX returns as often as once every 15 to

20 seconds without the standard estimator of integrated volatility showing discernible e¤ects stemming from

market microstructure noise. The corresponding sampling interval lengths for returns on 10-year Treasury

notes are between 2 and 3 minutes. These intervals are shorter than the sampling intervals of several minutes,

usually �ve or more minutes, that have often been recommended in the empirical literature on estimating

integrated volatility for a number of �nancial markets. These shorter sampling intervals and associated larger

sample sizes a¤ord a considerable gain in estimation precision. We conclude that in very deep and liquid

markets, microstructure-induced frictions may be much less of an issue for volatility estimation than was

previously thought. We also con�rm the results of several previous empirical studies that major macroeconomic

announcements systematically a¤ect integrated volatility. In particular, we show that the optimal choice of

sampling frequency is generally higher on days with scheduled U.S. macroeconomic announcements.

Using volatility signature plots, we �nd that the dispersion of the realized volatility estimates is gener-

ally lower at higher sampling frequencies. This observation suggests a separate advantage of sampling more

frequently rather than less frequently on an intraday basis, provided of course that the sampling frequency

is not chosen too high so as to cause microstructure-induced biases. Selecting a higher sampling frequency

reduces the likelihood that the choice of the sampling frequency which enters the process of estimating realized

volatility introduces an undesirable degree of arbitrariness.

Although the sampling frequencies at which the standard realized volatility estimator can be used are

already very high for the two empirical time series we consider in this paper, it is possible to sample at even

higher frequencies by using so-called kernel estimators, which are designed explicitly to control for the e¤ects of

market microstructure noise. We �nd that by using a very simple version of a kernel estimator, it is possible to
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sample FX returns at frequencies as high as once every 2 to 5 seconds, and that bond returns can be sampled

as frequently as once every 30 to 40 seconds. This kernel estimator, which is almost as easy to compute as

the standard realized volatility estimator, thus o¤ers substantial additional gains in terms of how frequently

one can sample on an intraday basis and thus in terms of the accuracy with which volatility may be estimated

without incurring bias induced by microstructure noise.

Finally, we also examine how certain alternative estimators and measures of daily variation perform for the

two time series at hand. These alternative estimators are not based on functions of the standard quadratic

variation process, but instead on functions of absolute variation and bipower variation processes. A reason

for considering such methods is that they may be more robust than the standard estimator to outlier ac-

tivity (heavy tails) in the data and, in particular, to jumps that may occur in the price series. In general,

these estimators measure somewhat di¤erent (but highly relevant) aspects of daily variation than does the

standard realized volatility estimator. We �nd some evidence that these alternative methods are indeed more

robust than the standard estimator to the presence of jumps in the returns series. Speci�cally, estimates

of integrated volatility that are based on absolute variation show less dispersion across announcement and

non-announcement days than estimates that are based on squared variation. However, we �nd no evidence

that these robust methods are also less sensitive than the standard estimator with regard to bias imparted by

market microstructure noise. To the contrary, our results indicate that one should typically sample less fre-

quently when using these robust estimators, relative to the optimal sampling frequency found for the standard

volatility estimator.

The remainder of our paper is organized as follows. Section 2 provides some motivation for the use of

the standard estimator of integrated volatility, which is based on the quadratic variation of returns. The

section also details how market microstructure noise may cause bias in the standard estimator, provides an

introduction to kernel-based estimators designed to circumvent this problem, and sets out the use of estimators

based on absolute and bipower variation processes. Section 3 provides an overview of the characteristics of the

foreign exchange and bond market data used in our empirical work. Section 4 provides the empirical results

for the standard estimator of realized volatility, using volatility signature plots and the Aït-Sahalia et al.

(2005) and Bandi and Russell (2006b) rule for choosing sampling frequencies. Section 5 shows the results from

the realized kernel estimators. Section 6 provides the estimation results for the robust estimators of realized

volatility, such as the one that is based on the absolute variation process. Section 7 provides a discussion of

some broader issues raised by our empirical �ndings, and Section 8 concludes.
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2 Motivation and estimation techniques

2.1 Motivation

The fundamental idea behind the use of realized volatility and high-frequency data is that quadratic variation

can be used as a measure of ex-post variance in a di¤usion process. The quadratic variation QVt of a process Xt

is de�ned as

QVt = [X;X]t = plim
n!1

nX
j=1

�
Xtj �Xtj�1

�2
; (1)

for any sequence of partitions 0 = t0 < t1 < � � � < tn = t with supj jtj � tj�1j # 0 as n!1 (see, for instance,

Andersen, Bollerslev, Diebold, and Labys, 2003, and Barndor¤-Nielsen and Shephard, 2004a). If Xt follows a

standard di¤usion process, such as

Xt =

Z t

0

au du+

Z t

0

�u dWu ; (2)

where Wu is standard Brownian motion, and if au and �u satisfy certain regularity conditions, then

[X;X]t =

Z t

0

�2u du : (3)

In this model, which is frequently used in �nancial economics, the quadratic variation measures the in-

tegrated variance over some time interval and is thus a natural way of measuring the ex-post variance. For

most of the discussion, and unless otherwise noted, we will maintain the assumption that the logarithm of the

price process follows the di¤usion process in equation (2). This is not crucial to the analysis in the paper, but

it facilitates the exposition of the theoretical concepts outlined below. In Section 2.5 below, we discuss the

e¤ects of adding a jump component to equation (2).

Suppose the log-price process Xt is sampled at �xed intervals � over some time period [0; t]. Let n = bt=�c.

The realized variance, given by

RVt =
nX
j=1

�
Xj� �X(j�1)�

�2
; (4)

is a natural estimator of the quadratic variation over the interval [0; t]. In practice, we usually consider

the integrated volatility, which is the square root of the integrated variance, and the corresponding realized

volatility, which is obtained by taking the square root of RVt.

The properties of RVt have been analyzed extensively in the econometrics literature.2 In particular, it has

been shown that under very weak conditions realized variance is a consistent estimator of quadratic variation.

2The asymptotic properties of realized volatility and other related estimators have been primarily developed in a series of
papers by Barndor¤-Nielsen and Shephard (e.g., 2001, 2002ab, 2003, 2004ab, 2006a). Other important contributions include, for
instance, Andersen, Bollerslev, Diebold, and Labys (2001, 2003). A survey of this literature is given in Barndor¤-Nielsen and
Shephard (2005).

5



That is, for a �xed time interval [0; t], RVt !p QVt as � # 0. In addition, if Xt satis�es equation (2), the

limiting distribution of RVt is mixed normal and is centered on QVt:

p
n(RVt �QVt))MN(0; 2Qt) ; (5)

where Qt =
R t
0
�4u du is called the quarticity of Xt.

2.2 Market microstructure noise

According to the asymptotic result in equation (5), it is preferable to sample Xt as frequently as possible

in order to achieve more precise estimates of the quadratic variation. In practice, however, price changes in

�nancial assets sampled at very high frequencies are subject to market frictions� such as the bid-ask bounce

and the price impact of trades� in addition to reacting to more fundamental changes in the value of the asset.

Suppose the observed price Xt can be decomposed as

Xt = Yt + Ut; (6)

where Yt is the so-called latent price process and Ut represents market microstructure noise. The object of

interest is now the quadratic variation of the unobserved process Yt, which is assumed to satisfy the di¤usion

given by equation (2). A standard assumption is that Ut is a white noise process, independent of Yt, with

mean zero and constant variance !2. Now, as �, the length of sampling intervals, goes to zero, the squared

increments in Xt will be dominated by the changes in Ut. This follows because the increments in Yt are of order

Op(
p
�) under equation (2), whereas the increments in Ut are of order Op(1) regardless of sampling frequency.

Calculating the realized variance using extremely high frequency (such as second-by-second) returns from the

observed price process Xt will therefore result in a biased and inconsistent estimate of the quadratic variation

of the latent price process Yt.

