BIS Working Papers
No 991
Monetary policy and endogenous financial crises
by Frederic Boissay, Fabrice Collard, Jordi Gali and Cristina Manea

Monetary and Economic Department

January 2022 (revised April 2023)

JEL classification: E1, E3, E6, G01.

Keywords: Inflation targeting, low-rate-for-long, search for yield, financial instability, backstops.
Monetary Policy and Endogenous Financial Crises

F. Boissay∗ F. Collard† J. Gali‡ C. Manea§¶

April 8, 2023

Abstract

Should a central bank deviate from price stability to promote financial stability? We study this question through the lens of a textbook New Keynesian model augmented with capital accumulation and search–for–yield behaviors that give rise to endogenous financial crises. Our main findings are fourfold. First, monetary policy affects the probability of a crisis both in the short run (through aggregate demand) and in the medium run (through savings and capital accumulation). Second, the central bank can lower the probability of a crisis and increase welfare compared to strict inflation targeting by responding to output and an index of financial fragility (the “yield gap”) in addition to inflation. Third, “backstop” policy rules that prevent credit market collapses can further increase welfare. Fourth, financial crises may occur after a long period of unexpectedly loose monetary policy as the central bank abruptly reverses course.

Keywords: Inflation targeting, low–rate–for–long, search for yield, financial instability, backstops

JEL classification: E1, E3, E6, G01.

∗Bank for International Settlements. Email: frederic.boissay@bis.org.
†Toulouse School of Economics (CNRS). Email: fabrice.collard@gmail.com.
‡CREI, Universitat Pompeu Fabra and Barcelona School of Economics. Email: jgali@crei.cat.
§Bank for International Settlements. Email: cristina.manea@bis.org.
“While monetary policy may not be quite the right tool for the job, it has one important advantage relative to supervision and regulation—namely that it gets in all of the cracks.” (Stein (2013))

“Swings in market sentiment, financial innovation, and regulatory failure are acknowledged sources of instability, but what about monetary policy? Can monetary policy create or amplify risks to the financial system? (...) If so, should the conduct of monetary policy change? These questions are among the most difficult that central bankers face.” (Bernanke (2022), page 367)

1 Introduction

The impact of monetary policy on financial stability remains a controversial topic. On the one hand, loose monetary policy can help stave off financial crises. In response to the 9/11 terrorist attacks and Covid–19 pandemic, for example, central banks swiftly lowered interest rates and acted as a backstop to the financial sector. These moves likely prevented a financial collapse that would otherwise have exacerbated the damage to the economy. On the other hand, empirical evidence shows that, by keeping their policy rates too low for too long, central banks may entice the financial sector to search for yield and feed macro–financial imbalances. Loose monetary policy is thus sometimes regarded as one of the causes of the 2007–8 Great Financial Crisis (GFC). ¹ Taylor (2011), in particular, refers to the period 2003–2005 in the US as the “Great Deviation”, which he characterises as one when monetary policy became less rule–based, less predictable, and excessively loose.

This ambivalence prompts the question of the adequate monetary policy in an environment where credit markets are fragile and financial stress may have varied causes.² What are the channels through which monetary policy affects financial stability? Should central banks deviate from their objective of price stability to promote financial stability? To what extent may monetary policy itself brew financial vulnerabilities?

We study these questions through the lens of a New Keynesian (NK) model that features endogenous financial crises when rates of return are low, and where low rates may have several causes—ranging from a large adverse non–financial shock to a protracted investment boom. The mechanics of financial crises in our model have been well–documented empirically (see, among

¹Empirical studies show that when interest rates are low financial institutions take riskier investment decisions in search for higher yields, and that loose monetary policy can therefore have adverse effects on financial stability (Jiménez, Kuvshinov, Peydró, and Richter (2022), Grimm, Jordà, Schularick, and Taylor (2020)). A number of studies document that search–for–yield behaviors were pervasive in the financial sector before the GFC: e.g., Maddaloni and Peydró (2011) and Dell’Arècia, Laeven, and Suarez (2017) for banks, Choi and Kronlund (2017) for mutual funds, Di Maggio and Kacperczyk (2017) for money market funds, Becker and Ivashina (2015) for insurance companies.

²The Federal Reserve and European Central Bank’s recent strategy reviews both emphasize that the importance of financial stability considerations in the conduct of monetary policy has increased since the GFC (Goldberg, Klee, Prescott, and Wood (2020), European Central Bank (2021)).
others, Gorton (2009), Brunnermeier (2009), Shin (2010), Griffin (2021), Mian and Sufi (2017): when interest rates are low, borrowers tend to “search for yield”, in the sense that they seek to boost their profits by leveraging up and investing in projects that are both socially inefficient and risky from the point of view of lenders. Beyond a certain point, the default risk becomes so high that prospective lenders refuse to lend, triggering a sudden collapse of credit markets—what we refer to as a financial crisis.

As we focus on the effects of monetary policy on financial stability we purposely abstract from other (e.g. macro–prudential) policies. Our intention is not to argue that other policies are not effective or should not be used to mitigate financial stability risks. Rather, it is to understand better how monetary policy can by itself create, amplify, or mitigate risks to the financial system. Our model should therefore be taken as a first step toward richer models.

Our starting point is the textbook three–equation NK model (Galí (2015)), in which we introduce the possibility that firms search for yield and credit markets collapse. To do so, we depart from the textbook model in a few and straightforward ways.

First, we assume that firms are subject to idiosyncratic productivity shocks—in addition to the usual aggregate ones. This heterogeneity gives rise to a credit market where productive firms borrow funds to buy capital from unproductive firms and the latter lend the proceeds of the sales of their capital goods. The credit market thus supports the reallocation of capital from unproductive to productive firms.

Second, we assume two standard financial frictions that make this credit market fragile. The first friction is limited contract enforceability: prospective lenders may not be able to seize the wealth of a defaulting borrower, allowing firms to borrow, abscond, and default intentionally. This moral hazard problem induces lenders to constrain the amount of funds that each firm can borrow. The second financial friction is that idiosyncratic productivities are private information. Together, these frictions imply that the loan rate must be above a minimum threshold to entice unproductive firms to sell their capital stock and lend the proceeds, rather than borrow and abscond in search for yield. When firms’ average return on equity is too low, not even the most productive firms can afford paying this minimum loan rate and the credit market collapses. As

3 Despite the progress made since the GFC, macro–prudential policies are generally still perceived as not offering full protection against financial stability risks, not least due to the rise of market finance and non–bank financial intermediation (Woodford (2012), Stein (2013, 2021), Schnabel (2021), Bernanke (2022)).

4 Our narrative in terms of inter–firm lending should not be taken at face value but rather interpreted more broadly as capturing the whole range of financial transactions and markets that help to reallocate initially mis–allocated resources (e.g. short term credit markets). More generally, our model captures two core functions of the financial sector: its usual role of transferring resources across periods and channelling savings to investment; and its role of reallocating resources from the least productive agents to the most productive ones—as in Eisfeldt and Rampini (2006).

5 The financial frictions considered here are general and most standard (see, e.g., Stiglitz and Weiss (1981), Mankiw (1986), Gertler and Rogoff (1990), Freixas and Rochet (1997), Azariadis and Smith (1998), Tirole (2006), Boissay, Collard, and Smets (2016)) and not specific to a particular type of financial transaction or market. For example, our model can be easily recast in a model with banks, where productive firms borrow from banks to buy capital goods from unproductive firms and the latter deposit the proceeds of the sales in banks. As long as banks face the same agency problem as unproductive firms, introducing them would not change anything to our results (see Section 7.1). Giving banks an advantage over unproductive firms in lending activities (e.g. a better knowledge of borrowers) would amount to relaxing or removing financial frictions and would eliminate the possibility of financial crises (see Section 7.4).
a result, crises are characterised by capital mis-allocation and a severe recession.

The third departure from the textbook NK model is that we allow for endogenous capital accumulation. As a consequence, the economy may deviate persistently from its steady state and expose itself to excess savings, excess capital accumulation, and financial crises. Finally, we solve the model globally in order to capture the non-linearities embedded in the endogenous booms and busts of the credit market.

We use our framework to study whether monetary policy can tame such booms and busts, and whether a central bank should deviate from its objective of price stability to promote financial stability. In the process, we compare the performance of the economy under Taylor-type rules, regime-contingent rules, and monetary policy discretion.

Our main findings are fourfold.

First, monetary policy affects the probability of a crisis not only in the short run through its usual effects on output and inflation, but also in the medium run through its effects on capital accumulation. In particular, policies that systematically dampen the fluctuations in output tend to slow down the accumulation of savings during booms. The lower saving rate stems excess capital accumulation, limits the fall in rates of return, and helps prevent financial crises. As these effects go through agents’ expectations, they require that the central bank commit itself to a policy rule and only materialize in the medium run.

Second, the difference between firms’ average return on equity and its deterministic steady state value, or “yield gap”, emerges as a relevant indicator of financial resilience—a negative yield gap heralding financial stress down the road. Accordingly, we find that the central bank can reduce the time spent in crisis and increase welfare by deviating from strict inflation targeting (henceforth, SIT) and responding systematically to the yield gap in addition to output and inflation (so-called augmented Taylor rule).

Third, we discuss the net welfare gain of following more complex (regime-contingent) monetary policy rules, whereby the central bank commits itself to doing whatever needed whenever necessary to forestall crises. Such backstop policy requires to lower the policy rate and tolerate higher inflation during periods of financial stress—compared to what a SIT or Taylor-type rule would otherwise prescribe. We show that doing so significantly improves welfare. We also discuss the trade-off between normalising monetary policy too quickly—at the risk of triggering a crisis—and too slowly—at the risk of keeping inflation unnecessarily high, as well as the adequate speed of monetary policy normalisation. We find that the latter can go faster when the cause of financial stress is a short-lived exogenous negative shock than when it is a protracted investment boom.

6The presence of endogenous financial crises and non-linearities implies that our model must be solved numerically and globally.

7One novel feature of our model is that it accounts for the dual role of monetary policy as a tool to achieve price stability and as a tool to restore financial market functioning. Our model thus captures the potential tensions and trade-off between a central bank’s price and financial stability objectives. Examples of such tensions include, for example, the Savings & Loans crisis in the 1980s, the GFC, the May 2013 “taper tantrum” episode and, more
Fourth, we study the effects of discretionary monetary policy interventions, i.e. deviations from a Taylor–type rule, on financial stability. We show that financial crises may occur after a long period of loose monetary policy, as the central bank unexpectedly reverses course and abruptly hikes its policy rate.

The paper proceeds as follows. Section 2 sets our work in the literature. Section 3 describes our theoretical framework, with a focus on the microfoundations of endogenous financial crises, and describes the channels through which monetary policy affects financial stability. Section 4 presents the parametrization of the model as well as the average macroeconomic dynamics around financial crises. Section 5 revisits the “divine coincidence” result and analyses whether the central bank should deviate from its objective of price stability to promote financial stability. Section 6 studies the effect of monetary policy surprises on financial stability and shows how monetary policy itself can breed financial vulnerabilities. In Section 7 we show that our results carry over to alternative versions of our model —including one with banks. A last section concludes.

2 Related Literature

Our main contribution is to study the effects of monetary policy on financial stability when credit markets are fragile and financial stress may have varied endogenous causes.

As we do so, we bridge two strands of the literature. The first is on monetary policy and financial stability. Like Woodford (2012), Svensson (2017) and Gourio, Kashyap, and Sim (2018), we introduce endogenous crises in an otherwise standard NK framework. The main difference is that they assume specific and reduced form relationships to describe how macro-financial variables (e.g. credit gap, credit growth, leverage) affect the likelihood of a crisis, whereas in our case financial crises—including their probability and size— are micro-founded and derived from first principles. This has important consequences in terms of our model’s properties. One is that monetary policy influences not only the crisis probability but also the size of the recessions that typically follow crises, and therefore the associated welfare cost. Another is that, even though crises can be seen as credit booms “gone wrong”, as documented in Schularick and Taylor (2012), not all booms are equally conducive to crises (Gorton and Ordoñez (2019), Sufi and Taylor (2021)) —a key element to determine how hard to lean against booms. More generally, our findings do not hinge on any postulated reduced functional form for the probability or size of a crisis. In this sense, ours can be seen as a fairly general framework that provides micro-foundations to the approaches in Woodford (2012), Svensson (2017) and Gourio, Kashyap, and Sim (2018).

recently, the Bank of England’s purchases of government bonds to address the November 2022 gilt market turmoil (Hauser (2023)), and the run on Silicon Valley Bank in March 2023.

The second strand of the literature relates to quantitative macro–financial models with micro–founded endogenous financial crises.9

Ours complements existing work (\textit{e.g.} Gertler and Kiyotaki (2015), Gertler, Kiyotaki, and Prestipino (2019), Fontanier (2022)) in that it focuses on the fragility of financial markets —as opposed to institutions— and emphasises the role of excess savings, low interest rates, and the resulting search for yield —as opposed to collateral constraints— as sources of financial fragility.10 In this respect, the mechanics of financial crises in our model are closer to those in Martinez-Miera and Repullo (2017), who also associate the search for yield in a low interest rate environment to the presence of moral hazard. In their case, banks are less likely to monitor firms as interest rates go down, whereas in ours firms are more likely to borrow and abscond. Both approaches are motivated by extensive anecdotal and empirical evidence of a rise in moral hazard (Ashcraft and Schuermann (2008), Brunnermeier (2009)) and various kinds of fraudulent behavior (Griffin (2021), Mian and Sufi (2017), Piskorski, Seru, and Witkin (2015)) in the run–up to the GFC.11

Our paper also belongs to the literature on the transmission of monetary policy in heterogeneous agent New Keynesian (HANK) models. Most existing HANK models focus on household heterogeneity and study the channels through which this heterogeneity shapes the effects of monetary policy on aggregate demand (Guerrieri and Lorenzoni (2017), Kaplan, Moll, and Violante (2018), Auclert (2019), Debortoli and Galí (2021)). In contrast, our model is on the effects of firm heterogeneity (as in Adam and Weber (2019), Manea (2020), Ottonello and Winberry (2020)) and the role of credit markets in channelling resources to the most productive firms.

Though in a more indirect way, our paper is also connected to recent works on how changes in monetary policy rules affect economic outcomes in the medium term (\textit{e.g.} Borio, Disyatat, and Rungcharoenkitkul (2019), Beaudry and Meh (2021)) as well as to works on the link between firms’ financing constraints and capital mis–allocation (Eisfeldt and Rampini (2006), Chen and Song (2013)). In particular, the notion that financial crises impair capital reallocation dovetails with the narrative of the GFC in the US and the literature that shows that a great deal of the recession that followed the GFC can be explained by capital mis–allocation (\textit{e.g.} Campello, Graham, and Harvey (2010), Foster, Grim, and Haltiwanger (2016), Argente, Lee, and Moreira (2018), Duval, Hong, and Timmer (2019), Fernald (2015)).

9See Boissay, Collard, and Smets (2016), Gertler and Rogoff (1990), Azariadis and Smith (1998), Gertler, Kiyotaki, and Prestipino (2019), Benigno and Fornaro (2018), and Amador and Bianchi (2021), as well as Dou, Lo, Muley, and Uhlig (2020)’s recent review of the literature.

10In our model, the end of an investment boom may be associated with excess capital, low marginal productivity, and low returns. Mian, Straub, and Sufi (2021) propose another mechanism that associates excess savings to low rates of return and that is based on differences in marginal propensities to save across households.

