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Abstract

We use stock exchange message data to quantify the negative aspect of high-frequency trad-
ing, known as “latency arbitrage.” The key difference between message data and widely-familiar
limit order book data is that message data contain attempts to trade or cancel that fail. This al-
lows the researcher to observe both winners and losers in a race, whereas in limit order book data
you cannot see the losers, so you cannot directly see the races. We find that latency-arbitrage
races are very frequent (about one per minute per symbol for FTSE 100 stocks), extremely fast
(the modal race lasts 5-10 millionths of a second), and account for a remarkably large portion
of overall trading volume (about 20%). Race participation is concentrated, with the top 6 firms
accounting for over 80% of all race wins and losses. The average race is worth just a small
amount (about half a price tick), but because of the large volumes the stakes add up. Our
main estimates suggest that races constitute roughly one-third of price impact and the effective
spread (key microstructure measures of the cost of liquidity), that latency arbitrage imposes
a roughly 0.5 basis point tax on trading, that market designs that eliminate latency arbitrage
would reduce the market’s cost of liquidity by 17%, and that the total sums at stake are on the
order of $5 billion per year in global equity markets alone.
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“The market is rigged.” – Michael Lewis, Flash Boys (Lewis, 2014)

“Widespread latency arbitrage is a myth.” – Bill Harts, CEO of the Modern Markets
Initiative, a high-frequency trading (HFT) lobbyist (Michaels, 2016)

1 Introduction

As recently as the 1990s and early 2000s, human beings on trading floors, pits and desks intermedi-
ated the large majority of financial market transactions. Now, financial markets across most major
asset classes—equities, futures, treasuries, currencies, options, etc.—are almost entirely electronic.
This transformation of financial markets from the human era to the modern electronic era has on
the whole brought clear, measurable improvements to various measures of the cost of trading and
liquidity, much as information technology has brought efficiencies to many other sectors of the econ-
omy. But this transformation has also brought considerable controversy, particularly around the
importance of speed in modern electronic markets.1

At the center of the controversy over speed is a phenomenon called “latency arbitrage”, also
known as “sniping” or “picking off” stale quotes. In plain English, a latency arbitrage is an arbitrage
opportunity that is sufficiently mechanical and obvious that capturing it is primarily a contest in
speed. For example, if the price of the S&P 500 futures contract changes by a large-enough amount
in Chicago, there is a race around the world to pick off stale quotes in every asset highly correlated
to the S&P 500 index: S&P 500 exchange traded funds (ETFs), other U.S. equity index futures
and ETFs, global equity index futures and ETFs, etc. Many other examples arise from other sets of
highly correlated assets: treasury bonds of slightly different durations, or in the cash market versus
the futures market; options and the underlying stock; ETFs and their largest component stocks;
currency triangles; commodities at different delivery dates; etc. Perhaps the simplest example is
if the exact same asset trades in many different venues. For example, in the U.S. stock market,
there are 16 different exchanges and 50+ alternative trading venues, all trading the same stocks—so
if the price of a stock changes by enough on one venue, there is a race to pick off stale quotes
on all the others. These races around the world involve microwave links between market centers,
trans-oceanic fiber-optic cables, putting trading algorithms onto hardware as opposed to software,
co-location rights and proprietary data feeds from exchanges, real estate adjacent to and even on the
rooftops of exchanges, and, perhaps most importantly, high-quality human capital. Just a decade
ago, the speed race was commonly measured in milliseconds (thousandths of a second); it is now
measured in microseconds (millionths) and even nanoseconds (billionths).2

1See MacKenzie (2021) for a history of the transformation of financial markets from the human-trading era to
the modern electronic era, with detailed documentation of many different aspects of the speed race and numerous
additional references. See Hendershott, Jones and Menkveld (2011), Angel, Harris and Spatt (2015), and Frazzini,
Israel and Moskowitz (2018) for key studies on the decline of trading costs. Most of the declines appear to be
concentrated in the early years of the transformation, specifically the mid to late ’90s and early to mid ’00s; see
especially Figure 20 of Angel, Harris and Spatt (2015) and Figure IA.8 of Hagströmer (2021). See Jones (2013), Biais
and Foucault (2014), O’Hara (2015), and Menkveld (2016) for surveys of the literature on high-frequency trading.

2Please see the working paper version of this paper, Aquilina, Budish and O’Neill (2020), for detailed references.
The latest salvo, reported April 1, 2021 in what at first seemed like an April Fools’ joke, is dedicated satellite links
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In theoretical terms, Budish, Cramton and Shim (2015, henceforth BCS) define latency arbitrage
as arbitrage rents from symmetrically-observable public information signals, as distinct from the
asymmetrically-observable private information signals that are at the heart of classic models of
market microstructure (Kyle, 1985; Glosten and Milgrom, 1985). We are all familiar with the idea
that if you know something the rest of the market doesn’t know, you can make money. BCS
showed that, in modern electronic markets, even information seen and understood by many market
participants essentially simultaneously creates arbitrage rents—because of the underlying market
design used by modern financial exchanges. The issue is the combination of (i) treating time as
continuous (infinitely divisible), and (ii) processing requests to trade serially (one-at-a-time). These
aspects of modern exchange design trace back to the era of human trading, which also used versions
of limit order books and price-time priority. But, to a computer, serial processing and time priority
mean something much more literal than to a human. Even in the logical extreme in which many
market participants observe a new piece of information at exactly the same time, and respond
with exactly the same technology, somebody gets a rent. BCS showed that these arbitrage rents
lead to a socially-wasteful arms race for speed, to be ever-so-slightly faster to react to new public
information, and harm investors, because the rents are like a tax on market liquidity—any firm
providing liquidity has to bear the cost of getting sniped. A subtle change to the market design can
eliminate the rents—preserving the useful functions of modern algorithmic trading while eliminating
latency arbitrage and the arms race.

Unfortunately, empirical evidence on the overall magnitude of the latency arbitrage problem
has been scarce. BCS provide an estimate for one specific trade, S&P 500 futures-ETF arbitrage,
and find that this specific trade is worth approximately $75 million per year. Aquilina et al. (2016)
focus on stale reference prices in UK dark pools and estimate potential profits of approximately
GBP 4.2 million per year. The shortcoming of the approach taken in these studies is that it is
unclear how to extrapolate from the profits in specific latency arbitrage trades that researchers
know how to measure to an overall sense of the magnitudes at stake. Another notable study is
Ding, Hanna and Hendershott (2014), who study the frequency and size of differences between
prices for the same symbol based on exchanges’ direct data feeds and the slower data feed in the
U.S. known as the consolidated tape, which is sometimes used to price trades in off-exchange trading
(i.e., dark pools). However, as the authors are careful to acknowledge, they do not observe which
of these within-symbol price differences are actually exploitable in practice—not all are because of
both noise in timestamps and physical limitations due to the speed at which information travels.
Wah (2016) and Dewhurst et al. (2019) study the frequency and size of differences between prices
for the same symbol across different U.S. equity exchanges. This is conceptually similar to and
faces the same challenge as Ding, Hanna and Hendershott (2014), in that neither study observes
which within-symbol price discrepancies are actually exploitable. For this reason, the magnitudes
obtained in Wah (2016) and Dewhurst et al. (2019) are best understood as upper bounds on the
within-symbol subset of latency arbitrage. Brogaard, Hendershott and Riordan (2014) and Baron
et al. (2019) compute a large set of HFT firms’ overall profits on specific exchanges (in NASDAQ

between market centers in North America, Europe, and Asia (Osipovich, 2021).
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data and Swedish data, respectively), and Baron et al. (2019) show that relatively faster HFTs earn
significantly greater profits, but neither paper provides an estimate for what portion of these firms’
trading profits arise due to latency arbitrage.3

In the absence of comprehensive empirical evidence, it is hard to know how important a problem
latency arbitrage is and hence what the benefits would be from market design reforms, such as
frequent batch auctions, that address it. If the magnitudes are sufficiently large then Michael
Lewis’s claim that the market is “rigged for the benefit of insiders”, cited at the beginning of the
paper, is reasonable if perhaps a bit conspiratorial. Conversely, if the magnitudes are sufficiently
small then the HFT lobby’s claim that latency arbitrage is a “myth”, also cited above, is reasonable if
perhaps a bit exaggerated. Notably, while numerous regulators around the world have investigated
HFT in some capacity (e.g., the FCA, ESMA, SEC, CFTC, U.S. Treasury, NY AG), and in a few
specific instances have been required to rule specifically on speed bump proposals designed to address
latency arbitrage, there is not a broad consensus on what if any regulatory rules or interventions
are appropriate.4

This paper uses a simple new kind of data and a simple new methodology to provide a compre-
hensive measure of latency arbitrage. The data are the “message data” from an exchange, as distinct
from widely familiar limit order book datasets such as exchange direct feeds or consolidated datasets
like TAQ (Trades and Quotes) or the SEC’s MIDAS dataset. Limit order book data provide the
complete play-by-play of one or multiple exchanges’ limit order books—every new limit order that
adds liquidity to the order book, every canceled order, every trade, etc.—often with ultra-precise
timestamps. But what is missing are the messages that do not affect the state of the order book,
because they fail.5

For example, if a market participant seeks to snipe a stale quote but fails—their immediate or
cancel (IOC) order is unable to execute immediately so it is instead just canceled—their message
never affects the state of the limit order book. Or, if a market participant seeks to cancel their
order, but fails—they are “too late to cancel”—then their message never affects the state of the limit
order book. But in both cases, there is an electronic record of the participant’s attempt to snipe,
or attempt to cancel. And, in both cases, there is an electronic record of the exchange’s response to
the failed message, notifying the participant that they were too late.

Our method relies on the simple insight that these failure messages are a direct empirical sig-
3Other papers with empirical evidence that relates to the benefits and costs of HFT include Menkveld (2013),

Brogaard et al. (2015), Foucault, Kozhan and Tham (2016), Shkilko and Sokolov (2020), Brogaard et al. (2018),
Malinova, Park and Riordan (2018), Weller (2018), Van Kervel and Menkveld (2019), Breckenfelder (2019), and
Indriawan, Pascual and Shkilko (2020).

4For regulatory investigations of HFT, please see Financial Conduct Authority (2018), Securities and Exchange
Commission (2010), European Securities Market Authority (2014), Commodity Futures Trading Commission (2015),
Joint Staff Report (2015), and New York Attorney General’s Office (2014). Specific speed bump proposals include
Cboe EDGA (2019), ICE Futures (2019), London Metals Exchange (2019), Chicago Stock Exchange (2016), and
Investors’ Exchange (2015).

5To our knowledge, ours is the first study (either academic, regulatory, or industry) to use exchange message data,
defined as the full back-and-forth message traffic between market participants and the exchange. There have been
several other studies of HFT with data that goes beyond TAQ or exchange direct feeds, such as participant identifiers
or additional information on order types, but none, to our knowledge, with the complete call-and-response data that
is key to our study.
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nature of speed-sensitive trading. If multiple participants are engaged in a speed race to snipe or
cancel stale quotes, then, essentially by definition, some will succeed and some will fail. The essence
of a race is that there are winners and losers—but conventional limit order book data doesn’t have
any record of the losers. This is why it has been so hard to measure latency arbitrage. You can’t
actually see the race in the available data.

We obtained from the London Stock Exchange (by a request under Section 165 of the Financial
Service and Markets Act) all message activity for all stocks in the FTSE 350 index for a 9 week period
in Fall 2015.6 The messages are time-stamped with accuracy to the microsecond (one-millionth of
a second), and as we will describe in detail, the timestamps are applied at the right location of
the exchange’s computer system for measuring speed races (the “outer wall”). Using this data, we
can directly measure the quantity of races, provide statistics on how long races take, how many
participants there are, the diversity and concentration of winners/losers, etc. And, by comparing
the price in the race to the prevailing market price a short time later, we can measure the economic
stakes, i.e., how much was it worth to win.

Our main results are as follows:

• Races are frequent. The average FTSE 100 symbol has 537 latency-arbitrage races per day.
That is about one race per minute per symbol.

• Races are fast. In the modal race, the winner beats the first loser by just 5-10 microseconds, or
0.000005 to 0.000010 seconds. In fact, due to small amounts of randomness in the exchange’s
computer systems, about 4% of the time the winner’s message actually arrives to the exchange
slightly later than the first loser’s message, but nevertheless gets processed first.

• A remarkably large proportion of daily trading volume is in races. For the FTSE 100 index,
about 22% of trading volume and 21% of trades are in races. Cochrane (2016) describes
that trading volume is “The Great Unsolved Problem of Financial Economics.”7 Our results
suggest that latency arbitrage is a meaningful piece of the puzzle. Indeed, in our most inclusive
sensitivity scenario, with an up-to 3 millisecond race window, races constitute 44% of all FTSE
100 trading volume.

• Races are worth just small amounts each. The average race is worth a bit more than half a
tick, which on average comes to about GBP 2. Even at the 90th percentile of races, the races
are worth just 3 ticks and about GBP 7. There is also a fair amount of noise: about 20% of
races have strictly negative profits one second ex-post.8

6The FTSE 350 is an index of the 350 highest capitalization stocks in the UK. It consists of the FTSE 100, which
are the 100 largest stocks, and roughly analogous to other countries’ large-cap stock indices (e.g., the S&P 500 index),
and the FTSE 250, which are the next 250 largest, and roughly analogous to other countries’ small-cap stock indices
(e.g., the Russell 2000 index).

7See also Hong and Stein (2007) who write that “Some of the most interesting empirical patterns in the stock
market are linked to volume,” and provide numerous additional references.

8Robert Mercer, former co-CEO of the quantitative trading firm Renaissance Technologies, described quantitative
investing as “We’re right 50.75 percent of the time ... you can make billions that way.” (Zuckerman, 2019, p. 272)
Similarly, high-frequency trading firm Virtu’s CEO Doug Cifu indicated that around 51-52% of their trades are
profitable (Mamudi, 2014). Our figures suggest that trading in races is closer to pure arbitrage than 51/49 but still
a healthy distance from 100/0.
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• Race participation is concentrated. The top firms disproportionately snipe. The top 3 firms
win about 55% of races, and also lose about 66% of races. For the top 6 firms, the figures are
82% and 87%. In addition to documenting concentration, we also find that the top 6 firms are
disproportionately aggressive in races, taking about 80% of liquidity in races while providing
about 42% of the liquidity that gets taken in races. Market participants outside the top 6
firms take about 20% of liquidity in races while providing about 58%. Thus, on net, much
race activity consists of firms in the top 6 taking liquidity from market participants outside
of the top 6. This taking is especially concentrated in a subset of 4 of the top 6 firms who
account for a disproportionate share of stale-quote sniping relative to liquidity provision.9

• In aggregate, these small races add up to a significant proportion of price impact and the
effective spread, key microstructure measures of the cost of liquidity. We augment the tra-
ditional bid-ask spread decomposition suggested by Glosten (1987), which is widely utilized
in the microstructure literature (e.g., Glosten and Harris, 1988; Hasbrouck, 1991a,b; Stoll,
2000; Hendershott, Jones and Menkveld, 2011), to separately incorporate price impact from
latency-arbitrage races and non-race trading. Price impact from trading in races is about 31%
of all price impact, and about 33% of the effective spread. This suggests latency arbitrage
deserves a place alongside traditional adverse selection as one of the primary components of
the cost of liquidity.10

• Market designs that eliminate latency arbitrage could meaningfully reduce the market’s cost
of liquidity. We find that the latency arbitrage tax, defined as the ratio of daily race profits
to daily trading volume, is 0.42 basis points if using total trading volume, and 0.53 basis
points if using only trading volume that takes place outside of races. The average value-
weighted effective spread paid in our data is just over 3 basis points. We show formally that
the ratio of the non-race latency arbitrage tax to the effective spread is the implied reduction
in the market’s cost of liquidity if latency arbitrage were eliminated; that is, if liquidity
providers did not have to bear the adverse selection costs associated with being sniped. This
implies that market designs that eliminate latency arbitrage, such as frequent batch auctions,
would reduce investors’ cost of liquidity by 17%. As a complementary analysis, we also show
that the liquidity provider’s realized spread in races is significantly negative whereas it is

9In the equilibria studied in BCS, fast trading firms provided all liquidity. Races consisted of some fast trading
firms trying to snipe and other fast trading firms trying to cancel. Here, in Appendix F, we show that there exists
another equilibrium of the BCS model in which both fast and slow firms provide liquidity. If a slow firm provides
liquidity and there is a race, they get sniped with probability one. The key insight is that the same bid-ask spread
that leaves fast trading firms indifferent between liquidity provision and stale-quote sniping (either way, earning 1/N
of the sniping prize, where N is the number of fast firms in the race) is the zero-profit spread for slow trading firms.

10There are many different strands of literature on the broader importance of liquidity for financial markets. One
strand explores the connection between the specific kinds of microstructure measures of liquidity we study and asset
pricing—good starting points include Amihud (2002), Pástor and Stambaugh (2003), and Acharya and Pedersen
(2005). This literature finds that liquidity is a factor in asset pricing returns, which in turn implies that reforms
that improve the market’s liquidity reduce required equilibrium returns and hence increase the level of asset prices.
Diamond and Dybvig (1983) and a large subsequent literature highlight the role of liquidity in reducing the likelihood
of bank runs. Shleifer and Vishny (1992, 1997, 2011), Brunnermeier and Pedersen (2009), Hanson, Kashyap and
Stein (2011), and many others have studied connections between liquidity and various aspects of financial stability.
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modestly positive in non-race liquidity provision. This pattern holds whether or not the
liquidity provider is one of the fastest firms. This is direct evidence that latency arbitrage
races impose a tax on liquidity provision.11

• These small races add up to a meaningful total “size of the prize” in the arms race. The
relationship between daily latency-arbitrage profits and daily volume is robust, with an R2 of
about 0.81, and indeed the latency-arbitrage tax on trading volume is roughly constant in our
data. Adding daily volatility to the relationship further improves the fit, albeit only slightly.
Using these relationships, we find that the annual sums at stake in latency arbitrage races
in the UK are about GBP 60 million. Extrapolating globally, our estimates suggest that the
annual sums at stake in latency-arbitrage races across global equity markets are on the order
of $5 billion per year.12

Discussion of Magnitudes Whether the numbers in our study seem big or small may depend
on the vantage point from which they are viewed. As is often the case in regulatory settings, the
detriment per transaction is quite small: the average race is for just half a tick, and a roughly 0.5
basis point tax on trading volume certainly does not sound alarming. But, because of the large
volumes, these small races and this seemingly small tax on trading add up to significant sums. A
17% reduction in the cost of liquidity is undeniably meaningful for large investors, and $5 billion
per year is, as they say, real money—especially taking into account the fact that our results only
include equities, and not other asset classes that trade on electronic limit order books such as
futures, treasuries, currencies, options, etc.

In this sense, our results are consistent with aspects of both the “myth” and “rigged” points of
view. The latency arbitrage tax does seem small enough that ordinary households need not worry
about it in the context of their retirement and savings decisions. Yet at the same time, flawed market
design drives a significant fraction of daily trading volume, significantly increases the trading costs
of large investors, and generates billions of dollars a year in profits for a small number of HFT firms
and other parties in the speed race, who then have significant incentive to preserve the status quo.

Organization of the Paper The remainder of this paper is organized as follows. Section 2 de-
scribes the message data in detail. Section 3 describes our methodology for detecting and measuring
latency-arbitrage races. Section 4 presents the main results. Section 5 discusses sensitivity analyses

11Market design research often involves a mix of economic theory, empirical evidence, and institutional detail
working together to help bring useful economic ideas from theory to practice. Roth (2002) has called this “The
Economist as Engineer.” Other examples from outside of finance include the design of matching markets (Roth,
2008), spectrum auctions (Milgrom, 2021), kidney exchange mechanisms (Roth, Sönmez and Ünver, 2004), school
choice procedures (Pathak, 2017), course allocation procedures (Budish et al., 2017), and accelerating Covid-19
vaccination (Castillo et al., 2021). See Kominers, Teytelboym and Crawford (2017) and Roth (2018) for recent
surveys.

12Over a variety of sensitivity analyses, with race windows ranging from 50 microseconds to 3 milliseconds, our
range of estimates is $2.3 - $8.4 billion per year in global equities markets. In 2020, which was a particularly high-
volume and high-volatility year due to the Covid-19 pandemic, our point estimate is $7 billion and our range is $3.1
- $11.4 billion. We discuss caveats for this extrapolation exercise in detail in Section 6.3.
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and robustness checks. Section 6 extrapolates to an annual size of the prize for the UK and global
equity markets. Section 7 concludes.

2 Message Data

The novel aspect of our data is that it includes all messages sent by participants to the exchange and
by the exchange back to participants. Importantly, this includes messages that inform a participant
that their request to trade or their request to cancel was not successful—such messages would not
leave any empirical trace in traditional limit order book data. Also fundamental to our empirical
procedure is the accuracy and location of the timestamps, which, as we will describe in detail below,
are applied at the “outer wall” of the exchange’s network and therefore represent the exact time
at which a market participant’s message reached the exchange. This timestamp location is ideal
for measuring races, even more so than matching engine timestamps, as it represents the point at
which messages are no longer under the control of market participants.13

We obtained these message data from the London Stock Exchange (LSE), following a request by
the FCA to the LSE under Section 165 of the Financial Services and Markets Act. Our data cover
the 44 trading days from Aug 17 – Oct 16 2015, for all stocks in the FTSE 350 index. We drop
one day (Sept 7th) which had a small amount of corrupted data. This leaves us with 43 trading
days and about 15,000 symbol-day pairs. In total, our data comprise roughly 2.2 billion messages,
or about 150,000 messages per symbol-day.

2.1 Overview of a Modern Stock Exchange

The continuous limit order book is at heart a simple protocol.14 We guess that most undergraduate
computer science students could code one up after a semester or two of training. Yet, modern
electronic exchanges are complex feats of engineering. The engineering challenge is not the market
design per se, but rather to process large and time-varying quantities of messages with extremely
low latency and essentially zero system downtime.

In this sub-section we provide a stylized description of a modern electronic exchange, illustrated
in Figure 2.1. We do this both because it is a necessary input for understanding our data, and

13We emphasize though that our methodology could be replicated in other contexts using matching engine times-
tamps, so long as the researcher has the full set of messages including failed cancels and failed IOCs and the timestamps
are sufficiently precise. We think of the full message activity as a “must have” for the method and the specific location
of the timestamps as more of a “nice to have.”

14We assume most readers are already familiar with the basics of a limit order book market but here is a quick
refresher. The basic building block is a limit order, which consists of a symbol, price, quantity and direction. Market
participants interact with the exchange by sending and canceling limit orders, and various permutations thereof (e.g.,
immediate-or-cancel orders, which are limit orders combined with the instruction to either fill the order immediately
or to instead cancel it). Trades occur whenever the exchange receives a new order to buy at a price greater than or
equal to one or more outstanding orders to sell, or a new order to sell at a price less than or equal to one or more
outstanding orders to buy. If this happens, the new order executes at the price of the outstanding order or orders,
executing up to the new order’s quantity, with the rest remaining outstanding. If there are multiple outstanding
orders the new order could execute against, ties are broken based first on price (i.e., the highest offer to buy or lowest
offer to sell) and then based on time (i.e., which outstanding order has been outstanding for the most time). Market
participants may send new limit orders, or cancel or modify outstanding limit orders, at any moment in time. The
exchange processes all of these requests, called “messages”, continuously, one-at-a-time in order of receipt.
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Figure 2.1: Exchange Schematic
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Notes. Please see the text of Section 2.1 for a discussion of the overall system architecture depicted in this figure.
Green arrows depict the flow of inbound messages and red arrows depict the flow of outbound messages. Please
see the text of Section 2.2 for discussion of the optical traffic analysis point (TAP) where our message data are
recorded and timestamped (depicted in faded gray in the figure).

because we expect it will be useful per se to both academic researchers and regulators who seek a
better understanding of the detailed plumbing of modern financial markets.

The core of a modern exchange, and likely what most people think of as the exchange itself, is
the matching engine. As the name suggests, this is where orders are matched and trades generated.
A bit more fully, one should think of the matching engine as the part of the exchange architecture
that executes the limit order book protocol. For each symbol, it processes messages serially in
order of receipt and, for each message, both economically processes the message and disseminates
relevant information about the outcome of the message. For example, if the message is a new limit
order, the matching engine will determine whether it can execute (“match”) the order against one or
more outstanding orders, or whether it should add the order to the book. It will then disseminate
information back to the participant about whether their order posted, executed, or both; to any
counterparties if the order executed; and to the public market data feeds about the updated state
of the order book.

However, the matching engine is far from the only component of a modern exchange, and market
participants do not even interact with the matching engine directly, in either direction. Rather,
market participants send messages to the exchange via what are known as gateways, which verify
the integrity of messages, perform risk checks, and translate messages from the participant interface
language into a language optimized for the matching engine.15 Gateways in turn pass messages on
to a sequencer, which in essence translates input from many parallel gateways into, for each symbol,

15There intrinsically is a small amount of randomness in this piece of the systems architecture, because how long
a particular gateway takes to process a particular message is stochastic. This randomness will manifest in our data
below in Figure 4.1. We did not find any evidence in our data of firms attempting to exploit this randomness, e.g.,
by sending the same message to multiple gateways via multiple accounts. Our best guess why is this behavior would
be easy for the LSE to detect.
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a single sequence of messages that is passed on to the matching engine. The matching engine, once
it does its work, transmits information back to a distribution server, which in turn passes private
messages back to participants via the gateways, and public information to the market as a whole
via the market data processor.

A fuller description of each of these components is in the working paper version of this paper
(Aquilina, Budish and O’Neill, 2020). Here, we briefly emphasize the overall rationale for this
system architecture. The matching engine must, given the limit order book market design, process
all messages that relate to a given symbol serially, in order of receipt. This serial processing is
therefore a potential computational bottleneck. For a stark example, if a million messages arrived
at precisely the same moment for the same symbol, the matching engine would have to process these
million messages one-at-a-time.16 Therefore, it is critical for latency to take as much of the work as
possible “off of the shoulders” of the matching engine, and instead put it on to other components of
the system.