2.3 Optimal choice of sampling frequency

The initial reaction to this problem was simply to sample at frequencies for which market frictions are believed

not to play a signi�cant role. Even with this limitation, daily volatility estimates can be obtained with some

precision. In particular, sampling prices and returns at the �ve-minute frequency appears to have emerged

as a popular choice to compute daily-frequency estimates of volatility. In order to formalize this line of

reasoning, Bandi and Russell (2006b) derive an optimal sampling frequency rule for the standard realized
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variance estimator.3 Their rule is based on a function of the signal-to-noise ratio between the innovations

to the latent price process and the noise process. Their key assumption is that by sampling at the highest

possible frequency, it may be possible to obtain a consistent estimate of the variance of the noise, !2. For

example, let �1 sec denote the one-second sampling frequency, which is the highest possible in our data, and

let n1 sec denote the number of non-zero one-second returns during the day; i.e., n1 sec counts the number of

one-second periods during the whole day for which there is actual market activity that moves the price. An

estimator of !2 is now given by

!̂2 =
1

2n1 sec

n1 s e cX
j=1

�
Xj�1 s e c �X(j�1)�1 s e c

�2
; (7)

where the summation is carried out over the n1 sec intervals with nonzero returns. By estimating !2, the

strength of the noise in the returns data can thus be measured. The strength of the signal, i.e., variations

in Xt which come from the latent price process Yt, can be measured by the quarticity of that process. By

relying on data sampled at a lower frequency, such as once every ten minutes, where the market microstructure

noise should not be an issue, the quarticity of Yt can be estimated consistently (though not e¢ ciently) by

Q̂10min =
n10min

3

n10m inX
j=1

�
Xj�10m in �X(j�1)�10m in

�4
; (8)

where n10min is the number of 10-minute intervals with non-zero returns in a day. Thus, by using returns

obtained by sampling at di¤erent frequencies, it is possible to assess the relative importance of the signal Yt

and the noise Ut. Bandi and Russell (2006b) show that an approximate rule of thumb for the optimal sampling

frequency, �opt = 1=nopt , is given by

nopt =
�
Q̂10min

.�
2!̂2�1 s e c

�2�1=3
: (9)

2.4 Estimators of integrated volatility that are robust to the presence of high-

frequency market microstructure noise

The other approach to dealing with the microstructure noise issue is to design estimators that explicitly control

for and potentially even eliminate its e¤ects on volatility estimates. At the cost of some loss of simplicity,

3Aït-Sahalia et al. (2005) study optimal sampling frequency rules that are similar to that given by Bandi and Russell (2006b).
Based on the market microstructure model of Roll (1984), they suggest that the variance of the market microstructure noise can
be calculated from the bid-ask spread in the data. In particular, if s is the bid-ask spread in the market (expressed in percent of
the price), then !2 = s2=4. However, as Aït-Sahalia et al. (2005) point out, by estimating !2 strictly from the bid-ask spread,
the contributions of any other sources to microstructure noise are ignored. The resulting estimate of !2 should therefore be
interpreted as a lower bound on the actual variance of the noise.
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this approach has the potential of extracting useful information that would otherwise be discarded if a coarser

sampling scheme is employed. A number of estimators have been proposed recently to deal with market

microstructure noise in this manner; see, for instance, Aït-Sahalia et al. (2005, 2006), Hansen and Lunde (2006),

Oomen (2005, 2006), Zhang (2006), and Zhang et al. (2005).4 While these recently-proposed estimators possess

several desirable properties, such as asymptotic consistency under their respective maintained assumptions and

(in some cases) asymptotic e¢ ciency as well, the actual performance of these estimators in empirical practice

remains a topic of ongoing research.

Here, we focus on an estimator proposed by Barndor¤-Nielsen, Hansen, Lunde, and Shephard (2006a),

hereafter BNHLS. De�ne the realized autocovariation process


h (X�) = (1� h�)�1
nX

j=h+1

�
Xj� �X(j�1)�

� �
X(j�h)� �X(j�h�1)�

�
; (10)

for h � 0, where the term (1 � h�)�1 is a small-sample correction factor. The realized kernel estimator in

BNHLS is given by

eKt (X�) = 
0 (X�) +
HX
h=1

k
�h� 1
H

��

h (X�) + 
�h (X�)

�
; (11)

for some kernel function k(�) satisfying k(0) = 1 and k(1) = 0 and for a suitably chosen lag truncation or

bandwidth parameter H.5 The �rst term in equation (11), 
0 (X�), is identical to the standard realized

variance estimator; the second term, the weighted sum of autocovariances up to order H, can thus be viewed

as a correction term which aims to eliminate the serial dependence in returns induced by microstructure noise.

The estimator given in equation (11) is obviously a natural analogue of the well-known heteroskedasticity and

autocorrelation consistent (HAC) estimators of long-run variances in more typical econometric settings.

Apart from realized kernel estimators, so-called subsampling estimators (e.g., Zhang et al., 2005) have

also been proposed to correct for the e¤ects of market microstructure noise. Subsampling estimators are, in

fact, very closely related to realized kernel estimators; see Aït-Sahalia et al. (2006), BNHLS, as well as the

discussion of the quadratic form representation in Andersen et al. (2006). To keep the empirical exposition

below more manageable, we chose to focus only on the kernel approach in this paper. We leave to future

research an explicit comparison of the relative performance of kernel estimators and subsampling estimators

for the two time series we consider in this paper.

4Related studies include Andersen, Bollerslev, Diebold, and Ebens (2001) and Zhou (1996). Bandi and Russell (2006a) and
Barndor¤-Nielsen and Shephard (2005) provide surveys.

5 In our empirical work, we rely exclusively on the Modi�ed Tukey-Hanning kernel de�ned in BNHLS, which additionally
satis�es k0(0) = k0(1) = 0 and is asymptotically the most e¢ cient of the kernels considered by them. The Modi�ed Tukey-
Hanning kernel function is given by k(x) = (1� cos(�(1� x))2)=2, x 2 [0; 1]. The bandwidth parameter H is set equal to ĉ n1=2,
where ĉ is a constant given in BNHLS. In the case when all (or almost all) available data are used, i.e., when the data sampled
at or close to the highest available frequency, BNHLS recommend using H = ĉ n2=3; we will rely on this bandwidth choice for
sampling intervals shorter than 30 seconds.
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2.5 Absolute power and bipower variation methods

Any estimator of volatility which is based on squared values of observations will, to some extent, be sensitive

to the occurrence of outliers in the data in general, and, within the framework of �nancial models, to jumps in

asset prices in particular. To examine how the presence of jumps a¤ects the properties of the realized variance

estimator, it is necessary to consider generalizations of the data generating process (2). Barndor¤-Nielsen

and Shephard (2006b) do so by replacing the Brownian motion component of (2),
R t
0
�u dWu, with a Lévy

process. Lévy processes have independent and stationary increments, but do not need to have continuous

sample paths.6 All non-Brownian Lévy processes have jumps, and they may be classi�ed according to whether

the number of jumps in any �nite period of time is �nite or in�nite. These two classes are also labelled

�nite-activity and in�nite-activity Lévy processes.7

As �nancial data are invariably generated discretely and because prices are reported with a �nite degree

of precision, distinguishing between �nite- and in�nite-activity processes may not be possible in practice.

Furthermore, as Barndor¤-Nielsen and Shephard (2006b) and Woerner (2005, 2007) have shown, certain

robust estimators of integrated volatility share the same statistical properties for either type of jump process,

as long as certain regularity conditions are met and the variance of the increments of the process is �nite. To

simplify the exposition, we shall therefore restrict our attention to the case of �nite-activity Lévy processes

which contain a di¤usive component. Suppose that the log price process Xt is given by

Xt =

Z t

0

au du+

Z t

0

�u dWu +

NtX
j=1

cj : (12)

The process Nt is a �nite jump counting process, and the coe¢ cients cj are the sizes of the associated jumps.8

The total quadratic variation of Xt is now given by

[X;X]t =

Z t

0

�2u du+

NtX
j=1

c2j ; (13)

and the realized variance (4) converges to this term as � # 0.

In the tradition of robust econometric estimation, absolute-value versions of the realized variance estimator

have been introduced. Barndor¤-Nielsen and Shephard (2004b) consider the following normalized versions of

6Obviously, Brownian motion is a special case of a Lévy process.
7A well-known class of Lévy processes with a �nite number of jumps in a �nite period are the jump di¤usion processes;

jump di¤usions are the sum of Brownian motion and a compound Poisson process with Gaussian jump sizes (see Merton, 1976).
Examples of in�nite-activity Lévy processes are the normal inverse Gaussian process (see Barndor¤-Nielsen, 1998) and the
multifractal model of asset returns (MMAR); see Calvet and Fisher (2001, 2002) for an overview of the theory and empirical
evidence for the MMAR.