11More generally, Adiber and Kindleberger (2015) list the cases of mis–behaviors throughout the history of financial crises and make the point that moral hazard tends to increase toward the end of economic booms. At the aggregate level, the core concern is not so much the existence of moral hazard in some segments of the financial system per se (\textit{e.g.} in the subprime loan market before the GFC) but rather the fear of being defrauded spread across markets, undermine confidence, and trigger a run on the financial system as a whole. Our model captures this idea.
3 Model

Our model is an extension of the textbook NK model (Gali (2015)), with sticky prices à la Rotemberg (1982) and capital accumulation, where financial frictions give rise to occasional endogenous credit market collapses.

3.1 Agents

The economy is populated with a central bank, a continuum of identical households, a continuum of monopolistically competitive retailers $i \in [0, 1]$, and a continuum of competitive intermediate goods producers $j \in [0, 1]$ (henceforth, “firms”).

The only non–standard agents are the firms, which experience idiosyncratic productivity shocks that prompt them to resize their capital stock and participate in a credit market.

3.1.1 Central Bank

The central bank sets the policy rate i_t according to the following simple policy rule:\footnote{\ref{footnote12}}

$$1 + i_t = \frac{1}{\beta}(1 + \pi_t)\phi_\pi \left(\frac{Y_t}{Y}\right)^{\phi_y}$$

where $1/\beta$ is the gross natural rate of interest in the deterministic steady state — with $\beta \in (0, 1)$ the household’s discount factor, π_t and Y_t are aggregate inflation and output in period t, and Y is aggregate output in the deterministic steady state. As baseline, we consider Taylor (1993)’s original rule (henceforth, TR93) with parameters $\phi_\pi = 1.5$ and $\phi_y = 0.125$ (for quarterly data).

In the analysis, we also experiment with different types of rule, including SIT, Taylor–type rules, and regime–contingent rules (Section 5).

3.1.2 Households

The representative household is infinitely–lived. In period t, the household supplies N_t hours of work at nominal wage rate W_t, consumes a Dixit–Stiglitz consumption basket of differentiated goods $C_t \equiv \int_0^1 C_t(i)\frac{1}{\epsilon} \mathrm{d}i$, with $C_t(i)$ the consumption of good i purchased at price $P_t(i)$, and invests their savings in a private nominal bond B_t in zero net supply and in equity $Q_t(j)$ —in units of the consumption basket— issued by newborn firm j, with $j \in [0, 1]$.

The household maximizes their expected lifetime utility:

$$\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \chi \frac{N_t^{1+\varphi}}{1+\varphi} \right) \right]$$

subject to the sequence of budget constraints

$$\int_0^1 P_t(i)C_t(i)\mathrm{d}i + B_t + P_t \int_0^1 Q_t(j)\mathrm{d}j \leq W_t N_t + (1 + i_{t-1}^b)B_{t-1} + P_t \int_0^1 (1 + v_t^b(j))Q_t(j)\mathrm{d}j + Y_t$$

\footnote{Given that there is no growth trend in our model, the term Y_t/Y corresponds to the GDP gap (or de-trended GDP) as defined in Taylor (1993)’s seminal paper.}

\footnote{The household can thus be seen as a venture capitalist providing startup equity funding to intermediate goods producers.}
for \(t = 0, 1, \ldots, +\infty \). In the above, \(\mathbb{E}_t(\cdot) \) denotes the expectation conditional on the information set available at the end of period \(t \), \(P_t \equiv \left(\int_0^1 P_t(i)^{1-\epsilon} \text{d}i \right)^{1/\epsilon} \) is the price of the consumption basket, \(Y_t \) is a lump-sum component of nominal income (which may include, among other items, dividends from ownership of retailers or lump-sum taxes), \(r_q^j(j) \) is firm \(j \)'s real rate of return on equity,\(^\text{14}\) and \(i_t^b \) is the private nominal bond yield defined by

\[
i_t^b \equiv \frac{1 + i_t}{Z_t} - 1
\]

where, as is Smets and Wouters (2007), \(Z_t \) corresponds to a wedge between the private bond yield \(i_t^b \) and the policy rate \(i_t \), and follows an exogenous AR(1) process

\[
\ln(Z_t) = \rho_z \ln(Z_{t-1}) + \epsilon_t^z
\]

with \(\rho_z \in (0, 1) \), where \(\epsilon_t^z \sim N(0, \sigma^2_z) \) is realized at the beginning of period \(t \). Following the literature, we interpret \(Z_t \) as an aggregate demand shock.\(^\text{15}\)

The first order conditions describing the household’s optimal behavior are standard and given by (in addition to a transversality condition):

\[
C_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\epsilon} C_t \quad \forall i \in [0, 1] \tag{3}
\]

\[
\frac{\chi N \varphi_t}{C_t^{-\sigma}} = \frac{W_t}{P_t} \tag{4}
\]

\[
1 = \beta(1 + i_t^b)\mathbb{E}_t \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{1}{1 + \pi_{t+1}} \right] \tag{5}
\]

\[
1 = \beta\mathbb{E}_t \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} (1 + r_q^j(j)) \right] \quad \forall j \in [0, 1] \tag{6}
\]

where \(\pi_t \equiv P_t/P_{t-1} - 1 \). Equation (3) determines the optimal composition of the household’s consumption basket. Equation (4) states that optimal labor supply behavior requires that the marginal rate of substitution between consumption and leisure be equal to the real wage. The no-arbitrage conditions (5) and (6) determine the optimal demands for bonds and equity. Since firms are born identical and without resources, the household optimally invests the same amount \(Q_t \) in every firm:

\[
Q_t(j) = Q_t \quad \forall j \in [0, 1] \tag{7}
\]

3.1.3 Retailers

Retailers are infinitely-lived and endowed with a linear production technology

\[
Y_t(i) = X_t(i) \tag{8}
\]

\(^{14}\)Since firms live only one period, it should be clear that those that issue equity at the end of period \(t \) are not the same as those that pay dividends, and therefore that we use the same \(j \) index in \(Q_t(j) \) and \(r_q^j(j) \) only to economise on notations.

\(^{15}\)See, e.g., Gali, Smets, and Wouters (2012), Barsky, Justiniano, and Melosi (2014), and Fisher (2015). This shock has the opposite effect of a risk-premium shock. All else equal, a higher \(Z_t (\epsilon_t^z > 0) \) lowers the return on bonds \(i_t^b \) (from (2)) and, therefore, increases current consumption (from (5)) and induces a portfolio re-balancing from bonds toward firm equity (from (6)), which stimulates investment. In a model with endogenous capital accumulation and no capital adjustment costs, like ours, this type of demand shock generates a positive correlation between consumption and investment — unlike a discount factor shock.
that transforms $X_t(i)$ units of the (single) intermediate good into $Y_t(i)$ units of a differentiated final good $i \in [0,1]$.

Retailers sell their output in a monopolistically competitive environment subject to their individual downward sloping demand schedules and to nominal price rigidities à la Rotemberg (1982). Each retailer i sets its price $P_t(i)$ subject to adjustment costs $\frac{\epsilon}{2} P_t Y_t \left(\frac{P_t(i)}{P_{t-1}(i)} - 1 \right)^2$, where $Y_t \equiv \left(\int_0^1 Y_t(i)^{\frac{1}{\epsilon+1}} \, di \right)^{\frac{1}{\epsilon+1}}$ denotes aggregate output. The demand for final goods emanates from households (who consume), firms (which invest), and retailers (which incur menu costs). Capital investment goods and menu costs take the form of a basket of final goods similar to that of consumption goods. Accordingly, retailer i faces the demand schedule

$$Y_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\epsilon} Y_t \quad \forall i \in [0,1]$$

where $Y_t = C_t + I_t + \frac{\epsilon}{2} Y_t^2$, with I_t the aggregate basket of investment goods defined by $I_t \equiv \left(\int_0^1 I_t(i)^{\frac{1}{\epsilon+1}} \, di \right)^{\frac{1}{\epsilon+1}}$, and $\frac{\epsilon}{2} Y_t^2$ the real value of aggregate menu costs in the symmetric equilibrium.

At the beginning of period t, retailer i chooses the price $P_t(i)$ that maximizes the market value of its current and future profits

$$\max_{\{P_t(i)\}_{t=0,\ldots,+\infty}} E_0 \left\{ \sum_{t=0}^{+\infty} \Lambda_{0,t} \left[\frac{P_t(i)}{P_t} Y_t(i) - (1 - \tau) p_t Y_t(i) - \frac{\epsilon}{2} Y_t \left(\frac{P_t(i)}{P_{t-1}(i)} - 1 \right)^2 \right] \right\},$$

subject to the sequence of demand schedules (9) for $t = 0, \ldots, +\infty$, where $\Lambda_{t,t+k} \equiv \beta^k (C_{t+k}/C_t)^{-\sigma}$ is the stochastic discount factor between period t and $t+k$, p_t is the unit price of intermediate goods used as inputs, which are subsidized at rate $\tau = 1/\epsilon$.\(^{16}\)

In the symmetric equilibrium, where $Y_t(i) = Y_t$ and $P_t(i) = P_t$, the optimal price setting behavior satisfies

$$(1 + \pi_t) \pi_t = E_t \left(\Lambda_t, \tau \left(1 + \pi_{t+1} \right)^{\frac{1}{\epsilon+1}} \right) - \frac{\epsilon - 1}{\sigma} \left(\mathcal{M}_t - \mathcal{\bar{M}} \right)$$

where \mathcal{M}_t is retailers’ average markup given by

$$\mathcal{M}_t \equiv \frac{P_t}{(1 - \tau)p_t} > 0$$

and $\mathcal{\bar{M}} \equiv \epsilon / (\epsilon - 1)$ is the desired markup level which would prevail in the absence of nominal rigidities. According to (10), inflation will be positive when markups are below their desired level (i.e. when $\mathcal{M}_t - \mathcal{\bar{M}} < 0$), for in that case retailers will increase prices in order to realign markups closer to their desired level.

3.1.4 Intermediate Goods Producers (“Firms”)

The intermediate goods sector consists of overlapping generations of firms that live one period, are born at the end of period $t - 1$ and die at the end of period t. Firms are perfectly competitive,

\(^{16}\)This subsidy corrects for monopolistic market power distortions in the deterministic steady state of the model.
and produce a homogeneous good, whose price p_t they take as given. They are identical \textit{ex ante} but face idiosyncratic productivity shocks \textit{ex post}, which they cushion by borrowing or lending on short term (intra–period) credit markets. As in Bernanke and Gertler (1989), Fuerst (1995), Bernanke, Gertler, and Gilchrist (1999), “generations” in our model should be thought of as representing the entry and exit of firms from such credit markets, rather than as literal generations; a “period” in our model may therefore be interpreted as the length of a financial contract.17

Consider a generic firm $j \in [0,1]$ born at the end of period $t - 1$.

At birth, this firm receives $P_{t-1}Q_{t-1}$ startup equity funding, which it uses to buy K_t units of capital goods. Among the latter, $(1 - \delta)K_{t-1}$ are old capital goods that they purchase from the previous generation of firms, where δ is the rate of depreciation (or maintenance cost) of capital, and I_{t-1} are newly produced capital goods. Since the new capital goods are produced instantaneously and one–for–one with final goods and are homogeneous to the old ones (net of depreciation and maintenance costs), all vintages of capital goods are purchased at price P_{t-1}, implying

$$K_t = Q_{t-1}$$

with $K_t = (1 - \delta)K_{t-1} + I_{t-1}$,18

At the beginning of period t, firm j experiences an aggregate shock, A_t, as well as an idiosyncratic productivity shock, $\omega_t(j)$, and has access to a constant–return–to–scale technology represented by the production function

$$X_t(j) = A_t(\omega_t(j)K_t(j))^{\alpha}N_t(j)^{1-\alpha}$$

where $K_t(j)$ and $N_t(j)$ denote the levels of capital and labor that firm j uses as inputs conditional on the realization of $\omega_t(j)$ and A_t, and $X_t(j)$ is the associated output. The idiosyncratic shock $\omega_t(j) \in \{0, 1\}$ takes the value 0 for a fraction μ of the firms (“unproductive firms”) and 1 for a fraction $1 - \mu$ of the firms (“productive firms”).19 We denote the set of unproductive firms by $\Omega_t^u \equiv \{j \mid \omega_t(j) = 0\}$ and that of productive firms by $\Omega_t^p \equiv \{j \mid \omega_t(j) = 1\}$. Aggregate productivity A_t evolves randomly according to a stationary AR(1) process $\ln(A_t) = \rho_a \ln(A_{t-1}) + \varepsilon_t^a$ with $\rho_a \in (0, 1)$ and $\varepsilon_t^a \sim N(0, \sigma_a^2)$, where the innovation ε_t^a is realized at the beginning of period t.

17The overlapping generation approach is standard in macroeconomic models because it provides a tractable framework for dynamic general equilibrium analysis with firm heterogeneity. In the presence of agency costs, this approach is a way to ignore multi–period financial contracts contingent on past debt repayments (see \textit{e.g.} Gertler (1992) for an example of multi–period contracts in a three–period model). In Sections 7.2 and 7.3, we discuss the robustness of our analysis in the cases where firms live infinitely or are heterogeneous \textit{ex ante} (before they incur the idiosyncratic productivity shocks).

18Given that firms live only one period, the inter–temporal decisions regarding capital accumulation within the intermediate good sector are, in effect, taken by the households —their shareholders.

19As will become clear later, one advantage of the Bernouilli distribution is that the effects of financial frictions on capital allocation only kick in during financial crises, not in normal times —where the entire capital stock is used productively (Figures 1 and 2). This property is appealing because it allows us to isolate the effects of agents’ anticipation of a crisis and to illustrate the presence of financial externalities (Figure 4). In earlier versions of the model, we considered a continuous distribution of $\omega_t(j)$ instead of a Bernouilli distribution. In that case, financial frictions also affect capital allocation in normal times but only marginally so, and our results are unchanged.
Upon observing \(\omega_t(j) \), firm \(j \) may resize its capital stock by purchasing or selling capital goods on a secondary capital goods market. To fill any gap between its desired capital stock \(K_t(j) \) and its initial (predetermined) one, \(K_t \), firm \(j \) may borrow or lend on a credit market at real interest rate \(r_t^c \). This market thus operates in lockstep with the secondary capital goods market. If \(K_t(j) > K_t \), firm \(j \) borrows and uses the funds to buy capital goods. If \(K_t(j) < K_t \), it instead sells capital goods and lends the proceeds of the sale to other firms. Firm \(j \) therefore buys \(K_t(j) - K_t \) (if \(K_t(j) > K_t \)) or sells \(K_t - K_t(j) \) (if \(K_t(j) < K_t \)) capital goods, hires labor \(N_t(j) \), and produces intermediate goods \(X_t(j) \).

