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Evidence from the Most ETF-dominated Asset Classes
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ABSTRACT

This paper studies exchange-traded funds’ (ETFs) price impact in the most ETF-

dominated asset classes: volatility (VIX) and commodities. I propose a model-

independent approach to replicate the VIX futures contract. This allows me to

isolate a non-fundamental component in VIX futures prices that is strongly related

to the rebalancing of ETFs. To understand the source of that component, I decom-

pose trading demand from ETFs into three parts: leverage rebalancing, calendar

rebalancing, and flow rebalancing. Leverage rebalancing has the largest effects. It

amplifies price changes and exposes ETF counterparties negatively to variance.
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Introduction

Recent years have seen a surge in passive investing through ETFs. As of 2019, these funds were

managing more than $6 trillion globally compared with only $0.2 trillion in 2004.1 ETFs are

progressively being used by retail and institutional investors to obtain a cost-efficient exposure

to portfolios of assets or asset strategies. On the one hand, commoditization of assets through

ETFs makes investing simple and cost-efficient, thereby attracting new capital and possibly

increasing liquidity. On the other hand, commoditization could reduce price informativeness

and create systemic risks if the presence of large investors with similar objectives leads to

crowded trading, especially during extreme market times. The increasing presence of ETFs

in various asset classes has led to a growing number of market participants and academics

expressing concerns about the potential distorting impact on underlying assets.

Assessing the impact of ETFs on prices is difficult because it is hard to estimate the

fundamental value of the underlying asset. The existing literature has almost exclusively

focused on equity markets, where fundamental values are difficult to measure and where

ETFs still hold a relatively small share. Most papers have tried to quantify non-fundamental

price distortions due to ETFs by looking at price reversals or variance ratios (e.g., Ben-David

et al., 2018). One concern with such an approach is that stock prices do not have to revert

to some unobserved fundamental value over a pre-defined horizon of several days. In the

research presented here, I take a different route and use the beneficial setting of the futures

market, where non-fundamental price distortions are easier to measure. In contrast to stock

prices, futures prices must convert to the spot price at expiration because futures contracts

have finite maturity. In addition, there is only one fundamental cash flow: the spot price,

1Source: Morningstar and own calculations. Some of the exchange-traded products (ETPs) analyzed
in this research are structured in the form of an exchange-traded note (ETN) rather than an exchange-
traded fund. The institutional differences between the two structures do not affect the analysis since ETPs’
exposure is transmitted to the underlying futures market irrespective of the legal structure of the product as
I show in section IA.2 in the Internet Appendix. I use the term ETF (instead of ETP) to refer to a general
exchange-traded product throughout the paper as the term is more familiar to the general public.
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which is observable.

I construct a unique data set to identify the size and source of the ETF impact on prices

in the most ETF-dominated asset classes: volatility (VIX) and commodities. These ETFs

have two beneficial features that make them a useful laboratory to quantify the effects of

ETFs on prices. First, ETFs in VIX and commodities hold a much larger share of the market

compared to equities. The fraction of ETFs in the market for VIX futures often exceeds

40%, whereas it is less than 2%2 in the Standard and Poor’s (S&P) 500 Index. Several

episodes from the VIX market in 2018 and the oil market in 2020 suggest that large ETF-

induced trading can exacerbate price changes in turbulent times.3 Second, using the specifics

of futures contracts, I directly test whether the ETF-influenced futures price is informative

about the fundamental cash flow (spot price) at expiration. The setting of the futures market

also allows me to test specific predictions about the price impact of ETFs on the slope of the

futures curve.

This paper documents and studies several new ETF-related phenomena. First, I show

that ETFs put pressure on prices of underlying assets in VIX and commodity markets. Trad-

ing demand from ETFs (called ETF demand hereafter) is strongly related to futures prices at

a daily frequency. The effects are robust to a large set of controls and to different sub-periods.

Second, I show that ETF price impact is not related to price discovery but manifests

itself through an increase in the non-fundamental part of prices. To identify ETF-induced

price distortions, I propose a model-independent approach for replicating the fundamental

value4 of a VIX futures contract. I simply use the definition of variance and construct a

synthetic futures contract from option prices on the S&P 500 Index and VIX. One advantage

of my framework is that I make no parametric or distributional assumptions: the results are

2On average, for the period 2009–2018. The average proportion of the US stock market held by all equity
ETFs is close to 6% for the same period.