8Hence, equation (2) is a special case of (12), with Nt � 0 or, equivalently, cj � 0 for all j.
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realized absolute variation and realized bipower variation. They set

RAVt = �
�1
1 n�1=2

nX
j=1

��Xj� �X(j�1)��� (14)

and

RBVt = �
�2
1 (1� �)�1

nX
j=2

��Xj� �X(j�1)��� ��X(j�1)� �X(j�2)��� ; (15)

where �1 = E jZj =
p
2=� � 0:798 and Z is a standard normal random variable. Because a di¤usion

process has unbounded absolute variation, scaling by n�1=2 is required in equation (14) in order to obtain

an estimator that converges to a proper limit as the sample size, n, increases to in�nity; this contrasts with

the de�nitions of the realized variance and realized bipower estimators, where no such adjustment term is

required. The term (1 � �)�1 in equation (15) is a small-sample correction factor. In the absence of market

microstructure noise and assuming that equation (2) holds, Barndor¤-Nielsen and Shephard (2004b) show

that RAVt and RBVt, respectively, are consistent estimators of the quantities
R t
0
�u du and

R t
0
�2u du. Hence,

realized bipower variation provides an alternative estimator of the integrated variance of Xt when the data do

not contain a jump component.

Of primary interest for the discussion of the e¤ects of jumps on volatility estimation is that has been shown

that bipower variation is a consistent estimator of
R t
0
�2u du under much more general conditions than (2). For

instance, under (12) the realized absolute variation and the realized bipower variation are still consistent

estimators of
R t
0
�u du and

R t
0
�2u du, respectively. By calculating both the realized (quadratic) variation and

the realized bipower variation of Xt, one can separate the total quadratic variation into its di¤usive and

jump components. This is useful, for instance, in volatility forecasting, because the jump component of the

total quadratic variation is, in general, far less persistent than the di¤usive component (Andersen et al.,

2005). Even though the limit of the realized absolute variation,
R t
0
�u du, has no direct use in most �nancial

applications, such as the pricing of options, Forsberg and Ghysels (2006) and Ghysels et al. (2006) report that

it is, empirically, a very useful predictor of future quadratic variation.

Since predicting future volatility is often the ultimate goal, we therefore also discuss in our paper how often

to sample when estimating the absolute variation of the returns to a �nancial time series that is obtained from

deep and liquid markets. In particular, we examine how estimates of realized absolute variation may be a¤ected

by market microstructure noise in such markets. So far, there has been little work aimed at dealing with the

presence of market microstructure noise when calculating realized absolute and bipower variation. The only

attempt that we are aware of is a paper by Andersen et al. (2005). They suggest using staggered, or skip-one,

returns to mitigate spurious autocorrelations in the returns that may occur due to microstructure-induced
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noise. That is, they suggest using the following modi�ed version of equation (15),

RBV1;t = �
�2
1 (1� 2�)�1

nX
j=3

��Xj� �X(j�1)��� ��X(j�2)� �X(j�3)��� : (16)

3 The data

3.1 The foreign exchange data

We analyze high-frequency spot dollar/euro exchange rate data from EBS (Electronic Broking System) span-

ning January through December 2005. EBS operates an electronic limit order book system used by virtually

all foreign exchange dealers across the globe to trade in several major currency pairs. Since the late 1990s,

inter-dealer trading in the spot dollar/euro exchange rate, the most-traded currency pair, has, on a global

basis, become heavily concentrated on EBS. As a result, over our sample period EBS processed a clear ma-

jority of the world�s inter-dealer transactions in spot dollar/euro. Publicly available estimates of EBS�s share

of global trading volume in 2005 range from 60% to 90%, and prices on the EBS system were the reference

prices used by all dealers to generate FX derivatives prices and spot prices for their customers. Further details

on the EBS trading system and the data can be found in Chaboud et al. (2004) and Berger et al. (2005).

The exchange rate data we use are the midpoints of the highest bid and lowest ask quotes in the EBS

limit-order book at the top of each second. The exchange rate is expressed as dollars per euro, the market

convention. The source of the data is the EBS second-by-second ticker, which is provided to EBS�s clients

to generate customer quotes and as input for algorithmic trading. These quotes are executable, not just

indicative, and they therefore represent a true price series. We consider 5 full 24-hour trading days per week,

each one beginning at 17:00 New York time;9 trading occurs around the clock on EBS on those days. We

exclude all data collected from Friday 17:00 New York time to Sunday 17:00 New York time from our sample,

as trading activity during weekend hours is minimal and is not encouraged by the foreign exchange trading

community. We also drop several holidays and days of unusually light trading activity near these holidays

in 2005: January 3, Good Friday and Easter Monday, Memorial Day, July 4, Labor Day, Thanksgiving and

the following day, December 24�26, and December 30. Similar conventions on holidays have been used in

other research on foreign exchange markets, such as by Andersen, Bollerslev, Diebold, and Vega (2003). The

resulting number of business days is 251. In the analysis undertaken for this paper, we drop an additional 5

days in order to line up the FX trading days with those in the U.S. bond market, where some additional days

are treated as holidays, as described below.

9 In the FX market, by global convention, the value date changes at 17:00 New York time (whether or not Daylight Saving
time is in e¤ect). This cuto¤ thus represents the threshold between two trading days.
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Table 1 presents some summary statistics for dollar/euro returns sampled at 24-hour and 5-minute intervals,

where returns are calculated as log-di¤erences of the dollar/euro exchange rate. The mean 24-hour return is

about �5 basis points (= �0:05 percent). The standard deviation of the daily returns in 2005 was about 56

basis points (0.56 percent). At the 5-minute frequency, the mean return is, of course, very near zero. In 2005,

returns at the 5-minute frequency had a standard deviation of about 3 basis points, and they were extremely

leptokurtic.

3.2 The bond data

We analyze high-frequency ten-year on-the-run Treasury cash market data from BrokerTec, also spanning

January through December 2005. In the last few years, BrokerTec has become one of the two leading electronic

brokers for inter-dealer trading in Treasury securities.10 Estimates of BrokerTec�s share of trading in on-the-run

Treasury securities in 2005 range from 40 percent to 70 percent. BrokerTec operates an electronic limit order

book in which traders can enter bid or o¤er limit orders (or both) and can also place market orders, similar to

EBS.11 Fleming (2007), Fleming and Rosenberg (2007), and Mizrach and Neely (2006) discuss several recent

trends in the institutional aspects of trading in U.S. Treasuries. These authors also examine historical factors

that underlie the current dominance of electronic trading systems for transacting in on-the-run U.S. Treasury

securities.

The ten-year Treasury price data that we use are the mid-point of the highest bid and lowest ask quotes at

the top of each second. As in the EBS data, the BrokerTec quotes are executable, not just indicative, and they

therefore constitute a true price series. Unlike the EBS data, however, we focus on �ve 8-hour-long trading

days per week, from 08:00 New York time to 16:00 New York time. BrokerTec operates (nearly) continuously

on �ve days each week, from 19:00 New York time to 17:30 New York time, with Monday trading actually

beginning on Sunday evening New York time. However, unlike trading in dollar/euro, the vast majority of

trading in Treasury securities occurs during New York business hours (Fleming, 1997), and for this reason

we limit our analysis to the 08:00 to 16:00 New York time frame. We excluded the same holidays and days

of extremely light activity from our sample that we excluded from our EBS data. We also dropped a few

additional days, which the U.S. Bond Market Association declared to be market holidays, from the sample.12

The total number of business days retained for the bond data is 246.

Table 2 presents some summary statistics for bond returns sampled at 24-hour and 5-minute intervals,

where the bond returns are calculated as log di¤erences of the price of the ten-year on-the-run Treasury

10The other leading electronic communication network (ECN) for trading in U.S. Treasuries is eSpeed.
11Brokertec and EBS have both been acquired by ICAP in recent years. BrokerTec was acquired in 2003, EBS in 2006.
12There are also several days in the sample for which the Bond Market Association recommended a 14:00 closing time. We

account for these days in our calculations of realized volatilities by limiting the day to 08:00 to 14:00 New York time and scaling
the estimated volatilities appropriately.
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note. Daily returns are measured from 16:00 New York time readings. The mean daily price return is about

�0:7 basis point (�0:007 percent), as the ten-year Treasury yield changed little on net in 2005. The standard

deviation of daily bond returns was about 38 basis points in 2005.13 Returns at the �ve-minute frequency

have a standard deviation of about 3 basis points, and they are also very leptokurtic.

3.3 Range of sample interval lengths and the prevalence of zero-return intervals

The highest available sampling frequency in our datasets is once every second, by construction. In order

to have a reasonably large number of samples within each trading day at each frequency we consider, we

set the longest sampling interval equal to 30 minutes (1,800 seconds) for the FX returns and to 15 minutes

(900 seconds) for bond returns, resulting in within-day sample sizes of 48 and 32, respectively, at the lowest

sampling frequencies.