At the end of period \(t \), the firm sells its production to retailers, pays workers, sells its undepreciated capital \((1 - \delta)K_t(j) \), and repays \(P_t(1 + r_t^c)(K_t(j) - K_t) \) to the lenders if \(K_t(j) > K_t \) (or receives \(P_t(1 + r_t^c)(K_t - K_t(j)) \) from borrowers if \(K_t(j) < K_t \)). Let \(D_t(j) \) denote firm \(j \)'s dividend payout, expressed in final goods. Then, one obtains

\[
P_tD_t(j) = p_tA_t(\omega_t(j)K_t(j))^{\alpha}N_t(j)^{1-\alpha} - W_tN_t(j) + P_t(1 - \delta)K_t(j) - P_t(1 + r_t^c)(K_t(j) - K_t) \quad (14)
\]

for \(j \in [0, 1] \). Implicit in (14) is the assumption that capital depreciates at the same rate \(\delta \) (or must be maintained at the same cost) whether firm \(j \) produces or not.\(^{20}\) Using relations (11), (13), and (14), firm \(j \)'s real rate of return on equity can be expressed as

\[
r_t^q(j) = \frac{D_t(j)}{K_t} - 1 = \frac{X_t(j)}{(1 - \tau)A_tK_t} - \frac{W_tN_t(j)}{P_t} - (r_t^c + \delta)\frac{K_t(j) - K_t}{K_t} - \delta \quad \forall j \in [0, 1] \quad (15)
\]

The maximization of firm \(j \)'s real rate of return on equity can be expressed as

\[
\max_{K_t^u} r_t^q(j) = r_t^c - (r_t^c + \delta)\frac{K_t^u}{K_t} \quad \forall j \in \Omega_t^u \quad (16)
\]

Note that the first term is the return from selling capital and lending the proceeds, while the second term is the opportunity cost of keeping capital idle.

Choices of an Unproductive Firm. It is easy to see that unproductive firms all take the same decisions and choose \(N_t(j) = 0, X_t(j) = 0, \) and \(K_t(j) = K_t^u, \) for all \(j \in \Omega_t^u. \) The adjusted capital stock \(K_t^u \) will be determined later, as we solve the equilibrium of the credit market (see Section 3.2). Using (15), firm \(j \)'s maximization problem can be written as

\[
\max_{K_t^u} r_t^q(j) = r_t^c - (r_t^c + \delta)\frac{K_t^u}{K_t} \quad \forall j \in \Omega_t^u
\]

Productive firms all take the same decisions, and choose \(N_t(j) = N_t^p, X_t(j) = X_t^p, \) and \(K_t(j) = K_t^p \) for all \(j \in \Omega_t^p, \) where the optimal labour demand \(N_t^p \) satisfies the first order condition

\[
\frac{W_t}{P_t} = \frac{(1 - \alpha)X_t^p}{(1 - \tau)A_tN_t^p} \quad (17)
\]

and will be determined later, along with the adjusted capital stock \(K_t^p. \) Combining the employment optimality condition (17) with the technology (13), one obtains that the marginal product

\(^{20}\)This assumption simply implies that the marginal return on capital is always higher for a productive firm that produces than for a firm that does not produce and keeps its capital idle, as relation (20) shows.
of capital for a productive firm Φ_t is a function of the real wage W_t/P_t and retailer’s markup \mathcal{M}_t,

$$\Phi_t \equiv \frac{\alpha X^p_t}{K^p_t} = \alpha A^\frac{1}{\alpha} \left(\frac{1 - \alpha}{(1 - \tau) \mathcal{M}_t \frac{W_t}{P_t}} \right)^{\frac{1}{1 - \alpha}}$$

and is therefore taken as given by firm j. Using (15), (17), and (18), the maximization problem of a productive firm j can be written as

$$\max_{K^p_t} r^q_t(j) = r^c_t + \left(r^k_t - r^c_t \right) \frac{K^p_t}{K_t} \quad \forall j \in \Omega^p_t$$

where

$$r^k_t \equiv \frac{\Phi_t}{(1 - \tau) \mathcal{M}_t - \delta} > -\delta$$

(20)

denotes the marginal return on capital (net of depreciation) for a productive firm, and is taken as given by firm j.

3.2 Market Clearing

We first consider the benchmark case of a frictionless credit market, where the idiosyncratic productivity shocks can be observed by all potential investors, and where financial contracts are fully enforceable, with no constraint on the amount that a firm can borrow. Then, we introduce financial frictions.

3.2.1 Frictionless Credit Market

Let $L^D(r^c_t)$ and $L^S(r^c_t)$ denote the aggregate demand and supply of credit, and assume that there is no friction on the credit market. The mass μ of unproductive firms are the natural lenders. Given relation (16), these firms sell their entire capital stock K_t and lend the proceeds of the sale when $r^c_t > -\delta$, implying $L^S(r^c_t) = \mu K_t$ in that case. When $r^c_t = -\delta$, they are indifferent between lending or borrowing: $L^S(r^c_t) \in (-\infty, \mu K_t]$. When $r^c_t < -\delta$, they borrow as much as possible in order to buy capital goods and keep them idle: $L^S(r^c_t) = -\infty$. The aggregate credit supply (by unproductive firms) is therefore given by

$$L^S(r^c_t) = \mu (K_t - K^u_t) = \begin{cases}
\mu K_t & \text{for } r^c_t > -\delta \\
(-\infty, \mu K_t] & \text{for } r^c_t = -\delta \\
-\infty & \text{for } r^c_t < -\delta
\end{cases}$$

and is represented by the black line in Figure 1.

The mass $1 - \mu$ of productive firms are the natural borrowers. Given relation (19), these firms borrow as much as possible when $r^c_t < r^k_t$, implying $L^D(r^c_t) = +\infty$ in that case. When $r^c_t = r^k_t$, they are indifferent between borrowing or lending: $L^D(r^c_t) \in [-(1 - \mu)K_t, +\infty)$. When $r^c_t > r^k_t$, they sell their entire capital stock K_t and lend the proceeds of the sale: $L^D(r^c_t) = -(1 - \mu)K_t$.

The aggregate credit demand (from productive firms) is therefore given by

$$L^D(r^c_t) = (1 - \mu) (K^p_t - K_t) = \begin{cases}
-(1 - \mu)K_t & \text{for } r^c_t > r^k_t \\
[-(1 - \mu)K_t, +\infty) & \text{for } r^c_t = r^k_t \\
+\infty & \text{for } r^c_t < r^k_t
\end{cases}$$

(12)
and is represented by the gray line in Figure 1.

Figure 1: Frictionless Credit Market Equilibrium

\[r^c_t - \delta = -L^S(r^c_t) \]

Notes: This figure illustrates unproductive firms’ aggregate credit supply (black) and productive firms’ aggregate credit demand (gray) curves, in the absence of financial frictions.

In equilibrium \(E \), \(r^c_t = r^k_t > -\delta \) and \(K^p_t = 0 \), implying that \(r^q_j(j) = r^k_t = r^c_t \) for all \(j \in [0,1] \). As the mass \(\mu \) of unproductive firms lend their entire capital stock \(K_t \) to the mass \(1 - \mu \) of productive firms, the equilibrium is also characterised by

\[K^p_t = \frac{K_t}{1 - \mu} \quad (21) \]

In this economy, capital goods are perfectly reallocated and used productively. Our model then boils down to the textbook NK model with endogenous capital accumulation and a representative intermediate goods firm.

3.2.2 Frictional Credit Market

Consider now the case with financial frictions. We assume that a firm has the possibility to hide idle capital from its creditors, to sell it at the end of the period, and to abscond with the proceeds of the sale.\(^{21}\) This possibility opens the door to moral hazard and a limited commitment problem: as every firm may boost its profit by borrowing, purchasing more capital, and absconding, no firm can credibly commit itself to paying back its debt. We assume that, when it defaults, the firm however incurs a cost that is equal to a fraction \(\theta \geq 0 \) of the funds borrowed, where parameter \(\theta \) can be interpreted as the cost of hiding from creditors.\(^{22}\) Further, we assume that creditors do not observe a given firm \(j \)’s productivity \(\omega_t(j) \), and hence cannot

\(^{21}\)The assumption here is that capital goods can be stolen if they are not used productively. One can think of the firms that produce and sell intermediate goods as firms that operate transparently, and whose cash flow can easily be seized by creditors. In contrast, firms that keep their capital idle have the possibility to “go underground”, divert assets, and default. For a survey on corporate asset diversion, see e.g., Shleifer and Vishny (1997).

\(^{22}\)Later, an adequate parametrization of this cost will allow us to obtain a realistic incidence of financial crises in the stochastic steady state of the model. Indeed, the higher \(\theta \), the less stringent the contract enforcement problem and the less frequent financial crises. In Section 4.1, we parameterise \(\mu \) and \(\theta \) jointly so that the model can replicate both the time spent and output cost of being in a financial crisis observed in the data.
assess its incentives to borrow and default. As Proposition 1 shows, these frictions put an upper bound on the leverage of any individual firm.

Proposition 1. (Firms’ Incentive–Compatible Borrowing Limit) A firm cannot borrow and purchase more than a fraction \(\psi_t \) of its initial capital stock:

\[
\frac{K^p_t - K_t}{K_t} \leq \psi_t \equiv \max \left\{ \frac{r^c_t + \delta}{1 - \delta - \theta}, 0 \right\}
\]

Proof. Suppose that an unproductive firm were to mimic a productive firm by borrowing and purchasing \(K^p_t - K_t \geq 0 \) capital goods, keep its capital stock \(K^p_t \) idle, resell it at the end of the period, and then default. In this case, the firm would incur a hiding cost \(\theta P_t (K^p_t - K_t) \) proportional to its debt, and net payoff from defaulting would be \(P_t (1 - \delta) K^p_t - \theta P_t (K^p_t - K_t) \).

That firm will not default as long as this payoff is smaller than the return \(P_t (1 + r^c_t) K_t \) from selling its entire capital stock and lending the proceeds of the sale —its only viable alternative option. The incentive compatibility constraint that ensures that no unproductive firm defaults thus reads \((1 - \delta) K^p_t - \theta (K^p_t - K_t) \leq (1 + r^c_t) K_t \). Let \(\psi_t \) denote the firm’s borrowing limit, with \(\psi_t \geq 0 \). Then the inequality in Proposition 1 follows from rearranging this incentive compatibility constraint and from the non–negativity of \(\psi_t \).

As long as the condition in Proposition 1 is satisfied, unproductive firms will refrain from borrowing and defaulting.\(^{24}\) Importantly, the borrowing limit \(\psi_t \) increases with \(r^c_t \): the higher the loan rate, the higher unproductive firms’ opportunity cost of absconding, hence the higher the incentive–compatible debt. We are now in the position to construct the credit supply and demand schedules (see Figure 2).

Given relation (16) and Proposition 1, the aggregate credit supply, \(L^S(r^c_t) \), represented by the black lines in Figure 2, reads:

\[
L^S(r^c_t) = \mu (K_t - K^p_t) = \begin{cases}
\mu K_t & \text{for } r^c_t > -\delta \\
[0, \mu K_t] & \text{for } r^c_t = -\delta \\
0 & \text{for } r^c_t < -\delta
\end{cases}
\]

(22)

When \(r^c_t > -\delta \), the mass \(\mu \) of unproductive firms sell their capital stock \(K_t \) and lend the proceeds on the credit market, implying \(L^S(r^c_t) = \mu K_t \). When \(r^c_t = -\delta \), they are indifferent between lending or keeping their capital idle, implying \(L^S(r^c_t) \in [0, \mu K_t] \). When \(r^c_t < -\delta \), they keep their capital stock \(K_t \) idle: \(L^S(r^c_t) = 0 \).

\(^{23}\)The opportunity cost of absconding is higher for productive than for unproductive firms, which therefore have more incentive to default. Since firm productivities is private information and unproductive firms may pretend they are productive, productive firms can only commit themselves to paying back their debt if they limit the amount borrowed. Such a combination of limited contract enforceability and asymmetric information is standard in the macro–finance literature (Gertler and Rogoff (1990), Azariadis and Smith (1998), Boissay, Collard, and Smets (2016)) and needed here to cause the credit market to occasionally collapse (as we show in Section 7.4).

\(^{24}\)Even though default will be an out–of–equilibrium outcome, the mere possibility that firms abscond is the source of financial instability. This feature dovetails with the conventional wisdom that lenders’ fear of being defrauded and “panics” are more detrimental to the stability of the whole financial system than actual fraud and defaults per se, which often concern specific market segments (e.g. subprime mortgages) or intermediaries (e.g. rogue wealth managers) and are typically small in the aggregate.
This figure illustrates unproductive firms’ aggregate credit supply (black) and productive firms’ incentive-compatible credit demand (gray) curves. In panel (i), the demand curve is associated with a value of \(r^k \) strictly above \(\bar{r}^k \) and multiple equilibria \(A, E, \) and \(U \). In this case, \(U \) and \(A \) are ruled out on the ground that they are unstable (for \(U \)) and Pareto-dominated (for \(A \)). In panel (ii), the demand curve is associated with a value of \(r^k \) strictly below \(\bar{r}^k \) and \(A \) as unique equilibrium. The threshold for the loan rate, \(\bar{r}^k \), is constant and corresponds to the minimum incentive-compatible loan rate that is required to ensure that every unproductive firm sells its entire capital stock and lends the proceeds of the sale —rather than borrows and absconds.

Taking into account borrowers’ incentive compatibility constraint, the aggregate credit demand, \(L^D(r^c_t) \), is given by (using (19) and Proposition 1):

\[
L^D(r^c_t) = (1 - \mu) (K^p_t - K_t) = \begin{cases}
-(1 - \mu)K_t & \text{for } r^c_t > r^k_t \\
[-(1 - \mu)K_t, (1 - \mu)\psi_tK_t] & \text{for } r^c_t = r^k_t \\
(1 - \mu)\psi_tK_t & \text{for } r^c_t < r^k_t
\end{cases} \tag{23}
\]

and is represented by the gray lines in Figure 2. When \(r^c_t > r^k_t \), productive firms prefer to sell their capital and lend the proceeds rather than borrow: \(L^D(r^c_t) = -(1 - \mu)K_t \). When \(r^c_t = r^k_t \), they are indifferent but may each borrow up to \(\psi_tK_t \) as shown in Proposition 1, implying \(L^D(r^c_t) \in \left[-(1 - \mu)K_t, (1 - \mu)\psi_tK_t \right] \). When \(r^c_t < r^k_t \), they borrow up to the limit, implying \(L^D(r^c_t) = (1 - \mu)\psi_tK_t \), where \(\psi_t \) is a function of \(r^c_t \) as defined in Proposition 1.

Proposition 2. (Existence of an Active Credit Market) An equilibrium with trade exists if and only if

\[
r^k_t \geq \bar{r}^k = \frac{(1 - \theta)\mu - \delta}{1 - \mu}
\]

Proof. From panel (i) in Figure 2, it is clear that an equilibrium with trade exists if and only if there is a range of interest rates for which demand (in gray) intersects supply (in black) for a strictly positive amount of credit, i.e. if and only if \(\lim_{r^c_t \to r^k_t} L^D(r^c_t) \geq L^S(r^c_t) \). Using relations (22) and (23) and the definition of \(\psi_t \) in Proposition 1, this condition can be re-written as \((1 - \mu)(r^k_t + \delta)/(1 - \delta - \theta) \geq \mu \iff r^k_t \geq ((1 - \theta)\mu - \delta)/(1 - \mu) \). Proposition 2 follows. \(\square \)

The interest rate threshold \(\bar{r}^k \) is the minimum marginal return on capital that guarantees the existence of an equilibrium with trade. Perhaps more intuitively, \(\bar{r}^k \) can also be seen as the
minimum loan rate that unproductive firms require in order to lend on the credit market rather than borrow funds and abscend in search for yield. To see this, notice that borrowers’ incentive compatibility constraint underlying Proposition 1, \((1 - \delta)K^p_t - \theta(K^p_t - K_t) \leq (1 + r_t^c)K_t\), can be re-written as a condition on the loan rate: \(r_t^c \geq (1 - \delta - \theta)(K^p_t - K_t)/K_t - \delta\), which simply means that an unproductive firm has an incentive to lend only if the loan rate is high enough. For this condition to be satisfied in an equilibrium with trade, \(i.e.\) when \(\mu K_t = (1 - \mu)(K^p_t - K_t)\), one must therefore have \(r_t^c \geq \bar{r}^k \equiv ((1 - \theta)\mu - \delta)/(1 - \mu)\), which corresponds to the condition in Proposition 2. Further, notice that productive firms only borrow funds if their marginal return on capital is higher than the cost of funds, \(i.e.\) if \(r_t^k \geq r_t^c\) (see (19)). When \(r_t^k < \bar{r}^k\), productive firms’ participation constraint \((r_t^k \geq r_t^c)\) therefore “clashes” with unproductive firms’ incentive compatibility constraint \((r_t^c \geq \bar{r}^k)\). In that case, productive firms cannot afford paying the minimum loan rate that unproductive firms require, and the credit market collapses.