2.2 Where and How Messages are Recorded and Timestamped

As just described, participants send messages to the exchange, and receive messages from the ex-
change, via gateways. Between the participants’ own systems and the exchange gateways is a
firewall, through which all messages pass, in both directions. Our data are recorded and times-
tamped on the external side of this firewall using an optical TAP (traffic analysis point); please
refer to Figure 2.1. This is the ideal timestamping location for measuring race activity because
it records the time at which the participant’s message reaches the “outer wall” of the exchange’s
system. Participant speed investments affect the speed with which their messages reach this outer
wall, but once a message reaches this point it is out of the participant’s hands and in the exchange’s
hands. Therefore, the outer wall is the right way to think about what is the “finish line” in a race.

Messages are timestamped to 100 nanosecond (0.1 microsecond or 0.0000001 second) precision,
at this point of capture, by a hardware clock. Importantly, all messages are timestamped by a single
clock. Therefore, while the clock may drift slightly over the course of the trading day, the relative
timestamps of different messages in a race can be compared with extreme accuracy. Based on our
discussions with the LSE we are comfortable treating our data as accurate to the microsecond.

Please note that the optical TAP timestamps we observe in our data are not seen by market
participants.

2.3 Translating Message Data into Market Events

Any action by a market participant generates at least two messages: one on the way into the
exchange, and one or more on the way out of the exchange. For example, a new limit order that
both trades against a resting order and posts the remainder to the book will have a single inbound
message with the new order, an outbound message to the user whose order was passively executed,

16Computational backlogs associated with such bursts of messages were thought to play a role in the U.S. Treasury
Market Flash Crash of October 15, 2014. See Joint Staff Report (2015).
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and an outbound message to the user who sent the new limit order reporting both the quantity/price
traded and the quantity/price that remains and is posted to the book.

An important piece of our code is to classify sets of such messages into what we call market
events—for instance, a “new order - executed in full” event, or a “resting order - passive execution”
event. In this section we first describe the contents of inbound and outbound messages, and then
describe how we classify messages into market events. For more complete details, please see the
data appendix.

2.3.1 Inbound Messages

Each inbound message contains the following kinds of information:

• Identifiers. These fields contain the symbol and date the message is associated with; the
UserID of the participant who submitted the message; and a participant-supplied ID for the
message. Additionally, if the message is a cancel or modification of an existing order, then
the message contains identifying information for the existing order.

• Message Type Information. Each message indicates what type of message it is, economically:
for instance, a new limit order, a cancel, a cancel-replace, or an immediate-or-cancel order.

• Price/Quantity/Side Information. Last, if a message is a new order or a modification of an
existing order, it will of course indicate the price, quantity, and direction (buy/sell).

2.3.2 Outbound Messages

Each outbound message contains the following kinds of information:

• Identifiers. These fields typically contain all of the same information as the inbound message,
with the addition, for new orders, of a matching-engine-supplied OrderID. That is, for new
orders, on the way in they just have the participant-supplied ID, but on the way out they
contain both the participant-supplied ID and the matching-engine-supplied ID.

• Message Outcome Information. Outbound messages contain several fields that provide infor-
mation on the outcome of an inbound message just submitted. One field reports on what type
of activity the matching engine just executed: for instance, a post to the book, a trade, or a
failed immediate-or-cancel request. A second field indicates the current status of the order:
the main status options are new, filled, partially filled, canceled, and expired. A third field
specifically allows us to see if a cancel request failed; failed cancels require a special treatment
because the order the user tried to cancel no longer exists in the matching engine’s state.

• Trade Execution Reports. If a new order results in a trade, outbound messages will be sent to
both parties in the trade with trade execution reports detailing the price, quantity, and side.
If an order matches with multiple counterparties or at multiple prices there will be a separate
pair of outbound messages for each such match.
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Table 2.1: Classifying Inbound and Outbound Messages Into Events

Event Name Inbound Message Type Outbound Message Type

New order posted to book New Order (Limit) New Order Accepted

New order aggressively executed in
full

New Order (Limit) Full Fill (Aggressive)
New Order (IOC) Partial Fill (Aggressive) - multiple

such orders that sum to the full quan-
tity

New order aggressively executed in
part

New Order (Limit) Partial Fill (Aggressive) - one or more
that sum to less than the full quantity

New Order (IOC) Order Expire - for IOCs, not Limits
which will post the remainder

Order passively executed in part - Partial Fill (Passive)

Order passively executed in full - Full Fill (Passive)

Cancel accepted Cancel Cancel Accept

Failed cancel Cancel Cancel Reject

Failed IOC New Order (IOC) Order Expire

Notes. Please see the text of Section 2.3.1 for a description of the contents of inbound messages, Section 2.3.2 for
a description of the contents of outbound messages, and Section 2.3.3 for a description of event classification.

• Price/Quantity/Side Status Information. Any outbound message that relates to an order
that has not yet been fully executed or canceled will also report the order’s price, side, and
remaining quantity.

2.3.3 Event Classification

Combinations of inbound and outbound messages indicate market events, as listed in Table 2.1. In
order to perform this classification, our code loops through all messages sequentially, and at each
inbound message loops ahead to find all related outbound messages (using the information from
both the participant-supplied and matching-engine supplied identifiers), to classify events as listed
in the table. For complete details of this key piece of code please see the data appendix.

For all events other than passive fills, we define the time of the event based on the time of the
inbound message timestamp; this timestamp is what will be relevant for race detection. For passive
fills, we define the time of the event based on the time of the outbound message; this information
is not related to race detection per se but will help us maintain the order book as discussed next.

2.3.4 Maintaining the Order Book

Observe that neither inbound nor outbound messages contain the state of the limit order book—i.e.,
the prices and quantities at the best bid and offer, and at other levels of the order book away from
the best bid and offer. This is because conveying the state of the order book in each message, while
convenient, would mean larger and hence slower messages. We thus have to build and maintain the
state of the limit order book ourselves.
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We maintain the state of the limit order book, for each symbol-date, on outbound messages. We
use outbound messages rather than inbounds because outbound messages report what the matching
engine actually did. Whenever we compute race statistics that rely on the order book, we utilize
the state of the order book as of the first inbound message in the race. There are a few technical
details related to maintaining the order book with message data that we discuss in more detail in
the data appendix, along with discussion of robustness checks.

3 Defining and Measuring Latency Arbitrage Races

The theory in BCS,17 and a modest extension we include as Appendix F.1, suggest that the empirical
signature of a latency-arbitrage race in response to public information, as distinct from Kyle-Glosten-
Milgrom-style informed trading based on private information, is:

1. Multiple market participants acting on the same symbol, price, and side

2. Either a mix of take attempts and cancel attempts (equilibrium emphasized in BCS), or all
take attempts (if the liquidity provider is slow, see Appendix F.1)

3. Some succeed, some fail

4. All at the “same time.”

Of these, characteristics #1-#3 are relatively straightforward to define and implement. We structure
the analysis so that our baseline is likely to be inclusive of all races and the alternatives filter down
to more-conservative subsets of races.

Characteristic #4 is conceptually more difficult. In a theory model there is such a thing as the
“same time” but in data no two things happen at exactly the same time. We structure the analysis
so that the baseline method is conservative and then consider a wide range of sensitivity analyses.

Note that throughout, when we describe either actions or timestamps, we refer to the inbound
messages and timestamps, enhanced with the event classification information described above in
Section 2.3 using subsequent outbound messages. For example, if we refer to a failed IOC, we are
referring to the inbound IOC message and its timestamp, having inferred from subsequent outbound
messages that the IOC failed to execute.

3.1 Characteristic #1: Multiple market participants act on the same symbol,
price, and side

The “same symbol, price, and side” aspect is straightforward. Every limit order message (including
IOC’s, etc.) includes the symbol, price, and side of the order. We interpret a limit or IOC order to
buy at p as relevant to any potential race at price p or lower, and similarly a limit or IOC order to
sell at p as relevant to any race at price p or higher. Cancel messages can be linked to the price and

17Please see Section 4.1 of the working paper version of this paper for a brief review of the relevant theory.
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side information of the order that the message is attempting to cancel. We count a cancel order of
a quote at price p as relevant to races at price p only.18

Our baseline definition of “multiple market participants” is 2+ unique UserIDs. Note that a
particular trading firm might use different UserIDs for different trading desks. Our approach treats
distinct trading desks within the same firm as potentially distinct competitors in a latency-sensitive
trading opportunity.

In sensitivity analyses, we also consider larger minimum requirements for the number of partic-
ipants in the race, especially 3+, and requiring that the FirmIDs are unique, not just UserIDs.

3.2 Characteristic #2: Either a mix of take and cancel attempts, or all take
attempts

For our baseline, we require that a race consist of either a mix of take and cancel attempts (i.e., 1+
aggressors and 1+ cancelers) or all take attempts (i.e., 2+ aggressors and 0 cancelers).

In sensitivity analyses, we also consider requiring both an aggressor and a canceler (that is,
excluding races with 2+ aggressors and 0 cancelers), and requiring 2+ aggressors.

3.3 Characteristic #3: Some succeed, some fail

For our baseline, we require 1+ success and 1+ fail, defined as follows.

Fails. A cancel attempt is a fail if the matching engine responds with a too-late-to-cancel error
message. An immediate-or-cancel limit order is a fail if the matching engine responds with an
“expired” message, indicating that the IOC order was canceled because it was unable to execute
immediately. Note that an IOC order that trades any positive quantity will not count as a fail, even
if the traded quantity is significantly less than the desired quantity.

In our baseline, we count a limit order as a fail in a race at price p if it was priced aggressively
with respect to p (i.e., is an order to buy at ≥ p or an order to sell at ≤ p) but obtains zero quantity
at p. While most sniping attempts in our data are IOCs (over 90% in the baseline race analysis), in
a race it can make sense to use limit orders instead of IOCs for two reasons. First, by using a limit
order instead of an IOC, the participant posts any quantity he does not execute to the book, which
in principle may yield advantageous queue position in the post-race order book. Second, at the LSE,
there was a small (GBP 0.01 per message) fee advantage to using plain-vanilla limit orders instead
of IOC orders. This difference means that, technically, IOCs are often dominated by “synthetic
IOCs” created by submitting a plain-vanilla limit order followed by a cancellation request.19

18For example, if we observed an IOC to buy at 20 and a cancel of an ask at 21 at the same time, we would not
want to count that as a race at 20. Whereas, if we observed an IOC to buy at 21 and a cancel of an ask at 20 at the
same time, we potentially would want to count that as a race at 20.

19At the time of our data and as of this writing, the LSE assessed an “Order management charge” of GBP 0.01
for non-persistent orders such as IOCs, whereas there was no order management charge for plain-vanilla limit orders
(London Stock Exchange Group, 2015). An exception is if the trader has triggered the “High usage surcharge” by
having an order-to-trade ratio of at least 500:1; such traders must pay a fee of GBP 0.05 per message, so the synthetic
IOC would be nearly twice as expensive as an IOC (London Stock Exchange Group, 2015). Our understanding is
that triggering this surcharge is rare.
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In sensitivity analysis, we consider an alternative in which only failed IOCs and failed cancel
attempts count as fails, and plain-vanilla limit orders cannot count as fails. This sensitivity reflects
the possibility that a limit order that obtains zero quantity at p and instead posts to the book
may represent post-race liquidity provision reflecting the post-race value, as opposed to a failed
attempt to snipe. We will emphasize this alternative, which we refer to as “strict fail”, especially
in sensitivity analyses with longer time horizons where we are more concerned about the post-race
liquidity provision issue.

Successes. For our baseline, we consider an IOC or a limit order to be successful in a race at
price p if it is priced aggressively with respect to p (i.e., is an order to buy at ≥ p or an order to sell
at ≤ p) and obtains positive quantity at a price p or better (i.e., it buys positive quantity at a price
≤ p or sells positive quantity at a price of ≥ p). We consider a cancel to be successful in a race at
price p if the order being canceled is at price p and the cancel receives a cancel-accept response.

We note that this requirement is inclusive in two senses. First, it counts an IOC or a limit order
as successful even if it trades only part of its desired quantity. However, the fact that an IOC or
limit order trades only part of its desired quantity, in conjunction with the requirement that some
other message fails—i.e., some other participant tried to cancel and received a too-late-to-cancel
message, or some other participant tried to aggress at p but executed zero quantity—will typically
mean that the full quantity available at price level p was contested and there were genuine winners
and losers of the race. The possible exception is a successful IOC or limit for a subset of the available
liquidity at price p, in conjunction with a failed cancel for part of that same subset of the available
liquidity at price p.

Second, it counts a cancel as a success even if it cancels just a small quantity relative to the full
quantity available at price level p. However, if the only success is a cancel, then since we also require
a fail and 1+ aggressor, this implies that the full quantity available at price level p was contested
and there were genuine winners and losers of the race.

In sensitivity analysis, we also consider requiring proof that 100% of depth at the race price is
successfully cleared in the race. This can be satisfied in three ways: observing a failed IOC at the
race price p; observing a limit order at the race price p that posts to the book at least in part; or
observing quantity traded plus quantity canceled of 100% of the displayed depth at the start of the
race.

3.4 Characteristic #4: all at the “same time.”

Of the 4 characteristics, this last one is conceptually the hardest. In a theory model there can
be a precise distinction between simultaneous and non-simultaneous actions, but in data no two
things happen at exactly the same time if time is measured precisely enough. Indeed, even if a
regulatory authority or exchange intends for market participants to receive a piece of information
at exactly the same time, and even if the market participants have exactly the same technology and
choose exactly the same response, there will be small measured differences in when they receive the
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information, and when they respond to the information, if time is measured finely enough.20

We consider two different approaches to this issue.

Baseline Method: Information Horizon. Our baseline approach, which we call the Informa-
tion Horizon method, requires that the difference in inbound message timestamps between the first
and second participants in a race is small enough that we are essentially certain that the second par-
ticipant is not reacting to the action of the first participant. Concretely, we measure the information
horizon as:

Information Horizon = Actual Observed Latency : M1 Inbound→M1 Outbound

+Minimum Observed Reaction T ime : M1 Outbound→M2 Inbound

where: M1 refers to the first message in a race; M2 refers to the second message in the race;
Actual Observed Latency M1 Inbound→ M1 Outbound refers to the actual measured time between
M1’s inbound message’s timestamp and its outbound message’s timestamp, and Minimum Observed
Reaction Time M1 Outbound→ M2 Inbound refers to the minimum time it takes a state-of-the-art
high-frequency trader to respond to a matching engine update, as measured from the outbound
message’s timestamp to the response’s inbound message timestamp.

Given this formula, if M2’s inbound message has a timestamp that follows M1’s inbound message
by strictly less than the information horizon, then the sender of M2 logically cannot be responding
to information about the outcome of M1. Whereas, if M2’s inbound message has a timestamp that
follows M1 by more than the information horizon, it is logically possible that M2 is a response to
M1. In this method, such a response would not be interpreted as the same time.

In our data we compute the Minimum Observed Reaction Time as 29 microseconds,21 and the
median Actual Observed Latency is about 150 microseconds (90th percentile: about 300 microsec-
onds). We provide further details in Appendix A. We also decided, in consultation with FCA
supervisors, to place an upper bound on the information horizon of 500 microseconds. That is, if
the sum of the observed matching engine latency and the minimum observed reaction time exceeds
500 microseconds, we use 500 microseconds as the race horizon instead. The reason for this upper
bound is that our assumption that M1 and M2 are responses to the same (or essentially same) in-
formation set becomes strained if the observed matching engine latency is sufficiently long, because
even though the sender of M2 would not be able to see M1, the sender of M2 might have seen new
data from other symbols or from other exchanges. We would expect all of these parameters to be
potentially different for different exchanges or different periods in time.

20Try to blink your left eye and right eye at exactly the same time, measured to the nanosecond. You will fail!
Computers are better at this sort of task than humans are, but even they are not perfect. See, e.g., MacKenzie
(2019).

21This 29 microseconds reflects a combination of the minimum time it takes an HFT to react to a privately-received
update from an outbound message, plus the difference in data speed between a private message sent to a particular
market participant (M1 outbound) and data obtained from the LSE’s proprietary data feed, which is different from
our message data. In fact, our analysis suggests that the 29 microseconds is comprised of about 17 microseconds
from the first component and about 12 microseconds from the second component, as we describe in Appendix A.
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Alternative Method: Sensitivity Analysis. Our second approach to defining what it means
for multiple participants to act at the “same time” is more agnostic. For a range of choices of T ,
we define “same time” as no further apart than T . Clearly, if we choose T to be the finest amount
of time observable in our data (100 nanoseconds) there will be essentially no races, whereas if we
choose T to be too long the results will be meaningless. We will conduct this analysis for T ranging
from 50 microseconds to 3 milliseconds. A summary of the results are presented in Section 5.1 with
full details in Appendix C.1. What T ’s would be of interest we would expect to evolve over time as
technology evolves.

A Note on Code Structure and Overlapping Races. If we observe a race at a price level of
p starting at time t, we do not look for other races at p until at least either the information horizon
or T amount of time has passed (in the baseline and sensitivities, respectively). That is, we do not
allow for “overlapping” races at a single price level.

Relatedly, in the event of a latency-arbitrage race that occurs across multiple levels of the book
(e.g., in the event of a large change in public information about the value of an asset), we structure
our code so that it identifies races that satisfies the four characteristics described above at one price
level at a time. That is, if p and p′ are separate price levels in a multi-level race, our code will detect
two single-level races, one at p, starting at say time t, and one at p′ starting at say time t′.

4 Main Results

This section presents all of our main results under the baseline specification as described in Section 3.
In the following section (Section 5) we will discuss various alternative specifications and sensitivity
analyses. Section 4.1 presents results on race frequency, duration, and trading volume. Section
4.2 presents results on race participation patterns. Section 4.3 presents results on profits per race.
Section 4.4 presents results on aggregate profits and the latency arbitrage tax. Section 4.5 presents
two spread decompositions that explore what proportion of the cost of liquidity is the latency
arbitrage component versus the traditional adverse selection component.

4.1 Frequency and Duration of Latency-Arbitrage Races

Races Per Day

The average FTSE 100 symbol in our sample has 537 races per day. Over an 8.5 hour trading day,
this corresponds to a race roughly once per minute per symbol. There are fewer races for FTSE 250
symbols: the average FTSE 250 symbol has 70 races, or roughly one per 7 minutes. Also, while all
FTSE 100 symbols have daily race activity (the minimum is 76 races per day), the bottom quartile
of FTSE 250 symbols have zero or hardly any race activity. See Table 4.1, Panel A. Across all
symbols in our data, there are on average about 71,000 races per day, of which 54,000 are FTSE
100 and 17,000 are FTSE 250. This total number of races per day ranges from a min of 48,000 to
a max of 144,000. See Table 4.1, Panel B.
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Table 4.1: Races Per Day

Panel A: Number of races per day across symbols

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 537.24 473.26 132 184 240 352 619 1,134 2,067
FTSE 250 70.05 93.53 0 0 2 44 104 166 404
Full Sample 206.03 340.73 0 1 14 87 239 511 1,814

Panel B: Number of races per day across dates

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 54,261 15,660 35,174 40,490 44,036 51,361 60,632 70,588 117,370
FTSE 250 17,232 3,856 11,536 13,444 14,800 16,125 19,404 23,326 26,613
Full Sample 71,493 19,223 48,175 54,264 58,698 64,516 79,429 93,914 143,752

Notes. Please see Section 3 for a detailed description of the baseline race-detection criteria and Section 2 for details
of the message data including how we classify inbound messages and how we maintain the order book. This table
reports the distribution of the number of races detected at the symbol level (Panel A) and at the date level (Panel
B). The symbol level averages across all dates for each symbol. The date level sums across all symbols for each
date.

Figure 4.1: Duration of Races
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Notes. For each race detected by our baseline method we compute the difference in message timestamps between
the first inbound message in the race that is a success and the first inbound message in the race that is a fail
(success and fail are defined in Section 3.3). Denote these messages S1 and F1, respectively. The figure plots the
distribution of F1’s timestamp minus S1’s timestamp in microseconds, that is, by how long did the first successful
message in the race beat the first failed message. The histogram has a bin size of 5 microseconds.

Race Durations

The average race duration in our data, as measured by the time from the first success message to
the first fail message, is 79 microseconds, or 0.000079 seconds. Figure 4.1 depicts the distribution
of race durations. The mode of the distribution is between 5-10 microseconds, and the median is
46 microseconds. There is then steady mass in the distribution up until about 150 microseconds,
the 90th percentile is about 200 microseconds, and there is a tail up to our truncation point of 500
microseconds. Appendix Table B.1 provides additional details on the distribution.
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Sometimes the “Wrong” Message Wins

Interestingly, in Figure 4.1, there is a small amount of mass to the left of zero; that is, the first fail
message arrives before the first success message. Recall from Section 2.2 that our timestamps are
obtained at the outer wall of the exchange’s system. It is therefore possible, if two race messages
arrive to different gateways at nearly the same time, that they reach the matching engine in a
different order from the order at which they reached the exchange’s outer perimeter. Thus, the
“wrong” message wins the race about 4% of the time in our data.

We do not think the fact that the wrong message wins is necessarily that economically interesting;
it is akin to one shopper choosing a slightly faster queue than another shopper at the supermarket.
Rather, we think of the result as reinforcing just how fast races are: they are so fast that randomness
in exchange gateway processing is sometimes the difference between winning and losing.22

Significant Trading Volume in Races

For the average FTSE 100 symbol, races take up a total of 0.043 seconds per day, or about 0.0001%
of the trading day. During this tiny slice of the trading day, an average of 21% of FTSE 100 trades
take place corresponding to 22% of FTSE 100 daily trading volume (value-weighted).23 For the
average FTSE 250 symbol, races take up about 0.00002% of the trading day. During this time 17%
of trades take place constituting 17% of daily trading volume. Please see Table 4.2.

4.2 Race Participation

Number of Participants

Table 4.3, Panel A provides data on the number of participants in races. Since the information
horizon varies across races depending on the matching engine’s processing lag, to keep the measure
consistent across races we report the distribution for varying amounts of time T after the start
of the race, ranging from 50 microseconds to 1 millisecond. Note that 50 microseconds is shorter
than the information horizon for nearly all races and 1 millisecond is longer than the information
horizon for all races (which is capped at 500 microseconds). Focusing on the 500 microseconds row,
the average race has about 3.3 participants; the median has 3 participants; the 25th percentile has
2 participants; and there is a right tail with a 99th percentile of 9 participants and a max of 23
participants.

Comparing the 500 microseconds row to the 50 and 100 microseconds rows, we see that at shorter
time horizons there are fewer participants. This is consistent with heterogeneity in speed, whether
across firms or across different kinds of public signals.

22Please also see a recent essay of MacKenzie (2019) on various aspects of randomness in high-frequency trading
races.

23We compute daily trading volume in our data by obtaining all outbound messages during regular hours that are
aggressive fills — that is, that report a trade execution to a just-received inbound message that aggressed against a
previous resting order. In the event classification table (Table 2.1), these are the events called “New order aggressively
executed in full” and “New order aggressively executed in part.” We count just the aggressive side of the trade to
prevent double counting.
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Table 4.2: Volume and Trades in Races

Panel A: Percentage of volume (value-weighted) in races across dates

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 22.15 1.90 17.84 20.09 21.15 22.02 23.11 24.85 26.08
FTSE 250 16.90 1.78 11.58 14.73 15.71 17.07 18.19 19.21 20.13
Full Sample 21.46 1.75 17.63 19.70 20.50 21.41 22.53 24.02 25.02

Panel B: Percentage of number of trades in races across dates

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 20.69 1.59 16.91 18.62 19.83 20.80 21.58 22.93 23.51
FTSE 250 16.96 1.50 13.29 15.24 16.01 17.01 18.07 18.91 19.31
Full Sample 19.70 1.42 16.07 18.04 18.94 19.65 20.68 21.73 22.22

Notes. For each symbol-date in our dataset, we obtain all outbound messages in regular-hours trading that are
aggressive fills (see fn. 23 for more detail). We then obtain the inbound message associated with each such
outbound aggressive fill, and check whether the inbound is part of a race (as defined in Section 3). For Panel A,
for each date, we then sum the quantity in GBP associated with all aggressive fills that are part of races, divided
by the quantity in GBP associated with all aggressive fills, whether or not in race. For Panel B, for each date, we
then sum the number of trades associated with all aggressive fills that are part of races, divided by the number of
trades associated with all aggressive fills, whether or not in race.

Number of Takes and Cancels

Panels B and C of Table 4.3 provide the distribution of the number of take messages and cancel
messages in races, respectively. Focusing initially on the 500 microseconds row, we see that the 3.27
participants per race send an average of 3.47 messages of which 3.07 are takes and 0.40 are cancels.
These figures tell us that in most races most of the activity is aggressive. This is consistent with
equilibria of the BCS model in which the fastest traders primarily engage in sniping as opposed to
liquidity provision, and substantial liquidity is provided by participants who are not the very fastest
participants in the market (see Appendix F.1 for theoretical discussion of these equilibria). We will
return to this pattern shortly.

Of these 3.07 take attempts, the large majority, 2.81, are immediate-or-cancel orders (IOCs)
that are marketable at the race price, with the remainder, 0.25, being ordinary limit orders that are
marketable at the race price. Please see Appendix Table B.5 for this and additional participation
data.

Pattern of Winners and Losers

Figure 4.2 displays data on the pattern of winners and losers across races. The figure is sorted by
firm based on the proportion of races in which they are the first successful message (S1). As can be
seen, the top 3 firms are each either S1 or F1 (i.e., the first fail message) in over one-third of races,
with firm 1 winning 21% of races while losing another 18% of races, firm 2 winning 18% of races
while losing 27%, and firm 3 winning 15% of races while losing 19%. The next 3 firms then each
win about another 9% of races each, and then there are another 4 firms that win between 2-4% of
races each.