A large fraction of the observed high-frequency returns in both markets under study is equal to zero. A zero

return during a given sampling interval can occur either because the price changes during the sampling interval

but then returns to its initial level before the interval ends or� much more commonly� because the price does

not change at all. Table 3 presents the fraction of sampling intervals with zero returns in both markets, for

sampling interval lengths ranging from 1 second to 10 minutes. At the 1-second sampling frequency, about

90 percent of all returns are zero in both series, although the fraction of zero returns is slightly higher for the

bond data. At the 1-minute sampling frequency, 45 percent of all bond returns are zero and 26 percent of

all exchange rate returns are zero. In Section 6 we consider in detail the consequences of the prevalence of

sampling intervals with zero returns on the optimal selection of the sampling frequency and on the estimation

of integrated volatility using absolute and bipower variation methods.

3.4 U.S. macroeconomic data releases

The impact of scheduled U.S. macroeconomic data releases on the level and volatility of foreign exchange

and bond prices has been well documented (e.g., Andersen, Bollerslev, Diebold and Vega, 2003, for foreign

exchange, and Fleming and Remolona, 1999, and Balduzzi, Elton, and Green, 2001, for Treasury securities). In

parts of the empirical analysis below, we split the full sample into days with certain major U.S. macroeconomic

announcements, selected because of their apparent impact on asset prices, and days without announcements.

Our chosen monthly scheduled macroeconomic announcements are the employment report (non-farm payrolls

and the rate of unemployment), the consumer price index, the producer price index, retail sales, and orders

for durable goods. We also select the three quarterly GDP releases (advance, preliminary, �nal), each released

13As a rule of thumb, in the present case a 1-percent change in the price of the bond corresponds to about a 13 basis point
change in the yield.
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quarterly, and the eight FOMC announcements in 2005. With the exception of the FOMC announcements,

which are released at about 14:15 New York time, all announcements considered here are released at 8:30

New York time. Accounting for multiple announcements that occurred on some days in 2005, this gives us

a subsample size of 62 days.14 We treat these days as announcement days irrespective of whether the actual

data released di¤ered from published market expectations or not.

4 Results for the standard estimator of integrated volatility

4.1 Overview

Figure 1 shows the 2005 time series of daily estimates of the integrated volatility of FX returns and bond

returns, based on the standard realized volatility estimator and a sampling frequency of once every �ve minutes.

Several conclusions may readily be drawn from these plots. First, for both series there is considerable dispersion

in volatility across adjacent days. Second, in 2005 neither volatility series displays a discernible time trend or

any seasonality patterns, indicating that it may be meaningful to compute (suitably de�ned) averages in order

to study general relationships between sampling frequency and realized volatility. Third, volatility is clearly

higher, on average, on days with scheduled major U.S. macroeconomic news announcements, depicted by

solid circles in both plots, than on non-announcement days, shown as open squares. This is particularly� but

certainly not surprisingly� true for the bond return volatility estimates shown in Figure 1B.

A volatility signature plot, by common convention, graphs sampling frequencies on the horizontal axis and

the associated estimates of realized volatility on the vertical axis. Such plots, which appear to have been �rst

used in the context of realized volatility estimation by Andersen et al. (2000), are now used frequently in

empirical research on this subject, as they provide an intuitive visual tool for the analysis of the relationships

between these two variables. Quite often, it is possible to discern from a volatility signature plot a sampling

frequency, which we label the critical sampling frequency, that serves to separate su¢ ciently-low frequencies

(longer sample intervals), for which market microstructure noise does not seem to a¤ect estimates of integrated

volatility, from the higher frequencies (shorter sample intervals), for which market microstructure noise does

appear to have an e¤ect. We make extensive use of volatility signature plots in our paper. Because of the need

to display a very wide range of sampling frequencies in this paper, and because our focus is on the empirical

e¤ects of market microstructure noise� which are generally thought to be present in returns only at the higher

sampling frequencies� we display the signature plots using a base-2 logarithmic scale on the horizontal axis

rather than the standard, i.e., linear scale. The use of a logarithmic scale, by design, gives much more visual

prominence to any changes in volatility for the shorter-length sampling intervals (higher sampling frequencies).

14Hence, the number of non-announcement days in the full sample is 184.
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The shapes of the daily volatility signature plots can vary considerably across days. Figure 2 shows

signature plots for FX volatility for two days in 2005: October 3, a day of average volatility, and July 21, the

day in 2005 with the highest realized volatility using sampling intervals of 5 minutes.15 The two signature

plots di¤er not only in their vertical scales but also in their shapes. On October 3 (Figure 2A), realized

volatility decreases at �rst as the sampling interval lengths increase from 1 second to about 15 seconds, then

shows no further trend and roughly constant dispersion as the sample intervals lengthen to about 120 seconds,

and exhibits a rapidly increasing dispersion as the lengths of the sampling intervals increase further to 30

minutes (1,800 seconds). On July 21, realized volatility declines, though only slightly, as the sampling interval

length rises from 1 second to 3 seconds; volatility then increases modestly on average and also is slightly more

dispersed as the interval lengths rise to about 120 seconds, and it becomes much more dispersed (but without

apparent trend) as the interval lengths increase further.

Considerable variation in the shape of the dependence of realized volatility of bond returns on the sampling

frequency is also evident for these two days. On October 3 (Figure 3A), realized volatility at �rst decreases

steadily up to a sample length of about 15 seconds, and then becomes increasingly dispersed without an

apparent trend as the sampling intervals lengthen further. On July 21 (Figure 3B), in contrast, realized

volatility declines on average as the sample length increases, while its dispersion even across adjacent sample

lengths becomes rapidly very pronounced as the sample lengths become longer.

The signature plots in Figures 2 and 3 thus illustrate a distinct advantage of computing realized volatility

at higher rather than at lower intraday frequencies� as long as, of course, the sampling frequency is not too

high so as to introduce contamination from market microstructure noise. The signature plots show that the

range of realized volatility estimates across adjacent sampling frequencies is considerably lower if FX and

bond returns are sampled at sample interval lengths between 15 and 120 seconds than if they are sampled at

longer intervals. Sampling at higher frequencies therefore makes it less likely that the choice of the sampling

frequency introduces an undesirable degree of arbitrariness into the process of estimating realized volatility.

4.2 The dependence of realized volatility on the sampling frequency

As we noted in the discussion of Figure 1, the realized volatility of FX and bond returns is higher, on average,

on days with scheduled major U.S. macroeconomic news announcements. This result is especially evident

when one averages the daily volatility estimates over time, i.e., if the volatility signature curves are averaged

separately for announcement days and non-announcement days. Figure 4A shows the e¤ect of averaging

within each of these two types of days on the relationship between sampling frequency and realized volatility

15On July 21, 2005, after close of business in China but before the start of the business day in North America, the Chinese
authorities announced a revaluation of their currency, the renminbi, by 2.1 percent against the U.S. dollar. On that day, foreign
exchange market volatility was quite elevated in most major currency pairs.
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for dollar/euro returns. The plot highlights the stylized fact that if a day falls into the subset of announcement

days, realized volatility is elevated relative to the subset of non-announcement days. In addition, the �gure

also shows that, on average, estimates of realized volatility on non-announcement days are quite insensitive

to the choice of sampling interval length, at least as long as it falls into a range from about 20 seconds to

about 10 minutes. In contrast, for sampling intervals shorter than 20 seconds, the estimates of integrated

volatility are noticeably higher, and they increase progressively as the interval lengths decrease. This suggests

that whereas market microstructure noise is present and a¤ects realized volatility at the very highest sampling

frequencies, it does not have a noticeable e¤ect on realized volatility for sampling frequencies lower than once

every 20 seconds. This same general �nding also applies for the subset of days with major scheduled economic

announcements: realized volatility increases markedly if returns are sampled more often than once every 15

seconds.16 Note that for the case of FX returns, the critical sampling frequencies, i.e., the frequencies above

which market microstructure noise has an increasingly important impact on realized volatility, are roughly the

same in the two subsamples.

Figure 4B shows the time-averaged signature plots of bond returns for announcement days and for non-

announcement days. One notes immediately that, for any given sampling frequency, integrated volatility

is much higher on announcement days than it is on non-announcement days. In addition, it appears that,

on average, the contribution of market microstructure noise to realized volatility is considerably larger for

bond returns, as the slopes of the (time-averaged) signature plots are steeper at the very highest sampling

frequencies than was the case for FX returns. Third, and of the most relevance for the purposes of our

paper, the critical sampling frequency is rather di¤erent from the FX case, for both announcement and non-

announcement days. It is in the range of once every 120 to 180 seconds on days without scheduled major

macroeconomic announcements, and about once every 40 seconds on announcement days. We infer that even

though volatility is higher on announcements days, the critical sampling frequency is at least three times higher

on announcement days than on non-announcement days. This �nding clearly suggests that it is preferable

to sample bond returns more frequently on announcement days than on non-announcement days, in order to

obtain volatility estimates that are more precise yet not a¤ected noticeably by market microstructure noise.