When the condition in Proposition 2 holds, there exist three possible equilibria, denoted by \(E\), \(U\), and \(A\) in panel (i) of Figure 2. In what follows, we focus on equilibria \(A\) and \(E\) which, unlike \(U\), are stable under tatonnement.\(^{25}\) When the condition in Proposition 2 does not hold, \(A\) (for “Autarky”) is the only possible equilibrium. We describe equilibria \(A\) and \(E\) in turn.

Consider equilibrium \(A\), where \(r_t^c = -\delta\). At that rate, unproductive firms are indifferent between keeping their capital idle or selling it and lending the proceeds. Hence, any supply of funds within the interval \([0, \mu K_t]\) is consistent with optimal firm behavior. However, the incentive compatible amount of funds that can be borrowed at that rate is zero (\(\psi_t = 0\)). As a result, \(L^D(-\delta) = L^S(-\delta) = 0\) and there is no trade and no capital reallocation, implying that \(K^u_t = K^p_t = K_t\). In what follows, we refer to this autarkic equilibrium as a “financial crisis”.

Equilibrium \(E\), in contrast, features a loan rate \(r_t^c = r_t^k \geq \bar{r}^k > -\delta\), at which every unproductive firm sells capital to productive firms, as if there were no financial frictions \((i.e.\) equilibrium \(E\) in panel (i) of Figure 2 is the same as equilibrium \(E\) in Figure 1). In that case, there is perfect capital reallocation, with \(K^u_t = 0\) and \(K^p_t = K_t/(1 - \mu)\). We refer to this equilibrium as “normal times”.

Next, consider what happens when productive firms’ return on capital \(r_t^k\) falls below the threshold \(\bar{r}^k\), so that the condition in Proposition 2 is not satisfied anymore. This is illustrated in panel (ii) of Figure 2. In this case, the range of loan rates for which \(L^D(r_t^c) \geq L^S(r_t^c) > 0\) vanishes altogether, and only the autarkic equilibrium \(A\) survives.

In what follows, we assume that when equilibria \(A\) and \(E\) coexist, market participants coordinate on the most efficient one, equilibrium \(E\). That is: we rule out coordination failures.\(^{26}\)

\(^{25}\)We rule out equilibrium \(U\) because it is not tatonnement–stable. An equilibrium rate \(r_t^c\) is tatonnement–stable if, following any small perturbation to \(r_t^c\), a standard adjustment process — whereby the loan rate goes up (down) whenever there is excess demand (supply) of credit — pulls \(r_t^c\) back to its equilibrium value (see Mas-Colell, Whinston, and Green (1995), Chapter 17). Note that \(U\) and \(E\) yield the same aggregate outcome and overall rate of return on equity \(\int_0^1 r_t^c(j) dj\), and only differ in terms of the distribution of individual returns \(r_t^c(j)\) across firms.

\(^{26}\)There are of course several — but less parsimonious — ways to select the equilibrium. For example, one could introduce a sunspot, \(i.e.\) assume that firms coordinate on equilibrium \(E\) (\(i.e.\) are “optimistic”) with some constant
As a result, a crisis breaks out if and only if A is the only possible equilibrium, i.e. if and only if the inequality in Proposition 2 does not hold.

Finally, we derive the relationship between firms’ average return on equity and productive firms’ return on capital. Let

$$r^q_t = \int_0^1 r^q_t(j) dj$$

be firms’ average return on equity. In equilibrium, this return is equal to (see Appendix A.2)

$$r^q_t = \begin{cases} r^k_t & \text{if } r^k_t \geq \bar{r}^k \\ -\mu \delta + (1 - \mu) r^k_t & \text{otherwise} \end{cases}$$

The absence of coordination failures implies that the condition of existence of an active credit market in Proposition 2 can be re-written in terms of return on equity r^q_t: in normal times, condition $r^k_t \geq \bar{r}^k$ is the same as condition $r^q_t \geq \bar{r}^k$.

Definition 1. (Yield Gap) The yield gap $(1 + r^q_t)/(1 + r^q_t)$ is the gap between firms’ average gross return on equity $1 + r^q_t$ and its deterministic steady state value $1 + r^q$.

Given that financial crises have a low frequency, a realistic parametrization of the model (see Section 4.1) requires that there is no crisis in the deterministic steady state, i.e. that $r^q > \bar{r}^k$. Since in normal times the average return on equity equals productive firms’ return on capital (see (25)), a positive yield gap ($r^q_t > r^q$) indicates that the economy is well above the crisis threshold and, therefore, resilient to adverse aggregate shocks. In contrast, a negative yield gap heralds search for yield, credit–market overheating, and financial vulnerabilities.

3.2.3 Other Markets

As only productive firms hire labor and produce, the labor and intermediate goods markets clear when

$$N_t = \int_{j \in \Omega^p_t} N_t(j) dj = (1 - \mu) N^p_t$$

$$Y_t = \int_{j \in \Omega^p_t} X_t(j) dj = (1 - \mu) X^p_t$$

and the final goods market clears when

$$Y_t = C_t + I_t + \frac{\theta}{2} Y_t^2$$

3.3 Equilibrium Outcome

The level of aggregate output depends on the equilibrium of the credit market. In normal times, the entire capital stock of the economy is used productively and, given K_t and N_t, aggregate output is the same as in an economy without financial frictions:

$$Y_t = A_t K^\alpha_t N_t^{1-\alpha}$$

and exogenous probability whenever this equilibrium exists. It should be clear, however, that the central element of our analysis is Proposition 2 for the existence of E, not the selection of E conditional on its existence. In other terms, our analysis does not hinge on the assumed equilibrium selection mechanism.
In crisis times, in contrast, unproductive firms keep their capital idle, only a fraction $1 - \mu$ of the economy’s aggregate capital stock is used productively, and aggregate productivity falls.\footnote{Even though in normal times the aggregate production function is the same as in an economy with a frictionless credit market, N_t and K_t (and therefore output) will in general be higher in our model than in the frictionless case. The reason is that households tend to accumulate precautionary savings and work more to compensate for the fall in consumption should a crisis break out. All else equal, the mere anticipation of a crisis induces the economy to accumulate more capital in normal times compared to a frictionless economy.}

For the same K_t and N_t, output is therefore lower than in normal times:

$$Y_t = A_t ((1 - \mu)K_t)^\alpha N_t^{1-\alpha} \quad (30)$$

The above relation further shows that, all else equal, the aggregate productivity loss caused by the financial crisis amounts to a fraction $1 - (1 - \mu)^\alpha$ of aggregate output.

Corollary 1. (Monetary Policy and Financial Stability) A crisis breaks out in period t if and only if

$$\frac{Y_t}{M_t K_t} < \frac{1 - \tau}{\alpha} \left(\frac{(1 - \theta)\mu - \delta}{1 - \mu} + \delta \right)$$

Proof. This inequality follows from combining Proposition 2 with relations (18), (20), (27), and the result that $K_p^t = K_t / (1 - \mu)$ in normal times. \hfill \Box

What are the channels through which monetary policy affects financial stability? Corollary 1 makes clear that crises may emerge through a fall in aggregate output (the “Y–channel”), a rise in retailers’ markup (the “M–channel”), or excess capital accumulation (the “K–channel”). For example, given a (predetermined) capital stock K_t, a crisis is more likely to break out following a shock that lowers output and/or increases the markup. Such a shock does not need to be large to trigger a crisis, if the economy has accumulated a large enough capital stock. Indeed, when K_t is high, all other things equal, productive firms’ average return on equity is low, and the credit market is fragile. As we show later, this may happen towards the end of an unusually long economic boom. In this case, even a modest change in Y_t or M_t may trigger a crisis.

The upshot is that the central bank may affect the probability of a crisis both in the short and in the medium run. In the short run, it may do so through the effect of contemporaneous changes in its policy rate on output and inflation (the Y– and M–channels). For example, assume that the central bank unexpectedly raises its policy rate. On impact, all other things equal, the hike works to reduce aggregate demand and to increase retailers’ markups. As a result, firms’ average return on equity diminishes, which brings the economy closer to a crisis. In the medium run, in contrast, monetary policy affects financial stability through its impact on the household’s saving behavior and capital accumulation (the K–channel). For example, a central bank that commits itself to systematically and forcefully responding to fluctuations in output will—all else equal—tend to slow down capital accumulation during booms, and thereby improve the resilience of the credit market.
4 Anatomy of a Financial Crisis

The aim of this section is to describe the “average” dynamics around financial crises under a realistic parametrization of the model.

4.1 Parametrization of the Model

We parameterize our model based on quarterly data under Taylor (1993)’s original monetary policy rule (i.e., with $\phi_\pi = 1.5$ and $\phi_y = 0.5/4$). The standard parameters of the model take the usual values (see Table 1). The utility function is logarithmic with respect to consumption ($\sigma = 1$). The parameters of labor dis–utility are set to $\chi = 0.814$ and $\varphi = 0.5$ so as to normalize hours to one in the deterministic steady state and to obtain an inverse Frish labor elasticity of 2 —this is in the ballpark of the calibrated values used in the literature. We set the discount factor to $\beta = 0.989$, which corresponds to an annualized average return on financial assets of about 4%. The elasticity of substitution between intermediate goods ϵ is set to 6, which generates a markup of 20% in the deterministic steady state. Given this, we set the capital elasticity parameter α to 0.36 to obtain a labor income share of 64%. We assume that capital depreciates by 6% per year ($\delta = 0.015$). We set the price adjustment cost parameter to $\varrho = 58.2$, so that the model generates the same slope of the Phillips curve as in a Calvo pricing model with an average duration of prices of 4 quarters. The persistence of the technology and demand shocks is standard and set to $\rho_a = \rho_z = 0.95$. Their standard deviations are set so as to replicate the volatility of inflation and output in normal times: $\sigma_a = 0.008$ and $\sigma_z = 0.001$.

Compared to the textbook NK model, there are two additional parameters: the share of unproductive firms μ and the default cost θ.

Parameter μ directly affects the cost of financial crises in terms of productivity and output loss (see relation (30)). Given $\alpha = 0.36$, we set $\mu = 5\%$ so that capital mis–allocation entails a further 1.8% ($= 1 - (1 - 0.05)^{0.36}$) fall in aggregate productivity during a financial crisis. This (momentary) productivity loss comes on the top of that due to the adverse TFP shock that may trigger the crisis.

Parameter θ for the cost of default governs the degree of moral hazard and, given μ, the frequency of financial crises. Corollary 1 shows that the lower θ, the higher the minimum marginal return on capital required for an active credit market to exist and, as a result, the higher the probability of a crisis. We set $\theta = 52.19\%$ so that the economy spends 10% of the

28While there is a general agreement that financial frictions lower firms’ productivity, especially during financial crises, the productivity loss that is specifically due to such frictions is hard to measure. Estimates vary across studies and events, from about 1% in Oulton and Sebastiá-Barriel (2016), for a sample of 61 countries over the period 1954–2010, to about 5% in Fernald (2015) for the US during the GFC. Using firm level data, Duval, Hong, and Timmer (2019) find a direct causal link between the sharp tightening of financial conditions and the abruptness and magnitude of the fall in TFP during the GFC. Aggregating each individual firm’s TFP loss (using their value-added levels as weights) to derive the overall effect, they obtain an aggregate productivity loss of about 2.30% compared to a state in which there would have been no financial frictions. Given that the magnitude of the GFC was relatively large by historical standards, we opt for a middle ground target of 1.8% for the productivity loss.
time in a crisis in the stochastic steady state.

Table 1: Parametrization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>4% annual real interest rate</td>
<td>0.989</td>
</tr>
<tr>
<td>σ</td>
<td>Logarithmic utility on consumption</td>
<td>1</td>
</tr>
<tr>
<td>φ</td>
<td>Inverse Frish elasticity equals 2</td>
<td>0.5</td>
</tr>
<tr>
<td>χ</td>
<td>Steady state hours equal 1</td>
<td>0.81</td>
</tr>
<tr>
<td>Technology and price setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>64% labor share</td>
<td>0.36</td>
</tr>
<tr>
<td>δ</td>
<td>6% annual capital depreciation rate</td>
<td>0.015</td>
</tr>
<tr>
<td>ϱ</td>
<td>Same slope of the Phillips curve as with Calvo price setting</td>
<td>58.22</td>
</tr>
<tr>
<td>ϵ</td>
<td>20% markup rate</td>
<td>6</td>
</tr>
<tr>
<td>Aggregate TFP (supply) shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>Standard persistence</td>
<td>0.95</td>
</tr>
<tr>
<td>σ_a</td>
<td>Volatility of inflation and output in normal times (in %)</td>
<td>0.81</td>
</tr>
<tr>
<td>Aggregate Demand shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_z</td>
<td>Standard persistence</td>
<td>0.95</td>
</tr>
<tr>
<td>σ_z</td>
<td>Volatility of inflation and output in normal times (in %)</td>
<td>0.16</td>
</tr>
<tr>
<td>Interest rate rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_π</td>
<td>Response to inflation under TR93</td>
<td>1.5</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>Response to output under TR93</td>
<td>0.125</td>
</tr>
<tr>
<td>Financial Frictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>Productivity falls by 1.8% due to financial frictions during a crisis</td>
<td>0.05</td>
</tr>
<tr>
<td>θ</td>
<td>The economy spends 10% of the time in a crisis</td>
<td>0.52</td>
</tr>
</tbody>
</table>

4.2 Average Dynamics Around Financial Crises

To derive the dynamics around the typical crisis, we proceed in two steps. First, we solve our non–linear model numerically using a global solution method. Second, starting from the stochastic steady state, we feed the model with aggregate productivity and demand shocks and simulate it over 10,000,000 periods. We then identify the starting dates of financial crises and compute the average dynamics 20 quarters around these dates. To filter out the potential noise due to the aftershocks of past crises, we only report averages for new crises, i.e. crises that follow at least 20 quarters of normal times.

The average crisis occurs on the back of a protracted economic boom. The latter is driven by a long sequence of relatively small positive technology and demand shocks (Figure 3, panels (a) and (b)). At first, these shocks entail an economic boom and a positive yield gap ($r^d_t - r^q_t > 0$).

Romer and Romer (2017) and Romer and Romer (2019) construct a semiannual financial distress index for 31 OECD countries and rank the level of distress between 0 (“no stress”) to 14 (“extreme crisis”). Using their data, we compute the average fraction of the time these countries spent in financial distress at or above level 4 (“minor crisis” or worse) over the period 1980-2017, and obtain 10.57%.