It is notable that there is clear concentration of winners, with the top 3 firms winning 54% of
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Table 4.3: Number of Participants and Messages in Races

Panel A: Number of participants

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

Participants within 50µs 1.77 0.86 1 1 1 1 2 2 3 5 12
Participants within 100µs 2.08 0.97 1 1 1 1 2 2 3 5 13
Participants within 200µs 2.56 1.13 1 1 2 2 2 3 4 6 16
Participants within 500µs 3.27 1.56 2 2 2 2 3 4 5 9 23
Participants within 1000µs 3.64 1.94 2 2 2 2 3 4 6 11 26

Panel B: Number of take messages

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

Takes within 50µs 1.66 0.97 0 0 1 1 1 2 3 5 14
Takes within 100µs 1.93 1.08 0 0 1 1 2 2 3 5 15
Takes within 200µs 2.37 1.30 0 1 1 1 2 3 4 7 17
Takes within 500µs 3.07 1.78 1 1 1 2 3 4 5 9 29
Takes within 1000µs 3.45 2.19 1 1 1 2 3 4 6 11 40

Panel C: Number of cancel messages

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

Cancels within 50µs 0.17 0.41 0 0 0 0 0 0 1 1 8
Cancels within 100µs 0.22 0.47 0 0 0 0 0 0 1 2 8
Cancels within 200µs 0.30 0.56 0 0 0 0 0 1 1 2 12
Cancels within 500µs 0.40 0.70 0 0 0 0 0 1 1 3 14
Cancels within 1000µs 0.44 0.78 0 0 0 0 0 1 1 3 21

Notes. For each race detected by our baseline method we obtain the timestamp of the first inbound message and the
price and side of the race. We then use the message data to obtain all messages within the next T microseconds, for
different values of T as depicted in the table, that are race relevant, defined as either new orders that are aggressive
at the race price and side or cancels at exactly the race price and side. Panel A depicts the distribution of the
number of participants with at least one race-relevant message. Panel B depicts the distribution of the number of
race-relevant take messages and Panel C depicts the distribution of race-relevant cancel messages.

races, and the top 6 firms winning 82% of races. Yet, these same firms who win a lot of races also
lose a lot of races. The top 3 winning firms lose 63% of races, and the top 6 lose 85%. These
patterns are consistent with the BCS model in two ways. First, as the model suggests, fast trading
firms “sometimes win, sometimes lose,” and indeed in any particular race who wins may be a bit
random. Second, as the model suggests, firms not at the cutting edge of speed should essentially
never be competitive in a race. Put differently, these facts are consistent with the idea that there
is an arms race for speed, and that, at least in UK equity markets circa 2015, there are a relatively
small number of firms competitive in this race.24

Pattern of Takes, Cancels, and Liquidity Provision

Figure 4.3 Panel A shows that about 90% of races are won with a take (i.e., aggressive order or
snipe attempt) with the remaining 10% won by a cancel. This makes sense in light of the data in
Table 4.3 which showed that most of the message activity in races is take attempts as opposed to
cancel attempts.

24Around this time, a U.S. high-frequency trading CEO described to one of the authors of this study that, in the
U.S., there were 7 firms in what he called the “lead lap” of the speed race.
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Figure 4.2: Percentage of 1st Successful and 1st Failed Messages by Firm (FTSE 100
Races)

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Others
Firms, Ranked by Share of Races Won

P
er

ce
nt

ag
e 

S
ha

re
 o

f R
ac

es
 W

on
, L

os
t

Share of Races Won (1st Success)
Share of Races Lost (1st Fail)

Notes. For each race detected by our baseline method we obtain the FirmID of the participant who sends the first
success message and the first fail message (i.e., S1 and F1, respectively, in Figure 4.1). We then compute, over all
races for FTSE 100 symbols, for each FirmID that appears, the portion of races in which that FirmID is the first
success message, and the portion of races in which that FirmID is the first fail message. The table sorts FirmIDs
based on the proportion of races won. The “Others” bar sums all FirmIDs outside of the top 15.

Figure 4.3 Panel B provides data on the pattern of successful takes, successful cancels, and
liquidity provision across firms. The top 6 firms, as defined by the proportion of races won as
shown in Figure 4.2, account for about 80% each of race wins, liquidity taken in races, and liquidity
successfully canceled in races. In contrast, these 6 firms account for about 42% of all liquidity
provided in races — that is, of all of the trading volume in races, 42% is volume where the resting
order had been provided by one of the top 6 firms.

Within these top 6 firms there are two distinct patterns of race participation. 2 of the top 6 firms
together account for 28% of race wins, 22% of liquidity taken, 61% of successful cancels in races, and
31% of all liquidity provided in races. These data suggest that these 2 firms engage in meaningful
quantities of both stale-quote sniping and liquidity provision; their ratio of liquidity taken in races
to liquidity provided in races is about 2:3. The remaining 4 of the top 6 firms together account for
54% of race wins, 57% of liquidity taken, 21% of successful cancels, and just 11% of all liquidity
provided in races. These data suggest that these 4 firms engage in significantly more stale-quote
sniping than liquidity provision; their ratio of liquidity taken in races to liquidity provided in races
is 5:1. We therefore denote these two groups of firms as “Balanced in Top 6” and “Takers in Top 6”,
respectively.25

Market participants outside of the top 6 firms account for about 20% each of race wins, liquidity
taken in races, and liquidity successfully canceled in races. Where they stand out is that they
account for 58% of all liquidity provided in races; that is, they provide nearly 3 times as much

25Previous studies that document heterogeneity across HFT firms with respect to their taking and liquidity provision
behavior include Benos and Sagade (2016) and Baron et al. (2019). Benos and Sagade (2016) report that the most
aggressive group of firms in their sample have an aggressiveness ratio of 82%, which means that 82% of their overall
trading volume is aggressive, with the remaining 18% passive. Baron et al. (2019) report that the 90th percentile of
firms in their sample have an aggressiveness ratio of 88%.
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Figure 4.3: Pattern of Takes, Cancels, and Liquidity Provision
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Notes. Panel A: For each FTSE 100 race detected by our baseline method we obtain whether the first successful
message (i.e., S1) is a take or a cancel. Panel B: The first bar, % Races won, reports the data depicted in Figure
4.2 aggregated by firm group, with the firm groups as described in the text. The second bar, % Successful Taking
in Races, is computed by taking all trading volume in all FTSE 100 races and utilizing the FirmID associated
with the aggressive order in each trade. The third bar, % Successful Canceling in Races, is computed by taking
all successful cancels in FTSE 100 races and utilizing the FirmID associated with the cancel attempt. The fourth
bar, % Liquidity Provided in Races, is computed by taking all trading volume in all FTSE 100 races and utilizing
the FirmID associated with the passive side of each trade, i.e., the resting order that was taken by the aggressive
order utilized in the % Successful Taking bar.

Table 4.4: Liquidity Taker-Provider Matrix

% of Race Volume by Taker-Provider Combination

Provider
Takers in Top 6 Balanced in Top 6 Non-Top 6

Taker
Takers in Top 6 5.7 17.2 34.3
Balanced in Top 6 2.5 6.4 13.3
Non-Top 6 3.2 7.4 10.1

Notes. For each race detected by our baseline method we obtain all executed trades, and for each executed trade we
obtain the FirmID of the participant who sent the take message that executed and the FirmID of the participant
whose resting order was passively filled. The FirmIDs are classified into firm groups as described in the text. Each
cell of the matrix reports the percentage of GBP trading volume associated with that particular combination of
taker firm group and liquidity provider firm group.

liquidity in races as they take.
Thus, on net, much race activity consists of firms in the top 6 taking liquidity from market

participants outside of the top 6. This taking is especially concentrated in a subset of the fastest
firms who account for a disproportionate share of stale-quote sniping relative to liquidity provision.
The modal trade in our race data consists of a Taker in Top 6 firm taking from a market participant
outside the top 6 (34.3% of all race volume). This pattern seems more consistent with the “rigged”
as opposed to “myth” point of view as discussed in the introduction.

There is also significant race activity that consists of the fastest firms taking from each other.
This volume is especially likely to consist of a Taker in Top 6 firm sniping a Balanced in Top 6 firm
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(17.2%). Please see Table 4.4 for a matrix of race trading volume organized by such taker-provider
combinations.

Expected Number of Races By Chance

We can use the arrival rate of messages that could potentially be part of a race to compute the
number of races we would expect to observe by chance if messages arrived Poisson randomly.26

We say that a message is potentially-race-relevant if the message is either a marketable limit order
(including marketable IOCs) or a cancel of a message at the best bid or offer. For each symbol-date,
we compute the total number of such potentially-race-relevant messages per day to get an average
arrival rate; to fix ideas, the average arrival rate for FTSE 100 symbols is a bit over 1 potentially-
race-relevant message per second. We then use these arrival rates to compute the number of times
per day we would expect to observe N such messages within T time on the same side of the order
book.

For the mean FTSE 100 symbol-date, the number of times per day we should expect to see
N = 2 such messages on the same side of the order book within T = 200 microseconds, about the
mean information horizon in our data set, is 1.42. The number of times we would expect to see
N = 2 such messages within T = 500 microseconds, the upper bound on the information horizon,
is 3.55. For the mean FTSE 250 symbol-date, the figures are 0.02 and 0.04. The number of times
we would expect to see N = 3 or more such messages arrive by chance in such a time window, for
either FTSE 100 or FTSE 250, is 0.00. Please see Table 4.5.

Accounting for the fact that the rate of message arrivals is higher near the open and close of the
UK trading day, and during the window that coincides with the U.S. open, increases these numbers
only modestly. Even if we assume that the entire trading day is as busy as the symbol-date’s busiest
half-hour segment, the average number of times we would observe 2 messages that could possibly
be racing, within 500 microseconds, is just 13.26 for FTSE 100 symbols and 0.21 for FTSE 250
symbols.

Keep in mind as well that all of these figures are upper bounds on the number of N -participant
races that would occur by chance, because occurrences of messages on the same side of the order
book at the same time only constitute a race if our other race criteria are satisfied (in particular,
at least one message must fail).

The bottom line is that the number of races we would observe by chance is de minimis. For
additional details, see Appendix B.2.

26An influential paper by Engle and Russell (1998) provides more sophisticated econometric techniques to deal
with the fact that messages arrive at time-varying rates. In the introduction they write: “Even more intriguing is
the case of transactions that are generally infrequent but that may suddenly exhibit very high activity. This may be
due to some observable event such as a news release or to an unobservable event which may best be thought of as
a stochastic process.” Our paper relates to Engle and Russell (1998) in that it relates to why messages sometimes
arrive in bursts, and in particular in clusters in amounts of time that would have been difficult to fathom at the time
of Engle and Russell (1998). For this reason, we use Poisson as a particularly simple benchmark to give a sense of
how many races one might expect to observe by chance, and then use as a sensitivity an increased Poisson arrival
rate, reflecting the kinds of higher arrival rates Engle and Russell (1998) had in mind at for instance the market’s
open and the close.
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Table 4.5: Expected Number of Potential Race Events By Chance

FTSE 100 FTSE 250
Average Rate Busiest 30 Mins Average Rate Busiest 30 Mins

Expected Occurrences by Chance
2+ within 50 µs 0.35 1.33 0.00 0.02
2+ within 100 µs 0.71 2.65 0.01 0.04
2+ within 200 µs 1.42 5.31 0.02 0.09
2+ within 500 µs 3.55 13.26 0.04 0.21
2+ within 1000 µs 7.09 26.49 0.08 0.43
3+ within 1000 µs 0.00 0.03 0.00 0.00

Actual Number of Races
Baseline analysis 537.24 70.05
3+ within Info Horizon 228.98 30.68

Notes. For each symbol-date we calculate the arrival rate of potentially-race-relevant messages (see text for descrip-
tion) and use this to compute the expected number of occurrences of N such messages within T microseconds, on
the same side of the order book, if messages arrive at this rate via a Poisson arrival process. For each symbol-date
we also perform this calculation using the arrival rate of potentially-race-relevant messages during the busiest 30
minutes of the day for that symbol-date, assuming the entire day has this level of activity. We also report the
actual number of races, both for the baseline and for the sensitivity in which we condition on there being at least
3+ participants within the information horizon.

4.3 Race Profits

Profits Per-Race

Table 4.6 presents statistics on per-race profits. As in BCS, we compute profits as the signed differ-
ence between the price in the race and the midpoint in the near future, which has the interpretation
of the mark-to-market value for the asset in the race.27 Our main results use the midpoint 10 seconds
out, and we will report figures for horizons ranging from 1 millisecond to 100 seconds shortly.28

The average FTSE 100 race is worth about half a tick per share (0.48 ticks), or about 1.20 basis
points. This comes to about GBP 2 per race, measured either using all of the displayed depth at the
start of the race (GBP 1.95) or all of the quantity traded or canceled during the race (GBP 1.84).
For the FTSE 250, the figures are 0.77 ticks, 3.09 basis points, and GBP 1.55 per race based on
displayed depth, and GBP 1.48 per race based on quantity traded or canceled. For the full sample,
the figures are 0.55 ticks, 1.66 basis points, GBP 1.85, and GBP 1.76.

27Note that while successful snipers must “cross the spread” in the trade that snipes a stale quote, they need not
cross the spread in unwinding this position. This is both because trading firms that engage in sniping often also
engage in liquidity provision, and because sniping opportunities are equally likely to be buys versus sells. Also note
that it is appropriate to ignore trading fees in computing the size of the latency arbitrage prize, as long as exchanges’
marginal costs of processing trades are zero, because trading fees assessed on latency-arbitrage trades simply extract
some of the sniping prize. In any event, LSE’s trading fees are small relative to average race profits: 0.15 basis points
for aggressive orders from high-volume participants, and zero for orders that are passively executed.

28Since our data include firm identifiers, it would seem possible to use the actual trades made by participants to
realize their profits rather than using mark-to-market profits at a range of time horizons. However, in addition to
concerns about exploring specific firms’ trading strategies in more detail than is necessary for this study, given that
this is a privileged regulatory dataset obtained under a Section 165 request, there are two key limitations to this idea.
First, we only have data from the London Stock Exchange, so do not observe when positions are closed by trades on
other venues (see also Carrion, 2013, who notes the same concern). Second, firms may not unwind positions after
each race, but may instead manage inventory risk on a portfolio basis (see, for example, Korajczyk and Murphy,
2019).
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Table 4.6: Detail on Race Profits (Per-Share and Per-Race) Marked to Market at 10s

Panel A: FTSE 100

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Per-share profits (ticks) 0.48 4.17 -7.00 -1.50 -0.50 0.00 1.00 2.50 10.00
Per-share profits (GBX) 0.16 1.61 -2.50 -0.50 -0.05 0.00 0.25 1.00 3.50
Per-share profits (basis points) 1.20 7.75 -13.95 -4.02 -1.18 0.00 3.42 6.31 20.32
Per-race profits displayed depth (GBP) 1.95 17.87 -22.99 -3.29 -0.42 0.00 2.37 7.99 45.50
Per-race profits qty trade/cancel (GBP) 1.84 17.07 -20.74 -3.06 -0.40 0.00 2.23 7.46 41.92

Panel B: FTSE 250

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Per-share profits (ticks) 0.77 2.99 -4.50 -1.00 -0.50 0.50 1.50 3.00 11.00
Per-share profits (GBX) 0.20 0.99 -1.50 -0.25 -0.05 0.05 0.25 0.75 3.50
Per-share profits (basis points) 3.09 11.07 -18.12 -5.14 -1.70 1.37 6.12 13.28 38.78
Per-race profits displayed depth (GBP) 1.55 9.63 -9.13 -1.52 -0.20 0.09 1.67 5.25 27.68
Per-race profits qty trade/cancel (GBP) 1.48 9.34 -8.48 -1.40 -0.19 0.09 1.55 4.94 26.40

Notes. For each race detected by our baseline method we obtain the race price and side, the quantity in the book
at that price and side as of the last outbound message before the initial race message, and the quantity traded and
canceled in the race. Per-share profits in ticks, pence (GBX), and basis points are computed by comparing the
race price to the midpoint price 10 seconds after the first race message (i.e., as of the last outbound message before
10 seconds after the timestamp of the first race message). Per-race profits are computed by multiplying per-share
profits in GBX, times 1/100 to convert to GBP, times either the quantity displayed or the quantity traded and
canceled.

There is of course significant variation in profitability across races. This reflects both that some
races are more profitable ex ante than others, i.e., reflect larger jumps in public information, and
that over a 10 second horizon other information can materialize, either positively or negatively, that
affects realized race profits ex post. Across our full sample, a 90th percentile race is worth 3.00 ticks
and 7.98 basis points; a 99th percentile race is worth 10 ticks and 27.02 basis points.

Table 4.7 presents statistics on average per-race profits for different mark-to-market time hori-
zons. As can be seen, average per-race profits increase with the time horizon, eventually flattening
out at around 10 seconds for the FTSE 100 and at around 60 seconds for the FTSE 250. Our finding
that it takes non-zero time for race profits to materialize, and that with this time comes noise as
well, is consistent with both discussions with practitioners as well as empirical evidence in Conrad
and Wahal (2020) on what they call the “term structure of liquidity.”

Figure 4.4 complements Table 4.7 by presenting the distribution of race profits and price impact
at different time horizons. The difference between the two measures is that race profits are the
difference between the price paid in the race and the midpoint price in the future, whereas price
impact compares the midpoint at the time of the first inbound message in the race (i.e., just prior
to its effect on the order book) to the midpoint price in the future (i.e., price impact does not charge
the winner of the race the half bid-ask spread). Focus first on 1ms. At this relatively short time
horizon, many races have profits that are either a small positive amount or small negative amount
per share, whereas nearly all races have weakly positive price impact. This pattern reflects that,
at the moment of a first success in a race, the mark-to-market profits of the winner are typically
negative. For example, if the market is at bid 10 – ask 12, so the midpoint is 11, and there is

25



Table 4.7: Average Race Profits (Per-Share and Per-Race) for Different Mark to Market
Horizons

Panel A: FTSE 100

Description 1ms 10ms 100ms 1s 10s 30s 60s 100s

Mean per-share profits (ticks) 0.08 0.24 0.31 0.39 0.48 0.49 0.50 0.51
Mean per-share profits (GBX) 0.05 0.09 0.11 0.14 0.16 0.16 0.16 0.16
Mean per-share profits (basis points) 0.31 0.68 0.83 1.01 1.20 1.23 1.24 1.25
Mean per-race profits displayed depth (GBP) 0.40 1.14 1.42 1.72 1.95 1.89 1.86 1.82
Mean per-race profits qty trade/cancel (GBP) 0.43 1.10 1.35 1.62 1.84 1.78 1.74 1.70

Panel B: FTSE 250

Description 1ms 10ms 100ms 1s 10s 30s 60s 100s

Mean per-share profits (ticks) -0.10 0.12 0.24 0.43 0.77 0.94 1.04 1.06
Mean per-share profits (GBX) -0.01 0.05 0.08 0.12 0.20 0.24 0.26 0.26
Mean per-share profits (basis points) -0.26 0.64 1.09 1.78 3.09 3.74 4.14 4.24
Mean per-race profits displayed depth (GBP) -0.09 0.41 0.65 0.97 1.55 1.79 1.92 1.93
Mean per-race profits qty trade/cancel (GBP) -0.06 0.41 0.64 0.93 1.48 1.71 1.84 1.85

Notes. For each race detected by our baseline method and for each race profits measure described in Table 4.6, we
re-compute the profits measure for different mark to market horizons, ranging from 1 millisecond to 100 seconds.
That is, for each measure, we compute race profits by comparing the price and side in the race to the midpoint
price T later, for T ranging from 1 millisecond to 100 seconds (Table 4.6 used T = 10 seconds). We then report
the mean at each horizon.

Figure 4.4: Race Price Impact and Profits Distributions at Different Time Horizons
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Notes. For each race detected by our baseline method we obtain per-share profits and price impact in basis points
at different mark to market horizons ranging from 1 millisecond to 10 seconds. Profits at horizon T are defined as
the signed difference between the race price and the midpoint price at time T , while price impact at horizon T is
the signed difference between the midpoint price at the time of the first inbound message of the race (i.e., before
that message affects the order book) and the midpoint price at time T . The figure plots the kernel density of the
distribution of per-share price impact (Panel A) and per-share profits (Panel B), each in basis points, at different
time horizons. To make the distributions readable, we drop all of the mass at exactly zero profits or price impact.
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positive public news triggering a race to buy at 12, then a successful sniper buys at 12 while the
midpoint is still 11 (or, if the market becomes bid 10 – ask 13, the midpoint becomes 11.5)—for a
small mark-to-market loss. The figure shows that even by 1 millisecond, many races are profitable
on a mark-to-market basis. As the figure progresses from 1 millisecond to 1 second, you can see
visually that mass shifts to the right of the distribution (Table 4.7 reports the means), though there
remains a meaningful mass of races with negative mark-to-market profits. Up to 1 second, nearly
all races have weakly positive price impact.

Remark: Races with Negative Realized Profits. In principle, races with negative mark-
to-market profits could either be spurious races that our method picks up but are not profitable,
or they could be races based on public signals that multiple market participants expected to be
profitable but turned out not to be profitable ex-post. Given the low likelihood of spurious races as
discussed in Section 4.2 and Table 4.5, we suspect the latter interpretation is more quantitatively
important. To give a sense of magnitudes, at each of the 10ms, 100ms, and 1s time horizons, about
80% of races are weakly profitable and about 20% of races have strictly negative realized profits.
Conditional on race-profits being non-zero, about 70% have positive profits and 30% have negative
profits. See further discussion in Section 5.2.

4.4 Aggregate Profits and the “Latency Arbitrage Tax”

Table 4.8 presents statistics on the total daily race profits in our sample. Panel A reports statistics
at the symbol level, and Panel B reports statistics aggregated across all symbols in the FTSE 100,
FTSE 250, and full sample. Note that all of these numbers are daily race profits in our data from
the London Stock Exchange; we will extrapolate from these numbers to the full UK equities market
and to global equities markets in Section 6.

Referring to Panel A, we see that the average symbol in the FTSE 100 has daily race profits of
GBP 1,047, and the 99th percentile symbol has daily race profits of GBP 3,432. For the FTSE 250
the average and 99th percentile are GBP 108 and GBP 606, respectively. Referring to Panel B, we
see that the average day in our data set has race profits of GBP 105,734 for the FTSE 100, GBP
26,643 for the FTSE 250, and GBP 132,378 for the full sample.

These aggregate profits numbers are difficult to interpret in isolation. A more interpretable
measure is obtained by dividing race profits by daily trading volume, with both measures in GBP.
We refer to this ratio as the “latency arbitrage tax,” since, following the theory in BCS, the prize
in latency arbitrage races is like a tax on overall market liquidity. We consider two versions of
this measure, the first based on all trading volume, and the second based on all non-race trading
volume. The version based on all trading volume is both simpler to describe and more appropriate
for out-of-sample extrapolation. However, the version based on all non-race trading volume more
closely corresponds to the theory, which shows that latency arbitrage imposes a tax on non-race
trading (both noise trading and non-race informed trading).

Table 4.9 reports that for the average symbol in the FTSE 100, the latency arbitrage tax is
0.492 basis points based on the all-volume measure, and 0.675 basis points based on the non-race-
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Table 4.8: Daily Profits in GBP

Panel A: Daily Profits by Symbol

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 1,046.9 729.6 199.7 340.5 526.6 909.3 1,410.5 1,967.2 3,431.8
FTSE 250 108.3 134.1 -0.7 0.5 7.6 67.1 160.8 257.2 606.3
Full Sample 381.5 590.7 -0.6 1.5 26.7 135.1 466.2 1,184.5 2,273.8

Panel B: Daily Profits by Date

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 105,734 32,852 62,980 78,777 87,038 93,074 117,979 153,712 223,187
FTSE 250 26,643 8,592 14,667 19,501 21,376 23,100 30,392 40,100 49,066
Full Sample 132,378 40,266 82,391 99,363 108,706 116,636 147,814 183,227 272,253

Notes. For each race detected by our baseline method we take per-race profits in GBP based on displayed depth
with prices marked to market at 10 seconds (see notes for Table 4.6). We then compute daily profits for each
symbol-date, by summing all races for that symbol on that date. In Panel A, for each symbol, we compute its
average daily race profits, and report the distribution across symbols. In Panel B, for each date, we compute total
daily race profits summed across all symbols, and report the distribution across dates.

volume measure. For the average FTSE 250 symbol, the latency arbitrage tax is 0.562 based on the
all-volume measure and 0.692 basis points based on the non-race-volume measure. Higher-volume
symbols tend to have lower latency arbitrage taxes, so the overall value-weighted average daily
latency arbitrage tax, for all symbols in the FTSE 350, is 0.419 basis points using the all-volume
measure and 0.534 basis points using the non-race-volume measure.

An interpretation of the first figure is that for every GBP 1 billion that is transacted in the market
overall, latency arbitrage adds GBP 41,900 to trading costs. An interpretation of the second figure
is that for every GBP 1 billion that is transacted by participants not in latency-arbitrage races,
latency arbitrage adds GBP 53,400 to trading costs.

Relationship between Profits, Volume and Volatility

Figure 4.5 presents scatterplots of latency arbitrage profits against trading volume (Panel A) and 1-
minute realized volatility (Panel B). Each dot represents one day of our data. As can be seen, latency
arbitrage profits are highly correlated to both volume and volatility. The R2 of the relationship
between profits and volume is 0.811 and the R2 of the relationship between profits and 1-minute
volatility is 0.661. These relationships are consistent with the theory in BCS, which suggests that
the size of the latency arbitrage prize should be related to both volume and volatility.