To sum up, when using the standard realized volatility estimator, the signature plots suggest that it is

possible to sample FX returns as frequently as once every 20 seconds on non-announcement days (15 seconds on

announcement days), and to sample bond returns as often as once every 2 to 3 minutes on non-announcement

days (once every 40 seconds on announcement days), without incurring a signi�cant penalty in the form of

16We also observe that, in contrast to the case of non-announcement days, where the plot line is virtually �at for frequencies
lower than the critical frequency, the plot line declines steadily (though only slightly) as the sampling interval length increases
beyond 15 seconds. This suggests that FX trading dynamics on announcement days in 2005 may also have been characterized by
a small amount of mean reversion at medium frequencies rather than just at the highest frequencies (as would be the case if the
dynamics were purely of the microstructure variety).
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an upward bias to estimated volatility. Our �ndings regarding the critical sampling frequency for volatility

estimation for FX returns are considerably higher than those published by other researchers, who typically

focused on returns to individual equities and suggested that one should not sample more often than once

every 5 minutes or so if one wishes to avoid bias caused by market microstructure dynamics (e.g., Andersen,

Bollerslev, Diebold, and Ebens, 2001).17

4.3 A formal rule for choosing the optimal sampling frequency

In addition to examining volatility signature plots, one may wish to have a more formal method for establishing

the critical sampling frequency. One such method is the optimal sampling rule of Bandi and Russell (2006b),

which was introduced in Section 2 and is also very similar to the rule developed by Aït-Sahalia et al. (2005).

The optimal sampling frequencies for each day of the sample, based on equation (9), are shown in Figure 6.

The average sample interval lengths across all days in the full sample are 170 and 310 seconds, respectively,

for FX returns and bond returns. Although there is a fair degree of variation from day to day, these averages

are nevertheless considerably above those we deduced from the volatility signature plots shown in the previous

section. This is especially true for the FX returns.

Signature plots are, of course, informal graphical tools which cannot by themselves deliver unambiguous

answers. Nevertheless, signature plots are essentially model-free and they rely on much less stringent assump-

tions about the nature of the data generating process than the formal sampling rule. For example, Bandi

and Russell (2006b) assume that there are no jumps in the price process. Moreover, it is also possible that

the variance !2 of the noise term cannot be estimated su¢ ciently accurately from the returns sampled at the

second-by-second frequency, which is the highest-available frequency in both datasets. Recall that, according

to the signature plots, it may be possible to sample as often as once every 15 to 20 seconds in the FX market

without incurring a signi�cant bias caused by market microstructure features. It may well be the case that

returns sampled at the one-second frequency still contain too much signal� and hence not enough noise� in

order to be able to estimate !2 consistently; Hansen and Lunde (2006) make a similar point. This issue may

be less of a problem for the bond returns, where the signature plots had indicated critical sampling intervals

in the 2 to 3 minute range. This may explain why the results from the signature plots and the Bandi-Russell

sampling rule are somewhat closer to each other for bond returns than they are for FX returns.

It is interesting to note that the optimal sampling frequencies obtained using the Bandi and Russell

rule are higher, i.e., the implied sampling interval lengths are shorter, on days with scheduled major macro

announcements. This con�rms one of the �ndings we obtained from the signature plots, which is that even

17Some of the di¤erences in the critical sampling frequencies also owe to a reported general increase in market liquidity and
depth common to many �nancial markets between the late 1990s and 2005, the year used in this study.
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though market microstructure noise is likely to be greater on announcement days (for instance, in terms of a

larger bid-ask spread), the signal is even stronger on such days, implying that returns can be sampled more

frequently on announcement days.

As was noted in Section 3.3, when returns are sampled at very high frequencies, many of the FX and

bond returns are zero because there is no price change over many of the short time intervals. Phillips and Yu

(2006a and 2006b) note that the prevalence of �at pricing over short time intervals implies that the market

microstructure noise and the unobserved e¢ cient price components of the observed price process are negatively

correlated over these periods, and that these two components may become perfectly negatively correlated as

� # 0. Put di¤erently, the maintained assumption that the market microstructure noise is independent of

the latent price process, which underlies the derivation of the Bandi and Russell rule, cannot be strictly

valid if the observed price process is discrete rather than continuous. In such a framework, sampling at

ever-higher frequencies ultimately does not even produce a consistent estimator of the variance of the market

microstructure noise. If this feature of the data is not taken into account, the Bandi and Russell rule will

tend to lead to choices of the optimal sampling interval lengths that are too large. We interpret our empirical

results as being fully consistent with this theoretical observation.

5 Kernel-based methods

5.1 Autocorrelations in high-frequency returns

The use of the realized kernel estimator of integrated volatility, described in Section 2.4 above, is motivated

along lines similar to those for heteroskedasticity and autocorrelation consistent (HAC) estimators of the long-

run variance of a time series in traditional econometrics (e.g., Newey and West, 1987). That is, by adding

autocovariance terms, an estimator is constructed which better captures the relevant �long-run�variance in

the data. Before showing our empirical results for the performance of the BHNLS realized kernel estimator,

it is therefore instructive to study the autocorrelation patterns in the high-frequency intraday returns data to

build up some intuition that will help guide the interpretation of our empirical results.

Figure 7 shows the average autocorrelation across all days in the sample, out to 30 lags, for data sampled

at the 1, 10, 30, and 60-second sampling frequencies. That is, for a given lag and sampling frequency, the

within-day autocorrelation in high-frequency returns is calculated for each day and is then averaged across

all days in the sample. When sampling at the 1-second frequency, it is evident that there is some negative

autocorrelation in both FX and bond returns, and that this correlation stretches out for about 10 to 15 lags,

i.e., that non-zero serial dependence in 1-second returns persists for about 10 to 15 seconds. For returns

sampled at the 10-second frequency, there is still some evidence of negative autocorrelation at the �rst 2 lags
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in the FX returns and in the �rst 4 to 5 lags in the bond returns. For returns sampled at the 30- and 60-second

frequencies, there is little evidence of any systematic pattern in the autocorrelations of the FX returns; for the

bond returns, only the �rst two serial correlation coe¢ cients are nonzero for these two sampling frequencies.

The autocorrelation patterns shown in Figure 6 correspond well to the �ndings using signature plots of

how often one can sample returns when using the standard realized volatility estimator. In particular, there is

little evidence of any autocorrelation in the FX data for returns sampled at frequencies lower than once every

ten seconds. The conclusion from the volatility signature plots shown above was that the critical sampling

frequency for FX returns is in the 15 to 20 second range. This �nding corresponds very well to the fact that FX

return autocorrelations are insigni�cant for time spans beyond about 20 seconds. Similarly, because there is

still a large amount of negative �rst-order autocorrelation in the one-minute bond returns, it is not surprising

that we also obtained a much lower critical sampling frequency for this asset using the signature plot method.

Overall, the results in Figure 6 suggest that in the case of FX returns and for sampling intervals shorter

than 30 seconds, using kernel estimators should help reduce any bias in realized volatility estimates. For

the bond returns, the same would seem to hold for returns sampled at frequencies higher than once every 2

minutes.

5.2 Optimal bandwidth choice

The graphs in Figure 6 give some indication of how many lags one may want to include in the realized kernel

estimator in equation (11). However, they do not, by themselves, provide a simple prescription for action.

BNHLS also propose a rule for an optimal choice of the bandwidth or lag truncation parameter. They show

that, in their framework, the optimal bandwidth is a function of both the sampling frequency and a scale

parameter, ĉ, which is independent of the sampling frequency; ĉ must be estimated, and the details are given

in BNHLS. The optimal bandwidth is then given by H = ĉ n1=2, although for very high sampling frequencies

(and hence for very large values of n) BNHLS recommend setting H = ĉ n2=3. We use this latter formula for

sampling intervals shorter than 30 seconds.