Our model cannot be solved linearly because of discontinuities in the decision rules. It cannot be solved locally because crises may break out when the economy is far away from its steady state (e.g. when K_t is high). Details on the numerical solution method are provided in Section A.4 in the appendix.
Throughout the boom, the economy accumulates more capital (panel (c)), which the credit market reallocates to the most productive firms.

As the sequence of favorable aggregate shocks runs its course, productivity and demand recede, and output gradually falls back toward its steady state (panel (d)). The fall in output leaves firms with excess capital, which exerts downward pressure on equity returns. While supply and demand shocks have opposite effects on retailers’ markup, on net, the latter keeps increasing during the boom (panel (e)), which also exerts downward pressures on firms’ equity returns. As a result, the yield gap turns negative about eight quarters before the crisis (panel (f)). This period, which precedes the crisis and where \(r_q^t \in [r^k, r^q] \), is akin to what Greenwood, Hanson, Schleifer, and Sørensen (2022) and Jiménez, Kuveshinov, Peydró, and Richter (2022) call the “R–zone”, defined as a period of potential credit–market overheating.

In the R–zone, firms’ lower equity returns weigh on the loan rate, which gives unproductive firms more incentives to search for yield and stokes lenders’ fear of being defrauded. The credit market eventually collapses after relatively small adverse aggregate shocks (panels (a) and (b)). Importantly, these shocks act more as triggers than as the root causes of the crisis, in the sense that the same shocks would not have led to a crisis, had the capital stock not been so high in the first place. As Corollary 1 shows, capital overhang is indeed a pre–condition for a financial crisis to break out without an extreme shock. The average crisis is characterised by the collapse of the credit market, capital mis–allocation, and a severe recession (panel (d)): on average, output falls by 6.6% during a crisis (Table 2, row (1), column “Output Loss”).

Figure 3: Average Dynamics Around Crises

Notes: Average dynamics of the economy around the beginning of a crisis (in quarter 0) in the TR93 economy. To filter out the potential noise due to the aftershocks of past crises, we only report averages for new crises, i.e. crises that follow at least 20 quarters of normal times. In panels (a)-(e), the horizontal dashed lines correspond to the average values in the stochastic steady state. In panel (f), the upper horizontal dashed line corresponds to the deterministic steady state value \(r^q \), the lower one to the crisis threshold \(r^k \), and the shaded area in–between to Greenwood, Hanson, Schleifer, and Sørensen (2022)’s “R–zone” —the region where the credit market is fragile.
Note that these average dynamics mask the heterogeneity of financial crises in our model. In the stochastic steady state, 55% of the crises follow large (i.e. more than two standard deviations) adverse aggregate shocks, while 45% occur after an economic boom without the economy experiencing a (large) shock, the latter crises being more predictable than the former.\footnote{For a discussion on the variety of financial crises in the model, see Section A.3 in the Appendix.}

One reason why boom-driven crises break out in spite of being predicted is that neither households nor retailers internalize the effects of their individual choices on financial fragility. When a crisis is looming, households seek to hedge against the future recession and smooth their consumption by accumulating precautionary savings, which contributes to increasing capital even further. Boissay, Collard, and Smets (2016) refer to this phenomenon as a “savings glut” externality.

Similar financial externalities arise from retailers. All else equal, the collapse of the credit market during a crisis induces a fall in aggregate productivity (term $(1 - \mu)\alpha \in (0, 1)$ in relation (30)), and hence less disinflation (or more inflationary pressures) compared to an economy with a frictionless credit market.\footnote{This feature tallies with the “missing disinflation” during the GFC (Gilchrist, Schoenle, Sim, and Zakrajšek (2017)).} To smooth their menu costs over time, retailers typically reduce their prices by less (or increase them by more) ahead of a crisis, thus raising their markup above the level that would otherwise prevail absent financial frictions. Since higher markups reduce firms’ return on equity, retailers’ response to financial fragility makes the financial sector even more fragile.\footnote{These “markup externalities” due to the presence of financial frictions come on the top of the usual aggregate demand externalities (Blanchard and Kiyotaki (1987)).}

Figure 4 provides an example of how savings glut (panel (a)) and markup (panel (b)) externalities materialise in our model. Our focus here is on the run-up phase to financial crises, from quarters -20 to -1. The experiment consists in comparing the average dynamics of capital

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Saving Glut and Markup Externalities}
\end{figure}
and markups before a crisis with their dynamics in a counter-factual economy without financial frictions that is fed with the very same shocks. Since the credit market functions equally well in the two economies before the crisis, the difference pins down the effect of crisis expectations and informs us about how capital and markups would have evolved absent financial frictions. We find that the capital stock and markup are both higher when households and retailers anticipate a crisis, which—all else equal—makes the crisis more likely.

The upshot is that their anticipation of a crisis—somewhat paradoxically—induces agents to precipitate, rather than avert, the crisis. These externalities call for policy intervention, which we study next.

5 The “Divine Coincidence” Revisited

In the absence of financial frictions, SIT simultaneously eliminates inefficient fluctuations in prices and output gap and achieves the first best allocation—the so-called “divine coincidence” (Blanchard and Gali (2007)), as shown in Table 2 (row (6), column “Frictionless”). In the presence of financial frictions, in contrast, SIT does not deliver the first best allocation. In our model, in particular, the welfare loss under SIT is strictly positive, and amounts to 0.23% in terms of consumption equivalent variation (Table 2, row (6), column “Welfare Loss”).

This finding prompts the question: Should central banks deviate from price stability to promote financial stability? To answer this question, we study the trade-off between price and financial stability and compare welfare under SIT versus alternative monetary policy rules. We consider three types of rule: standard Taylor-type rules, Taylor-type rules augmented with the yield gap, and regime-contingent rules.

5.1 The Price versus Financial Stability Trade-off

The analysis of Taylor-type rules reveals a trade-off between price and financial stability. We find that the central bank can reduce the incidence and severity of crises by deviating from price stability, and reacting to output and the yield gap in addition to inflation.

Table 2 shows that, all else equal, raising ϕ_y from 0.125 to 0.375 in the Taylor-type rule (1) reduces the percentage of the time spent in crisis from 10% to 4.1% (Table 2, rows (1) versus (3), column “Time in Crisis”) as well as the output loss due to a crisis from 6.6% to 4.4% (column “Output Loss”). However, these financial stability gains come at the cost of higher inflation volatility (2.5% compared to 1.2%, column “Std(π_t”)).

To some extent, price instability can also contribute to financial fragility through markups (M-channel, see Section 3.3). All else equal, raising ϕ_x from 1.5 to 2.5 in the Taylor-type rule (1) reduces both the volatility of inflation from 1.2% to 0.5% (rows (1) versus (5), column “Std(π_t”) and the time spent in crisis from 10% to 9.6% (column “Time in Crisis”). Improvements in financial stability via the M-channel are however limited, with a hard lower bound of crisis

Since the distortions due to sticky prices are fully neutralized under SIT, this welfare loss is entirely due to the cost of financial crises.
incidence at 9.4% under SIT. Further reducing the time spent in crisis requires deviating from SIT at the cost of inflation volatility (rows (2) and (3)). Therefore, the central bank faces a trade–off between price and financial stability in our model.

Which leg of the trade–off dominates in terms of welfare is a quantitative question. We find that, on balance, the welfare loss due to price instability more than offsets the gain from enhanced financial stability under *standard* Taylor–type rules (rows (2)-(3) *versus* (6), column “Welfare Loss”). Hence, even though it is associated with a strictly positive (0.23%) welfare loss due to a relatively high incidence and severity of financial crises, SIT improves welfare upon standard Taylor–type rules.

Table 2: Economic Performance and Welfare Under Alternative Policy Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Model with Financial Frictions</th>
<th>Frictionless</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time in Crisis/Stress (in %)</td>
<td>Length (quarters)</td>
</tr>
<tr>
<td>ϕπ</td>
<td>ϕy</td>
<td>ϕr</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>(1)</td>
<td>1.5</td>
<td>0.125</td>
</tr>
<tr>
<td>(2)</td>
<td>1.5</td>
<td>0.250</td>
</tr>
<tr>
<td>(3)</td>
<td>1.5</td>
<td>0.375</td>
</tr>
<tr>
<td>(4)</td>
<td>2.0</td>
<td>0.125</td>
</tr>
<tr>
<td>(5)</td>
<td>2.5</td>
<td>0.125</td>
</tr>
<tr>
<td>(6)</td>
<td>+∞</td>
<td>–</td>
</tr>
</tbody>
</table>

Augmented Taylor–type Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Model with Financial Frictions</th>
<th>Frictionless</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time in Crisis/Stress (in %)</td>
<td>Length (quarters)</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>(7)</td>
<td>1.5</td>
<td>0.125</td>
</tr>
<tr>
<td>(8)</td>
<td>5.0</td>
<td>0.125</td>
</tr>
<tr>
<td>(9)</td>
<td>5.0</td>
<td>0.125</td>
</tr>
<tr>
<td>(10)</td>
<td>10.0</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Backstop Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Model with Financial Frictions</th>
<th>Frictionless</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time in Crisis/Stress (in %)</td>
<td>Length (quarters)</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>(11)</td>
<td>1.5</td>
<td>0.125</td>
</tr>
<tr>
<td>(12)</td>
<td>+∞</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes: Statistics of the stochastic steady state ergodic distribution. “Time in Crisis/Stress” is the percentage of the time that the economy spends in a crisis in the case of the log–linear rule, or in stress in the case of the backstop rules. “Length” is the average duration of a crisis/stress period (in quarters). “Output Loss” is the percentage fall in output from one quarter before the crisis until the trough of the crisis (in %). “Std(πt)” is the standard deviation of inflation in the stochastic steady state (in %). “Welfare Loss” is the loss of welfare relative to the first best economy, expressed in terms of consumption equivalent variation (in percentage points), and corresponds to the percentage of permanent consumption the household should be deprived of in the first best economy to reach the same level of welfare as in our economy with nominal and financial frictions. In the case of the frictionless credit market economy (column “Frictionless”), the SIT economy reaches the first best and there is no welfare loss in this case. In the case of the frictional credit market and the TR93 rule (case with ϕπ = 1.5, ϕy = 0.125, and ϕr = 0), the economy spends by construction 10% of the time in a crisis (square brackets; see Section 4.1).

Next we ask whether other —more informed— Taylor–type rules could improve welfare upon SIT. The R–zone described in Figure 3 (panel (f)) suggests that a potential candidate is a rule whereby the central bank responds positively to the yield gap on the top of inflation and output.
To study this possibility, we consider the following augmented Taylor–type rule,

$$1 + i_t = \frac{1}{\beta} (1 + \pi_t)^{\phi_{\pi}} \left(\frac{Y_t}{Y} \right)^{\phi_y} \left(\frac{1 + r^q_t}{1 + r^q} \right)^{\phi_r}$$

with $\phi_r > 0$. There are good reasons why this type of rule may improve welfare. On the one hand, and all else equal, it implies setting the policy rate above that of a standard Taylor–type rule during economic booms, when $r^q_t > r^q$, which slows down capital accumulation and keeps financial imbalances from building up. On the other hand, it implies setting the policy rate below that of a standard Taylor–type rule when the economy approaches a crisis, i.e. when $r^q_t < r^q$, which boosts aggregate demand precisely when needed to exit the R–zone.

Our simulations show that responding to the yield gap fosters financial stability and increases welfare compared to standard Taylor–type rules. For example, the economy spends only 5.4% of the time in a crisis under the augmented TR93 rule with $\phi_r = 5$ —against 10% under TR93 (Table 2, rows (7) versus (1), column “Time in Crisis”). Moreover, setting $\phi_r > 0$ does not materially affect inflation volatility compared to TR93, implying a positive net effect on welfare: the welfare loss falls from 0.82% under TR93 to 0.65% under the augmented TR93 rule (rows (1) versus (7), column “Welfare Loss”).

Responding more aggressively to both inflation and the yield gap further lowers both inflation volatility and the time spent in a crisis, and therefore the overall welfare loss (rows (8)–(10)). Under a policy rule with $\phi_{\pi} = 10$, $\phi_y = 0.125$, and $\phi_r = 75$, for example, the central bank lowers the overall welfare loss down to 0.16%, which is less than under SIT (rows (6) versus (10)).

The upshot is that, in the presence of financial frictions, the central bank can increase welfare by deviating from price stability and promoting financial stability.

To gain more intuition for the above results, Figure 5 compares the average dynamics of the economy under TR93 (black line) with counterfactual dynamics in economies under SIT (gray line), a Taylor–type rule with $\phi_{\pi} = 1.5$ and $\phi_y = 0.25$ (dashed black line), an augmented Taylor–type rule with $\phi_{\pi} = 1.5$, $\phi_y = 0.25$ and $\phi_r = 5$ (dashed gray line), and another one with $\phi_{\pi} = 10$, $\phi_y = 0.125$ and $\phi_r = 75$ as in row (10) of Table 2 (dashed–dotted gray line). For the purpose of the comparison, these economies are fed with the very same sequences of shocks as those leading to a crisis under TR93.

Consider first the dynamics of the economy from quarters -20 to -1. These dynamics help us understand how the different policies act on the savings glut and markup externalities in the boom phase. Panel (d) suggests that responding more aggressively to output or to the yield gap has overall a limited effect on the firms’ average return on equity. This is due to offsetting effects on capital accumulation and markups. On the one hand, such policies mean that the central bank commits itself to boosting demand in recessions and curbing growth during booms. The former tends to reduce households’ needs for precautionary savings while the latter lowers investors’ expected returns during booms. Compared to TR93 or SIT, both effects contribute to slowing down capital accumulation and increase the resilience of credit markets through the
K–channel (panel (c)). On the other hand, however, responding more aggressively to output or to the yield gap works to dampen inflationary pressures during booms, implying higher markups and less resilience through the M–channel (panel (b)). On balance, these opposite effects offset each other during the boom.

Figure 5: Counterfactual Booms and Busts

(a) Output
(b) Markup Rate (in percent)
(c) Capital Stock
(d) Average Return on Equity (Annualized in percent)

Notes: For TR93: same average dynamics as in Figure 3. For the other rules: counterfactual average dynamics, when the economy starts with the same capital stock in quarter −20 and is fed with the same aggregate shocks as the TR93 economy.

The main difference between the policy rules comes from the response of the economy at the time of the crisis, in quarter 0. While output and equity returns fall under all rules, they fall by less when \(\varphi_y \) or \(\varphi_r \) are higher —keeping all else equal. The reason is clear: following the adverse aggregate shocks (Figure 3, panels (a) and (b)), such rules imply a bigger fall in the policy rate, which boosts aggregate demand, lifts firms’ average return on equity (Figure 5, panel (d)), and helps avoid a crisis. Responding more aggressively to output or to the yield gap thus helps to foster financial stability by cushioning the impact of the shocks (Y–channel).

5.2 “Backstop” Rules

We now consider more complex, “regime–contingent” monetary policy rules, whereby the central bank commits itself to following TR93 or SIT in normal times but also to doing whatever needed whenever necessary —and therefore exceptionally deviating from these rules— to forestall a crisis. In those instances, we assume that the central bank deviates “just enough” to avert the
crisis, i.e. sets its policy rate so that \(r^k_t = r^k \) (see Proposition 2).\(^{35}\) We refer to such contingent rule as a “backstop” rule.