3See, for example, Pagano et al. (2019), FT (2018), Reuters (2018), FT (2020) and Bloomberg (2020).
4Throughout the paper, “fundamental value” of the futures denotes a value that is a more precise measure

of the fundamental spot price at maturity compared to the observed, ETF-influenced futures price. Among
others, Ben-David et al. (2018) use a similar definition of fundamental value in the context of equities by
looking at price reversals.
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also valid in the presence of jumps. This is an important strength of my approach, given that

VIX futures often experience large spikes.

The synthetic futures contract is not directly influenced by ETF demand since there

are no ETFs in the market for options. I show that the synthetic contract is a more precise

measure of the fundamental cash flow compared to the observed, ETF-influenced contract.

I illustrate that the difference between the prices of the two contracts is strongly related to

ETF demand and call this difference the ETF futures gap (EFG). The EFG is also related to

measures of funding liquidity. The size of the gap is 0.61 volatility points for the first futures

contract, and 0.89 volatility points for the second, on average. These are large in relative

terms: 113% of the first-month basis (difference between the first futures and the spot) and

62% of the second-month basis, respectively. A simple strategy of trading VIX futures based

on the sign of the EFG delivers a Sharpe ratio of 1.78.

Third, to study the source of the EFG and the risks faced by ETF counterparties, I

analyze trading by ETFs and propose a novel decomposition of their demand into three major

components: calendar rebalancing, flow rebalancing, and leverage rebalancing. Calendar

rebalancing arises because futures are finite-maturity instruments and ETFs have to gradually

roll expiring contracts into longer-dated ones to maintain their exposure. ETFs sell portions of

the first-month futures and buy portions of the second-month futures on a daily basis, thereby

rolling their exposure from the first to the second contract. Flow rebalancing is driven by

fund flows: ETFs have to scale up their exposure in case of inflows, and scale it down in case

of outflows. Leverage rebalancing arises due to the maintenance of a constant daily leverage

by leveraged ETFs and is a new, under-researched type of mechanic institutional demand.

I show that leverage rebalancing has the largest impact on the EFG. This type of ETF

demand amplifies price changes and introduces unhedgeable risks for ETF counterparties

(called arbitrageurs hereafter). Leveraged ETFs mechanically have to buy the underlying

asset after price increases and sell it after price decreases, similar to agents hedging gamma.

This creates a potential feedback channel for prices: ETF demand and price changes reinforce

each other, pushing prices away from fundamentals. Trading against leveraged ETFs is,
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in essence, providing liquidity to investors with short horizons, who follow momentum-like

strategy. This type of trading exposes arbitrageurs negatively to variance.

Due to leverage rebalancing, the potential distorting effect of ETFs on prices can be

large even in a market with a zero net share of ETFs (size of long ETFs equals size of inverse

ETFs). A prominent real-world example of this effect was the VIX market in February 2018.

The net market share of ETFs then was close to zero, but the potential price impact due to

leverage rebalancing was 133% of the total market size for the first two futures contracts.

Calendar rebalancing inherits part of the non-linearity of leverage rebalancing and also

mechanically exposes arbitrageurs to the risk of widening price discrepancies since ETF coun-

terparties have to close futures positions before expiration. Calendar rebalancing puts upward

pressure on the second-month EFG and downward pressure on the first-month EFG. Flow

rebalancing has a direct effect on prices and also an indirect effect by changing the size of

ETFs, and the amount of their calendar rebalancing in future periods. Flow rebalancing

moves the second month EFG in the direction of flows: inflows increase the gap, whereas

outflows decrease it.

ETFs put pressure on prices also in commodity markets. Leverage rebalancing has

the largest impact on the first-month basis in the oil market and the largest impact on the

spread between the second and the first futures contracts in the natural gas market. Calendar

rebalancing has negative impact on the first month basis for gas, oil and silver.