The time series of optimal bandwidths in 2005 for returns sampled at the 1-second frequency are shown

in Figure 7. For FX data (Figure 7A), the optimal bandwidths range between 4 and 7, and for bond returns

(Figure 7B), the optimal bandwidths are typically between 6 and 10. There seems to be little systematic

variation between announcement and non-announcement days. The optimal bandwidths are roughly similar to,

but usually somewhat smaller, than the number of lags for which there seems to be a non-zero autocorrelation

in the 1-second returns (Figure 6). As with any kernel estimator, the choice of the value for the bandwidth

parameter involves a bias-variance trade-o¤, with a larger value leading to a smaller bias but also a higher

variance. The optimal bandwidth choice incorporates this bias-variance trade-o¤. It is, in general, not optimal
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to control for all of the autocorrelation in the data by using a very large value for the bandwidth parameter,

as doing so may induce a lot of variance into the estimator.

Calculating the optimal bandwidth parameterH for returns sampled at the 1-minute and lower frequencies,

we �nd that the result is always a number between 0 and 1, for both �nancial asset returns series and for all

days in the sample. Depending on whether one rounds the results up or down� recall that the bandwidth has

to be an integer� the result is thus always an optimal bandwidth of either 0 or 1 for these lower sampling

frequencies. In fact, all of the optimal bandwidths are less than 0:5, so that simple rounding would yield 0

as the optimal number of lags in equation (11) for sampling frequencies equal to or less than once a minute.

Throughout the rest of the analysis reported in this section, the estimate for the optimal bandwidth is always

rounded up, so that at least one lag is always included in the realized kernel estimator that incorporates the

optimally chosen bandwidth for each sampling frequency.

In summary, for the very highest sampling frequencies available in our dataset, the bandwidth selection

rules of BNHLS suggest that a moderate number of lags should be included, but for lower sampling frequencies

the rule indicates that at most one lag should be included.

5.3 Signature plots for realized kernel estimates

In this section we display signature plots for 6 di¤erent choices of H: the standard realized volatility estimator

(which corresponds to the realized kernel estimator with bandwidth zero), the realized kernel estimator with

�xed bandwidths of 1, 5, 10, and 30, and the realized kernel estimator that uses a bandwidth optimally chosen

for each sampling frequency.

As we did in Section 4 for the standard realized volatility estimator, we begin by studying the volatility

signature plots for two speci�c business days in 2005. Signature plots for FX returns on these days are

displayed in Figure 8, while signature plots for bond returns are shown in Figure 9. Figure 8A shows the

signature plot of FX returns on October 4, 2005, which was a day of average volatility. For this day, we

easily observe the pattern that one would expect as a result of changing the bandwidth parameter. The

standard estimator, which is obtained by setting H = 0, yields nearly constant estimates of realized volatility

(of about 8.5 percent at an annualized rate) for all sampling interval lengths between about 15 seconds and

about 4 minutes; in contrast, for sampling frequencies higher than about once every 15 seconds the standard

estimator is biased upwards, and it becomes increasingly more biased as the sampling frequency increases.

For bandwidths greater than 0, the in�uence of market microstructure noise on realized volatility becomes

increasingly less pronounced, especially at the highest-available sampling frequencies. For H = 1 (the blue

short-dashed line), we �nd that one can sample as frequently as once every 5 seconds without incurring any

apparent bias in estimated volatility; setting H = 10 would allow us to sample as frequently as once every 2
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seconds; and if one were to use 30 lags in the kernel estimator, there is no apparent bias even at the 1-second

sampling frequency. Using the optimal bandwidth produces a signature plot that is quite similar to the one

that results from using a �xed bandwidth equal to 1.

In contrast, for the high-volatility day of July 21, 2005, shown in Figure 8B, it is harder to draw any �rm

conclusions. On that day, using a value of H > 1 would result in estimates of realized volatility that are

actually slightly larger than those obtained with the standard estimator, except when the sampling interval

lengths are as short as 1 or 2 seconds. It is worth noting that volatility and trading volume were both

exceptionally high on that day, and hence it may not even be necessary to employ a kernel-based correction

for this speci�c day in order to obtain a low-bias estimate of volatility.

The results for the bond returns on the same two dates are overall quite similar to those for FX returns,

but there are also some striking di¤erences. In Figure 9A, for the medium-volatility day of October 3, 2005,

we see a pattern that is fairly similar to the one we observed in Figure 8A for FX returns: setting H = 1

already achieves important gains in terms of the usable critical sampling frequency, from about once every 20

seconds to once every 4 seconds; by H = 10, one can sample as frequently as once every second; and increasing

the bandwidth further to H = 30 produces little additional gain for any of the higher sampling frequencies of

interest.18 For the high-volatility day of July 21, 2005, setting H = 1 shortens the critical sampling interval

length from about 2 minutes to about 30 seconds, and setting H = 10 or H = 30 reduces the length of this

interval further, to about 15 seconds.

Figure 10 shows the signature plots of FX returns averaged separately for non-announcement days and

announcement days in 2005. As was discussed in Section 4, when using the standard realized volatility

estimator the critical sampling interval length for FX returns on non-announcement days and announcement

days, respectively, was between 15 and 20 seconds in 2005. By including just one lag in the realized kernel

estimator, the critical sampling interval length for FX returns drops to about 4 seconds (on average) on

non-announcement days. Using the optimal bandwidth selection rule of BHNLS results in a similar critical

sampling interval length. If one sets H = 10 or H = 30, even sampling at the 1-second frequency seems

admissible for the purpose of calculating realized volatility. On the subset of announcement days, shown in

the lower panel of Figure 10, setting H = 1 shortens the critical sampling interval length to about 8 seconds,

and setting H = 5 shortens this interval still further, to about 4 seconds.

The results for the bond returns, shown in Figure 11, are similar in nature to those for FX returns. Whereas

the critical sampling frequency for the standard estimator of realized volatility on non-announcement days is

between once every 2 to 3 minutes, including just 1 lag in the realized kernel estimator increases the critical

sampling frequency to about once every 40 seconds on non-announcement days and once every 30 seconds on

18For the bond returns, kernel estimates with H = 30 are not reported for the lowest sampling frequencies, i.e. the longest
sampling intervals, since there are not enough observations available at these frequencies to form an estimate when using 30 lags.
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announcement days; using 30 lags, this frequency climbs to about once every 8 seconds, on both types of days

in 2005.

5.4 Implications for practical use of realized kernel estimators

The results just presented indicate that there is considerable scope for achieving much higher critical sampling

frequencies, for FX and bond returns, by using a kernel estimator rather than the standard estimator of realized

volatility, and thereby also achieving greater precision in the estimates of volatility. There is, however, a bias-

variance trade o¤ for the number of lags included in the realized kernel estimator. Thus, even though we

�nd that using 30 lags would allow us to sample at the 1-second frequency in the case of FX returns and the

8-second frequency for bond returns, it may not be optimal to do so. Indeed, according to the BNHLS rule,

the (time-averaged) optimal bandwidth at the 1-second frequency is always much smaller than 30. Using the

optimal bandwidth, the critical sampling frequency appears to be about once every 2 to 5 seconds for FX

returns, while for bond returns it is about once every 30 to 40 seconds. Unfortunately, calculating the optimal

bandwidth is fairly complicated. However, judging by the results shown in Figures 8 through 11, our empirical

results for the kernel-based realized volatility estimator using the optimally chosen bandwidth are very similar

for those we found using the kernel estimator with a �xed lag length of 1. Note that for H = 1 the kernel

estimator has a very simple functional form, viz.

eKt (X�) = 
0 (X�) + 2
1 (X�) ; (17)

because if H = 1 we have k(0) = 1 in equation (11). Therefore, at least for the two �nancial returns series

studied in this paper, we �nd that by augmenting the standard realized volatility estimator with just one

additional term, the critical sampling frequency can be increased considerably without giving up much in

terms of the simplicity of the calculations. This estimator is, incidentally, also identical to the noise-corrected

estimator proposed in the seminal paper of Zhou (1996).

6 Estimation of integrated volatility using absolute power and bi-

power variation methods

The standard estimator of integrated volatility is potentially quite sensitive to outliers, as it is computed from

squared returns. This raises the issue of how robust estimators of volatility, which are functions of absolute

rather than squared returns, perform in practice. As discussed before, these estimators converge to measures

of the daily variation of the di¤usive, or non-jump, part of the returns process. Since much of the di¤erence
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in daily volatility that was seen for announcement days relative to non-announcement days (Figure 4), may

very well stem from jumps rather than di¤usive moves in returns, it is particularly interesting to examine

how estimates of volatility di¤er between announcement and non-announcement days when the two robust

methods are used. In addition, we also study the degree to which market microstructure noise a¤ects estimates

of volatility across sampling frequencies when robust estimators are employed.