There are two good reasons to consider this type of rule. The first is conceptual. As a financial crisis corresponds to a regime shift, a monetary policy rule followed in—and designed for—normal times is unlikely to be adequate during periods of financial stress. Regime switches thus call for a regime–contingent strategy. Our contention is that, by giving the central bank more flexibility in its policy response, such strategy can alleviate the trade–off between price and financial stability. The second reason is practical: our backstop rule speaks to the “backstop principle” that most central banks in advanced economies have *de facto* been following since the GFC, which consists in deviating from conventional (“normal times”) monetary policy when necessary to restore financial market functionality.\(^{36}\) Our analysis can therefore be seen as an attempt to assess the costs and benefits of post–GFC monetary policy strategies.

We show below that backstop rules can significantly improve welfare compared to both SIT and Taylor–type rules.

Figure 6: Backstop Necessary to Stave off a Crisis and Normalisation Path

![Graph showing the necessary backstop to stave off a crisis and normalisation path](image)

Notes: Average deviations from the normal times’ policy rule that the central bank must commit itself to in order to forestall a financial crisis (quarter 0) and normalisation path (after quarter 0). Panel (a): deviation of the nominal policy rate, in percentage points, when the central bank otherwise follows TR93. Panel (b): deviation of the inflation target from zero, in percentage points, when the central bank otherwise follows SIT. For the purpose of the exercise, financial stress is defined as a situation where there would have been a crisis absent the monetary policy backstop. A stress episode is classified as “predicted” if the crisis probability in the quarter that precedes it (quarter \(-1\)) was in the top decile of its ergodic distribution. This type of episode typically follows an investment boom and is due capital overhang. In contrast, an “unpredicted” stress episode refers to a situation where the crisis probability in the quarter that precedes it was in the bottom decile of its ergodic distribution. This type of episode is typically due to adverse aggregate shocks. For a more detailed discussion on predicted and unpredicted episodes, see Section A.3 and Figure A.2 (panel (a)) in the Appendix.

As a first step, we report in Figure 6 the average deviations from TR93 (panel (a)) and SIT (panel (b)) that are needed in stress times to ward off crises (plain line).\(^{37}\) These deviations are

\(^{35}\)In the case of a Taylor–type rule \(1 + i_t = (1 + \pi_t)^{1.5} (Y_t/Y)^{0.125} \varsigma_t/\beta, \) for example, this consists in setting the term \(\varsigma_t \) equal to 1 if \(r^k_t \geq r^k \) and such that \(r^k_t = \bar{r}^k \) whenever (and only then) \(r^k_t \) would otherwise be lower than \(\bar{r}^k. \)

Likewise, in the SIT case, the central bank tolerates just enough deviations from inflation target so that \(r^k_t = \bar{r}^k. \)

\(^{36}\)For recent discussions on the backstop principle, see Bank for International Settlements (2022), Hauser (2023), and Duffie and Keane (2023).

\(^{37}\)Such deviation of the policy rate is akin to what Akinci, Benigno, Del Negro, and Queralto (2020) call “\(R^{**}\).”
reported in terms of the policy rate for TR93 and the annualized inflation rate for SIT. In both cases, the central bank must loosen its policy compared to normal times. More precisely: on average, it must temporarily lower its policy rate by almost 1 percentage point below TR93 or temporarily tolerate a 3 percentage point higher inflation rate under SIT.

Figure 6 also shows that the backstop policy must be unwound gradually, reflecting the time it takes for financial vulnerabilities to dissipate. In our model, the adequate normalisation path is narrow. Tightening monetary policy more slowly would lead to unnecessary high inflation and costs due to nominal rigidities. Tightening too quickly would result in a financial crisis and a “hard landing”.

One important determinant of the speed of normalisation is the type of financial vulnerabilities that are being addressed. When the stress is due to an exogenous adverse shock (“Unpredicted stress”), the central bank can set its policy rate (roughly) in line with the TR93 rule already after 10 quarters (panel (a), dotted line). When it is due to an excessive investment boom (“Predicted stress”), in contrast, the normalisation takes much longer and is still far from over after 20 quarters (dashed line). The reason is clear. As the central bank intervenes to stem stress, it concomitantly slows down the adjustment that would be necessary to eliminate the capital overhang that causes stress in the first place. As a result, monetary policy must remain accommodative for longer to prevent a crisis.

Finally, we study the net welfare gain of following a backstop rule. The results are reported at the bottom of Table 2. Two results stand out.

First, backstopping the economy improves welfare. In the case of TR93, the welfare loss is reduced from 0.82% to 0.56% (rows (1) versus (11), column “Welfare Loss”), which is essentially the same as in the economy with no financial frictions (row (1), column “Frictionless”). In the case of SIT, welfare loss falls by more than half, from 0.23% without backstop to 0.1% with backstop (rows (6) versus (12), column “Welfare Loss”) and is then even lower than under augmented Taylor-type rules (rows (7)-(10), column “Welfare Loss”).

Second, the financial sector is more fragile when the central bank commits itself to backstopping the economy. Under SIT, for instance, the central bank has to backstop the economy —and therefore deviate from its normal times policy rule— more than 17% of the time, whereas without backstop the economy would spend only 9.4% of the time in a crisis (rows (12) versus (6), column “Time in Crisis/Stress”). This greater fragility is due to the fact that, as the central bank forestalls financial crises, it also eliminates the cleansing effects of the latter. By delaying the resorption of the capital overhang that underlies financial vulnerabilities, backstop policies also result in the level of the capital stock being on average higher —and the average return on equity lower— than in an economy without backstop. With backstop, the credit market is therefore less resilient and more prone to financial stress.38

38 As Hauser (2021) puts it, [monetary policy backstops] “are an appropriate response to a truly unprecedented situation —just as powerful anti-inflammatory medicines are the right solution to a sudden and massive flare up. But such drugs are less well suited to treating long-term conditions—and there is every reason to believe that, absent further action, we will see more frequent periods of dysfunction in markets (...) if business model
6 Discretion as a Source of Financial Instability

To what extent may monetary policy itself brew financial vulnerabilities? In his narrative of the GFC, Taylor (2011) argues that discretionary loose monetary policy may have exposed the economy to financial stability risks—the “Great Deviation” view. This section revisits this narrative and assesses the potential detrimental effects of unanticipated monetary policy actions—as opposed to rules—on financial stability. To do so, we consider a TR93 economy that experiences random deviations from the policy rule—“monetary policy shocks”—and where these shocks are the only source of aggregate uncertainty. More specifically, we consider a monetary policy rule of the form

\[
1 + i_t = \frac{1}{\beta} (1 + \pi_t)^{1.5} \left(\frac{Y_t}{\bar{Y}} \right)^{0.125} \varsigma_t
\]

where the monetary policy shock \(\varsigma_t\) follows an AR(1) process \(\ln(\varsigma_t) = \rho \ln(\varsigma_{t-1}) + \epsilon_t\), with \(\rho = 0.5\) and \(\sigma = 0.0025\), as in Gali (2015). We are interested in the dynamics of monetary policy shocks around crises in this new environment.

Figure 7: Rates too Low for too Long May Lead to a Crisis

![Diagram showing monetary policy shock and capital stock dynamics around a crisis.](image)

Notes: Average discretionary deviations from TR93 (panel (a)) and evolution of the capital stock (panel (b)) around the beginning of a crisis (quarter 0), in an economy with only monetary policy shocks. A financial crisis is classified as “predicted” if the crisis probability in the quarter that precedes it (quarter \(-1\)) was in the top decile of its ergodic distribution. A crisis is classified as “unpredicted” if the crisis probability in the quarter that precedes it was in the bottom decile of its ergodic distribution. For a more detailed discussion on predicted and unpredicted stress, see Section A.3 and Figure A.2 (panel (a)) in the Appendix.

The results, reported in Figure 7 (panel (a)), show that the average crisis breaks out after a long period of unexpected monetary easing as the central bank reverses course (plain line). Keeping the policy rate too low for too long stimulates capital accumulation (panel (b)), which in turn undermines the resilience of the credit market to shocks. The crisis is then triggered by three consecutive, unexpected, and abrupt interest rate hikes toward the end of the boom. The comparison of the dynamics of predicted (dashed line) and unpredicted (dotted line) crises further shows that the longer the period of loose monetary policy, the smaller the hikes “needed” to trigger a crisis.

vulnerabilities persist
These findings are consistent with recent empirical evidence that unanticipated interest rate hikes at the end of a credit boom—possibly due to accommodative monetary policy—are more likely to trigger a crisis than to avert it (Schularick, ter Steege, and Ward (2021), Jiménez, Kuvshinov, Peydró, and Richter (2022), Grimm, Jordà, Schularick, and Taylor (2023)). More generally, our analysis highlights that discretionary monetary policy may on its own be a source of financial instability.

7 Model Robustness

The aim of this section is to illustrate the robustness of our results by showing that they hold in three alternative versions of our model: (i) with intermediated finance, (ii) with infinitely-lived firms, and (iii) with \textit{ex ante} heterogeneous firms. In addition, we analyse the cases with only one financial friction—either limited contract enforceability or asymmetric information, and show that both frictions are necessary for our model to feature credit market collapses.

7.1 Intermediated Finance

We are interested in whether a bank can substitute for the credit market without making a loss—especially when the market has collapsed. For this, we consider a representative and competitive bank that purchases K_t capital goods on credit at rate r_d^t (“deposits”) from unproductive firms and sells $K_p^t - K_t > 0$ capital goods on credit (“loans”) at rate r_l^t to productive firms. The bank faces the same financial frictions as the firms. It is not able to enforce contracts with borrowers and does not observe firms’ idiosyncratic productivities. But it is not a source of financial frictions itself, in the sense that it can credibly commit itself to paying back its deposits.\footnote{Another way to introduce banks in our model can be found in Boissay, Collard, and Smets (2016), where heterogeneous banks (not firms) are the source of financial frictions. Our results also hold in this other setup.} The rest of the model is unchanged.

The bank’s profit is the sum of the gross returns on the loans (first term) minus the cost of deposits (last term):

$$\max_{K_p^t} (1 - \mu)(1 + r_l^t)(K_p^t - K_t) - \mu(1 + r_d^t)K_t$$

(32)

The bank’s objective is to maximise its profit with respect to K_p^t given r_l^t and r_d^t, subject to its budget constraint

$$\mu K_t = (1 - \mu)(K_p^t - K_t)$$

(33)

as well to unproductive firms’ incentive compatibility constraint

$$(1 - \delta)K_p^t - \theta(K_p^t - K_t) \leq (1 + r_d^t)K_t$$

(34)

which means that unproductive firms must be better-off when they deposit their funds K_t with the bank (for a return r_d^t, on the right-hand side) than when they borrow $K_p^t - K_t$ and abscond (left-hand side). Relations (33) and (34) imply that

$$1 + r_d^t \geq \frac{1 - \delta - \theta \mu}{1 - \mu}$$

(35)
Since the bank’s profit increases with \(r^e_t \) and decreases with \(r^d_t \), and productive firms’ participation constraint requires that \(r^e_t \leq r^k_t \), a necessary condition for the bank to be active is that its profit be positive when \(r^e_t = r^k_t \) and when \(r^d_t \) satisfies (35) with equality. Using (32) and (33), this condition reads:

\[
 r^k_t \geq \bar{r}^k \equiv \frac{(1 - \theta)\mu - \delta}{1 - \mu}
\]

which corresponds to the condition of existence of the credit market (see Proposition 2). This means that, when \(r^k_t < \bar{r}^k \) and the credit market has collapsed, there is no room for financial intermediation either. When \(r^k_t \geq \bar{r}^k \), financial intermediation may arise. But as unproductive firms can lend to productive ones at rate \(r^c_t = r^k_t \) directly via the credit market in that case (see equilibrium \(E \) in Figure 2), the bank must offer the same conditions, with \(r^e_t = r^d_t = r^k_t \), in order to be competitive —and therefore makes zero profit.

Hence, the above version of the model with banks is isomorphic to our baseline model with dis–intermediated finance. This result is intuitive. As long as banks face the same agency problem as other prospective lenders, whether financial transactions take place directly through a credit market, as in our baseline model, or indirectly through a loan market is irrelevant: these two markets rise and collapse in sync —and yield the same general equilibrium outcome.\(^{40}\)

7.2 Infinitely–lived Firms

Assume that firms live infinitely —the rest of the model being unchanged. Since the household can freely re–balance their entire equity portfolio across firms, it is optimal for the household to perfectly diversify their portfolio and fund every firm with the same amount, so that all firms start afresh every period. In the absence of stigma associated to default or if one re–interprets parameter \(\theta \) as a reputational cost of default,\(^{41}\) firms’ borrowing limit remains the same as in Proposition 1. In this case, the model with infinitely–lived firms is the same as our baseline model.

7.3 Ex–ante Heterogeneous Firms

The aim of this section is to show that our analysis goes through when firms are heterogeneous \textit{ex ante}, before they incur the idiosyncratic productivity shocks. As an illustration, consider two observationally distinct sets of “high” (\(H \)) and “low” (\(L \)) quality firms of equal mass \(1/2 \), characterised by probabilities \(\mu^H \) and \(\mu^L \) of being unproductive (\textit{i.e.} of drawing \(\omega_t(j) = 0 \)), with \(\mu^H < \mu^L \). Households observe every firm’s type \(H \) or \(L \) at the time they invest in equity. The rest of the model is unchanged.

In the presence of financial frictions, households may vary their equity investments across high and low quality firms. Let \(K^L_t \) and \(K^H_t \) denote low and high quality firms’ respective initial

\(^{40}\)This equivalence result only emphasises that the key element of our model is the agency problem that lenders face, and not the financial infrastructure (financial markets or banks) considered.

\(^{41}\)Another —albeit extreme— way to model reputational costs could be to assume that a firm that defaults is banned forever from the credit market. In this case, the cost of default \(\theta_t \) would be time–varying and depend on the franchise value of having access to the credit market.
capital stocks, with \(K_t^L \neq K_t^H \). The aggregate capital stock is \(K_t = (K_t^H + K_t^L)/2 \) and the share of \(K_t \) that is held by unproductive firms is

\[
\mu_t = \frac{\mu^H K_t^H + \mu^L K_t^L}{K_t^H + K_t^L} \tag{36}
\]

The constant returns to scale imply that productive firms have the same realized return on capital \(r_t^k \), irrespective of their type \(L \) or \(H \) and initial capital stock, \(K_t^L \) or \(K_t^H \). Moreover, Proposition 1 shows that their initial capital stock does not affect firms’ borrowing limit either: \(\psi_t = (r_t^e + \delta)/(1 - \delta - \theta) \) and is the same across high and low quality firms. It follows that the aggregate credit supply and demand schedules in normal times are given by

\[
L^S(r_t^e) = \mu_t K_t
\]

and

\[
L^D(r_t^e) \in \left[(1 - \mu_t)K_t, (1 - \mu_t)\psi_t K_t \right]
\]

and normal times arise in equilibrium only if there exists a credit market rate \(r_t^e \) such that \(r_t^e \leq r_t^k \) and

\[
\mu_t K_t \in \left[(1 - \mu_t)K_t, (1 - \mu_t)\frac{r_t^e + \delta}{1 - \delta - \theta}K_t \right]
\]

which is the case if

\[
\mu_t \leq (1 - \mu_t)\frac{r_t^k + \delta}{1 - \delta - \theta} \iff r_t^e \geq \frac{(1 - \theta)\mu_t - \delta}{1 - \mu_t} \tag{37}
\]

The above condition is similar to that in Proposition 2, meaning that the Y–M–K transmission channels of monetary policy are still present and operate the same way as in our baseline model. The only difference is that \(\mu_t \) is now endogenously determined at end of period \(t - 1 \), i.e. that the share of capital in low versus high quality firms is yet another factor affecting financial stability. The upshot is that our results carry over to an economy with observationally ex ante heterogeneous firms, provided that there remains some residual ex post heterogeneity (here in the form of the idiosyncratic productivity shocks \(\omega_t(j)s \)) and, therefore, a role for short term (intra–period) credit markets.