Appendix Figure B.2 presents scatterplots of the latency arbitrage tax (Measure 1, all volume)
against these same measures: trading volume (Panel A) and 1-minute realized volatility (Panel B).
The figures show that once we divide latency arbitrage profits by daily trading volume, to obtain
the latency arbitrage tax in basis points, the result is relatively flat across the days in our sample.
We will report further details on these relationships in Section 6, where they will be used for the
purpose of out-of-sample extrapolation.
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Table 4.9: Latency Arbitrage Tax

Panel A: Distribution Across Symbols

Sub-Panel (i): Measure 1, Latency Arbitrage Tax based on All Trading Volume (basis points)

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 0.492 0.235 0.163 0.236 0.292 0.454 0.627 0.827 1.035
FTSE 250 0.562 0.393 -0.022 0.022 0.267 0.565 0.817 1.043 1.540
Full Sample 0.542 0.356 -0.014 0.054 0.283 0.519 0.774 0.960 1.508

Sub-Panel (ii): Measure 2, Latency Arbitrage Tax based on Non-Race Trading Volume (basis points)

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 0.675 0.362 0.200 0.303 0.387 0.587 0.870 1.180 1.595
FTSE 250 0.692 0.504 -0.028 0.024 0.287 0.678 1.029 1.304 2.042
Full Sample 0.687 0.466 -0.020 0.057 0.345 0.651 0.995 1.275 2.032

Panel B: Distribution Across Dates

Sub-Panel (i): Measure 1, Latency Arbitrage Tax based on All Trading Volume (basis points)

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 0.383 0.053 0.286 0.329 0.345 0.381 0.415 0.456 0.516
FTSE 250 0.663 0.099 0.495 0.552 0.591 0.653 0.725 0.790 0.912
Full Sample 0.419 0.053 0.313 0.360 0.382 0.416 0.450 0.495 0.537

Sub-Panel (ii): Measure 2, Latency Arbitrage Tax based on Non-Race Trading Volume (basis points)

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 0.493 0.075 0.351 0.418 0.443 0.487 0.533 0.603 0.656
FTSE 250 0.800 0.133 0.577 0.653 0.712 0.788 0.899 0.969 1.136
Full Sample 0.534 0.076 0.384 0.454 0.481 0.531 0.581 0.652 0.680

Notes. Panel A. For each symbol, we compute total race profits in GBP, summed over all dates in our sample,
using per-race profits in GBP based on displayed depth with prices marked to market at 10 seconds (see notes for
Table 4.6). We then compute total regular-hours trading volume in GBP, and total non-race regular-hours trading
volume in GBP (see notes for Table 4.2). Panel A(i) reports the distribution across symbols of race profits divided
by all trading volume. Panel A(ii) reports the distribution across symbols of race profits divided by non-race
trading volume. Panel B is the same except at the date level (with race profits, all volume and non-race volume
each summed across all symbols) instead of at the symbol level.
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Figure 4.5: Latency Arbitrage Profits Correlation with Volume and Volatility

Panel A: Profit vs. Volume
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Panel B: Profits vs. Volatility
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Notes. Panel A presents a scatterplot of daily race profits for the full sample, computed as in Table 4.8 (Panel
B), against daily regular-hours trading volume (see notes for Table 4.2). Panel B presents a scatterplot of daily
race profits for the full sample, against daily realized 1-minute volatility for the FTSE 350 index, computed using
Thomson Reuters Tick History (TRTH) data.

4.5 Latency Arbitrage’s Share of the Market’s Cost of Liquidity

In this sub-section we quantify latency arbitrage as a proportion of the market’s overall cost of
liquidity. We present two complementary approaches.

4.5.1 Approach #1: Traditional Bid-Ask Spread Decomposition

An influential decomposition of the bid-ask spread (e.g., Glosten, 1987; Stoll, 1989; Hendershott,
Jones and Menkveld, 2011) is:

EffectiveSpread = PriceImpact + RealizedSpread (4.1)

where EffectiveSpread is defined as the value-weighted difference between the transaction price
and the midpoint at the time of the transaction, PriceImpact is defined as the value-weighted change
between the midpoint at the time of the transaction and the midpoint at some time in the near
future, and RealizedSpread is the remainder. EffectiveSpread is typically interpreted as the revenue
to liquidity providers from capturing the bid-ask spread, PriceImpact as the cost of adverse selection,
and RealizedSpread as revenues net of adverse selection.

The theory of latency arbitrage suggests two refinements to (4.1). First, we can decompose the
price impact component of the spread into two components: one that reflects latency arbitrage and
one that reflects traditional private information. Second, the theory shows that the equilibrium
bid-ask spread also reflects the value of “losses avoided” by fast liquidity providers who successfully
cancel in a latency arbitrage race. The intuition is that fast liquidity providers must earn a rent in
equilibrium for being fast that is equal to the rent earned by fast traders who try to snipe; i.e., they
earn the “opportunity cost of not sniping.”
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Formally, we start with equation (3.1) of Budish, Lee and Shim (2019), which gives the equilib-
rium bid-ask spread in the continuous limit order book (CLOB) market as

λinvest
sCLOB

2
= (λpublic + λprivate) · L(

sCLOB

2
), (4.2)

with the notation defined as follows. λinvest, λpublic and λprivate are, respectively, the Poisson arrival
rates of investors who trade and thus pay the half-spread to a liquidity provider, publicly observed
jumps in the fundamental value which cause a sniping race, and privately observed jumps in the
fundamental value which lead to Glosten and Milgrom (1985) adverse selection. sCLOB denotes
the equilibrium bid-ask spread. L( s

CLOB

2 ) denotes the expected loss to a liquidity provider, at this
spread, if there is a jump in the fundamental value and they get sniped or adversely selected. In
Appendix F.2 we show formally that equation (4.2) implies the spread decomposition:

EffectiveSpread = PriceImpactRace + PriceImpactNonRace +LossAvoidance+RealizedSpread (4.3)

with terms defined as follows. EffectiveSpread is defined in the standard way, as the value-
weighted absolute difference between the price paid in trades and the midpoint at the time of
the trade (i.e., the value-weighted half-spread). PriceImpactRace and PriceImpactNonRace are,
respectively, the value-weighted change between the midpoint at the time of the trade and the
midpoint at some time in the near future (we will use 10 seconds), for trades in latency-arbitrage
races and trades not in latency-arbitrage races. Last, LossAvoidance is defined as the value-weighted
change between the race price and the midpoint in the near future for successful cancels in latency
arbitrage races.

Table 4.10 gives details for decomposition (4.3) at the symbol level. For the average symbol in
the FTSE 100, averaged over the days of our data set, the overall effective spread is 3.27 basis points,
of which price impact is 3.62 basis points, loss avoidance is 0.01 basis points, and realized spread
is -0.36 basis points. That price impact slightly exceeds the effective spread, so that the realized
spread is slightly negative, is relatively common in modern markets, as noted in O’Hara (2015), and
documented in Battalio, Corwin and Jennings (2016); Malinova, Park and Riordan (2018); Baron
et al. (2019).29 That loss avoidance is small is consistent with our finding earlier that most race
activity is aggressive.

The FTSE 100 overall effective spread of 3.27 basis points reflects relatively similar effective
spreads in races and outside of races, at 3.18 and 3.29 basis points, respectively. Price impact,
in contrast, is meaningfully higher in races than not in races: 5.11 basis points versus 3.15 basis
points. Consequently, the realized spread is -1.93 basis points in races versus +0.15 basis points not
in races.30 This result suggests that liquidity provision is modestly profitable in non-race trading

29Realized spreads are slightly positive if price impact is measured at a shorter duration, such as 100ms or 1s rather
than 10s (please see Appendix Tables B.13 and B.14). This is consistent with Conrad and Wahal (2020), who find
that realized spreads decrease as the time interval decreases. Please note as well that at the LSE liquidity providers
do not receive rebates, whereas in markets such as the U.S. where rebates are common, this could lead to a negative
realized spread being a rational feature of equilibrium liquidity provision (Battalio, Corwin and Jennings, 2016).

30Note that the realized spread in races, multiplied by the roughly 22% of trading volume in races as reported in
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Table 4.10: Spread Decomposition

Distribution Across Symbols (FTSE 100)

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Effective spread paid - overall (bps) 3.27 1.22 1.22 1.75 2.28 3.18 4.13 4.91 5.79
Effective spread paid - in races (bps) 3.18 1.22 0.99 1.70 2.21 3.17 4.05 4.89 5.98
Effective spread paid - not in races (bps) 3.29 1.22 1.25 1.78 2.30 3.17 4.15 4.96 5.71
Price impact - overall (bps) 3.62 1.36 1.40 1.92 2.52 3.56 4.52 5.55 6.99
Price impact - in races (bps) 5.11 1.83 2.02 2.85 3.48 4.90 6.50 7.56 8.81
Price impact - not in races (bps) 3.15 1.16 1.21 1.66 2.21 3.17 3.97 4.67 5.99
Loss avoidance (bps) 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.03
Realized spread - overall (bps) -0.36 0.32 -1.07 -0.76 -0.55 -0.35 -0.17 0.01 0.39
Realized spread - in races (bps) -1.93 0.70 -3.72 -2.83 -2.40 -1.79 -1.42 -1.11 -0.88
Realized spread - not in races (bps) 0.15 0.30 -0.35 -0.20 -0.05 0.08 0.34 0.56 0.90
PI in races / PI total (%) 33.16 6.09 19.99 24.88 29.53 32.13 37.23 41.72 44.72
PI in races / Effective spread (%) 36.90 7.18 19.79 27.73 33.06 36.59 41.97 46.44 51.67

Notes. Please see the text of Section 4.5 for definitions of Effective Spread, Price Impact (PI), Loss Avoidance,
and Realized Spread.

but loses significant money in races. Note as well that this negative realized spread in races obtains
even at the 99th percentile of FTSE 100 symbols (-0.88 basis points), which suggests that the finding
is robust in the cross section of symbols.

Aggregated over all trading volume, price impact in races accounts for about 37% of the effective
spread and 33% of all price impact in FTSE 100 stocks.

For symbols in the FTSE 250 (see Appendix Table B.12), overall effective spreads are higher,
at 8.06 basis points, realized spreads are a bit less negative at -0.04 basis points, and loss avoidance
remains small (0.01 basis points). Effective spreads are noticeably a bit narrower in races versus
not in races, at 6.74 basis points in races versus 8.22 basis points outside of races. As with FTSE
100 stocks, price impact is significantly higher in races than in non-race trading (12.22 basis points
versus 7.50 basis points), and consequently the realized spread is modestly positive in non-race
trading (0.72 basis points) and meaningfully negative in races (-5.48 basis points). Aggregated over
all trading volume, price impact in races accounts for about 22% each of the effective spread and of
all price impact in FTSE 250 stocks.

In the full sample, value-weighted, the effective spread is 3.17 basis points, the realized spread is
-1.83 basis points in races versus +0.23 basis points not in races, and price impact in races accounts
for 30.58% of all price impact and 32.82% of the overall effective spread.

Overall, these results suggest that latency arbitrage deserves a place alongside traditional adverse
selection as one of the primary components of the market’s cost of liquidity.

The Realized Spread is Negative in Races for Both Fast and Slow Firms. Importantly,
this negative realized spread in races does not appear to discriminate much by firm speed. For the
top 6 firms as defined by the proportion of races won (see Figure 4.2) the realized spread in races

Table 4.2, corresponds roughly to the all-volume latency-arbitrage tax as reported in Table 4.9. (The relationship is
not exact due to loss avoidance, which we count as part of the latency-arbitrage prize but does not count towards
realized spreads, and some small differences in how the data are aggregated). Conceptually, the negative realized
spread in races and the latency-arbitrage tax are two very similar ways of expressing the harm to liquidity providers.
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Table 4.11: Realized Spreads in Races by Firm Group

Firm Group
Realized Spread (bps) Cancel Attempt Rate (%)

Overall Non-Race Race In Race Within 1ms Ever

All Firms −0.209 0.236 −1.833 19.29 21.89 24.53
Fast vs. Slow
Top 6 −0.086 0.347 −1.699 35.35 38.94 39.88
All Others −0.302 0.152 −1.930 7.57 9.47 13.35

Within Fast
Takers in Top 6 0.016 0.455 −1.493 45.16 47.56 47.82
Balanced in Top 6 −0.120 0.311 −1.775 30.97 35.09 36.33

Notes. Firm groups are as in Figure 4.3. The realized spread is calculated as described in the text and reported
in Table 4.10. To calculate the cancel attempt rates we first compute, for each firm, the number of races in which
they have a cancel attempt within the race horizon, the number of races in which they either have a cancel attempt
within the race horizon or a cancel attempt within 1 millisecond of the start of the race for an order taken in the
race, the number of races in which they either have a cancel attempt within the race horizon or a cancel attempt
anytime after the race horizon for an order taken in the race, and the number of races in which they either have
a successful cancel or provide liquidity (each is measured at the relevant price and side for the race). We then
aggregate into the firm-group cancel rates by, for the numerator, summing the number of races with cancel attempts
over all firms in the group (possibly counting the same race multiple times), and for the denominator, summing
the number of races with either cancel attempts or liquidity provision over all firms in the group (possibly counting
the same race multiple times).

is -1.699 basis points, versus -1.930 basis points for firms outside the top 6. The difference between
the Takers and Balanced firms in the top 6 is small as well: -1.493 basis points versus -1.775 basis
points. Please see Table 4.11.

Similarly, both fast and slow firms earn a modestly positive realized spread in non-race liquidity
provision. For the top 6 firms the realized spread in non-race liquidity provision is 0.347 basis points
versus 0.152 basis points for firms outside the top 6.

There is a more significant difference between faster and slower firms in their canceling behavior.
The top 6 firms attempt to cancel in races about 35% of the time within the race horizon, and about
39% of the time within 1 millisecond of the starting time of the race. Within these top 6 firms,
the maximum cancel rate is 66% within the race-horizon and 68% of the time within 1 millisecond.
Firms outside of the top 6 attempt to cancel just 7.57% of the time within races and 9.47% of the
time within 1 millisecond of the starting time of the race. If we look beyond 1 millisecond to include
any failed cancel attempts of quotes taken in a race, the top 6 cancel attempt rate goes up to 40%
and the cancel rate for firms outside of the top 6 goes up to 13.35%.31 Thus, fast firms are about
five times more likely to attempt to cancel in a race than are slower firms.

Together, these results reinforce the idea that latency arbitrage imposes a tax on liquidity
provision — it is expensive to be the liquidity provider who gets sniped in a race. The fastest
firms are better than slower firms at avoiding this cost, but even they get sniped with significant
probability if their quotes become stale.32

31For firms in the top 6 essentially all of the incremental failed cancels come within 3 milliseconds after the race
start (98.57% of all cancel attempts are within 3ms of the race start). For firms outside the top 6 the large majority
of the incremental failed cancels come by 3 milliseconds after the race start (85.73%), and essentially all come by 1
second after the race start (99.43%).

32Our best guess for why slower firms rarely attempt to cancel, and even fast firms sometimes do not attempt
to cancel, is that, by the time the quote provider has figured out that their quote is stale and they should reprice,
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4.5.2 Approach #2: Implied Reduction of the Bid-Ask Spread if Latency Arbitrage
Were Eliminated

Our second approach asks what would be the proportional reduction in the market cost of liquidity
if there were no latency arbitrage. Formally, we seek to empirically measure:

sCLOB

2 − sFBA

2
sCLOB

2

(4.4)

where sCLOB is the bid-ask spread under the continuous limit order book (CLOB) and sFBA is
the bid-ask spread under a counterfactual market design, frequent batch auctions (FBA), which
eliminates latency arbitrage. To turn (4.4) into something empirically measurable, we take the
following steps. First, we multiply the numerator and denominator of (4.4) by (λinvest + λprivate).
Second, we use (4.2) to solve out for λinvest s

CLOB

2 in the numerator. Third, we use equation (5.1)
of Budish, Lee and Shim (2019),

λinvest
sFBA

2
= λprivate · L(

sFBA

2
) (4.5)

where L( s
FBA

2 ) is the loss to the liquidity provider if there is a privately-observed jump of
at least sFBA

2 and they get adversely selected, to solve out for λinvest s
FBA

2 in the numerator of
(4.4). Observe that the difference between the equilibrium bid-ask spread characterization for
frequent batch auctions, (4.5), and the equilibrium bid-ask spread for continuous trading, (4.2), is
the λpublicL(·) term; if there is a publicly-observed jump a liquidity provider in an FBA does not
get sniped, unlike in the continuous market.

These manipulations and some algebra, included in Appendix F.3 for completeness, shows that
equation (4.4) can be re-expressed as:

sCLOB

2 − sFBA

2
sCLOB

2

=
λpublicL( s

CLOB

2 )

(λinvest + λprivate)
sCLOB

2

(4.6)

Both the numerator and denominator of the right-hand-side of (4.6) are directly measurable.
The numerator is simply latency arbitrage profits (including both races where an aggressor wins and
races where a cancel wins). The denominator is the non-race portion of the effective spread; that
is, it is all of the bid-ask spread revenue collected by liquidity providers outside of latency arbitrage
races. These objects can be measured either in GBP terms, or, by dividing both numerator and

they already have received the update that their quote has been executed. That is, if the information horizon is 200
microseconds, they “lose the race” by more than 200 microseconds. We note as well that, conditional on losing a race,
the average cost is just half a tick, so this could easily be accounted for as a “cost of doing business”. To confirm this
hypothesis would require data from a broker-dealer execution algorithm, for instance.
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Table 4.12: Percentage Reduction in Liquidity Cost, if Latency Arbitrage Eliminated

Panel A: Symbol level

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 19.95 5.29 8.87 13.30 16.79 19.69 23.58 26.50 32.54
FTSE 250 11.93 6.31 0.58 3.12 8.05 11.91 15.33 18.58 31.31
Full Sample 14.77 7.09 0.70 5.55 10.03 14.55 19.41 24.10 32.22

Panel B: Date level

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 19.06 3.29 7.49 16.53 17.53 18.97 21.48 22.25 25.40
FTSE 250 11.39 1.66 8.27 9.43 10.22 11.17 12.45 13.36 16.18
Full Sample 16.73 2.57 7.88 14.57 15.19 16.82 18.66 19.17 21.58

Notes. For each symbol, we implement equation (4.7) by dividing total race profits in GBP, across all dates, and
dividing by total non-race Effective Spread paid in GBP, across all dates. Race profits in GBP are as described
in Table 4.8 and Effective Spread paid in GBP is as described in Table 4.10. Analogously, for each date, we
implement equation (4.7) by dividing total race profits in GBP, across all symbols, and dividing by total non-race
Effective Spread paid in GBP, across all symbols. We do both exercises separately for FTSE 100, FTSE 250, and
full sample. In Panel A, we only include symbols that have at least 100 races summed over all dates; this drops
about one-quarter of FTSE 250 symbols and does not drop any FTSE 100 symbols.

denominator by non-race trading volume, in basis points terms. Thus, we have the relationship:

Proportional Reduction in Liquidity Cost =
Race Profits (GBP)

Non-Race Effective Spread (GBP)
(4.7)

=
Latency Arbitrage Tax (Non-Race Volume)

Non-Race Effective Spread (bps)

Table 4.12 presents our computation of (4.7). For the average symbol in the FTSE 100, elim-
inating latency arbitrage would reduce the cost of liquidity by 19.95%.33 For the FTSE 250, the
figure is 11.93%. Even though race profits are higher as a proportion of trading volume for the
FTSE 250 (per Table 4.9), bid-ask spreads are several times wider for FTSE 250 symbols than for
FTSE 100 symbols (see Appendix Tables B.10-B.12), so eliminating latency arbitrage would reduce
the overall cost of liquidity by less for the FTSE 250 than for the FTSE 100.

For the market as a whole, value-weighted and averaging over all dates in our sample, eliminating
latency arbitrage would reduce the cost of liquidity by 16.73%.34

33It may at first be confusing why eliminating latency arbitrage reduces the spread by about 20% for FTSE 100
stocks in this exercise, whereas price impact in latency arbitrage races constituted 37% of the effective spread in Table
4.10. The difference is that latency arbitrage profits charge the aggressor the half spread, whereas the price impact
calculation in effect does not. Here is the rough back of envelope math. The effective spread is on average about
3 bps. Price impact in races is about 5bps and races constitute 23% of volume for the average FTSE 100 symbol
(Appendix Table B.4). Therefore price impact in races as a proportion of the effective spread is 23%·5bps

3bps
, which is

about 37% as claimed. The latency arbitrage tax on non-race volume is (5bps−3bps)·23%
(100%−23%)

, which is about 0.60bps, or
about 20% of the non-race effective spread, implying a roughly 20% reduction in the cost of liquidity as claimed.

34Both equation 4.2 for the spread in the continuous market and equation 4.5 for the spread in the FBA market
assume no tick-size constraints. A market design reform that both adopted FBA and eased tick-size constraints,
as advocated by Yao and Ye (2018), Kyle and Lee (2017), and others, would, based on these estimates, reduce the
cost of liquidity by more than 16.7%. If tick-size constraints bind, then the liquidity advantage of FBA relative to
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5 Sensitivity Analysis and Robustness Checks

We performed a wide range of sensitivity analyses and robustness checks. First, we explored how
our main results as presented in Section 4 vary as we modify each of the components of our race
definition as presented in Section 3. The insights from this work are discussed in Section 5.1, with
a summary table in the main text and full details in Appendix C. Second, we performed additional
robustness analyses to better understand races in our data that do not fit as neatly within the
paradigm of the BCS model: races with negative mark-to-market profits, and races where the best
bid and offer (BBO) is volatile just before the race. This analysis is discussed in Section 5.2 with
supporting details in Appendix D.

5.1 Sensitivity to Varying the Definition of a Race

As described in Section 3, for each of the four components of our race definition—multiple partici-
pants, at least some of whom are aggressive, at least some of whom succeed and some of whom fail,
all at the “same time”—we performed our full analysis for both a baseline and alternatives. In this
subsection we report the main insights from these alternative specifications. Table 5.1 then presents
a range of sensitivity scenarios informed by this work.

Finding #1: Effect of Race Horizon. Our baseline method requires that a set of messages
satisfying the baseline race requirements arrives within the “information horizon” of the first message
of the race, which averages about 200 microseconds and is capped at 500 microseconds. In sensi-
tivity analyses, we explored instead requiring that the set of messages satisfying the baseline race
requirements arrives within a time window of T , with values of T ranging from 50 microseconds to 3
milliseconds. The longer horizons are intended to capture races among firms of varying technological
sophistication that could still be considered racing one another.35 We consulted with HFT industry
contacts and FCA supervisors to agree on an appropriate horizon. Following these discussions, we
determined 3 milliseconds would capture most of these additional potential races, though for races
originating from signals far from London (e.g., Chicago) differences in speed between cutting-edge
HFTs and relatively sophisticated firms could easily exceed that number. We will also miss races
where, by the time the loser or losers of the race detect the signal, they can already tell from their
representation of the order book that they are too late and hence do not bother to send a message;
such cases can be understood as a gray area between asymmetric private information (because the
winner understood the signal far enough in advance of the losers) and symmetric public information
(because the time differences are still quite small).

continuous trading can manifest in greater depth as opposed to a narrower spread. There can be more liquidity at
a given price while keeping the marginal unit of liquidity provision indifferent between providing and not, because
there is no sniping.

35Sources of speed loss for firms that are sophisticated but not at the cutting edge of speed include not using code
and hardware that is optimized for speed, not utilizing the fastest co-location and connectivity options at exchanges,
not using the fastest links to overseas markets such as the United States, and not using microwave connections where
possible to do so.
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The main pattern that emerges from this analysis is that the longer is T the more races we find,
without much effect on the various measures of per-race profits. The increase is especially steep
up through 500 microseconds. For example, with T = 100µs the number of FTSE 100 races per
symbol per day is 389, with T = 500µs the number is 720, with T = 1ms the number is 768, and
with T = 3ms the number is 800.36

As a result, our measures of the effect of latency arbitrage on the cost of liquidity are all strongly
increasing with the race horizon. At T = 100µs the full-sample latency arbitrage tax is 0.26 bps,
price impact is 19.2% of the effective spread, and the implied reduction in the market’s cost of
liquidity from eliminating latency arbitrage is 9.5%. At T = 500µs the figures are 0.60bps, 50.8%,
and 28.1%, respectively; at T = 1ms the figures are 0.68bps, 59.3%, and 35.4%; and at T = 3ms

the figures are 0.74bps, 66.1%, and 41.6%. That is, if the race window is defined as 3 milliseconds
instead of the information horizon, latency arbitrage constitutes about 65% of the effective spread
and eliminating latency arbitrage would reduce the market’s cost of liquidity by about 40%.

Finding #2: Number of Race Participants. Our baseline method requires that there are at
least 2 race participants within the information horizon. In sensitivity analysis we consider requiring
3+ participants and 5+ participants. Given the large effect that the race’s time horizon had on
the number of races and the harm to market liquidity, we perform this sensitivity for both the
baseline information horizon method and for fixed race horizons ranging from 50 microseconds to 3
milliseconds.

The main pattern that emerges from this sensitivity is that increasing the required number of race
participants lowers the number of races found while increasing the various measures of profitability
per race. For example, requiring 3+ participants reduces the number of races in the information
horizon by about 60%, but increases per-race profits by about 60% as well. The net effect is that
measures of total race profits and harm to liquidity fall by about one-third: the latency arbitrage
tax is 0.29bps, race price impact’s proportion of the spread is 20.5%, and the implied reduction in
the market’s cost of liquidity is 10.4%.

Increasing the race horizon increases the number of races detected, just as in the baseline case.
The overall magnitudes for the total cost of latency arbitrage are similar among the baseline method,
the sensitivity with 3+ participants within 500 microseconds, and the sensitivity with 5+ partici-
pants within 1 millisecond.

Finding #3: Takes and Cancels. Our baseline method defines a race to consist of either
1+ aggressors and 1+ cancels, or 2+ aggressors and 0 cancels. The former case corresponds to the
equilibria studied in BCS, whereas the latter case, in which all race activity is aggressive, corresponds
to equilibria in a modest extension of BCS presented in Appendix F.

There are two main findings that emerge from our sensitivity analysis of these criteria. First,
36The numbers reported in Table 5.1 at horizons of 500 microseconds and longer all also reflect the sensitivity

requirement that plain vanilla (non-IOC) limit orders cannot count as fails, i.e., only failed IOCs and failed cancels
count as fails. See discussion below under Finding #4. The Appendix includes a version of the time horizon sensitivity
without this requirement (Table C.1); the numbers are about 10-15% bigger.
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requiring a cancel attempt within the race horizon significantly reduces the number of races and the
associated harm to market liquidity. If we require at least 1 cancel within the information horizon,
the number of races and the various harm to liquidity measures are each about 30% of the baseline.
This is as expected given our findings in Section 4.2 that most of the message activity in races is
aggressive. That said, if we consider races with 1+ cancel over a 3 millisecond time horizon, then
the results are closer to baseline, at about 85% of the number of races and the various harm to
liquidity measures.

Second, races with just a single take attempt (i.e., 1 aggressor and 1+ cancels) have meaningfully
lower profitability than races with 2+ aggressors. As a consequence, imposing the requirement that
there are 2+ aggressors in a race lowers the number of races by about 20% but lowers the latency
arbitrage tax by closer to 10%.

Finding #4: Success and Fail Criteria. Reassuringly, in our baseline analysis, varying the
definition of success and fail does not move the needle too much. At longer time horizons, whether
or not we treat plain vanilla (non-IOC) limit orders as potential fails makes a bigger difference,
affecting the number of races detected by on the order of 10-15%. This makes sense because at
longer horizons we should be more concerned about mistaking limit orders that post to the book
with the intent to provide liquidity as failed race attempts. For this reason, in the summary of
sensitivity scenarios presented below as Table 5.1, we do not allow non-IOC limit orders to count
as fails at time horizons of 500 microseconds and longer, i.e., at time horizons longer than the
information horizon only failed IOCs and failed cancels count as fails.