6.1 Volatility estimation using absolute variation methods

The realized absolute variation of a continuous time di¤usion process X, sampled over [0; t] at intervals �, was

introduced earlier as

RAVt = �
�1
1 n�1=2

nX
j=1

��X�j �X�(j�1)�� : (18)

The factor �1 is needed to obtain an estimate of the mean absolute variation of Xt over [0; t],
R t
0
�u du, under

the di¤usion model (2), rather than of the mean absolute return of Xt over that period.19 For dollar/euro

returns from January 1999 to September 2006, the ratio of the standard deviation of daily returns to the mean

absolute daily return was equal to 1.31, with yearly estimates of this ratio falling in the interval [1:27; 1:33],

i.e., slightly larger the reference value for the case of a Brownian di¤usion. For 2005, this ratio was 1.29, and it

is this value, rather than ��11 � 1:253, that we use in the empirical work on the volatility of FX returns in this

section. For daily-frequency returns on the 10-year Treasury note in 2005, the corresponding ratio was 1.26.

Because real data are generated discretely and not continuously, the term n, the sample size, in equa-

tion (18) needs to be interpreted carefully in empirical work. When data are generated discretely, there will

be time intervals during which no new data arrive and hence returns are zero. Furthermore, because trading

activity is not distributed uniformly during the day, the relative frequency of zero-return intervals increases as

the intraday sampling frequency rises.20 With discretely-generated data, then, one must take care not to use

the theoretical sample size, bt=�c, that corresponds to a given sampling interval length �, as more and more

of the sample periods would be characterized by zero returns as � # 0. Instead, one should use the e¤ective

sample size, i.e., the number of intervals within a day during which a transaction occurred.

19For a Brownian di¤usion, ��11 =
p
�=2 � 1:253. However, returns of many �nancial time series� especially when they are

sampled at very high frequencies� are usuallly much more heavy-tailed than draws from a normal distribution are. This raises
the issue if (and how strongly) �1 is a¤ected by departures from normality. For the case of a Student-t distribution with � degrees
of freedom (with � > 2), the ratio Var (X)=E jXj is a decreasing function of �; for values of � equal to 3, 5, and 10, the ratio
is close to 1.57, 1.36, and 1.29, respectively. In principle, the dependence of the conversion factor �1 on the distribution�s tail
shape and the fact that the leptokurtosis of returns increases with the sampling frequency suggest that one should let �1 vary
systematically with the sampling frequency. A full treatment of this issue is left to future research.
20As is shown in Table 3, on an average trading day in 2005 the e¤ective sample size for FX and bond returns at the 1-second

frequency was only 13.9 percent and 7.6 percent, respectively, as large as the theoretical sample size. We note that these numbers
represent averages across all trading days in 2005. The fraction of 1-second intervals with non-zero returns within a day can vary
considerably across days.
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We compute estimates of the daily variation based on the realized absolute variation of FX and bond returns

using the same range of sampling frequencies as in the preceding section, and we also average separately across

announcement and non-announcement days. The resulting signature plots are shown in Figure 12. These plots

share certain similarities with the ones shown in Figure 4, but they also exhibit some important di¤erences.

First, we �nd that the estimates of daily variation that are based on absolute returns di¤er by less, on average,

across announcement and non-announcement days than is the case for the volatility estimates that are based

on squared returns. This suggests that the jump components of returns, which presumably are both more

frequent and more pronounced on announcements days, indeed a¤ect the standard realized volatility estimator

disproportionately, just as the asymptotic theory for this estimator would predict. This e¤ect is particularly

strong for FX returns (Figure 12A): volatility estimates show little di¤erence across the two subsamples when

they are computed using absolute returns.

A second important di¤erence between the signature plots for the robust estimators in Figure 12 and those

for the standard realized volatility estimator in Figure 4 lies in their response to the variations in the sampling

frequency. For both FX and bond returns, and both on announcement days and on non-announcement days,

realized volatility increases faster with the sampling frequency if it is computed as a functions of absolute

returns. While we can not o¤er a detailed explanation for this �nding, we conjecture that this di¤erence may

o¤er important clues to the nature of the market microstructure noise process that a¤ects returns at the very

highest frequencies.

Judging from the absolute variation signature plots, the critical sampling frequency, which separates those

estimates which are a¤ected noticeably by market microstructure noise from those which are not, is about

4 to 5 minutes for both FX and bond returns, and for both announcement and non-announcement days.

These estimates of the critical sampling frequencies are substantially lower, and the associated sampling

interval lengths are therefore substantially longer, than those we found when computing realized volatility

using squared returns. Exploring the causes of this pronounced di¤erence is also left to future research.

6.2 Integrated volatility estimated from bipower variation

We now turn to volatility signature plots obtained from the bipower variation of processes. As set out in

Section 2, bipower variation is calculated from the products of adjacent absolute returns, rather than simple

squared returns, and it is therefore more robust to large outliers such as non-di¤usive jumps. Figure 13

shows the signature plots for FX and bond returns using the realized bipower variation estimator de�ned in

equation (15).21

21The volatility, rather than variance, estimates are shown, i.e., results for
p
RBVt are displayed.
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The patterns shown in these signature plots are quite di¤erent from those shown in the signature plots

that are based on squared returns (Figure 4) or absolute returns (Figure 12). At the very highest sampling

frequencies available, the bipower-based signature plots exhibit a pronounced downward bias, rather than an

upward bias, to estimated volatility. Although we cannot rule out that market microstructure noise could

account for a part of this downward bias, the most likely determinant of this feature is the fact that, as the

sampling frequency increases, the fraction of sampling intervals with zero returns increases as well. Because

the bipower variation estimator is calculated from the sum of the products of adjacent absolute returns, two

consecutive non-zero returns are required to obtain a non-zero increment to the estimate of volatility. As

adjacent zero returns are especially prevalent at the highest sampling frequencies, the result is a decline in

estimated volatility at those frequencies.22

The critical frequency, at which the signature plots indicate that it is safe to sample without incurring

a penalty from market microstructure noise, thus re�ects both the actual properties of the microstructure

noise process as well as the relative scarcity of non-zero observations at various sampling frequencies. For the

bipower-based volatility of FX returns, this frequency appears to be around 15 to 30 seconds on announcement

days and around 1 minute on non-announcement days. For bond returns, the critical frequencies are around 1

and 2 minutes, respectively, on announcement and non-announcement days.

An additional di¤erence between the signature plots shown in Figures 4 and 12� apart from the downward

vs. upward biases at the very highest sampling frequencies� is that realized volatility is generally a bit lower

when using the bipower variation method, on both non-announcement days and announcement days, than if

the standard estimator is employed. This result holds even at the lower sampling frequencies, at which market

microstructure noise concerns would a priori not be thought to have pronounced e¤ects. Given that both

estimators are asymptotically consistent under their respective maintained assumptions, this �nite-sample

result suggests either that the standard estimator is biased because of its sensitivity to jumps in the price

process, or that the bipower estimator is downward biased because of the prevalence of intervals with zero

returns at all but the very lowest sampling frequencies.

Figure 14 shows the signature plots for the realized bipower variation using the skip-one returns de�ned in

equation (16). Rather than computing products of adjacent absolute returns, this estimator relies on products

of absolute returns with one sample period left out in between the terms. The intuition for this method is

that, by �skipping over�one term, one may be able to eliminate some of the serial correlation in returns that

could be caused by market microstructure features. Unfortunately, the actual volatility estimates we obtain

22Note that in the case of the absolute power variation method, a natural way for adjusting the estimator for changes in the
prevalence of intervals with zero returns is to adjust the sample size, i.e., to set the sample size equal to the number of intervals
with non-zero returns. No such simple adjustment is available for the estimator that is based on the bipower variation of returns.
We conjecture that, when computing the bipower variation of a discretely-generated process, a practical method for dealing
with the incidence of intervals with zero returns is to discard all samples that have zero returns prior to calculating the bipower
products.
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using the skip-one method are not straightforward to interpret. Across most sampling frequencies and for both

FX and bond returns, estimated volatility using the skip-one bipower method tends to be lower than if it is

computed on the basis of the standard bipower estimator. This result could be due to a successful elimination

of market microstructure noise. However, we �nd that this result is also present at longer sampling interval

lengths, for which microstructure noise is thought to play a less signi�cant role. Hence, the lower levels of the

volatility estimates using the skip-one method almost certainly also re�ect patterns in the latent e¢ cient-price

component of the observed returns process. For instance, if large absolute returns tend to cluster in practice,

the skip-one estimator is likely to be biased downward irrespective of the chosen sampling frequency.