42 More precisely, one can show that it is optimal for households to hold more equity from high quality firms than from low quality firms, so that \(K_t^L < K_t^H \) and \(\mu_t \) varies over time. So see why, first consider the case of a frictionless credit market. Absent financial frictions, firms perfectly hedge themselves against the idiosyncratic productivity shocks and all have the same return on equity: \(r_t^e(j) = r_t^e \) for all \(j \) irrespective of the realization of the shock. As a consequence, firms’ quality is irrelevant and the household does not discriminate across high and low quality firms, which thus all get the same equity funding: \(K_t^H = K_t^L = K_t \). Hence, \(\mu_t = (\mu_H + \mu_L)/2 \) and is constant over time. In the presence of financial frictions, in contrast, the household understands that unproductive firms will distribute less dividends than productive firms if a crisis breaks out. It will invest in the equity of high and low quality firms until their marginal expected returns equate and no arbitrage is possible. Since low quality firms are less likely to be productive than high quality firms and the marginal return on equity decreases with the capital stock, it is optimal for the household to invest relatively more equity in high quality firms, especially so when the probability of a crisis goes up. It follows that \(K_t^H > K_t^L \) and \(K_t^H/K_t^L \) increases with the crisis probability.

43 Put differently, once the \(\omega_t(j)s \) are realized, what matters is whether a firm is productive, not its ex ante probability of being productive.

44 Since \(\mu_t \) is predetermined, the effect of this additional channel can only be of second order compared to the Y–M–K channels.
7.4 Only One Financial Friction

Our baseline model features two textbook financial frictions: limited contract enforceability and asymmetric information between lenders and borrowers. This section shows that both frictions are needed for the aggregate equilibrium outcome to depart from the first best outcome.

7.4.1 Asymmetric Information

Assume first that firms cannot abscond with the proceeds of the sales of idle capital goods. Then unproductive firms always prefer to sell their capital stock and lend the proceeds, and have no incentive to borrow. As a result, productive firms face no borrowing limit: they borrow until the marginal return on capital equals the cost of credit and \(r_t^k = r_t^k > -\delta \) in equilibrium.\(^{45}\) No capital is ever kept idle. The economy reaches the first best.

7.4.2 Limited Contract Enforceability

Assume next that firms’ idiosyncratic productivities are perfectly observable at no cost. Then, only productive firms can borrow. But they must be dissuaded from borrowing \(P_t(K_t^p - K_t) \) to purchase capital goods, keep them idle, and abscond. This will be the case if what they earn if they abscond, \(P_t(1 - \delta) K_t^p - P_t \theta (K_t^p - K_t) \) is less than what they earn if they use their capital stock in production, \(P_t((1 + r_t^c)K_t + (r_t^k - r_t^c)K_t^p) \) (from (19)), which implies:

\[
(1 - \delta) K_t^p - \theta (K_t^p - K_t) \leq (1 + r_t^c)K_t + (r_t^k - r_t^c)K_t^p \quad \Leftrightarrow \quad \frac{K_t^p - K_t}{K_t} \leq \psi_t = \frac{r_t^k + \delta}{1 - \delta - \theta + r_t^c - r_t^k} \quad (38)
\]

where the borrowing limit \(\psi_t \) now decreases with \(r_t^c \): the higher the loan rate, the lower the productive firm’s opportunity cost of borrowing and absconding, and hence the lower its incentive-compatible leverage.

Figure 8: Credit Market Equilibrium Under Symmetric Information

Notes: This figure illustrates unproductive firms’ aggregate credit supply (black) and productive firms’ aggregate credit demand (gray) curves, when credit contracts are not enforceable but information is symmetric.

\(^{45}\)Note that, as firms’ choice to lend or borrow perfectly reveals their type, the asymmetry of information dissipates and becomes irrelevant in that case.
The aggregate credit supply and demand schedules in Figure 8 take the similar form as in (22) and (23), but with the borrowing limit ψ_t now given by (38) instead of Proposition 1. From Figure 8 it is easy to see that there is only one equilibrium (E) and that the economy reaches the first best: no capital is ever kept idle. The only difference with the frictionless case is in terms of the distribution of equity returns across firms: in equilibrium E, productive firms’ realised return on equity may be higher than that of unproductive firms.46

8 Conclusion

What are the channels through which monetary policy affects financial stability? Should central banks deviate from their objective of price stability to promote financial stability? To what extent may monetary policy itself brew financial vulnerabilities? To address these questions, we have extended the textbook NK model with capital accumulation, heterogeneous firms, and a credit market that allows the economy to reallocate capital across firms. Absent frictions on the credit market, the equilibrium outcome boils down to that of the standard model with a representative firm. With financial frictions, in contrast, there is an upper bound on the leverage ratio of any individual firm resulting from an incentive–compatibility constraint, which at times prevents capital from being fully reallocated to the most efficient firms. When firms’ marginal return on capital falls —possibly due to a capital overhang at the end of a long investment boom, firms have more incentives to search for yield, which may stoke fears of default and eventually lead to a sudden collapse of the credit market and a severe recession.

We use the model to conduct several policy experiments. We first show that monetary policy affects financial stability both in the short run (through aggregate demand) and in the medium run (through capital accumulation). Then, we find that the central bank can reduce the incidence of financial crises and improve welfare upon SIT by responding systematically to output and to the yield gap alongside inflation. But the central bank can raise welfare even more by following a backstop rule whereby it commits itself to doing whatever needed whenever necessary to forestall crises. Once backstops are activated, the speed at which monetary policy can be normalised without inducing a crisis depends on the source of financial vulnerabilities. Finally, we find that discretionary monetary policy actions, such as keeping policy rates low for long and then unexpectedly and abruptly raising them toward the end of the investment boom, can trigger a financial crisis.

46To see this, notice that $K^p_t = 0$ in equilibrium E, implying (from (16)) that unproductive firms’ return on equity is equal to r^e_t. Further notice that $r^e_t \geq r^k_t$ and $K^p_t > K_t$ in equilibrium E, which implies (from (19)) that productive firms’ return on equity is equal to $r^e_t + (r^k_t - r^e_t)K^p_t/K_t \geq r^e_t$.

34
References

Schnabel, I. (2021): “Monetary policy and financial stability,” Speech by Isabel Schnabel, Member of the Executive Board of the ECB, at the fifth annual conference of the European Systemic Risk Board.

A Appendix

A.1 Summary of the Model

Our model can be summarized by the following 13 equations:\footnote{In the list of equations below, relation 2 is obtained after noticing that, given the definition of the firm’s average return on equity (24), \(\mathbb{E}_t(\Lambda_{t,t+1}(1+r_{t+1}^q)) = \mathbb{E}_t(\Lambda_{t,t+1}(1+r_{t+1}^q)) \forall j \in [0,1] \). Relation 6 is obtained as follows. In normal times: using (18), (20), (27) and \(K_t^p = K_t/(1-\mu) \), one obtains \(r_t^q + \delta = \alpha Y_t/((1-\tau)(M_tK_t)) \) which, given equation (25) \((r_t^q + \delta = (1-\mu)(r_t^q + \delta)) \) and \(\tau = 1/\epsilon \), yields relation 6. In crisis times: using relations (18), (20), (27) and \(K_t^p = K_t \), one obtains \(r_t^q + \delta = \alpha Y_t/((1-\mu)(1-\tau)(M_tK_t)) \) which, given equation (25) \((r_t^q + \delta = (1-\mu)(r_t^q + \delta)) \) and \(\tau = 1/\epsilon \), yields relation 6. All the other relations are straightforward.}

1. \(Z_t = \mathbb{E}_t \left\{ \Lambda_{t,t+1}(1+r_{t+1}) \right\} \)
2. \(1 = \mathbb{E}_t \left\{ \Lambda_{t,t+1}(1+r_{t+1}^q) \right\} \)
3. \(\frac{W_t}{P_t} = \chi N_t^\sigma C_t^\sigma \)
4. \(Y_t = A_t (\omega_t K_t)^\alpha N_t^{1-\alpha} \)
5. \(\frac{W_t}{P_t} = \epsilon \frac{(1-\alpha)Y_t}{\epsilon - 1} \frac{\mathcal{M}_t N_t}{N_t^{1-\alpha}} \)
6. \(r_t^q + \delta = \frac{\epsilon}{\epsilon - 1} \alpha Y_t \frac{\mathcal{M}_t - \mu}{\mathcal{M}_t} \)
7. \((1+\pi_t)\pi_t = \mathbb{E}_t \left\{ \Lambda_{t,t+1} \frac{Y_{t+1}}{Y_t} (1+\pi_{t+1})\pi_{t+1} \right\} - \frac{\epsilon - 1}{\epsilon} \left(\frac{\mathcal{M}_t - \mu}{\mathcal{M}_t} \right) \)
8. \(1 + \frac{1}{\beta}(1+\pi_t)\theta \frac{Y_t}{\bar{Y}} \phi_y \)
9. \(Y_t = C_t + I_t + \frac{\theta}{2} Y_t \sigma_t^2 \)
10. \(\Lambda_{t,t+1} \equiv \frac{\beta C_{t+1}^{\gamma-\sigma}}{C_t^\sigma} \)
11. \(1 + r_t = \frac{1 + \mu}{1 + \pi_t} \)
12. \(K_{t+1} = I_t + (1-\delta)K_t \)
13. \(\omega_t = \begin{cases} 1 & \text{if } r_t^q \geq \frac{(1-\mu/\mu-\delta}{1-\mu} \\ 1 - \mu & \text{otherwise} \end{cases} \)

A.2 Proof of Relation (25)

Using equations (16), (19) and (24), one can re-write \(r_t^q \) as \(r_t^q = \mu (r_t^q - (r_t^q + \delta)K_t^\alpha/K_t) + (1 - \mu) \left(r_t^q + (r_t^q - r_t^q)K_t^\alpha/K_t \right) \). In normal times, \(K_t^\alpha = 0 \) and \(K_t^p = K_t/(1-\mu) \), which implies that \(r_t^q = r_t^k \). In crisis times, \(r_t^q = -\delta \) and \(K_t^\alpha = K_t^p = K_t \), which implies that \(r_t^q = -\mu \delta + (1-\mu)r_t^k \).
A.3 Financial Crises: Polar Types and Multiple Causes

Figure A.1 is a stylized representation of the optimal capital accumulation decision rule, which expresses K_{t+1} as a function of state variables K_t and A_t. During a crisis, the household dis–saves to consume, which generates less investment and a fall in the capital stock, as captured by the discontinuous downward breaks in the decision rules.

Figure A.1: Optimal Decision Rules $K_{t+1}(K_t, A_t)$ and Two Polar Types of Crisis

There are two polar types of crises. The first one can be characterised as “unpredicted”: for an average level of capital stock K_t^{average}, a crisis breaks out when productive firms’ marginal return on capital, r^k_t, falls below the required incentive compatible loan rate, \bar{r}^k (see Proposition 2). In Figure A.1, this is the case in equilibrium $A_{\text{unpredicted}}$, where aggregate productivity A_t falls from A_t^{average} to A_t^{low}. This type of crisis is hard to predict, insofar as it is due to an unusually large adverse shock.

The other polar type of crisis can be characterised as “predicted”: following a long period of high productivity A_t^{high}, the household accumulates savings and feeds an investment boom that increases the stock of capital. All other things equal, the rise in the capital stock reduces productive firms’ marginal return on capital until $r^k_t < \bar{r}^k$. The crisis then breaks out as K_t exceeds K_t^{high}, without the economy experiencing any adverse shock, as in equilibrium $A_{\text{predicted}}$. This type of crisis is predictable to the extent that the protracted investment boom (and

\[\text{For the purpose of the illustration, we abstract from the demand shock } Z_t.\]
associated fall in firms’ average return on equity) that precede it can be used as early warning.

The existence of two polar types of crisis suggests that monetary policy can reduce the incidence of financial crises either by mitigating the effects of adverse shocks (e.g. through the Y– and M–channels), or by slowing down capital accumulation during booms (e.g. through the K–channel), or by doing both.

Figure A.2: Predicted versus Unpredicted Crises

Notes: Panel (a): Ergodic distribution of the one–step ahead crisis probability in the quarter that precedes financial crises in the TR93 economy. The one-step ahead crisis probability is defined as $E_{t-1} \left\{ \frac{Y_t}{1 - \theta} < \frac{1}{\nu} \left(\frac{K_t - \mu}{\theta (1 - \theta) \mu - \delta} \right) \right\}$, where $\{ \cdot \}$ is a dummy variable equal to one when the inequality inside the curly braces holds (i.e. there is a crisis) and to zero otherwise (see Corollary 1). Panel (b): Ergodic cumulative distribution of the capital stock in the TR93 economy, unconditional (plain line) or conditional on being in a crisis next quarter (dashed line).

In the stochastic steady state of our model, crises can be seen as different blends of the two polar types. To document this heterogeneity, we report in Figure A.2 the distribution the crisis probability (panel (a)) in the quarter before a crisis (quarter -1). The distribution is clearly bimodal: about 55% of the crises are associated with a crisis probability of less than 20% in the quarter that preceded, i.e. were not predicted, and 45% are associated with a crisis probability above 80%, i.e. were predicted. Panel (b) also shows that the level of the capital stock in the quarter that precedes financial crises tends to be higher than that in the stochastic steady state. These results are consistent with recent empirical evidence that financial crises are, by and large, predictable and the byproducts of credit booms (see Greenwood, Hanson, Schleifer, and Sørensen (2022), Sufi and Taylor (2021)).

Figure A.3 further shows how the average dynamics around predicted (dashed line) and unpredicted (dotted line) crises differ. For the purpose of this exercise, we define a crisis as “predicted” (respectively “unpredicted”) if the crisis probability in the quarter that precedes it (i.e. quarter -1) is in the top (respectively bottom) decile of its distribution (Figure A.2, panel (a)). In line with Figure A.1, we find that unpredicted crises occur when aggregate productivity and demand shocks are negative (panels (a) and (b), dotted line), as in the case of crisis $A_{\text{unpredicted}}$ in Figure A.1, whereas predicted crises occur despite shocks being positive, and follow an investment boom (panel (c), dashed line), as in the case of crisis $A_{\text{predicted}}$.

43
Figure A.3: Dynamics of Predicted and Unpredicted Crises

Notes: Simulations for the TR93 economy. Average dynamics of the economy around the beginning of all (black line, as in Figure 3), predicted (dashed) and unpredicted (gray) crises (in quarter 0). The subset of predicted (unpredicted) crises corresponds to the crises whose one–step–ahead probability in quarter 0 is in the top (bottom) decile of its distribution (see Figure A.2, panel (a)).