Selected Sensitivity Scenarios. Based on what we have learned from the various sensitivity
analyses, Table 5.1 highlights several specific scenarios that we feel give a sense of the overall range
of estimates for race profits and the effect on liquidity.

As Low scenarios, since we learned that race profits are especially sensitive to the choice of
race horizon and to stricter requirements on the level of participation, we highlight: 2+ within 50
microseconds, 2+ within 100 microseconds, and 3+ within the information horizon.

As Medium scenarios, we highlight: 2+ within 200 microseconds, 2+ within 500 microseconds,
and 3+ within 500 microseconds.

As High scenarios, we highlight: 2+ within 1 millisecond, 2+ within 3 milliseconds, and 3+
within 3 milliseconds.

Over this set of scenarios, the latency arbitrage tax ranges from 0.20 to 0.74 basis points on the
all-volume measure, and from 0.22 to 1.31 basis points on the non-race volume measure. Latency
arbitrage as a percentage of trading volume ranges from 9.8% to 43.7%. Latency arbitrage as a
percentage of the effective spread ranges from 13.8% to 66.1%. The potential reduction in the
market’s cost of liquidity ranges from 7.0% to 41.6%.

We acknowledge that this exercise is somewhat subjective. At the lower end, we know concep-
tually that if we reduce the race horizon sufficiently and/or increase the participation requirements
sufficiently we can find a lower bound that is essentially zero (e.g., 5+ within 50 microseconds yields
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very low numbers, see Appendix Table C.3). Similarly, at the high end, one could be even more
inclusive (e.g., looking at horizons even longer than 3 milliseconds). Or, one could attempt to find
a way to account for the gray-area case, between symmetric public information and asymmetric
private information, where one firm’s response to a trading signal is sufficiently faster than others’
that, by the time other firms observe the signal, they can already tell from the order book that
they are too late and hence don’t bother. Still, we think this exercise provides a useful sense for
the range of magnitudes we find using our method. This range will inform our analysis in Section
6 where we provide extrapolations for the total sums at stake in latency-arbitrage races.

5.2 Additional Robustness Checks

We did additional robustness work to explore two aspects of the main results that do not fit neatly
within the original BCS model.

Races with Negative Profits Ex-Post. In our main specification, 20% of races have strictly
negative profits when marked to market at 100 milliseconds after the race, 22% when marked at 1
second after the race, and 29% when marked at 10 seconds after the race. While these numbers surely
reflect some post-race noise, we find that 8% of races have strictly negative profits continuously for
the 10 seconds after the race. (As seen in Figure 4.4, when a race is not profitable, typically the
pattern is that price impact is weakly in the direction of the race but not by enough to recover the
half-spread.)

Even in our most strenuous sensitivity test, which requires 5+ participants within 50 microsec-
onds, 10% of races have strictly negative profits 100 milliseconds after the race, 11% at 1 second,
19% at 10 seconds, and 3% of races have strictly negative profits continuously for the 10 seconds
after the race. For full details see Appendix D.1.

These results suggest to us that at least some races are based on noisy signals that turn out not
to be profitable ex-post. While this squares with common intuitions about algorithmic trading more
broadly, where it can of course be rational to trade on signals that are profitable in expectation but
noisy—and our figures suggest that trading in races is a lot closer to pure arbitrage than the 51/49
odds described by Renaissance and Virtu37—it is inconsistent with a literal interpretation of the
BCS model in which the public signal that triggers races is perfectly correlated to the fundamental
value of the asset.

Races Triggered by Order Book Activity. In the BCS model, races are triggered by jumps
in a public signal, interpreted for example as a change in the price of a highly correlated asset
or the same asset on another venue. A recent paper of Li, Wang and Ye (2020) extends the
BCS model to incorporate both discrete price increments (i.e., tick-size constraints) and a stylized
version of institutional investor execution algorithms, and finds that races can be triggered by both

37See fn. 8 in the introduction on Renaissance and Virtu, and also see MacKenzie (2021) who discusses several
different types of canonical HFT signals, some of which are closer to pure arbitrage and some of which are more
statistical in nature.
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public signals and by order-book activity by the execution algorithms. Specifically, if an execution
algorithm places a limit order in the book that is sufficiently attractive (e.g., a new bid that is
sufficiently close to the ask), and trading firms are sufficiently confident that this order does not
reflect new information, the order could trigger a race.38

We find some evidence for this pattern in our data. In about 14% of races there is a change in
the race-side best bid or offer in the 100 microsecond window just prior to the race, and of these,
nearly all of the price changes (89% of the subset, or 12% of the total) are in the direction consistent
with Li, Wang and Ye (2020). These races have fewer cancelations than baseline races (0.24 versus
0.40) and a larger share of liquidity provided by non-top 6 firms (71% versus 58%), both of which
also seem consistent with the theory in Li, Wang and Ye (2020).

That said, the large majority of races have stable prices leading up to the race. This suggests
that most races are triggered by some public signal external to the symbol’s own order book, as in
the BCS model. For full details see Appendix D.2.

6 Total Sums at Stake

6.1 Extrapolation Models

Figure 4.5 showed visually that daily latency arbitrage profits are highly correlated with market
volume and volatility, as expected given the theory. Table 6.1 presents these same relationships in
regression form for the purpose of out-of-sample extrapolation.

Columns (1)-(2) regress daily in-sample latency arbitrage profits on daily LSE regular-hours
trading volume in GBP (10,000s). The coefficient of 0.421 in (2) is directly interpretable as the
all-volume latency arbitrage tax in basis points. Including a constant term changes the coefficient
only slightly, to 0.432. This single variable has an R2 of 0.81.

Columns (3)-(4) regress daily in-sample latency arbitrage profits on daily realized 1-minute
volatility.39 To make the results interpretable in units of latency arbitrage tax, realized volatility
in percentage points is multiplied by the sample-average of daily trading volume.40 Here, including
the constant term does provide a meaningfully better fit, which can also be seen visually in the
scatterplot in Figure 4.5, Panel B. The coefficient of 0.023 in (3) means that every additional
percentage point of realized volatility adds 0.023 basis points to that day’s latency arbitrage tax.
This variable has lower explanatory power than volume, but still high, with an R2 of 0.661.

Columns (5)-(6) present results for a two-variable model in which daily latency arbitrage profits
are regressed on both trading volume and realized volatility. Again, to make the results interpretable,
realized volatility is multiplied by average daily trading volume.41 Both variables are significant,

38See also Foucault, Kozhan and Tham (2016) who call this “non-toxic arbitrage.”
39In the Appendix we report regression results for 5-minute volatility and for a measure of volatility emphasized

in BCS called distance traveled. 5-minute volatility has lower explanatory power than 1-minute volatility. Distance
traveled actually has greater explanatory power than 1-minute volatility, but we emphasize the latter because it is
more easily measurable across markets and over time, and more widely utilized in practice and in the literature.

40That is, we regress LatencyArbProfitst = α + β(σt · AvgDailyVolume) where σt is in percentage points and
AvgDailyVolume is in GBP 10,000s.

41That is, we regress LatencyArbProfitst = α + βVolumet + γ(σt · AvgDailyVolume). We also considered the
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Table 6.1: Extrapolation Models

Dependent variable:

Latency Arbitrage Profits (GBP)

(1) (2) (3) (4) (5) (6)

Volume (GBP 10,000s) 0.4319∗∗∗ 0.4213∗∗∗ 0.3405∗∗∗ 0.3354∗∗∗
(0.0326) (0.0082) (0.0544) (0.0415)

Volatility (1 min) * Average Volume 0.0228∗∗∗ 0.0313∗∗∗ 0.0065∗∗ 0.0066∗∗
(0.0025) (0.0009) (0.0032) (0.0031)

Constant −3,562 39,226∗∗∗ −1,532
(10,611) (11,032) (10,263)

Observations 43 43 43 43 43 43
R2 0.811 0.810 0.661 0.567 0.829 0.829

∗p<.1; ∗∗p<.05; ∗∗∗p<.01

Notes. The dependent variable in all regressions is daily race profits in GBP, for the full sample, as described in
Table 4.8. Volume is daily regular-hours LSE trading volume in GBP, as first described in Table 4.2, in units of
GBP 10,000s so that the coefficient is interpretable as a latency arbitrage tax in basis points. Volatility is realized
1-minute volatility for the FTSE 350 index in percentage points, using TRTH data, as described in Figure 4.5.
Volatility in percentage points is multiplied by average daily volume in GBP 10,000s so that the coefficient has the
interpretation of the effect of a 1 percentage point change in volatility on the latency arbitrage tax in basis points.
Regressions are ordinary least squares. R2 in the regressions without constant terms is computed according to the
formula 1−Var(ê)/Var(y). P-values are computed using the student-t distribution.

and the two-variable model has higher explanatory power than the single-variable model, but the
difference is modest, with an R2 of 0.83 versus 0.81. The reason for this is that volume and volatility
are highly correlated to each other, with an in-sample correlation of 0.82 in our data. The coefficients
can be interpreted as follows. On a day with average 1-minute volatility (about 13% in our sample),
the latency arbitrage tax is 0.3354+13*0.0066=0.42 basis points, the overall sample average. On
a particularly high realized volatility day, say 25%, the latency arbitrage tax would be 0.50 basis
points. On a relatively calm day, say 10% realized volatility, the latency arbitrage tax would be
0.40 basis points.

Before we turn to out-of-sample extrapolation, we emphasize that the standard errors on these
coefficients are much smaller than the variation in the latency arbitrage tax we found in sensitivity
analysis when we considered different specifications for race detection. Therefore, we will emphasize
two kinds of out-of-sample results: (i) results based on the volume and volatility model presented in
Column (6); and (ii) results based on the volume-only model in column (2), using both the baseline
latency arbitrage tax and the range of latency arbitrage taxes across the various sensitivity analyses
discussed in Section 5.1.

specification LATaxt = α + β · Volumet−AvgDailyVolume
AvgDailyVolume + γσt, that is, the latency arbitrage tax in basis points is the

left-hand-side variable. In this specification, the coefficient on volatility is roughly the same as in Column 6, at 0.0061,
and the coefficient on volume is -0.0008 and statistically insignificant. These coefficients imply that on a day where
trading volume is 10 percentage points higher than the average, holding volatility fixed, the latency arbitrage tax is
-0.008 basis points lower than average.
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Table 6.2: Annual Latency Arbitrage Profits in UK Equity Markets (GBP Millions)

Year

(1) (2) (3) (4)
Volume- Volume- Low High
Volatility Only Scenario Scenario

2014 52.0 56.7 27.1 99.1
2015 58.9 61.6 29.4 107.7
2016 63.3 63.8 30.4 111.4
2017 51.0 57.5 27.4 100.4
2018 55.8 60.6 28.9 105.9

Notes. We compute UK regular-hours trading volume by dividing LSE’s monthly reported regular-hours trading
volume by LSE’s monthly reported regular-hours market share. We compute UK 1-minute realized volatility using
TRTH data for the FTSE 350 index, computing the realized volatility on each day and then computing the root
mean square. Model (1) uses the coefficients from Regression (6) in Table 6.1. Model (2) uses the coefficient from
Regression (2) in Table 6.1. Model (3) and Model (4) use the min and max latency arbitrage taxes found in Table
5.1, of 0.20 bps and 0.74 bps, respectively.

6.2 Out-of-Sample Extrapolation: UK Equity Markets

Table 6.2 presents our estimates of the annual sums at stake in latency arbitrage races in the UK
for the five year period 2014-2018. In Column (1) we present the estimate based on the volume
and volatility regression model. For volume data we use LSE reports of their daily trading vol-
ume and monthly regular-hours market share to estimate total daily regular-hours trading volume.
For volatility data, we compute daily one-minute realized volatility of the FTSE 350 index using
Thomson Reuters data. In Column (2) we present the estimate based on the volume-only model.
In Columns (3)-(4) we present the range of estimates implied by the sensitivity analyses discussed
in Section 5.1; these are based on latency arbitrage taxes of 0.20 basis points in the lowest of the
Low scenarios and 0.74 basis points in the highest of the High scenarios.

The volume-and-volatility model implies annual latency arbitrage profits in UK equity markets
ranging between GBP 51.0 Million to GBP 63.3 Million per year. The volume-only model yields
slightly higher estimates. At the low end of our sensitivity analyses the annual profits are about
GBP 30 million and at the high end the annual profits are about GBP 100 million.

6.3 Out-of-Sample Extrapolation: Global Equity Markets

This section presents estimates of the annual sums at stake in latency arbitrage races in global
equities markets. The goal is to get a sense of magnitudes for what our results using the LSE
message data imply about the overall global size of the latency arbitrage prize. We emphasize that
this extrapolation does not attempt to account for differences in equity market structure across
countries that may affect the level of latency arbitrage (e.g., the level of fragmentation, role of ETFs,
geography), nor does it include other asset classes besides equities. As we will further emphasize
in the conclusion, we hope that other researchers in the future will use message data from other
countries and additional asset classes to produce better numbers.

We use volume data from the World Federation of Exchanges (WFE). The advantage of WFE
data is that it covers nearly all exchange groups around the world, but a caveat is that there may be
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Table 6.3: Annual Latency Arbitrage Profits in Global Equity Markets in 2018 (USD
Millions)

Exchange Group

(1) (2) (3) (4)
Volume- Volume- Low High
Volatility Only Scenario Scenario

NYSE Group 1,006 1,023 488 1,787
BATS Global Markets - U.S. 895 910 434 1,590
Nasdaq - U.S. 847 862 411 1,505
Shenzhen Stock Exchange 327 336 160 588
Japan Exchange Group 281 286 136 500
Shanghai Stock Exchange 260 268 128 468
Korea Exchange 118 120 57 209
London Stock Exchange Group∗∗ 109 119 57 207
BATS Chi-X Europe 110 119 57 207
Hong Kong Exchanges and Clearing 102 104 50 182
Euronext 89 96 46 168
Deutsche Börse Group 78 85 40 148
TMX Group 56 61 29 107
National Stock Exchange of India 47 49 24 86
SIX Swiss Exchange 40 43 21 76

Global Total (WFE Data Universe) 4,674 4,799 2,289 8,383

**London Stock Exchange Group includes London Stock Exchange as well as Borsa Italiana

Notes. As discussed in the text, this analysis does not attempt to account for differences in market structure across
countries and exchanges that may affect the level of latency arbitrage. Rather, its goal is to provide the reader with
a sense of global magnitudes. Trading volume is from the World Federation of Exchanges (2021). Per guidance
from the WFE, we sum the volume of listed symbols and exchange traded funds traded on electronic order books
(“EOB Value of Share Trading” and “ETFs EOB Turnover”). Please note that there may be inconsistencies across
exchanges in how they report data to WFE. The data is comprehensive and helps give a sense of the overall global
magnitudes but for any particular exchange better volume data may be available. Volatility is computed using
TRTH data for the following indices. NYSE, BATS and Nasdaq: S&P 500. Shenzhen and Shanghai: Shanghai
composite. Japan: Nikkei225. Korea: KOSPI. LSE Group: FTSE 350. BATS Chi-X, Euronext, Deutsche Börse,
Swiss: EuroStoxx600. Hong Kong: Hang Seng. India: SENSEX. Canada TMX Group: TSX Composite. The row
denoted Global Total (WFE Data Universe) includes all exchange groups in the WFE data. All estimates reported
in the table are computed analogously to Table 6.2 with the exception of the global total in Column (1): since we
do not have volatility indices for all exchange around the world, we compute this as (Sum of Volume-and-Volatility
Model Profits for Top 15 Exchange Groups) / (Sum of Volume-Only Model Profits for Top 15 Exchange Groups)
* (Global Total Profits Based on Volume-Only Model).

some inconsistencies in how exchange groups report their data to the WFE. We consulted with the
WFE to obtain their advice regarding how best to utilize their data. Unfortunately, exchange groups
appear to be inconsistent about whether they include volume from opening and closing auctions,
which ideally we would exclude. In the other direction, this data does not include electronic off-
exchange trading volume (i.e., dark pools) that is vulnerable to latency arbitrage, and which is a
significant share of equities trading volume in many countries. We compute volatility based on the
one-minute realized volatility of regional equity market indices using Thomson Reuters data. As
in Table 6.2 above, Table 6.3 Column (1) presents estimates based on the volume and volatility
regression model, Column (2) presents estimates based on the volume-only model, and Columns
(3)-(4) present the range implied by the sensitivity analyses.

Our main estimate of a latency arbitrage tax of 0.42 basis points implies annual latency arbitrage
profits of $4.8 billion in 2018 for global equities markets. The volume-and-volatility model yields a
slightly lower estimate since volatility was lower in 2018 than in our sample period. At the low end
of our sensitivity analyses the annual latency arbitrage profits for global equity markets are about
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$2.3 billion, and at the high end the annual profits are about $8.4 billion.42

Because of the COVID-19 pandemic, 2020 was an exceptionally high-volume and high-volatility
year for financial markets. Our volume-only model applied to 2020 implies annual latency arbitrage
profits in global equity markets of $6.5 billion, while our volume-and-volatility model yields a slightly
higher estimate of $7.0 billion. At the low end of our sensitivity analyses the figure is $3.1 billion
and at the high end the figure is $11.4 billion for global equity markets in 2020 (Appendix Table
E.2).

7 Conclusion

We conclude by summarizing the paper’s contributions to the academic literature and discussing
our hopes for future work.

The paper’s first contribution is methodological: utilizing exchange message data to measure
latency arbitrage. The central insight of the method is simple: an important part of the activity that
theory implies should occur in a latency arbitrage race will not actually manifest in traditional limit
order book data—the losers of the race. To see the full picture of a latency arbitrage race requires
seeing the full message traffic to and from the exchange, including the exchange error messages sent
to losers of the race (specifically, failed IOCs and failed cancels). Armed with this simple insight
and the correct data, it was conceptually straightforward, albeit human-time and computer-time
intensive, to develop and implement the empirical method described in Section 3.43

The paper’s second—and we think main—contribution is the set of empirical facts we document
about latency arbitrage in Section 4. We show that races are very frequent and very fast, with
an average of 537 races per day for FTSE 100 stocks, lasting an average of just 81 microseconds,
and with a mode of just 5-10 microseconds, or less than 1/10000th of the time it takes to blink
your eye. Over 20% of trading volume takes place in races. A small number of firms win the large
majority of races, disproportionately as takers of liquidity. Most races are for very small amounts
of money, averaging just over half a tick. But even just half a tick, over 20% of trading volume,
adds up. The latency arbitrage tax, defined as latency arbitrage profits divided by trading volume,
is 0.42 basis points based on all trading volume, and 0.53 basis points based on all non-race volume.
This amounts to about GBP 60 million annually in the UK. Extrapolating from our UK data, our
estimates imply that latency arbitrage is worth on the order of $5 billion annually in global equity

42As yet another approach to extrapolation: Virtu recently started publishing global bid-ask spreads data (Virtu,
2021). If we take the Virtu spreads data from Jan 2020, which is the one month in their data that is both globally
comprehensive and pre-pandemic, and we use WFE global equity volumes from that same month, we obtain a global
value-weighted effective spread of 3.78 basis points. If we then apply our 16.7% overall reduction in liquidity cost to
the non-race effective spread paid, we get about $6 billion per year instead of about $5 billion per year.

43The final run of our code, including all sensitivity analyses, required about 24 days of computer time on a 128-core
AWS server (about 60 hours for data preparation and the baseline analysis, plus an additional 35 hours per sensitivity
analysis). From initial receipt of data to first completed draft, the paper required about 3 years of work. The main
reason the project has been time intensive, despite its conceptual simplicity, is that message data had never been used
before for research (neither academic research nor, we think, industry research) and it took a lot of false starts and
iterations to fully understand. We expect that future research using message data will be a lot more efficient than
our study for at least two reasons. First, our study can be used as a blueprint. Second, some code re-optimization
we are including in the code that will be disseminated publicly reduces the computational run time by about 75%.
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markets alone.
A third contribution, more technical in nature but we hope useful to the literature, is the

development of two new approaches to quantifying latency arbitrage as a proportion of the overall
cost of liquidity. These new methods, used in conjunction with the results described above, show
that latency arbitrage accounts for 33% of the effective spread, 31% of all price impact, and that
market designs that eliminate latency arbitrage would reduce the cost of liquidity for investors by
17%.

One natural direction for future research is to utilize this paper’s method for detecting latency
arbitrage races to then try to better understand their sources. One could imagine, for instance,
trying to quantify what proportion of latency arbitrage races involve public signals from the same
symbol traded on a different venue, what proportion involve a change in a correlated market index,
what proportion involve signals from different asset classes or geographies, etc. Such a study could
utilize machine learning methods, treating races as the outcome variable and then trying to under-
stand what preceding market conditions explain the observed races, and would ideally utilize data
across many different exchanges and asset classes to cast a wide net in the search for race triggers.

Our main hope for future research, however, is simply that other researchers and regulatory
authorities replicate our analysis for markets beyond UK equities. Of particular interest would be
markets like U.S. equities that are more fragmented than the UK; and assets such as ETFs, futures,
treasuries and currencies that have lots of mechanical arbitrage relationships with other highly-
correlated assets. The “hard” part of such a study is obtaining the message data. Once one has the
message data, applying the method we have developed in this paper is relatively straightforward.44

To our knowledge, most regulators do not currently capture message data from exchanges, and
exchanges seem to preserve message data somewhat inconsistently. We hope this will change. Limit
order book data has historically been viewed as the official record of what happened in the market,
but our study suggests that message data, and especially the “error messages” that indicate that a
particular participant has failed in their request, are key to understanding speed-sensitive trading.

44To this end, our codebase and a user guide will be made publicly available upon publication of this paper.
Regulators and researchers interested in obtaining this codebase and user guide prior to publication should contact
the authors.
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A Supporting Details for Section 3.4: Computing the Information
Horizon

As described in Section 3.4 of the main text, there are three elements of our Information Horizon
calculation:

1. Actual Observed Latency: M1 Inbound → M1 Outbound

2. Minimum Observed Reaction Time: M1 Outbound → M2 Inbound

3. Upper bound on maximum possible information horizon

where M1 refers to the first message in a potential race and M2 the second message.
We can compute the Actual Observed Latency: M1 Inbound → M1 Outbound directly in our

data, for each inbound message. This is obtained by taking the difference between the inbound
message’s timestamp and its outbound message’s timestamp. The median response time is 157
microseconds, and there is considerable variation: the 10th percentile is 108 microseconds and the
90th percentile is 303 microseconds.1

To compute the Minimum Observed Reaction Time: M1 Outbound → M2 Inbound, we start
by finding all instances of the specific sequence of events where M1 outbound is a new limit order
that adds liquidity at some price level, and M2 inbound is an aggressive order (i.e., take) from a
different UserID at the same price level. In this sequence of events, M2 may be responding to the
new liquidity at the price level by taking it. Clearly, sometimes this sequence of events will happen
by chance, but sometimes this sequence of events will happen because M2 is responding to M1.2

Figure A.1 reports the distribution of the difference in time between these two events.
As can be seen, this distribution spikes upwards a bit to the right of 0. We interpret the

beginning of this spike as the minimum amount of time it takes the fastest market participants to
respond to such an M1 with such an M2, as measured from the outbound time stamp to the inbound
time stamp. Note that it need not be the case that the market participant is responding literally to
the outbound message sent to the participant who sent M1; rather, the market participant is likely
responding to their own receipt of information about the state of the order book from the LSE’s
proprietary data feed, sent through the message server as depicted in Figure 2.1 in the main text.
Using the simple statistical criterion of looking for the start of the spike by asking what is the first
microsecond at which the density is more than 5 standard deviations above the distribution in the
100 microseconds leading up to time 0, we determine that the spike starts at 29 microseconds.

1These figures are based on the M1 Inbound → M1 Outbound response time over all messages that are the first
message in a race.

2See also Dobrev and Schaumburg (2018) who study high-frequency cross-market linkages between U.S. treasury
and equity markets. Whereas our goal is to compute the information horizon, such that we can be sure that a particular
message M2 is not responding to a particular message M1 within the same market, Dobrev and Schaumburg’s (2018)
method can be used to study the lead-lag relationship across markets (e.g., treasuries and equities), where sometimes
an event in the first market triggers a reaction in the second market, sometimes the reverse occurs where an event in
the second market triggers a reaction in the first market, and sometimes events occur in both markets simultaneously,
i.e., within what we term the information horizon.
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Figure A.1: Distribution of Time between M1 Outbound New Limit Order → M2 In-
bound Takes Liquidity
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Notes. Over all regular-hour messages from four high-volume symbols, BP, GLEN, HSBA, VOD, we obtain all
cases where some outbound message confirms a new order added to the book and subsequently gets filled at least
in part. We then obtain the first outbound message that is an execution against this new order, obtain the inbound
message associated with this outbound execution message, and compute the difference in the message timestamp
between the first order’s (M1) outbound message and the second order’s (M2) inbound message. Note that this
difference can be negative if M2’s inbound is sent by the participant before M1’s outbound is sent by the outbound
gateway. The distribution depicted is a microsecond-binned histogram truncated at -500 microseconds and +500
microseconds. As described in the text, we compute the start of the spike (29 microseconds) by computing the
mean and standard deviation of the distribution in the period -100 microseconds to 0 microseconds, and then
finding the first microsecond after 0 that is at least 5 standard deviations above this pre-0 mean.

We also examined the case where M1 is a partial fill, and M2 is a successful cancel (Figure A.2).
In this case, the participant might be responding to their own privately-received message—so we
might expect this to be faster than what we saw above for the Add-Take sequence. Here, the spike
starts at around 17 microseconds. An interpretation is that the 17 microseconds is the minimum
response time to a privately-observed outbound message, and the additional 12 microseconds is the
minimum difference in latency between a private message sent to a particular market participant
and the LSE’s broadly disseminated proprietary data feed.3 The sum of these two figures (i.e.,
the 29 microseconds) is more appropriate for computing the information horizon in a race, but the
response time to a privately-observed book update may be of independent interest so we report the
distribution here for completeness.