In summary, we �nd that it is hard to assess the impact of market microstructure noise on volatility

estimated from the realized bipower variation of a process. The primary cause of this di¢ culty appears to be

the issue of zero returns in samples that are drawn from discretely generated data. Nevertheless, it is evident

that the choice of sampling frequency is important for this class of volatility estimators as well. There is

some evidence that using the skip-one estimator may help eliminate some of the noise, as suggested by the

fairly �at signature plots for bond returns in Figure 14B, but this estimator may also induce a downward bias

that depends on the conditional distribution of the e¢ cient-price component of the returns process. Given

the increasing popularity of the bipower volatility estimator, an important topic for future research is the

development of formal rules for choosing the critical or optimal sampling frequency. In addition, it would

appear to be useful to develop kernel-based or subsampling-based extensions to volatility estimators that are

based on the absolute power variation and bipower variation of the returns process.

7 Discussion

Using volatility signature plots, we have found that the critical or optimal sampling frequency, which a¤ords

estimation of integrated volatility without incurring a penalty in the form of an upward bias caused by market

microstructure noise, is considerably higher and the resulting intraday sample lengths are considerably lower,

by a factor of at least six, for FX returns than for bond returns. What are some of the� not necessarily

independent� factors that may explain this striking di¤erence? Both markets are based on electronic order

book systems, and both have achieved large market shares in their respective �elds. However, the number of

active trading terminals is considerably larger on EBS than on BrokerTec, as is the number of transactions

per day. In contrast, the average size of each transaction is lower on EBS than it is on BrokerTec, suggesting

that the price impact of EBS transactions may also be lower on average. In addition, the bid-ask spread in the
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dollar/euro exchange rate pair is, on average, only about sixty percent the size of that of the 10-year Treasury

note. All of these factors may explain the observed di¤erences in the critical sampling frequencies.23

Judging from the volatility signature plots, the critical sampling frequencies for estimating the realized

volatility of the returns to the 10-year Treasury securities and, even more so, of the returns to the dollar/euro

pair are much higher, and the associated critical sampling interval lengths are therefore shorter, than those

reported in the empirical literature for all but the most liquid of exchange-traded shares (e.g., Bandi and

Russell, 2006b). Lower bid-ask spreads and other lower transaction costs, a smaller price impact of trades, and

the fact that the number of distinct assets traded on these two systems is quite small� which, ceteris paribus,

should raise their liquidity� are all good candidates for explaining why their critical sampling frequencies are

so much higher than those in some other �nancial markets.

Two additional �ndings reported in this paper are that there is, in general, substantial heterogeneity in

the shapes of the daily volatility signature plots and that, on any given day, the realized volatilities computed

from adjacent sampling frequencies can di¤er considerably from each other. A related �nding, we believe, is

that the sampling interval lengths chosen by the rules proposed by Bandi and Russell (2006b) and Aït-Sahalia

et al. (2005) are generally considerably longer than those that would be chosen visually, i.e., on the basis of the

signature plots. We conjecture that a key to interpreting these �ndings is to recall that �nancial returns� and

especially those sampled at very high frequencies� tend to be very leptokurtic. Empirically, returns that occur

during possibly just a handful of intraday periods may make disproportionate contributions to estimates of

realized volatility, and these contributions can depend strongly on the precise choice of sampling frequency.

The heterogeneity in the shapes of the daily signature volatility plots may also be a byproduct of the high

kurtosis present in high-frequency data. We suggest that one of the practical uses of computing realized

volatility via robust methods� such as those that are based on the absolute power, bipower, and multipower

variation of returns� may be to shed more light on the role leptokurtosis of returns plays in driving the

heterogeneity present in daily (squared) realized volatility signature plots.

8 Conclusion

In this paper, we use various methods to examine the dependence of estimates of realized volatility on the

sampling frequency and to determine if the data suggest that there exist critical sampling frequencies, beyond

which estimates of integrated volatility become increasingly contaminated by market microstructure noise.

We study returns on the dollar/euro exchange rate pair and on the on-the-run 10-year U.S. Treasury security

in 2005, at intraday sampling frequencies as high as once every second. We detect strong evidence of an

23 It is also possible that the workup process on BrokerTec a¤ects bond price dynamics in a way that makes market microstructure
noise persist longer than in FX markets. BrokerTec has recently changed the mechanics of its workup process signi�cantly.
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upward bias in realized volatility at the very highest sampling frequencies. Time-averaged volatility signature

plots suggest that FX returns may be sampled as frequently as once every 15 to 20 seconds, respectively, on

days with and without scheduled major U.S. economic data releases and news announcements, without the

standard realized volatility estimator incurring market microstructure-induced bias. In contrast, returns on

the 10-year Treasury security should be sampled no more frequently than once every 2 to 3 minutes on non-

announcement days, and about once every 40 seconds on announcement days, if one wishes to avoid obtaining

upwardly-biased estimates of realized volatility.

If one uses realized kernel estimators, which explicitly eliminate some of the serial correlation in the returns

that is induced by market microstructure noise, the critical sampling frequencies increase even further. By

using the simplest possible realized kernel estimator, which simply adds the �rst-order autocovariance term to

the standard estimator, the critical sampling frequency for FX returns is about once every 2 to 5 seconds, and

it is about once every 30 to 40 seconds for bond returns. The resulting high degree of precision with which

integrated volatility may be estimated suggests that the economic bene�ts for risk-averse investors who rely

these methods for their portfolio choices should be substantial, in comparison with approaches to estimating

the volatility of these two time series which either use daily-frequency data or which estimate integrated

volatility on the basis of more sparsely sampled intraday data.
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Table 1: Summary statistics for dollar/euro returns

All summary statistics expressed as basis points of the price.

Sampling Interval Length

24 Hours 5 Minutes

Mean �4:94 �0:014
Absolute mean 43:31 2:16
Standard deviation 55:71 3:30
Skewness 0:23 �0:14
Kurtosis 3:27 22:17
Minimum �139:1 �61:19
Maximum 169:8 76:26

Table 2: Summary statistics for 10-year Treasury note returns

All summary statistics expressed as basis points of the price.

Sampling Interval Length

24 Hours 5 Minutes

Mean �0:68 0:001
Absolute mean 30:20 2:05
Standard deviation 37:91 3:15
Skewness �0:24 �0:57
Kurtosis 2:87 24:09
Minimum �109:04 �55:14
Maximum 80:66 38:84

Table 3: Frequencies of zero returns in foreign exchange and Treasury note data.

Sampling Interval Length (in seconds)

1 5 15 30 60 300 600

FX 0:861 0:652 0:478 0:365 0:263 0:108 0:070
10-year T-Note 0:924 0:789 0:652 0:549 0:450 0:239 0:174
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Figure 1. Daily Realized Volatility Estimates
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 Note: Estimates based on returns sampled at 5 -minute frequency
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 Figure 2. Realized Volatility Signature Plots for FX Returns on 2 Specific Dates
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 Figure 3. Realized Volatility Signature Plots for T-Note Returns on 2 Specific Dates
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Figure 4. Realized Volatility Signature Plots and Announcement Effects

A. FX Returns
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Figure 5. Optimal Sampling Frequencies Suggested by the Bandi -Russell Method
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Announcement Days Non -Announcement Days

S
a
m

p
l
e
 
I
n
t
e
r
v
a
l
 
L

e
n
g
t
h
s
 
(
S

e
c
o
n
d
s
)

0

100

200

300

400

01JAN05 01APR05 01JUL05 01OCT05 01JAN06

B. T -Note Returns

Announcement Days Non -Announcement Days

S
a
m

p
l
e
 
I
n
t
e
r
v
a
l
 
L

e
n
g
t
h
s
 
(
S

e
c
o

n
d

s
)

0

100

200

300

400

500

600

700

800

01JAN05 01APR05 01JUL05 01OCT05 01JAN06

 
36



Figure 6. Autocorrelation Functions of Returns, Various Sampling Frequencies
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Figure 7. Optimal Choice of Bandwidth Parameter H, 1 -Second Returns
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Figure 8. Kernel -Based Realized Volatility Signature Plots

for FX Returns on 2 Specific Dates
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Figure 9. Kernel -Based Realized Volatility Signature Plots

for T -Note Returns on 2 Specific Dates
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Figure 10. FX Returns, Time -Averaged Kernel -Based Realized Volatility Signature Plots
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Figure 11. T -Note Returns, Time -Averaged Kernel -Based Realized Volatility Signature Plots
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Figure 12. Realized Absolute Variation Signature Plots
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Figure 13. Realized Bipower Variation Signature Plots
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Figure 14. Realized Bipower Variation Signature Plots, Using Skip -One Returns
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