A.4 Global Solution Method

We first discretize the distribution of the aggregate shocks using Rouwenhorst (1995)’s approach. The latter involves a Markov chain representation of the shock, s_t, with $s_t \in \{a_1, \ldots, a_{n_a}\} \times \{z_1, \ldots, z_{n_z}\}$ and transition matrix $T = (\pi_{ij})_{1 \leq i, j \leq n_s}$ where $\pi_{ij} = P(s_{t+1} = s_j | s_t = s_i)$. In what follows, we use $n_a = 5$ and $n_z = 5$. We look for an approximate representation of consumption, the marginal cost ($mc \equiv 1/\mathcal{M}$) and the gross nominal interest rate (\hat{r}) as a function of the endogenous state variables in each regime, e.g. normal times and crisis times. More specifically, we use the approximation\(^{49}\)

$$G_x(K; s) = \begin{cases} \sum_{j=0}^{p_x} \psi_j^x(n, s) T_j(\nu(K)) & \text{if } K \leq K^*(s) \\ \sum_{j=0}^{p_x} \psi_j^x(c, s) T_j(\nu(K)) & \text{if } K > K^*(s) \end{cases}$$

for $x = \{c, mc, \hat{r}\}$

where $T_j(\cdot)$ is the Chebychev polynomial of order j and $\nu(\cdot)$ maps $[K; K^*(s)]$ in the normal regime (respectively $[K^*(s); \bar{K}]$ in the crisis regime) onto interval $[-1;1]$.\(^{50}\) $\psi_j^x(r, s)$ denotes the coefficient of the Chebychev polynomial of order j for the approximation of variable x when the economy is in regime r and the shocks are $s = (a, z)$. p_x denotes the order of Chebychev polynomial we use for approximating variable x.

$K^*(s)$ denotes the threshold in physical capital beyond which the economy falls in a crisis,

\(^{49}\)Throughout this section, we denote $\hat{\pi} = 1 + \pi$ and $\hat{t} = 1 + i$.

\(^{50}\)More precisely, $\nu(\cdot)$ takes the form $\nu(K) = 2 \frac{K - K^*(a, s)}{K - K^*(s)} - 1$ in the normal regime and $\nu(K) = 2 \frac{K - K^*(a, s)}{K - K^*(s)} - 1$ in the crisis regime.
The algorithm proceeds as follows.

This value is unknown at the beginning of the algorithmic iterations, insofar as it depends on the agents’ decisions. We therefore also need to formulate a guess for this threshold.

A.4.1 Algorithm

The algorithm proceeds as follows.

1. Choose a domain \([K_m, K_s]\) of approximation for \(K_t\) and stopping criteria \(\varepsilon > 0\) and \(\varepsilon_k > 0\).
 The domain is chosen such that \(K_m\) and \(K_s\) are located 25% away from the deterministic steady state of the model (located in the normal regime). We chose \(\varepsilon = \varepsilon_k = 1e^{-4}\).

2. Choose an order of approximation \(p_x\) (we pick \(p_x = 9\) for \(x = \{c, mc, i\}\)), compute the \(n_k\) roots of the Chebychev polynomial of order \(n_k > p\) as
 \[\zeta_\ell = \cos \left(\frac{(2\ell - 1)\pi}{2n_k} \right) \text{ for } \ell = 1, \ldots, n_k\]
 and formulate an initial guess\(^{51}\) for \(\psi_\tau(x, s)\) for \(x = \{c, mc, i\}\) and \(i = 1, \ldots, n_a \times n_z\).
 Formulate a guess for the threshold \(K^*(s)\).

3. Compute \(K_\ell, \ell = 1, \ldots, 2n_k\) as
 \[K_\ell = \begin{cases} (\zeta_\ell + 1)\frac{K^*(s) - K_m}{2} + K_m & \text{for } K \leq K^*(s) \\ (\zeta_\ell + 1)\frac{K_s - K^*(s)}{2} + K^*(s) & \text{for } K > K^*(s) \end{cases}\]

4. Using a candidate solution \(\Psi = \{\psi_\tau(x, s); x = \{c, \hat{x}, i\}, r = \{n, c\}, i = 0 \ldots p_x\}\), compute approximate solutions \(G_c(K; s_i), G_\hat{x}(K; s_i)\) and \(G_i(K; s_i)\) for each level of \(K_\ell, \ell = 1, \ldots, 2n_k\) and each possible realization of the shock vector \(s_i, i = 1, \ldots, n_a \times n_z\) and the over quantities of the model using the definition of the general equilibrium of the economy (see below). In particular, compute the next period capital \(K'_{\ell,i} = G_K(K_\ell; z_i)\) for each \(\ell = 1, \ldots, 2n_k\) and \(i = 1 \ldots n_a \times n_z\).

5. Using the next period capital and the candidate approximation, solve the general equilibrium to obtain next period quantities and prices entering households’ and retailers’ expectations, and compute expectations
 \[
 \tilde{\xi}_{c,\ell} = \beta \sum_{s=1}^{n_z} \omega_{i,s} \left[u'(G_c(K'_{\ell,i}, z'_i))(1 + r_{x'}(K'_{\ell,i}, z'_i)) \right]
 \]
 \[
 \tilde{\xi}_{i,\ell} = \beta \sum_{s=1}^{n_z} \omega_{i,s} \left[u'(G_r(K'_{\ell,i}, z'_i)) \right]
 \]
 \[
 \tilde{\xi}_{\hat{x},\ell} = \beta \sum_{s=1}^{n_z} \omega_{i,s} \left[u'(G_c(K'_{\ell,i}, z'_i))G_\hat{x}(K'_{\ell,i}, z'_i)G_y(K'_{\ell,i}, z'_s)G_{\hat{x}}(K'_{\ell,i}, z'_s)(G_{\hat{x}}(K'_{\ell,i}, z'_s) - 1) \right]
 \]

\(^{51}\)The initial guess is obtained from a first order approximation of the model around the deterministic steady state.
6. Use expectations to compute new candidate c, mc and i

$$\tilde{c}_t = u^{-1}\left(\tilde{\phi}_{c,t}\right)$$
$$\tilde{i}_t = z\frac{u'(G_c(K_t, z_i))}{\tilde{\phi}_{i,t}}$$
$$\tilde{mc}_t = (1 - \tau) + \frac{\varrho}{\epsilon}\left(G_{\tilde{\pi}}(K_t, z_i)(G_{\tilde{\pi}}(K_t, z_i) - 1) - \frac{\tilde{\phi}_{\tilde{\pi},t}}{u'(G_c(K_t, z_i))}G_y(K_t, z_i)\right)$$

7. Project \tilde{c}_t, \tilde{i}_t, \tilde{mc}_t on the Chebychev polynomial $T_j(\cdot)$ to obtain a new candidate vector of approximation coefficients, $\tilde{\Psi}$. If $\|\tilde{\Psi} - \Psi\| < \varepsilon\xi$ then a solution was found and go to step 8, otherwise update the candidate solution as

$$\xi\tilde{\Psi} + (1 - \xi)\Psi$$

where $\xi \in (0, 1]$ can be interpreted as a learning rate, and go back to step 3.

8. Upon convergence of Ψ, compute $K^*(s)$ that solves (39). If $\|\tilde{K}^*(s) - K^*(s)\| < \varepsilon_k\xi_k$ then a solution was found, otherwise update the threshold as

$$\xi_k\tilde{K}^*(s) + (1 - \xi_k)K^*(s)$$

where $\xi_k \in (0, 1]$ can be interpreted as a learning rate on the threshold, and go back to step 3.

A.4.2 Computing the General Equilibrium

This section explains how the general equilibrium is solved. Given a candidate solution Ψ, we present the solution for a given level of the capital stock K, a particular realization of the shocks (a, z). For convenience, and to save on notation, we drop the time index.

For a given guess on the threshold, $K^*(a, z)$, test the position of K. If $K \leq K^*(a, z)$, the economy is in normal times. Using the approximation guess, we obtain

$$C = G^n_c(K, s), \hat{\pi} = G^n_t(K, s), mc = G^n_{mc}(K, s)$$

and $\omega = 1$. If $K > K^*(a, z)$, the economy is in crisis times. Using the approximation guess, we get immediately

$$C = G^c_c(K, s), \hat{\pi} = G^c_t(K, s), mc = G^c_{mc}(K, s) = \frac{1}{M}$$

and $\omega = 1 - \mu$.

From the production function and the definition of the marginal cost, we get

$$N = \left(\frac{1 - \alpha}{\chi(1 - \tau)M}a(\omega K)^\alpha C^{-\sigma}\right)^{\frac{1}{\alpha + \sigma}}$$

Using the Taylor rule, we obtain gross inflation as

$$\hat{\pi} = \pi^*\left(\frac{\beta\hat{i}}{(Y/Y^*)\phi_y}\right)^{\frac{1}{\pi}}$$
Output then directly obtains from the production function as

\[Y = a(\omega K)^n N^{1-\alpha} \]

The rate of return on capital follows as

\[r^k = \frac{\alpha}{1 - \tau} \frac{Y}{K} - \delta \]

The investment level obtains directly from the resource constraint as

\[X = Y - C - \frac{\theta}{2} (\tilde{\pi} - 1)^2 Y \]

implying a value for the next capital stock of

\[K' = X + (1 - \delta)K \]

A.4.3 Accuracy

In order to assess the accuracy of the approach, we compute the relative errors an agent would make if they used the approximate solution. In particular, we compute the quantities

\[
\mathcal{R}_c(K, z) = \frac{C_t - \left(\beta E_t \left[C_{t+1}^{-\sigma} r_{t+1}^q \right] \right)^{-1/\sigma}}{C_t} \\
\mathcal{R}_i(K, z) = \frac{C_t - \left(\beta \frac{\hat{E}_t}{2} \left[C_{t+1}^{-\sigma} \hat{\pi}_{t+1} \right] \right)^{-1/\sigma}}{C_t} \\
\mathcal{R}_{\hat{\pi}}(K, z) = \hat{\pi}_t (\hat{\pi}_t - 1) - \beta E_t \left[\frac{C_{t+1}}{C_t} \right]^{-\sigma} Y_{t+1} \hat{\pi}_{t+1} (\hat{\pi}_{t+1} - 1) + \epsilon - 1 \left(1 - \frac{\epsilon}{\epsilon - 1} \right) \frac{1}{M_t}
\]

where \(r_{t+1}^q \equiv \int_0^1 r_{t+1}^q(j) \, dj \), and \(\mathcal{R}_c(K, z) \) and \(\mathcal{R}_i(K, z) \) denote the relative errors in terms of consumption an agent would make by using the approximate expectation rather than the “true” rational expectation in the household’s Euler equation. \(\mathcal{R}_{\hat{\pi}}(K, z) \) corresponds to the error on inflation. All these errors are evaluated for values for the capital stock that lie outside of the grid that was used to compute the solution. We used 1,000 values uniformly distributed between \(K_m \) and \(K_s \). Table A.1 reports the average of absolute errors, \(E^x = \log_{10} \left(\frac{1}{n_k \times n_q \times n_z} \sum |\mathcal{R}_x(K, s)| \right) \), for \(x \in \{ c, i, \hat{\pi} \} \).

Concretely, \(E^c = -5.23 \) in the case \((\phi_\pi, \phi_y, \phi_r) = (1.5, 0.125, 0) \) means that the average error an agent makes in terms of consumption by using the approximated decision rule —rather than the true one— under TR93 amounts to $1 per $171,000 spent. The largest approximation errors in the decision rules are made at the threshold values for the capital stock where the economy shifts from normal to crisis times (in the order of $1 per $2500 of consumption).
Table A.1: Accuracy Measures

<table>
<thead>
<tr>
<th>ϕ_π</th>
<th>ϕ_y</th>
<th>ϕ_r</th>
<th>E^c</th>
<th>E^i</th>
<th>E^π</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.125</td>
<td>–</td>
<td>-5.23</td>
<td>-5.00</td>
<td>-4.83</td>
</tr>
<tr>
<td>1.5</td>
<td>0.000</td>
<td>–</td>
<td>-5.36</td>
<td>-4.91</td>
<td>-5.05</td>
</tr>
<tr>
<td>1.5</td>
<td>0.250</td>
<td>–</td>
<td>-5.13</td>
<td>-4.72</td>
<td>-4.67</td>
</tr>
<tr>
<td>1.5</td>
<td>0.375</td>
<td>–</td>
<td>-5.07</td>
<td>-4.61</td>
<td>-4.56</td>
</tr>
<tr>
<td>2.0</td>
<td>0.125</td>
<td>–</td>
<td>-5.15</td>
<td>-5.10</td>
<td>-4.84</td>
</tr>
<tr>
<td>2.5</td>
<td>0.125</td>
<td>–</td>
<td>-5.15</td>
<td>-5.16</td>
<td>-4.88</td>
</tr>
</tbody>
</table>

SIT

| +∞ | – | – | -5.31 | – | – |

Augmented Taylor–type Rules

1.5	0.125	5.0	-5.37	-5.21	-5.04
5.0	0.125	5.0	-5.34	-5.56	-5.09
5.0	0.125	25.0	-5.36	-5.43	-5.10
10.0	0.125	75.0	-5.35	-5.39	-5.09

Backstop Rules

| 1.5 | 0.125 | – | -5.80 | -5.29 | -5.39 |
| +∞ | – | – | -5.74 | – | -4.60 |

Notes: $E' = \log_{10}(\frac{1}{n_k \times n_a \times n_z} \sum |\hat{R}_x(K, s)|)$ is the average of the absolute difference, in terms of the level of consumption, that is obtained if agents use the approximated expectation of variable x instead of its “true” rational expectation, for $x \in \{c, i, \pi\}$.
Previous volumes in this series

990
January 2022
Informational switching costs, bank competition, and the cost of finance
José Renato Haas Omelas, Marcos Soares da Silva and Bernardus F Nazar Van Doornik

989
January 2022
Central bank digital currencies (CBDCs) in Latin America and the Caribbean
Viviana Alfonso, Steven Kamin and Fabrizio Zampolli

988
January 2022
The premia on state-contingent sovereign debt instruments
Deniz Igan, Taehoon Kim and Antoine Levy

987
January 2022
Zombies on the brink: Evidence from Japan on the reversal of monetary policy effectiveness
Gee Hee Hong, Deniz Igan and Do Lee

986
January 2022
Platform-based business models and financial inclusion
Karen Croxson, Jon Frost, Leonardo Gambacorta and Tommaso Valletti

985
December 2021
Building benchmarks portfolios with decreasing carbon footprints
Eric Jondeau, Benoit Mojon and Luiz Awazu Pereira da Silva

984
December 2021
Credit constrained firms and government subsidies: evidence from a European Union program
Tirupam Goel, Péter Lang, Eszter Balogh, Ádám Banai, Martin Stancsics, Előd Takáts and Álmos Telegdy

983
November 2021
Losing traction? The real effects of monetary policy when interest rates are low
Rashad Ahmed, Claudio Borio, Piti Disyatat and Boris Hofmann

982
November 2021
Navigating by r*: safe or hazardous?
Claudio Borio

981
November 2021
Back to the future: intellectual challenges for monetary policy
Claudio Borio

980
November 2021
What does machine learning say about the drivers of inflation?
Emanuel Kohlscheen

979
November 2021
Dampening the financial accelerator? Direct lenders and monetary policy
Ryan Banerjee and Jose-Maria Serena

978
November 2021
Financial crises and political radicalization: How failing banks paved Hitler’s path to power
Sebastian Doerr, Stefan Gissler, José-Luis Peydró and Hans-Joachim Voth

977
November 2021
Does gender diversity in the workplace mitigate climate change?
Yener Altunbas, Leonardo Gambacorta, Alessio Reghezza and Giulio Velliscig

All volumes are available on our website www.bis.org.