3A similar difference between the speed with which private messages are received versus book updates from
proprietary data feeds has been a recurring source of controversy at the Chicago Mercantile Exchange. See Patterson,
Strasburg and Pleven (2013) and Osipovich (2018).
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Figure A.2: Distribution of Time between M1 Outbound partial fill → M2 Inbound
Successful Cancel
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Notes. Over all regular-hour messages from four high-volume symbols, BP, GLEN, HSBA, VOD, we obtain all
cases where some outbound message is a partial fill and a subsequent outbound message is a successful cancel. We
then obtain the inbound cancel request message associated with the outbound cancel success message, and compute
the difference in the message timestamp between the partial fill outbound message (M1) and the cancel request
inbound message (M2). Note that this difference can be negative if M2’s inbound is sent by the participant before
M1’s outbound is sent by the outbound gateway. The distribution depicted is a microsecond-binned histogram
truncated at -500 microseconds and +500 microseconds. As described in the text, we compute the start of the
spike by computing the mean and standard deviation of the distribution in the period -100 microseconds to 0
microseconds, and then finding the first microsecond after 0 that is at least 5 standard deviations above this pre-0
mean.

Last, the upper bound on the information horizon that we utilize, 500 microseconds, was deter-
mined in consultation with supervisors at the Financial Conduct Authority. This was based on the
discussions they had with fast market participants on their reaction times, differences in the speeds
of competing microwave connectivity providers, the variance in arrival times across long distances
(such as Chicago to London), the geographical distance between the LSE’s data center and other
UK exchanges’ data centers, and the judgment of supervisory experts to establish an amount of
time short enough for our assumption that M2 is not reacting to M1 to be reasonable. This 500
microsecond truncation of the information horizon binds in just under 4% of cases.
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B Additional Results for Section 4

This appendix presents additional specifications for results presented throughout Section 4 of the
main text. The material is presented in order of the corresponding parts of the main text.

B.1 Additional Results for Section 4.1

Symbol-Date Version of Table 4.1

Table 4.1 in the main text reports the number of races per day at the symbol level averaged across
all dates (Panel A), and at the date level summed across all symbols (Panel B). The following
table presents the number of races at the symbol-date level, i.e., without aggregating across either
symbols or dates.

Table B.1: Number of Races Per Day Across Symbol-Dates

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

FTSE 100 537.24 542.96 29 73 152 215 346 629 1,194 2,635 7,014
FTSE 250 70.05 103.26 0 0 0 2 35 97 182 477 1,392
Full Sample 206.03 372.02 0 0 0 11 81 231 513 1,919 7,014

Notes. Please see the notes for Table 4.1 in the main text. The table in the main text reports the distribution of
the number of races at the symbol level and at the date level. This appendix table reports the distribution of the
number of races detected at the symbol-date level.

Race Duration

Figure 4.1 in the main text plots the distribution of the duration of races, as measured from the
time that elapses between the first success message in the race (S1) and the first fail message in the
race (F1). The following table presents the percentiles of this distribution in table form, separately
for FTSE 100, FTSE 250, and full sample.

Table B.2: Race Duration

Time from S1 to F1 (microseconds)

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 80.81 92.14 -9.00 3.70 12.60 48.50 123.70 207.50 402.80
FTSE 250 71.85 80.84 -4.40 4.30 12.80 37.10 111.70 185.60 338.00
Full Sample 78.65 89.63 -7.90 3.80 12.70 45.60 120.90 201.90 390.20

Notes. Please see the notes for Figure 4.1 in the main text. For each race detected by our baseline method, we
compute the difference in message timestamps between the first inbound message in the race that is a success and
the first inbound message in the race that is a fail. Denote these messages S1 and F1, respectively. This table
reports the distribution of F1’s timestamp minus S1’s timestamp in microseconds, that is, by how long did the first
successful message in the race beat the first failed message.
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Total Time in Races

In the text of Section 4.1 we report the distribution of the number of races per day (Table 4.1) and the
distribution of the duration of races (Figure 4.1). In this appendix table we report the distribution
of the total time in races per day. This is reported in seconds per day at the symbol-date level.

Table B.3: Total Time in Races Across Symbol-Dates

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

FTSE 100 0.044 0.047 0.002 0.006 0.012 0.017 0.028 0.052 0.096 0.235 0.739
FTSE 250 0.005 0.008 0.000 0.000 0.000 0.000 0.002 0.007 0.013 0.036 0.093
Full Sample 0.016 0.032 0.000 0.000 0.000 0.001 0.006 0.018 0.042 0.153 0.739

Notes. For each symbol-date in our dataset, we sum all race durations as defined in Figure 4.1 and Table B.2 and
report the distribution. For example, the table indicates that in the mean FTSE 100 symbol-date, the sum of the
duration of all races is 0.044 seconds.

Symbol-level Version of Table 4.2

Table 4.2 in the main text reports the percentage of volume and trades in races at the date level,
i.e., averaged across all symbols in the FTSE 100, FTSE 250, and full sample respectively. In this
appendix table we report the percentage of volume and trades in races at the symbol level averaged
across all dates.

Table B.4: Volume and Trades in Races

Panel A: Percentage of volume (value-weighted) in races across symbols

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 23.48 4.90 13.08 17.84 20.07 23.30 26.34 30.62 33.75
FTSE 250 11.33 8.48 0.00 0.61 1.99 12.69 18.48 22.07 27.30
Full Sample 14.86 9.40 0.00 1.11 5.79 17.20 22.02 25.78 33.06

Panel B: Percentage of number of trades in races across symbols

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 22.19 4.56 12.54 16.69 19.58 21.79 24.78 28.44 32.09
FTSE 250 11.31 8.37 0.00 0.55 2.00 13.21 18.32 21.63 27.31
Full Sample 14.48 8.95 0.00 0.87 6.05 16.70 21.36 24.67 31.16

Notes. Please see the notes for Table 4.2 in the main text. Table 4.2 reports the distribution of percentage of
volume and trades in races at the date level. This appendix table reports the same distribution but at the symbol
level.
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B.2 Additional Results for Section 4.2

Additional Data on Messages Per Race

Table 4.3 in the main text reports the number of participants, takes, and cancels in the T microsec-
onds after the start of a race for values of T between 50us and 1ms. In this appendix table we break
out the take messages into two types: immediate-or-cancels (IOCs) and limit orders. Recall that in
many of the sensitivity analyses discussed in Section 5 of the main text we only allow for IOC take
messages to count towards the 1+ fails requirement for race detection. The table shows that about
90% of take messages sent in races are IOCs as opposed to plain-vanilla limit orders.

This appendix table also reports the total number of messages and total number of firms in
races. The number of firms can be lower than the number of participants in case there are multiple
active trading desks within the same firm in a race, and the number of participants can in turn be
lower than the number of messages in case some participants send multiple messages in a race.

Table B.5: Number of IOC / Limit Takes and Number of Messages / Firms in Races

Panel A: Number of take (IOC) messages

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

IOC takes within 50µs 1.56 0.99 0 0 1 1 1 2 3 5 14
IOC takes within 100µs 1.80 1.10 0 0 1 1 2 2 3 5 15
IOC takes within 200µs 2.20 1.32 0 0 1 1 2 3 4 6 17
IOC takes within 500µs 2.81 1.73 0 0 1 2 2 4 5 8 29
IOC takes within 1000µs 3.07 2.00 0 0 1 2 3 4 6 10 40

Panel B: Number of take (limit) messages

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

Limit takes within 50µs 0.10 0.32 0 0 0 0 0 0 0 1 5
Limit takes within 100µs 0.13 0.39 0 0 0 0 0 0 1 2 6
Limit takes within 200µs 0.17 0.45 0 0 0 0 0 0 1 2 7
Limit takes within 500µs 0.25 0.60 0 0 0 0 0 0 1 3 11
Limit takes within 1000µs 0.37 0.82 0 0 0 0 0 0 1 4 17

Panel C: Number of messages

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

Messages within 50µs 1.83 0.93 1 1 1 1 2 2 3 5 14
Messages within 100µs 2.15 1.05 1 1 1 1 2 3 3 6 15
Messages within 200µs 2.67 1.23 1 1 2 2 2 3 4 7 17
Messages within 500µs 3.46 1.72 2 2 2 2 3 4 6 9 29
Messages within 1000µs 3.90 2.19 2 2 2 2 3 5 7 12 41

Panel D: Number of firms

Description Mean sd Min Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99 Max

Firms within 50µs 1.55 0.69 1 1 1 1 1 2 2 4 7
Firms within 100µs 1.77 0.76 1 1 1 1 2 2 3 4 8
Firms within 200µs 2.12 0.82 1 1 1 2 2 3 3 4 8
Firms within 500µs 2.60 1.01 1 1 2 2 2 3 4 6 10
Firms within 1000µs 2.82 1.19 1 1 2 2 3 3 4 6 12

Notes. Please see the notes for Table 4.3 in the main text and the description in the text above this table.
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Additional Versions of Percentage of 1st Successful and Failed Messages by Firm

Figure 4.2 in the main text reports the percentage of 1st successful and 1st failed messages in races,
by firm, over all races in the FTSE 100. The following two appendix figures report the same figure
for the FTSE 250 and full sample.

Figure B.1: Percentage of 1st Successful and Failed Messages by Firm
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Panel B: Full Sample
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Notes. Please see the notes for Figure 4.2 in the main text and the description in the text above this figure.
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Additional Details for Expected Number of Races by Chance Analysis

In Section 4.2 of the main text, in the subsection “Expected Number of Races by Chance,” we
discussed the number of times per day we would see N messages on the same side of the order
book within T microseconds, by chance, if orders arrive randomly according to a Poisson process.
Poisson processes are memoryless meaning that the arrival of a message at one point in time does
not make it any more or less likely for other messages to arrive in the interval of time thereafter.
We concluded that clusters of messages within short time horizons would be very rare if messages
arrive Poisson.

We also considered a sensitivity, to account for time-varying message arrival rates as in Engle
and Russell (1998), in which we assume the entire trading day for a symbol-date is as busy as its
busiest 30-minutes. Again, we concluded that clusters of messages within the kinds of ultra-short
time horizons we observe in our data would be very rare.

This appendix table provides additional support for that discussion. In the first table we deter-
mine the Poisson arrival rate for each symbol-date based on the total number of potentially-race-
relevant messages (i.e., marketable takes or cancels at the best bid or offer) for that symbol-date.
In the second table we determine the Poisson arrival rate for each symbol-date based on the rate of
potentially-race-relevant messages in that symbol-date’s busiest 30-minute increment. For each, we
report the distribution over symbol-dates of the expected number of instances per day in which one
would see N participants within T microseconds, and compare this to the actual observed number
of races.
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Table B.6: Expected Number of Potential Race Events by Chance: Average Message
Arrival Rate

FTSE 100

N T Mean sd Pct01 Pct25 Median Pct75 Pct99

2 50 0.35 0.80 0.01 0.04 0.09 0.32 3.28
2 100 0.71 1.60 0.02 0.08 0.18 0.64 6.56
2 200 1.42 3.20 0.03 0.15 0.37 1.29 13.13
2 500 3.55 7.99 0.08 0.38 0.91 3.22 32.81
2 1000 7.09 15.96 0.15 0.77 1.83 6.44 65.57
3 1000 0.00 0.02 0.00 0.00 0.00 0.00 0.05

Actual Number of Races

Baseline analysis 537.24 542.96 73 215 346 629 2,635
Sensitivity: 3+ within Info Horizon 228.98 206.88 28 100 161 278 1,002

FTSE 250

N T Mean sd Pct01 Pct25 Median Pct75 Pct99

2 50 0.00 0.01 0.00 0.00 0.00 0.00 0.04
2 100 0.01 0.02 0.00 0.00 0.00 0.01 0.09
2 200 0.02 0.04 0.00 0.00 0.01 0.02 0.17
2 500 0.04 0.10 0.00 0.00 0.02 0.04 0.43
2 1000 0.08 0.20 0.00 0.01 0.03 0.08 0.86
3 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Actual Number of Races

Baseline analysis 70.05 103.26 0 2 35 97 477
Sensitivity: 3+ within Info Horizon 30.68 49.17 0 0 12 43 223

Notes. Please see the notes for Table 4.5 in the main text. This table provides full distributional details for the
columns marked “Average Rate” in Table 4.5 in the main text.
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Table B.7: Expected Number of Potential Race Events by Chance: Busiest 30 Minutes
Message Arrival Rate

FTSE 100

N T Mean sd Pct01 Pct25 Median Pct75 Pct99

2 50 1.33 3.22 0.03 0.12 0.31 1.19 13.75
2 100 2.65 6.43 0.05 0.25 0.62 2.38 27.49
2 200 5.31 12.86 0.10 0.50 1.25 4.76 54.97
2 500 13.26 32.12 0.26 1.24 3.12 11.90 137.31
2 1000 26.49 64.11 0.52 2.49 6.23 23.79 274.22
3 1000 0.03 0.14 0.00 0.00 0.00 0.01 0.39

Actual Number of Races

Baseline analysis 537.24 542.96 73 215 346 629 2,635
Sensitivity: 3+ within Info Horizon 228.98 206.88 28 100 161 278 1,002

FTSE 250

N T Mean sd Pct01 Pct25 Median Pct75 Pct99

2 50 0.02 0.05 0.00 0.00 0.01 0.02 0.22
2 100 0.04 0.10 0.00 0.01 0.02 0.04 0.44
2 200 0.09 0.19 0.00 0.01 0.03 0.09 0.89
2 500 0.21 0.49 0.00 0.03 0.09 0.21 2.22
2 1000 0.43 0.97 0.00 0.06 0.17 0.43 4.43
3 1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Actual Number of Races

Baseline analysis 70.05 103.26 0 2 35 97 477
Sensitivity: 3+ within Info Horizon 30.68 49.17 0 0 12 43 223

Notes. Please see the notes for Table 4.5 in the main text. This table provides full distributional details for the
columns marked “Busiest 30 Mins” in Table 4.5 in the main text.
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B.3 Additional Results for Section 4.3

Profits Per-Race Full Sample

Tables 4.6 and 4.7 in the main text reported data on the distribution of race profits for FTSE
100 and FTSE 250 symbols separately. The following tables report the same information for the
combined full sample.

Table B.8: Detail on Race Profits (Per-Share and Per-Race) Marked to Market at 10s
(Appendix)

Full Sample

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Per-share profits (ticks) 0.55 3.92 -6.50 -1.50 -0.50 0.50 1.00 3.00 10.00
Per-share profits (GBX) 0.17 1.48 -2.00 -0.50 -0.05 0.01 0.25 1.00 3.50
Per-share profits (basis points) 1.66 8.71 -15.00 -4.26 -1.29 0.50 3.89 7.98 27.02
Per-race profits displayed depth (GBP) 1.85 16.27 -20.00 -2.76 -0.34 0.00 2.15 7.27 41.50
Per-race profits qty trade/cancel (GBP) 1.76 15.57 -18.13 -2.56 -0.32 0.00 2.02 6.78 38.44

Notes. Please see the notes for Table 4.6 in the main text. This table reports the same statistics for the full sample.

Table B.9: Average Race Profits (Per-Share and Per-Race) for Different Mark to Market
Horizons (Appendix)

Full Sample

Description 1ms 10ms 100ms 1s 10s 30s 60s 100s

Mean per-share profits (ticks) 0.03 0.21 0.29 0.40 0.55 0.59 0.63 0.64
Mean per-share profits (GBX) 0.03 0.08 0.10 0.13 0.17 0.18 0.18 0.18
Mean per-share profits (basis points) 0.18 0.67 0.89 1.20 1.66 1.83 1.94 1.97
Mean per-race profits displayed depth (GBP) 0.28 0.96 1.24 1.54 1.85 1.86 1.88 1.84
Mean per-race profits qty trade/cancel (GBP) 0.31 0.94 1.18 1.45 1.76 1.76 1.77 1.74

Notes. Please see the notes for Table 4.7 in the main text. This table reports the same statistics for the full sample.
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B.4 Additional Results for Section 4.4

Latency Arbitrage Tax Correlation with Volume and Volatility

Figure 4.5 of the main text presents a scatterplot of latency arbitrage profits against volume and
volatility. This figure is analogous but plots the latency arbitrage tax against volume and volatility.

Figure B.2: Latency Arbitrage Tax Correlation with Volume and Volatility

Panel A: LA Tax vs. Volume
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Panel B: LA Tax vs. Volatility
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Notes. Panel A presents a scatterplot of the daily latency arbitrage tax, defined as daily race profits for the full
sample divided by daily regular-hours trading volume, against regular-hours trading volume. Panel B presents a
scatterplot of the daily latency arbitrage tax against daily realized 1-minute volatility for the FTSE 350 index.
Please see the notes for Figure 4.5 in the main text which is closely related.
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B.5 Additional Results for Section 4.5

Distribution of the Bid-Ask Spread by Symbol and Date

Table 4.10 in the main text presents a decomposition of the bid-ask spread into price impact in races,
price impact not in races, loss avoidance, and the realized spread. For context on this analysis,
this appendix table presents the distribution of the bid-ask spread across symbol (averaged over
all dates) and dates (averaged over all symbols). Spreads are presented based on both the time-
weighted displayed spread (Panel A) and the quantity-weighted traded spread (Panel B); this latter
quantity-weighted spread corresponds to the term effective spread utilized in the literature and in
the text of Section 4.5. For each analysis, we present results in both ticks (sub-panel A) and basis
points (sub-panel B); this latter measurement corresponds to the spread decomposition reported in
the text. All spreads are reported as the “half-spread”, i.e., half the distance between the bid and
the offer, which corresponds to the difference between the tradable or traded price and the midpoint
price. The half-spread is the standard measure in the literature.

Table B.10: Spread by Date

Panel A: Time-Weighted Average Half-Spread
Sub-Panel A: Ticks

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 0.97 0.06 0.86 0.92 0.93 0.96 1.00 1.04 1.20
FTSE 250 3.40 0.35 2.83 2.99 3.19 3.34 3.61 3.81 4.38
Full Sample 2.70 0.26 2.29 2.39 2.53 2.63 2.86 2.98 3.45

Sub-Panel B: Basis Points

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 3.77 0.20 3.42 3.54 3.66 3.76 3.82 3.97 4.39
FTSE 250 15.76 1.48 13.11 13.97 14.81 15.62 16.66 17.67 19.62
Full Sample 12.27 1.09 10.35 10.92 11.55 12.22 12.93 13.63 15.19

Panel B: Quantity-Weighted Average Half-Spread ("Effective Spread")
Sub-Panel A: Ticks

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 0.85 0.17 0.70 0.74 0.76 0.80 0.86 1.00 1.71
FTSE 250 1.44 0.13 1.15 1.31 1.37 1.44 1.47 1.53 1.82
Full Sample 0.93 0.15 0.77 0.83 0.85 0.88 0.95 1.06 1.66

Sub-Panel B: Basis Points

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

FTSE 100 2.65 0.29 2.28 2.45 2.52 2.59 2.72 2.80 4.28
FTSE 250 6.76 0.58 5.72 6.24 6.44 6.66 6.95 7.19 8.97
Full Sample 3.17 0.27 2.74 2.92 3.06 3.12 3.22 3.38 4.52

Notes. Please see the description in the text above this table for a description of the spread variables. This table
reports distributions of the spread at the date level, averaging over symbols.
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Table B.11: Spread by Symbol

Panel A: Time-Weighted Average Half-Spread
Sub-Panel A: Ticks

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 0.97 0.32 0.56 0.64 0.83 0.92 1.02 1.32 2.14
FTSE 250 3.40 3.00 0.83 1.09 1.53 2.57 3.94 6.52 16.73
Full Sample 2.70 2.76 0.58 0.85 1.01 1.79 3.25 5.67 12.86

Sub-Panel B: Basis Points

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 3.77 1.56 1.09 1.70 2.56 3.77 4.85 5.49 7.59
FTSE 250 15.76 13.67 3.38 6.36 7.74 11.32 17.92 29.90 59.41
Full Sample 12.27 12.76 1.21 3.09 4.95 8.10 15.04 27.07 56.01

Panel B: Quantity-Weighted Average Half-Spread ("Effective Spread")
Sub-Panel A: Ticks

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 0.80 0.27 0.52 0.55 0.64 0.73 0.89 1.17 1.71
FTSE 250 2.09 1.42 0.60 0.84 1.13 1.75 2.58 3.80 6.62
Full Sample 1.72 1.34 0.54 0.66 0.81 1.32 2.17 3.21 6.38

Sub-Panel B: Basis Points

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

FTSE 100 3.27 1.22 1.22 1.75 2.28 3.18 4.13 4.91 5.79
FTSE 250 11.61 9.53 2.66 4.90 5.99 8.22 13.67 22.96 47.35
Full Sample 9.18 8.90 1.29 2.59 4.21 6.26 10.38 18.47 40.07

Notes. Please see the description in the text above this table for a description of the spread variables. This table
reports distributions of the spread at the symbol level, averaging over dates.
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Spread Decomposition Full Sample by Date

Table 4.10 in the main text presents our spread decomposition for FTSE 100 symbols. The following
table present the same spread decomposition for FTSE 250 symbols and for the full sample by date.

Table B.12: Spread Decomposition (Appendix)

Panel A: FTSE 250 by Symbol

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Effective spread paid - overall (bps) 8.06 3.81 2.65 4.63 5.59 7.14 9.84 13.10 19.11
Effective spread paid - in races (bps) 6.74 3.03 2.42 4.32 4.97 6.08 7.63 9.96 15.62
Effective spread paid - not in races (bps) 8.22 3.87 2.72 4.70 5.72 7.31 9.94 13.34 19.55
Price impact - overall (bps) 8.09 3.54 2.64 4.96 5.71 7.10 9.40 12.95 19.91
Price impact - in races (bps) 12.22 6.19 4.04 7.17 8.82 10.72 13.75 18.12 33.42
Price impact - not in races (bps) 7.50 3.52 2.36 4.37 5.09 6.40 8.79 12.39 19.39
Loss avoidance (bps) 0.01 0.02 -0.02 0.00 0.00 0.01 0.01 0.02 0.07
Realized spread - overall (bps) -0.04 1.14 -2.30 -1.02 -0.53 -0.14 0.34 0.96 2.67
Realized spread - in races (bps) -5.48 3.68 -20.22 -9.36 -6.14 -4.43 -3.44 -2.73 -1.62
Realized spread - not in races (bps) 0.72 1.07 -0.97 -0.13 0.20 0.59 1.07 1.76 3.14
PI in races / PI total (%) 21.60 9.50 1.79 6.00 14.89 22.98 28.19 32.16 39.60
PI in races / Effective spread (%) 22.50 10.92 1.58 5.62 14.84 23.57 30.44 34.79 47.67

Panel B: Full Sample by Date

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

Effective spread paid - overall (bps) 3.17 0.27 2.74 2.92 3.06 3.12 3.22 3.38 4.52
Effective spread paid - in races (bps) 2.99 0.13 2.64 2.84 2.90 2.99 3.06 3.16 3.28
Effective spread paid - not in races (bps) 3.22 0.32 2.77 2.95 3.09 3.17 3.29 3.44 4.90
Price impact - overall (bps) 3.38 0.19 2.96 3.19 3.23 3.38 3.52 3.61 3.80
Price impact - in races (bps) 4.82 0.24 4.35 4.53 4.66 4.79 4.99 5.07 5.55
Price impact - not in races (bps) 2.99 0.19 2.57 2.79 2.86 2.95 3.13 3.29 3.38
Loss avoidance (bps) 0.01 0.00 -0.01 0.00 0.00 0.01 0.01 0.01 0.01
Realized spread - overall (bps) -0.22 0.23 -0.62 -0.38 -0.31 -0.26 -0.15 -0.09 1.08
Realized spread - in races (bps) -1.83 0.17 -2.43 -2.01 -1.92 -1.81 -1.74 -1.64 -1.51
Realized spread - not in races (bps) 0.23 0.26 -0.17 0.05 0.14 0.20 0.29 0.34 1.68
PI in races / PI total (%) 30.58 2.64 22.91 27.88 29.88 30.81 31.93 33.39 35.81
PI in races / Effective spread (%) 32.82 3.73 17.38 29.92 31.60 33.66 34.70 36.54 39.52

Notes. Please see the notes for Table 4.10 in the main text. Panel A reports the distribution for all symbols in
the FTSE 250. We only include symbols that have at least 100 races summed over all dates; this drops about
one-quarter of FTSE 250 symbols. Panel B reports the distribution by date for the full sample.
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Spread Decomposition with Different Time Horizons

Table 4.10 in the main text reports results of our spread decomposition (Section 4.5 of the main
text, Approach #1) using a 10 second mark-to-market time horizon for calculating price impact
and loss avoidance. In this appendix we report the same decomposition but using 100 millisecond
and 1 second time horizons instead. Notably, the realized spread appears to decline with the time
horizon, from 100 millisecond to 1 second to 10 seconds, both in and out of races. While the overall
sample realized spread is slightly negative at 10 seconds, it is slightly positive at 100 millisecond
and 1 second. This pattern is consistent with price impact being smaller at shorter time horizons
as discussed in Conrad and Wahal (2020).
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Table B.13: Spread Decomposition - 100ms

Panel A: FTSE 100 by Symbol

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Effective spread paid - overall (bps) 3.27 1.22 1.22 1.75 2.28 3.18 4.13 4.91 5.79
Effective spread paid - in races (bps) 3.18 1.22 0.99 1.70 2.21 3.17 4.05 4.89 5.98
Effective spread paid - not in races (bps) 3.29 1.22 1.25 1.78 2.30 3.17 4.15 4.96 5.71
Price impact - overall (bps) 3.18 1.25 1.16 1.71 2.18 3.06 3.96 5.06 5.82
Price impact - in races (bps) 4.52 1.75 1.61 2.52 3.07 4.26 5.76 7.23 7.89
Price impact - not in races (bps) 2.75 1.03 1.03 1.47 1.92 2.72 3.36 4.25 4.94
Loss avoidance (bps) 0.00 0.01 -0.01 -0.00 0.00 0.00 0.00 0.01 0.02
Realized spread - overall (bps) 0.09 0.27 -0.43 -0.20 -0.03 0.06 0.18 0.37 1.06
Realized spread - in races (bps) -1.33 0.62 -2.80 -2.32 -1.68 -1.11 -0.88 -0.71 -0.53
Realized spread - not in races (bps) 0.55 0.30 0.08 0.22 0.29 0.50 0.74 0.92 1.41
PI in races / PI total (%) 33.26 6.28 21.27 25.97 29.36 31.77 37.35 43.12 46.06
PI in races / Effective spread (%) 32.49 7.56 18.81 23.89 28.30 30.96 36.37 43.84 49.45

Panel B: FTSE 250 by Symbol

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Effective spread paid - overall (bps) 8.06 3.81 2.65 4.63 5.59 7.14 9.84 13.10 19.10
Effective spread paid - in races (bps) 6.74 3.03 2.42 4.32 4.97 6.08 7.63 9.96 15.62
Effective spread paid - not in races (bps) 8.22 3.87 2.72 4.70 5.72 7.31 9.94 13.34 19.55
Price impact - overall (bps) 5.99 2.47 2.24 3.58 4.34 5.44 7.09 9.23 14.30
Price impact - in races (bps) 9.38 4.87 3.50 5.39 6.51 8.23 11.07 13.93 26.88
Price impact - not in races (bps) 5.53 2.45 2.02 3.26 3.86 4.89 6.55 8.94 13.50
Loss avoidance (bps) -0.00 0.02 -0.05 -0.02 -0.01 -0.00 0.00 0.01 0.06
Realized spread - overall (bps) 2.07 1.69 -0.04 0.45 1.17 1.82 2.57 3.51 6.97
Realized spread - in races (bps) -2.64 2.75 -12.96 -5.92 -3.14 -1.97 -1.06 -0.47 0.99
Realized spread - not in races (bps) 2.69 1.70 0.42 1.22 1.74 2.44 3.18 4.28 7.07
PI in races / PI total (%) 21.82 9.31 2.14 7.49 15.08 23.34 28.22 32.29 39.41
PI in races / Effective spread (%) 17.14 8.59 1.30 4.59 10.97 17.30 22.54 27.63 37.15

Panel C: Full Sample by Date

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

Effective spread paid - overall (bps) 3.17 0.27 2.74 2.92 3.06 3.12 3.22 3.38 4.52
Effective spread paid - in races (bps) 2.99 0.13 2.64 2.84 2.90 2.99 3.06 3.16 3.28
Effective spread paid - not in races (bps) 3.22 0.32 2.77 2.95 3.10 3.17 3.29 3.44 4.90
Price impact - overall (bps) 2.88 0.16 2.54 2.71 2.79 2.90 2.95 3.13 3.18
Price impact - in races (bps) 4.22 0.17 3.81 4.00 4.13 4.22 4.35 4.45 4.60
Price impact - not in races (bps) 2.52 0.15 2.19 2.33 2.43 2.52 2.58 2.72 2.84
Loss avoidance (bps) 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.02
Realized spread - overall (bps) 0.29 0.23 0.11 0.17 0.20 0.24 0.30 0.39 1.66
Realized spread - in races (bps) -1.24 0.08 -1.48 -1.33 -1.28 -1.23 -1.19 -1.13 -1.06
Realized spread - not in races (bps) 0.70 0.26 0.51 0.57 0.61 0.65 0.73 0.81 2.26
PI in races / PI total (%) 31.43 2.31 24.08 28.54 30.40 31.69 32.47 34.07 36.64
PI in races / Effective spread (%) 28.77 3.12 15.24 26.47 27.76 29.26 30.37 31.92 34.52

Notes. Please see the notes for Table 4.10 in the main text. This table is the same except that price impact and
loss avoidance are calculated based on mark-to-market at 100 milliseconds instead of 10 seconds. Panel A reports
the distributions for all symbols in the FTSE 100. Panel B reports the distribution for all symbols in the FTSE
250. We only include symbols that have at least 100 races summed over all dates; this drops about one-quarter of
FTSE 250 symbols and does not drop any FTSE 100 symbols. Panel C reports the distribution of these statistics
by date for the full sample.
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Table B.14: Spread Decomposition - 1s

Panel A: FTSE 100 by Symbol

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Effective spread paid - overall (bps) 3.27 1.22 1.22 1.75 2.28 3.18 4.13 4.91 5.79
Effective spread paid - in races (bps) 3.18 1.22 0.99 1.70 2.21 3.17 4.05 4.89 5.98
Effective spread paid - not in races (bps) 3.29 1.22 1.25 1.78 2.30 3.17 4.15 4.96 5.71
Price impact - overall (bps) 3.39 1.29 1.27 1.85 2.34 3.34 4.15 5.20 6.30
Price impact - in races (bps) 4.81 1.78 1.83 2.78 3.33 4.63 6.04 7.44 8.33
Price impact - not in races (bps) 2.93 1.07 1.13 1.60 2.06 2.98 3.51 4.44 5.39
Loss avoidance (bps) 0.00 0.01 -0.00 -0.00 0.00 0.00 0.01 0.01 0.02
Realized spread - overall (bps) -0.12 0.25 -0.56 -0.38 -0.25 -0.15 -0.00 0.14 0.76
Realized spread - in races (bps) -1.63 0.62 -3.24 -2.54 -1.98 -1.48 -1.15 -0.91 -0.76
Realized spread - not in races (bps) 0.36 0.28 -0.09 0.06 0.16 0.32 0.55 0.72 1.13
PI in races / PI total (%) 33.29 6.26 20.88 25.73 29.49 32.11 37.49 42.69 46.16
PI in races / Effective spread (%) 34.74 7.42 19.79 26.20 30.94 34.06 39.08 44.93 49.85

Panel B: FTSE 250 by Symbol

Description Mean sd Pct01 Pct10 Pct25 Median Pct75 Pct90 Pct99

Effective spread paid - overall (bps) 8.06 3.81 2.65 4.63 5.59 7.14 9.84 13.10 19.11
Effective spread paid - in races (bps) 6.74 3.03 2.42 4.32 4.97 6.08 7.63 9.96 15.62
Effective spread paid - not in races (bps) 8.22 3.87 2.72 4.70 5.72 7.31 9.94 13.34 19.55
Price impact - overall (bps) 6.71 2.83 2.43 4.14 4.95 5.98 7.79 10.34 17.10
Price impact - in races (bps) 10.44 5.46 3.75 6.14 7.33 9.10 12.28 15.39 29.90
Price impact - not in races (bps) 6.20 2.82 2.18 3.63 4.41 5.41 7.23 9.85 16.38
Loss avoidance (bps) -0.00 0.01 -0.04 -0.01 -0.00 -0.00 0.00 0.01 0.07
Realized spread - overall (bps) 1.35 1.44 -0.46 0.06 0.57 1.11 1.73 2.66 5.68
Realized spread - in races (bps) -3.70 3.14 -16.39 -6.99 -4.13 -2.65 -1.99 -1.44 -0.69
Realized spread - not in races (bps) 2.02 1.44 0.22 0.81 1.25 1.80 2.43 3.38 5.89
PI in races / PI total (%) 21.79 9.41 2.10 6.72 15.03 23.58 28.40 32.31 39.77
PI in races / Effective spread (%) 19.03 9.41 1.61 5.19 12.08 19.61 25.39 30.01 41.32

Panel C: Full Sample by Date

Description Mean sd Min Pct10 Pct25 Median Pct75 Pct90 Max

Effective spread paid - overall (bps) 3.17 0.27 2.74 2.92 3.06 3.12 3.22 3.38 4.52
Effective spread paid - in races (bps) 2.99 0.13 2.64 2.84 2.90 2.99 3.06 3.16 3.28
Effective spread paid - not in races (bps) 3.22 0.32 2.77 2.95 3.10 3.17 3.29 3.44 4.90
Price impact - overall (bps) 3.10 0.17 2.72 2.90 3.00 3.11 3.21 3.36 3.44
Price impact - in races (bps) 4.51 0.20 4.08 4.26 4.39 4.51 4.66 4.75 4.98
Price impact - not in races (bps) 2.71 0.17 2.35 2.54 2.61 2.71 2.78 2.99 3.06
Loss avoidance (bps) 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
Realized spread - overall (bps) 0.07 0.22 -0.11 -0.06 -0.02 0.02 0.12 0.19 1.31
Realized spread - in races (bps) -1.52 0.11 -1.86 -1.65 -1.58 -1.52 -1.45 -1.40 -1.32
Realized spread - not in races (bps) 0.50 0.24 0.29 0.36 0.41 0.46 0.55 0.62 1.89
PI in races / PI total (%) 31.24 2.41 23.10 28.32 30.29 31.69 32.37 33.99 36.59
PI in races / Effective spread (%) 30.71 3.37 16.41 28.06 29.47 31.27 32.89 34.03 36.64

Notes. Please see the notes for Table 4.10 in the main text. This table is the same except that price impact and
loss avoidance are calculated based on mark-to-market at 1 second instead of 10 seconds. Panel A reports the
distributions for all symbols in the FTSE 100. Panel B reports the distribution for all symbols in the FTSE 250.
We only include symbols that have at least 100 races summed over all dates; this drops about one-quarter of FTSE
250 symbols and does not drop any FTSE 100 symbols. Panel C reports the distribution of these statistics by date
for the full sample.
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C Supporting Details for Section 5.1: Sensitivity Analysis

This appendix presents detailed sensitivity analyses for the main results presented in the body
of the paper, as discussed in detail in Section 5.1. Section C.1 explores sensitivity to the race
horizon, i.e., to the definition of what counts as “at the same time.” Section C.2 explores sensitivity
to the number of race participants, e.g., requiring 3+ participants at the same time rather than
2+. Section C.3 explores sensitivity to requiring cancel attempts in the race, i.e., to not counting
races that contain only aggressive orders, and also explores stricter requirements on the number of
aggressive orders. Section C.4 explores varying the definition of what counts as a success and a fail.
Together, then, Sections C.1-C.4 explore sensitivity to the four components of our race definition:
multiple participants, at the same time, at least some of whom are aggressive, and at least some of
whom succeed and some of whom fail.

C.1 Sensitivity to Race Horizon

As a reminder, our baseline method requires that messages satisfying the baseline race require-
ments (i.e., 2+ messages from distinct users, 1+ aggressing, 1+ success, and 1+ fail) arrive within
the “information horizon” of the first message of the race. The information horizon, which is the
window of time such that we can be essentially certain that inbound messages in the race are not
responding to earlier messages’ outbound reports (see Section 3.4 of the main text) has a median
of 186 microseconds in our data, a 10th percentile of 137 and a 90th percentile of 332. The 500
microsecond truncation binds 4% of the time.

Table C.1 presents sensitivity analysis for changes to the race horizon. The first column of the
table re-presents our main results from Section 4 in the main text for this baseline specification,
to facilitate comparison. The next set of columns presents these same results using fixed race
horizons of varying lengths, from 50 microseconds to 3 milliseconds. That is, instead of using
the information horizon method, under which the race window will vary with the observed lag in
information processing by the LSE’s matching engine, we just fix a time window, and consider a
wide range of such windows. The 50 microsecond window roughly corresponds to the minimum
observed information horizon (which is 43 microseconds), the 200 microsecond window roughly
corresponds to the median observed information horizon, and 500 microseconds corresponds to
the upper bound on the information horizon we determined in consultation with FCA supervisory
experts. The horizons beyond that are included to capture races among firms of varying technological
sophistication that could still be considered racing one another. For instance, the threshold could
be wide enough to include a firm that is not utilizing the fastest connections to exchanges in
the United States or elsewhere, but is using the next-fastest.4 We consulted with HFT industry
contacts and FCA supervisors to agree on an appropriate horizon. Following these discussions, we
determined 3 milliseconds would capture most of these additional potential races, though for races
originating from signals far from London (e.g., Chicago) differences in speed between cutting-edge

4Other sources of speed differential include using code and hardware that is not optimized for speed, not being
co-located, and not using microwave connections where possible to do so.
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HFTs and relatively sophisticated firms could easily exceed that number. The last set of columns
runs a sensitivity analysis specifically on the choice of the truncation parameter for the information
horizon method.

Focus first on the number of races per day per symbol in the FTSE 100, the first row of the
table. In the baseline there are 537 races per symbol per day. In the 50 microsecond column, this
number is reduced to 297. As the race horizon increases, so does the number of races detected.
The growth is especially steep up to 500 microseconds, reaching 793 races per symbol per day,
and then tapers off, with 870 races at a horizon of 1 millisecond and 946 races at a horizon of 3
milliseconds.5 Varying the truncation parameter for the information horizon method does not yield
much additional insight beyond what is already learned from the baseline and the fixed horizon
columns. Using a 100 microsecond truncation parameter yields results that are very similar to the
100 microsecond fixed race horizon, which makes sense since this truncation parameter will bind
most of the time. Using a 1 millisecond truncation parameter yields results that are similar to the
baseline with the 500 microsecond truncation parameter, which again makes sense because neither
truncation parameter will bind very much.

Turn next to the measures of per-race profits. Interestingly, per-race profits, whether measured
per-share (ticks, pence (GBX), basis points) or in GBP per-race (either displayed depth or quantity
actually traded/canceled), are relatively similar across these different specifications. This tells us
that the additional races being picked up by the longer race horizons are, on average, of similar
profitability to the races being picked up at shorter race horizons. This will not be the case for some
of the subsequent sensitivities.

As a result, the latency arbitrage tax measures are all increasing with the race horizon. At a 50
microsecond race horizon, the FTSE 350 latency arbitrage tax, using the all-volume measure, is 0.20
basis points, versus 0.42 basis points in our baseline specification. At the 3 millisecond race horizon,
the latency arbitrage tax is 0.81 basis points, or 4 times higher, roughly proportional to the increase
in the number of races. The effect on the second measure of the latency arbitrage tax, based on
non-race trading volume, is even larger, because as the numerator (race profits) is increasing, the
denominator (non-race volume) is also shrinking. This figure increases from 0.22 basis points at 50
microseconds, to 0.53 basis points in our baseline specification, all the way up to 1.55 basis points
at 3 milliseconds. For FTSE 250 stocks, the latency arbitrage tax is as high as 2.49 basis points at
3 milliseconds.

Last we discuss the implied reduction in the cost of liquidity. In our baseline, eliminating latency
arbitrage would reduce the cost of liquidity by 20.0% for the average FTSE 100 symbol and by 16.7%
for the market overall. Using a 50 microsecond race horizon lowers these figures to 8.0% and 7.0%,
respectively. Using a 3 millisecond race horizon increases these figures all the way to 59.2% and
48.8%, respectively. Again, this large change relative to the baseline is driven by both the increase
in the numerator (race profits) and decrease in the denominator (non-race effective spread paid).

5These numbers are slightly higher than the numbers reported in Table 5.1 in the main text because they use the
baseline definition of fails rather than the stricter definition of fails that is appropriate for longer time horizons. See
further discussion in Appendix C.4.
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C.2 Sensitivity to Number of Race Participants

Our baseline method requires that there are at least 2 race participants within the information
horizon. Table C.2 presents sensitivity analysis for requiring 3+ participants; Table C.3 presents the
same table for 5+ participants. In both cases, the other race criteria are held the same, specifically we
require 1+ aggressors, 1+ successes, and 1+ fails. Given the large effect that the race’s time horizon
had on the number of races and race profits, we include this sensitivity for multiple race horizons,
including the baseline information horizon method and fixed race horizons from 50 microseconds to
3 milliseconds.

Focus first on the 3+ race participants within information horizon column; this column is exactly
the same as the baseline but replacing 2+ race participants with 3+. Requiring 3+ race participants
reduces the number of races by about 60%; for example, for the FTSE 100 the number of races per
symbol per day declines from 537 to 229. However, these races are significantly more profitable, on
a per-share basis and particularly on a GBP per-race basis. The net effect is that total race profits
are reduced by about 30%. This roughly 30% reduction can be seen in the aggregate race profits
measures, the latency arbitrage tax measures, and the liquidity cost reduction measures.

Increasing the race horizon increases the number of races detected, just as in the baseline case
with 2+ participants. At a 50 microsecond race horizon there are 87 3+ participant races per day
for the average FTSE 100 symbol, up to 482 races per symbol per day at a 500 microsecond race
horizon, and up to 686 races at a 3 millisecond race horizon. With this increase in the number of
races detected comes a commensurate increase in the various race profits measures and harm-to-
liquidity measures.

We note that the 3+ race participants within 500 microseconds sensitivity is on most measures
relatively similar to the baseline case of 2+ race participants within the information horizon. The
number of races is a bit smaller but they are more profitable on average, with the net effect that the
overall profits measures and liquidity-harm measures are about 20-30% higher than in the baseline.
The 3+ race participants within 1 millisecond sensitivity yields a latency arbitrage tax (all-volume)
of 0.65, versus 0.42 in baseline, and yields an implied harm to the cost of liquidity of 30.7%, versus
16.7% in baseline. In this sense, our baseline specification is meaningfully more conservative than
the requirement of 3+ participants within 1 millisecond.

Now turn to the sensitivity for 5+ participants (Table C.3). There are very few (38) races per
FTSE 100 symbol per day within the information horizon, versus 537 in the baseline and 229 with
3+. That said, these few races are quite profitable: they are about twice as profitable per share and
more than three times as profitable in GBP per race as in the baseline. Increasing the race horizon
to 500 microseconds yields 122 races per FTSE 100 symbol per day, and to 1 millisecond yields 202
races per day, again with races that are significantly more profitable per race than in the baseline.
As a consequence, the sensitivity for 5+ participants within 500 microseconds yields overall profits
that are about 60% of the baseline, and the sensitivity for 5+ participants within 1 millisecond
yields overall profits and harm to liquidity that are just about the same as in the baseline.

We also include for completeness a sensitivity requiring 2+ unique firms as opposed to our
baseline requirement of 2+ unique participants (Table C.4). As mentioned in the main text, some
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firms use different UserIDs for different trading desks. Typically, this will be the case when the
trading desks are operated sufficiently separately that if they happen to trade with each other the
firm would not be in violation of wash-trade requirements. This economic separation is the reason
why our baseline uses UserIDs as the measurement of the number of participants. This sensitivity
reduces the number of races and various profits measures by about 10%.
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C.3 Sensitivity to Requiring Cancels or Multiple Takes

Our baseline method requires that of the 2+ messages in a race, at least 1 is aggressive. Thus, a
race could have 1+ aggressive messages and 1+ cancel messages, or it could have 2+ aggressive
messages and 0 cancel messages. Table C.5 presents sensitivity analysis for these requirements. In
the first set of columns after the baseline, we require 1+ cancel message and 1+ aggressive message,
i.e., exclude races with 0 cancels (and hence 2+ aggressive messages). In the second set of columns,
we require 2+ aggressive messages, i.e., exclude races with exactly 1 aggressive message (and hence
1+ cancel messages).

Focus first on the 1+ cancel within information horizon column. Requiring a cancel attempt
within the race horizon window reduces the number of races significantly, from 537 to 173 per day
for the average symbol in the FTSE 100. These races are also less profitable on average. This
reduction in profitability is driven by races with exactly 1 aggressive message. If we require 2+
aggressive messages alongside a cancel, profits per race are higher than in the baseline, especially
in GBP per race where profits are nearly double.

Looking across the different race horizons does not change this picture much. The number of
races goes up with the race horizon, as before, but the number of races and overall profitability
are meaningfully smaller than without the 1+ cancel requirement, at all horizons. This pattern is
consistent with our findings in Section 4 of the main text that most message activity in races is take
attempts and most races are won by takers.

If we require at least 1 cancel within the information horizon, in addition to our other baseline
race requirements, the harm to liquidity and the latency-arbitrage tax are each about 30% of
baseline. That said, if we consider races with 1+ cancel within 3 milliseconds the results are closer
to baseline, at about 85% of the harm to liquidity and level of latency-arbitrage tax.

Now focus on the columns that require at least 2 aggressive messages; that is, a race must have
2+ takes, along with 1+ success and 1+ fail, within the race horizon. Relative to the baseline, this
excludes races with exactly 1 take and with 1+ cancels, which as we just discussed are relatively
unprofitable. The number of races with 2+ takes within the information horizon is 424 for FTSE
100 symbols, versus 537 under the baseline scenario, a reduction of about 20%. These races are
more profitable on average than the baseline races, so the net effect on profits and the harm-to-
liquidity measures is smaller, roughly 10-15%. This magnitude of reduction relative to the baseline
requirements persists across the other time horizons.

These overall patterns, as discussed in detail in the main text, are consistent with equilibria
of the BCS model in which many of the fastest traders primarily engage in sniping as opposed to
liquidity provision, and significant liquidity is provided by market participants not at the cutting
edge of speed.
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C.4 Sensitivity to Varying the Definitions of Success and Fail

Our baseline method defined success and fail as follows. A take attempt succeeds if it executes at
least in part, and otherwise fails. A cancel attempt succeeds if at least some of the order’s quantity
is successfully canceled, and otherwise fails. As discussed in Section 3.3, while the definition of
success might sound quite loose — e.g., if there are 10,000 shares in the book, an attempt to take
10,000 shares that “succeeds” in taking just 100 shares is counted as a success — it has some real
bite in conjunction with the requirement that a race has a fail, because someone else likely got
or canceled the other 9,900 shares, for there then to be yet another participant who then fails to
get anything or cancel anything. The exception is if there is a successful take attempt for a small
amount (e.g., the order is for just 100 shares) followed by a cancel attempt for a small amount (e.g.,
100 shares) where, by coincidence, the cancel fails because it was that user’s 100 shares that just
got taken. Thus, to deal with this possibility, our first sensitivity imposes that 100% of the depth
at the race level is cleared, either through takes or cancels. As can be seen this reduces the number
of races by about 5% (from 537 to 514), and reduces our measures of aggregate profits, latency
arbitrage tax, and harm to liquidity by about 5% as well.

For our definition of fail, the concern we mentioned in Section 3.3 is that we count limit orders
that post to the book as a fail. A worry, especially at longer race horizons, is that we are picking
up as “latency arbitrage races” cases where the “fail” is in fact simply a participant posting new
liquidity at a new price, using a plain vanilla limit order, at a price that happened to be the price of
the last successful trade. As a sensitivity, therefore, we only allow failed IOCs and failed cancels to
count as fails.6 That is, we do not allow ordinary limit orders to count as fails, even though some
participants may in fact use them in latency arbitrage races, because of the fee advantage described
earlier in the main text.

In the baseline, the strict fail criterion only reduces the number of races detected by about 8%
(from 537 to 494), and race profits by about 5%. At longer horizons, as expected, the strict fails
criterion reduces the number of races detected, and overall race profits, by larger amounts—for
instance, at 3ms, the reduction in the number of races is about 15% (from 946 to 800) and the
reduction in total profits is about 10% (from 255,000 per day to 232,000 per day). This makes sense
because at longer horizons we should be more concerned about mistaking limit orders that post to
the book as failed race attempts. For this reason, when we consider what the sensitivity analyses
suggest about upper bounds on race profits in Table 5.1 in the main text, when we use longer race
horizons we always do so in conjunction with the strict fail requirement.

6Note as well that this sensitivity has the interpretation of only allowing as fails the “error messages”—failed IOCs
and failed cancel attempts—that are unique to our message data relative to ordinary limit-order book data.
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D Supporting Details for Section 5.2: Additional Robustness Checks

D.1 Races with Negative Profits Ex-Post

The following table provides additional data to support the discussion in Section 5.2 of the main
text on races with negative profits. Each column represents a race scenario: the first column is our
baseline race specification; the next set of columns is for 2+ participants over a wide range of fixed
time horizons; the next set of columns is for 3+ participants, over a wide range of time horizons;
and the last set of columns is for 5+ participants over a wide range of time horizons.

For each specification, we report data on the proportion of races with strictly positive, zero, and
strictly negative profits at different time horizons. For example, at 1 second, our baseline method
has 47.2% of races with strictly positive profits, 31.2% of races with zero profits, and 21.6% of races
with strictly negative profits. We then report the proportion of races that have strictly negative
profits continuously throughout the specified time interval. For example, in our baseline method,
10.5% of races have strictly negative profits continuously for 1 second and 7.5% of races have strictly
negative profits continuously for 10 seconds. We then report data for price impact. For example, in
our baseline, at 1 second, 81.5% of races have strictly positive price impact, 15.4% have zero price
impact, and 3.1% have strictly negative price impact.

We have two main takeaways from these data. First, in our main specifications (baseline and
others we emphasize in the text) there is a meaningful proportion of races with negative profits.
Most of the time, these are cases where price impact is weakly positive but not enough to cover the
aggressor’s half-spread. Second, even in our most strenuous sensitivity analysis, some races have
strictly negative profits.

Overall, trading in races seems to lie comfortably between the two extremes of 100/0 pure
arbitrage and 51/49 tiny statistical edges.
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Table D.1: Sign of Race Profits and Price Impact

Panel A: 2+ Participants

2+, IH 2+, 50µs 2+, 100µs 2+, 500µs 2+, 1ms 2+, 3ms

% Races with Profits

1ms
>0 32.95 36.21 34.94 31.42 30.98 27.76
=0 44.94 44.70 44.65 46.07 44.52 41.48
<0 22.11 19.09 20.41 22.51 24.50 30.76

10ms
>0 41.23 42.71 41.78 40.26 41.25 42.41
=0 39.45 39.68 39.62 39.67 38.58 37.20
<0 19.32 17.61 18.60 20.07 20.17 20.39

100ms
>0 43.94 44.71 44.04 43.03 43.87 44.81
=0 36.20 36.78 36.58 36.28 35.31 34.15
<0 19.86 18.51 19.38 20.70 20.81 21.04

1s
>0 47.20 47.68 47.15 46.31 46.89 47.44
=0 31.15 31.85 31.60 31.23 30.50 29.62
<0 21.64 20.46 21.25 22.47 22.61 22.94

10s
>0 50.02 50.38 49.99 49.44 49.68 49.78
=0 20.95 21.46 21.27 20.97 20.61 20.08
<0 29.02 28.15 28.74 29.59 29.71 30.14

Always <0 for 10ms 15.52 13.97 14.89 15.98 15.87 16.53

Always <0 for 100ms 12.90 11.74 12.50 13.43 13.28 13.74

Always <0 for 1s 10.53 9.63 10.23 11.06 10.93 11.34

Always <0 for 10s 7.52 6.85 7.29 7.94 7.84 8.19

% Races with PI

10ms
>0 86.08 85.00 84.40 88.06 88.21 87.74
=0 13.24 14.35 14.94 11.29 11.17 11.67
<0 0.67 0.65 0.67 0.65 0.62 0.59

100ms
>0 84.26 83.18 82.58 86.03 86.15 85.68
=0 14.29 15.40 15.98 12.55 12.49 13.04
<0 1.45 1.42 1.43 1.42 1.36 1.28

1s
>0 81.50 80.53 79.91 83.16 83.25 82.74
=0 15.42 16.48 17.07 13.77 13.76 14.38
<0 3.07 2.99 3.02 3.07 2.99 2.88

10s
>0 72.31 71.46 70.90 73.81 73.91 73.38
=0 17.14 18.24 18.80 15.45 15.49 16.16
<0 10.55 10.30 10.30 10.74 10.60 10.46

Notes. This table reports the proportion of races with strictly positive, zero, and strictly negative profits and price
impact at different time horizons. The race scenario is indicated in the column. For computational tractability,
we define race profits to be always <0 for T time if profits are strictly negative at each round-number interval up
to and including T: for example, “Always <0 for 1s” is defined as true if profits are strictly negative at 1ms, 10ms,
100ms and 1s.
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Panel B: 3+ Participants

3+, IH 3+, 50µs 3+, 100µs 3+, 500µs 3+, 1ms 3+, 3ms

% Races with Profits

1ms
>0 38.77 43.21 41.49 34.27 32.79 28.85
=0 42.04 41.25 41.23 45.47 43.64 39.17
<0 19.20 15.54 17.28 20.25 23.57 31.98

10ms
>0 48.52 50.63 49.32 44.11 44.60 45.94
=0 35.94 35.67 35.72 38.41 37.46 35.75
<0 15.54 13.70 14.96 17.47 17.94 18.31

100ms
>0 51.03 52.45 51.37 46.76 47.14 48.22
=0 33.04 33.16 33.12 35.23 34.36 32.93
<0 15.94 14.39 15.52 18.01 18.49 18.85

1s
>0 53.71 54.82 53.93 49.74 49.93 50.56
=0 28.76 29.07 28.95 30.56 29.87 28.77
<0 17.53 16.12 17.12 19.70 20.21 20.67

10s
>0 54.63 55.45 54.85 51.84 51.79 51.90
=0 20.31 20.71 20.57 21.06 20.62 19.91
<0 25.06 23.84 24.58 27.09 27.59 28.20

Always <0 for 10ms 12.20 10.59 11.74 13.66 13.91 14.77

Always <0 for 100ms 9.89 8.71 9.65 11.34 11.46 12.03

Always <0 for 1s 7.99 7.11 7.83 9.26 9.35 9.82

Always <0 for 10s 5.66 4.99 5.52 6.61 6.67 7.02

% Races with PI

10ms
>0 91.33 91.20 90.30 90.94 90.71 90.06
=0 8.12 8.29 9.16 8.50 8.74 9.40
<0 0.54 0.52 0.53 0.56 0.55 0.54

100ms
>0 89.71 89.58 88.70 89.09 88.80 88.16
=0 9.07 9.24 10.11 9.66 9.96 10.65
<0 1.21 1.19 1.19 1.26 1.24 1.19

1s
>0 87.27 87.19 86.31 86.40 86.09 85.41
=0 10.20 10.32 11.21 10.88 11.21 11.95
<0 2.53 2.49 2.48 2.71 2.71 2.64

10s
>0 78.23 78.28 77.49 77.08 76.72 75.97
=0 12.50 12.63 13.53 13.01 13.31 14.07
<0 9.27 9.10 8.98 9.91 9.97 9.96
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Panel C: 5+ Participants

5+, IH 5+, 50µs 5+, 100µs 5+, 500µs 5+, 1ms 5+, 3ms

% Races with Profits

1ms
>0 49.48 56.42 53.97 44.31 40.08 32.65
=0 33.97 31.71 31.84 39.08 37.69 31.99
<0 16.55 11.87 14.18 16.61 22.24 35.37

10ms
>0 61.70 64.47 62.66 55.42 54.69 55.61
=0 27.32 26.17 26.46 31.67 31.30 29.67
<0 10.98 9.36 10.89 12.91 14.01 14.72

100ms
>0 63.40 65.01 63.75 57.43 56.71 57.29
=0 25.35 25.00 25.00 29.21 28.86 27.57
<0 11.25 9.99 11.26 13.36 14.42 15.14

1s
>0 65.12 65.96 64.95 59.55 58.67 58.76
=0 22.47 22.56 22.61 25.68 25.49 24.54
<0 12.41 11.48 12.45 14.77 15.84 16.70

10s
>0 62.95 62.94 62.55 58.86 57.96 57.45
=0 17.58 17.60 17.75 19.08 18.81 18.11
<0 19.48 19.46 19.70 22.06 23.22 24.44

Always <0 for 10ms 8.34 6.99 8.28 9.69 10.49 11.89

Always <0 for 100ms 6.52 5.58 6.61 7.74 8.29 9.23

Always <0 for 1s 5.15 4.48 5.27 6.19 6.61 7.36

Always <0 for 10s 3.60 3.14 3.70 4.36 4.65 5.19

% Races with PI

10ms
>0 95.13 95.22 94.58 93.96 93.18 92.59
=0 4.54 4.41 5.06 5.63 6.39 7.00
<0 0.33 0.37 0.36 0.42 0.43 0.41

100ms
>0 93.87 93.89 93.28 92.47 91.62 91.01
=0 5.33 5.16 5.86 6.56 7.38 8.04
<0 0.80 0.95 0.86 0.97 0.99 0.95

1s
>0 92.08 91.94 91.42 90.34 89.43 88.73
=0 6.23 5.98 6.75 7.67 8.49 9.21
<0 1.69 2.08 1.83 2.00 2.08 2.06

10s
>0 84.07 83.20 83.24 81.79 80.72 79.70
=0 9.09 8.69 9.57 10.40 11.19 11.93
<0 6.84 8.11 7.19 7.81 8.09 8.37
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D.2 Races Triggered by Order Book Activity

The following table provides additional data to support the discussion in Section 5.2 of the main
text on races triggered by order book activity. Each column represents a window of time before the
race starts. For each time window we report what percentage of races had a change in the race side
best bid or best offer — e.g., for the time window 100 microseconds, if the race was at the offer we
check whether the best offer changed in the 100 microseconds leading up to the race time. We then
compute whether the change was price improving (a lower offer or a higher bid) or price worsening
(the reverse), and provide statistics for each category.

Our takeaway is that a meaningful proportion of races have changes in the race-side best bid or
best offer just leading up to the race: 14% in the 100 microseconds before the race, and 21% in the
500 microseconds before the race. When there are changes, they tend to be price improving and to
narrow the spread, and the associated races tend to have fewer cancelations and a larger share of
non-top 6 liquidity provision. All of these facts seem consistent with the theories of Li, Wang and
Ye (2020) and Foucault, Kozhan and Tham (2016).

We also find that changes in the race-side best bid or offer are comparatively more likely than
changes in the non-race side best bid or offer: in the 100 microseconds before the race, a change in
the race-side price occurs 14% of the time, versus 4% for the non-race-side price. This also seems
to support the story in Li, Wang and Ye (2020) and Foucault, Kozhan and Tham (2016) being a
feature of the data.

Still, the large majority of races have stable prices leading up to the race. This suggests that
most races are triggered by some public signal external to the symbol’s own order book, as in the
model of Budish, Cramton and Shim (2015).
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Table D.2: Races Triggered by Order Book Activity

Check for Pre-Race Order Book Price Changes Within
Measure 10µs 50µs 100µs 500µs 1ms

All Races - FTSE 100
% Stable Pre-Race Price 98.65 91.12 86.46 78.69 76.01
% Change in Pre-Race Price 1.35 8.88 13.54 21.31 23.99

Of Races with Changes in Pre-Race Price
% Price Improves 96.47 96.28 89.06 78.10 71.16
% Price Worsens 3.53 3.72 10.94 21.90 28.84

Number of Cancels within 500 µ s
Stable Pre-Race Price 0.40 0.41 0.40 0.38 0.37
Change in Pre-Race Price 0.49 0.32 0.36 0.46 0.48

Price Improves 0.46 0.28 0.24 0.25 0.27
Price Worsens 1.45 1.36 1.24 1.12 0.96

% Liquidity Provided by Non-Top 6 Firms
Stable Pre-Race Price 57.58 57.20 57.06 56.78 56.85
Change in Pre-Race Price 83.76 70.40 66.73 64.38 62.77

Price Improves 88.47 72.49 70.63 69.45 67.35
Price Worsens 40.43 39.06 43.43 49.18 52.91

Race Duration (µ s)
Stable Pre-Race Price 79.17 83.30 85.01 86.03 86.09
Change in Pre-Race Price 45.63 34.49 41.71 53.41 57.09

Price Improves 44.52 32.79 38.12 43.99 45.80
Price Worsens 77.15 75.94 68.39 83.50 82.07

Effective Spread (bps)
Stable Pre-Race Price 3.19 3.23 3.23 3.22 3.18
Change in Pre-Race Price 3.21 2.80 2.96 3.10 3.23

Price Improves 3.10 2.70 2.67 2.65 2.75
Price Worsens 6.36 6.03 5.80 4.78 4.43

Per-Share Profits (ticks)
Stable Pre-Race Price 0.55 0.54 0.53 0.54 0.54
Change in Pre-Race Price 0.59 0.64 0.63 0.59 0.58

Price Improves 0.55 0.62 0.62 0.56 0.53
Price Worsens 1.49 1.07 0.70 0.69 0.68

Notes. This table groups races detected by our baseline method (see Section 3 of the main text for detailed
description) into the following categories according to the pre-race order book activity and report statistics for
each category: races with stable race-side BBO price pre-race and with changes in race-side BBO price pre-race.
The latter is further divided into races with strictly improving and weakly worsening pre-race price. Descriptions
of each of the items in this table can be found in the following table notes in Section 4. Number of cancels: Table
4.3. Proportion of liquidity provided by non-top 6 firms: Figure 4.3. Race duration: Figure 4.1. Effective spread:
4.10. Per-share profits: 4.6.
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E Additional Results for Section 6: Magnitudes

E.1 Additional Extrapolation Models

Table 6.1 in the main text presents regressions of daily latency arbitrage profits on volume and 1-
minute realized volatility. These regressions were used for the purpose of out-of-sample extrapolation
in Section 6. The following appendix table presents analogous regressions using additional volatility
variables, as was discussed in the main text. Columns (1)-(4) are analogous to Columns (3)-(6) in
Table 6.1, but using 5-minute realized volatility instead of 1-minute realized volatility. Columns (5)-
(8) are analogous to the same columns in Table 6.1, but using midpoint distance traveled (Budish,
Cramton and Shim, 2015) as the volatility measure. As discussed in the main text, the fit is worse
with 5-minute realized volatility than with 1-minute realized volatility, and is slightly better with
midpoint distance traveled. We nevertheless utilize 1-minute realized volatility in the main text since
it is more easily interpreted, and its measurement does not depend on the number of significant
digits of the trading index (or the tick size if using a futures contract price for the index) in the way
that distance traveled does.
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E.2 Global Magnitudes for 2020

This table is analogous to Table 6.3 in the main text but using 2020 data instead of 2018 data.
Please note that 2020 was an unusually high-volume and high-volatility year due to the Covid-19
pandemic.

Table E.2: Annual Latency Arbitrage Profits in Global Equity Markets in 2020 (USD
Millions)

Exchange Group

(1) (2) (3) (4)
Volume- Volume- Low High
Volatility Only Scenario Scenario

Nasdaq - U.S. 1,385 1,272 607 2,222
NYSE Group 1,201 1,103 526 1,926
BATS Global Markets - U.S. 1,171 1,075 513 1,878
Shenzhen Stock Exchange 747 764 364 1,334
Shanghai Stock Exchange 533 545 260 953
Japan Exchange Group 305 289 138 504
Korea Exchange 277 239 114 417
Hong Kong Exchanges and Clearing 142 141 67 246
Euronext 116 109 52 191
London Stock Exchange Group∗∗ 112 103 49 180
Deutsche Börse Group 104 98 47 171
TMX Group 88 84 40 147
National Stock Exchange of India 87 77 37 134
BATS Chi-X Europe 75 70 34 123
B3 - Brasil Bolsa Balcao 82 61 29 107

Global Total (WFE Data Universe) 6,957 6,529 3,114 11,404

**London Stock Exchange Group includes London Stock Exchange as well as Borsa Italiana

Notes. Please see the notes for Table 6.3 in the main text. This table is the same except that we use the
volume and volatility data in 2020. Trading volume is from the World Federation of Exchanges (2021). Volatility
is computed using TRTH data for the following indices. NYSE, BATS and Nasdaq: S&P 500. Shenzhen and
Shanghai: Shanghai composite. Japan: Nikkei225. Korea: KOSPI. Hong Kong: Hang Seng. Euronext, BATS
Chi-X, Deutsche Börse: EuroStoxx600. LSE Group: FTSE 350. Canada TMX Group: TSX Composite. India:
NIFTY 50. Brazil: BOVESPA.
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F Theory Appendix

This theory appendix covers three topics. First, discussion of equilibrium in the case where the firm
providing liquidity is slow. Second, the analysis behind the bid-ask spread decomposition (4.3).
Third, the algebra in support of equation (4.6) and its empirical counterpart (4.7), which express
the proportional reduction of the cost of liquidity if latency arbitrage were eliminated.

F.1 Equilibrium with Slow Liquidity Providers

In the equilibria of the continuous limit order book market studied in Budish, Cramton and Shim
(2015), fast trading firms both engage in stale-quote sniping and provide all of the market’s liquidity.
There is a fringe of slow trading firms but they play no role in these equilibria (see especially Section
VI.D and Proposition 3). The slow firms only play a role in equilibrium in Budish, Cramton and
Shim (2015) under the frequent batch auctions market design.

In the BCS equilibria of the continuous market, fast trading firms are indifferent between liq-
uidity provision and stale-quote sniping at the equilibrium bid-ask spread sCLOB, characterized
by

λinvest
sCLOB

2
= λpublicL(

sCLOB

2
), (F.1)

where λinvest denotes the arrival rate of investors (i.e., liquidity traders), λpublic denotes the
arrival rate of new public information, and L( s

CLOB

2 ) ≡ Pr(J ≥ sCLOB

2 )E(J − sCLOB

2 |J ≥ sCLOB

2 )

denotes the expected loss to a liquidity provider if there is a jump larger than their half-spread
and they get sniped (J is the random variable describing the absolute value of jump sizes). In
the event of a jump larger than the half-spread, stale-quote snipers are successful 1

N of the time,
where N is the number of fast trading firms, and hence earn expected profits of 1

N λpublicL( s
CLOB

2 ).
A fast trading firm that provides liquidity earns revenues of λinvest s

CLOB

2 from providing liquidity
to investors, but, if there is a public jump, they get sniped with probability N−1

N , hence incurring
costs of N−1N λpublicL( s

CLOB

2 ). At the equilibrium spread, the revenue benefits of liquidity provision
less these sniping costs net to the same 1

N λpublicL( s
CLOB

2 ) earned by snipers. This net profit can be
interpreted as the fast liquidity provider earning the opportunity cost of not sniping.

Under slightly different modeling formalities, introduced in Budish, Lee and Shim (2019), there
also exist equilibria in which slow trading firms provide liquidity, at exactly the same bid-ask spread
sCLOB

2 characterized by (F.1), and the N fast trading firms all engage in stale-quote sniping. The
economic intuition for why this can also be an equilibrium is as follows. First, at this bid-ask spread,
slow trading firms earn zero profits from liquidity provision, so slow trading firms are indifferent
between liquidity provision here, and doing nothing as before. Second, with all N fast trading firms
now engaged in sniping, and the bid-ask spread the same as before, the fast trading firms all earn
the same profits of 1

N λpublicL( s
CLOB

2 ) as before. And, as before, at this bid-ask spread the fast
trading firms are indifferent between providing liquidity or being one of N − 1 snipers, so they do
not strictly prefer to change from sniping to liquidity provision. Thus, the same bid-ask spread that
leaves fast trading firms indifferent between liquidity provision and stale-quote sniping, and hence
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can support equilibrium with fast trading firms engaged in liquidity provision, leaves slow trading
firms indifferent between liquidity provision and not (i.e., with zero profits), and hence can support
equilibrium with slow trading firms engaged in liquidity provision.

Formally, the configuration of play in which a slow trading firm provides liquidity at the spread
characterized by (F.1) (or its slight generalization to include adverse selection as well, presented as
equation (4.2) in the main text) is an Order Book Equilibrium as defined in Budish, Lee and Shim
(2019). The argument that this play constitutes an Order Book Equilibrium is as follows:

• If the slow TF deviates by widening their spread to s′ > sCLOB: another TF (whether
slow or fast) can profitably undercut the deviation by providing liquidity at a better spread.
Order Book Equilibrium requires that any deviation be robust to another TF providing better
liquidity in response, so this potential deviation does not violate Order Book Equilibrium.

• If the slow TF deviates by narrowing their spread to s′ < sCLOB: they earn strictly negative
profits as opposed to zero profits, so this is not a profitable deviation.

• If a fast TF undercuts the slow TF’s spread to s′ < sCLOB: this is a profitable unilateral
deviation for a fast TF for s′ close enough to sCLOB, because the fast TF gets to both earn
positive expected profits from liquidity provision, of just less than 1

N λpublicL( s
CLOB

2 ), and
potentially snipe the slow TF (the “have your cake and eat it too” deviation). However, the
deviation is not robust to the slow TF canceling in response. Order Book Equilibrium requires
that deviations are robust to other firms’ responses with either cancels or price improvements
(“no robust deviations”).7

• If any other slow TF undercuts to s′ < sCLOB: this is not a profitable unilateral deviation for
slow TFs, because sCLOB is the bid-ask spread at which slow TFs earn zero expected profits
from liquidity provision. (The reason why providing liquidity at s′ close enough to sCLOB is
profitable for a fast TF but not a slow TF is that fast TFs get sniped with probability N−1

N ,
whereas slow TFs get sniped with probability 1.)

Thus there exist order book equilibria in which fast TFs provide all liquidity as well as order book
equilibria in which slow TFs provide all liquidity. It follows that there also exist order book equilibria
in which, proportion ρfast ∈ (0, 1) of the time, a fast TF provides liquidity at sCLOB, while the
remaining 1−ρfast of the time a slow TF provides liquidity at sCLOB. Either way, the spread is the
same, the profits of all fast TFs are the same ( 1

N λpublicL( s
CLOB

2 )), and the profits of all slow TFs
are zero.

7This case is the key technical difference between the modeling approach in Budish, Lee and Shim (2019) versus
that in BCS. In the continuous-time game form considered in BCS a fast TF undercutting a slow TF in this way is a
profitable deviation for the fast trading firm, because, in the small amount of time before a slow trading firm is able
to respond to this deviation, the deviating fast trading firm both earns potential revenues from liquidity provision
and earns potential profits from sniping the slow trading firm. In contrast, the Order Book Equilibrium concept
introduced in Budish, Lee and Shim (2019) requires that the order book is at a resting point, where, if any one
trading firm can profitably deviate from this resting point the deviation is no longer profitable after other trading
firms respond with either price improvements or cancelations.
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F.2 Support for Bid-Ask Spread Decomposition (4.3)

Equation (4.3) in the main text provides a novel bid-ask spread decomposition that includes Price
Impact both in and out of races, as well as a Loss Avoidance term for the case where a liquidity
provider successfully cancels in a race. In this section we provide formal support for this decompo-
sition.

Begin with the bid-ask spread characterization presented in the main text as (4.2),

λinvest
sCLOB

2
= (λpublic + λprivate) · L(

sCLOB

2
),

where λpublic and λprivate denote the arrival rate of public and private information, respectively,
and L( s

CLOB

2 ) denotes the expected loss to a liquidity provider conditional on getting sniped or
adversely selected. For simplicity, we assume that the jump size J is identically distributed for
public and private information, and that all jumps are of size of at least the equilibrium half-
spread sCLOB

2 , so all jumps generate attempts to trade. These assumptions can be relaxed but at
considerable notational burden.8 With these assumptions, we have L( s

CLOB

2 ) = E(J)− sCLOB

2 .9

As discussed in the previous subsection, there exist equilibria in which only fast TFs provide
liquidity, only slow TFs provide liquidity, and in which both fast and slow TFs provide liquidity. The
former case was emphasized in BCS but the latter case appears to fit the data better. Let ρfast ∈
[0, 1] denote the proportion of liquidity provided by fast TFs in equilibrium with the remaining
1− ρfast provided by slow TFs. We can now formally define the terms utilized in equation (4.3).

• EffectiveSpread is equal to [λinvest + λpublic(1−
ρfast
N ) + λprivate] · s

CLOB

2 . Trade occurs when-
ever an investor arrives (at rate λinvest), whenever an informed trader arrives (λprivate),
and whenever there is public news (λpublic) and the race is won by a sniper: which occurs
with probability N−1

N if the TF providing liquidity is fast, where N is the number of fast
traders, and probability 1 if the TF providing liquidity is slow, hence total probability of
ρfast

N−1
N + (1− ρfast) = 1− ρfast

N .

• PriceImpactRace is equal to λpublic(1 −
ρfast
N ) · E(J): the λpublic(1 −

ρfast
N ) probability that

a sniper wins a race, times the size of the jump E(J), which will be the change in the
midpoint. Using L( s

CLOB

2 ) = E(J)− sCLOB

2 this can be rewritten as λpublic(1−
ρfast
N )E(J) =

λpublic(1−
ρfast
N )( s

CLOB

2 + L( s
CLOB

2 )).

• PriceImpactNonRace, by similar logic, is equal to λprivateE(J): the λprivate probability that
8Formally, if Jprivate and Jpublic are, respectively, the jump distributions for private and public informa-

tion, with cumulative distribution functions Fprivate(x) and Fpublic(x), respectively, then the conditional distri-

butions of interest are J∗private and J∗public with cdf’s F ∗private(x) =
Fprivate(x)−F−

private(
sCLOB

2
)

1−F−
private(

sCLOB

2
)

and F ∗public(x) =

Fpublic(x)−F−
public

( sCLOB

2
)

1−F−
public

( sCLOB

2
)

, respectively, for x ≥ sCLOB

2
and F ∗private(x) = F ∗public(x) = 0 for x < sCLOB

2
.

9In the generalization described in the previous footnote the appropriate formulas to use are Lprivate(
sCLOB

2
) ≡

E(J∗private)− sCLOB

2
and Lpublic(

sCLOB

2
) ≡ E(J∗public)− sCLOB

2
. In the mathematics that follows it is then convenient

to define λ∗public = λpublic(1 − F−public(
sCLOB

2
)) and λ∗private = λprivate(1 − F−private( s

CLOB

2
)) as the arrival rates of

jumps that are larger than the equilibrium spread.

43



there is an informed trader times the size of the jump E(J), which will be the change in the
midpoint. This can be rewritten as λprivateE(J) = λprivate(

sCLOB

2 + L( s
CLOB

2 )).

• LossAvoidance is equal to λpublic
ρfast
N L( s

CLOB

2 ): the λpublic
ρfast
N probability that a fast liquid-

ity provider wins a race with a cancel, times the size of the avoided loss L( s
CLOB

2 ).

Now take the equilibrium bid-ask spread as characterized in equation (4.2),

λinvest
sCLOB

2
= (λpublic + λprivate) · L(

sCLOB

2
),

and add (λpublic(1−
ρfast
N ) + λprivate) · s

CLOB

2 to both sides of the equation. This yields

(
λinvest + λpublic(1−

ρfast
N

) + λprivate

)
· s

CLOB

2

=
(
λpublic(1−

ρfast
N

) + λprivate

)
·
(
sCLOB

2
+ L(

sCLOB

2
)

)
+ λpublic

ρfast
N

L(
sCLOB

2
).

If we substitute in terms as defined above, this in turn yields

EffectiveSpread = PriceImpactRace + PriceImpactNonRace + LossAvoidance.

We follow the spread decomposition literature and include RealizedSpread as the residual in this
equation for the purpose of bringing it to data, yielding equation (5.3) in the text:

EffectiveSpread = PriceImpactRace + PriceImpactNonRace + LossAvoidance + RealizedSpread .

F.3 Support for the Proportional Reduction in Cost of Liquidity Equations
(4.6)-(4.7)

We start with equation (4.4) in the main text, which defines this proportional reduction theoretically:

sCLOB

2 − sFBA

2
sCLOB

2

where sCLOB denotes the equilibrium bid-ask spread in the continuous limit order book market,
and sFBA denotes the equilibrium bid-ask spread in the frequent batch auctions market, which
eliminates sniping. Next, multiply both the numerator and denominator by (λinvest + λprivate):

(λinvest + λprivate)(
sCLOB

2 − sFBA

2 )

(λinvest + λprivate)
sCLOB

2

Next, use the bid-ask spread characterization (4.2) in the main text to solve out for λinvest s
CLOB

2
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in the numerator:

(λpublic + λprivate) · L( s
CLOB

2 ) + λprivate
sCLOB

2 − (λinvest + λprivate)(
sFBA

2 )

(λinvest + λprivate)
sCLOB

2

Analogously, use equation (5.1) of Budish, Lee and Shim (2019) to solve out for λinvest s
FBA

2 in
the numerator:

(λpublic + λprivate) · L( s
CLOB

2 ) + λprivate
sCLOB

2 − λprivateL( s
FBA

2 )− λprivate( s
FBA

2 )

(λinvest + λprivate)
sCLOB

2

Next, regroup terms to place λpublic · L( s
CLOB

2 ) on the left of the numerator, and then utilize
L( s2) = E(J)− s

2 for λprivateL( s
CLOB

2 ) and λprivateL( s
FBA

2 ):

λpublic · L( s
CLOB

2 ) + λprivate(E(J)− sCLOB

2 ) + λprivate
sCLOB

2 − λprivate(E(J)− sFBA

2 )− λprivate( s
FBA

2 )

(λinvest + λprivate)
sCLOB

2

Observe that most of the terms in the numerator cancel. Specifically, we have λprivate(E(J) −
sCLOB

2 ) + λprivate
sCLOB

2 − λprivate(E(J)− sFBA

2 )− λprivate( s
FBA

2 ) = 0. This leaves us with:

λpublic · L( s
CLOB

2 )

(λinvest + λprivate)
sCLOB

2

as claimed in the text as equation (4.6). Equation (4.6)’s empirical implementation, equation
(4.7), then follows immediately as described in the main text.
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