My main results have several implications. First, they illustrate that price is strongly

related to ETF trading demand, when ETFs constitute a large share of the market. In turbu-

lent times, significant leverage-induced rebalancing contributes to extreme market movements

and creates a feedback effect on prices. Thus, crowded trading by ETFs moves prices away

from fundamentals. This result contributes to the policy debate on the desirability of com-

moditization. Going forward, the evidence of ETF impact on prices in VIX and commodities

can be useful for predicting the potential effects of ETFs on stock and bond markets, should

these funds develop a larger share of these traditionally studied asset classes.

Second, my results lead to a more nuanced view of the information content of VIX
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and the VIX futures premium (the difference between the futures price and the spot). VIX

and its derivatives are often perceived as a barometer of financial stress by large financial

institutions and are used as an input in stress-tests and various risk models. However, my

results suggest that the prices of VIX futures contracts are significantly disrupted by non-

fundamental mechanical ETF demand. Third, my findings show how to decompose trading

demand from ETFs and study different aspects of their price impact. I also demonstrate how

to quantify the potential distorting impact of leverage rebalancing.

The rest of the paper is organized as follows. Section I summarizes the literature and

section II describes the data. Section III studies ETF impact in the VIX market. Section IV

describes the decomposition of ETF demand. Section V presents robustness checks, trading

strategies, and the results for commodity markets. Section VI concludes.

I. Literature review

The research presented here contributes to the literature in four main areas: studies on

ETFs, VIX and the variance risk premium (VRP), futures markets, and limits to arbitrage.

First, it is related to studies on ETFs. A major drawback of the existing ETF literature is that

it is almost exclusively focused on equities, where these funds are a relatively small proportion

of the market (less than 6%, on average) and where non-fundamental price deviations are

hard to measure. Ben-David et al. (2018) study the volatility effects of ETFs in stocks and

argue that ETF arbitrage transmits noise trader risk to underlying securities. Malamud

(2015) demonstrates that ETFs can create a transmission mechanism for non-fundamental

shocks to the underlying securities. Cheng and Madhavan (2009) show that the returns on

leveraged ETFs are path-dependent. Tuzun (2012) finds that the rebalancing of leveraged

ETFs can increase the volatility of constituent stocks. Recently, Sushko and Turner (2018)

document the increase in the share held by ETFs in several markets and study the impact

for liquidity and volatility.

The greater presence of ETFs in VIX and commodity markets makes them a natural

candidate for studying the impact of ETF demand on prices and risk premiums. And yet,
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these ETFs have received little attention in the literature to date. Most papers in the existing

literature analyze VIX ETFs by relying on some parametric model (e.g., Bialkowski et al.,

2018 and Fernandez-Perez et al., 2018). A related paper by Dong (2016) studies the price

impact of VIX ETFs and finds that dealers pass hedging pressure to underlying futures.

Similar to the research presented here, Dong (2016) uses a result from Carr and Wu (2006)

to estimate the fair value of a VIX futures. However, he does not establish that the fair

value relates more closely to fundamentals than the VIX futures price, and does not rule out

alternative explanations to ETF demand. The paper also does not study the source of the

premium in VIX futures prices. In particular, it ignores the impact of leverage rebalancing.

Compared to the existing studies on VIX ETFs, the research presented here relies on a

model-independent framework to estimate the impact of ETFs, and proposes a new way to

test whether deviations are related to price discovery based on the specifics of the futures

market. Another gap in the existing ETF literature is that, to the best of my knowledge,

none of the studies has decomposed the demand from ETFs to study the source of their price

impact. The research presented here aims to fill this gap by examining different types of

trading demand by ETFs in the most ETF-dominated markets.

Second, my paper contributes to the literature on VIX. Cheng (2019) analyzes the VIX

premium and finds that, in turbulent times, dealers and asset managers reduce their long

volatility positions, whereas hedge funds reduce their short volatility positions. Mixon and

Onur (2015) study volatility markets and claim that the long volatility bias of asset managers

acts to put upward pressure on VIX futures prices. Alexander and Korovilas (2012) find

that ETFs increase the volatility of VIX futures. Bardgett et al. (2019) and Hülsbusch and

Kraftschik (2018) illustrate that S&P 500 Index options and VIX derivatives have different

information about prices and volatility at different time horizons. Eraker and Wu (2017)

develop a model with diffusive and jump shocks to explain the large negative returns on VIX

ETFs. However, most papers ignore the impact of ETFs on prices of underlying futures or

rely on some parametric assumptions to calculate risk premiums. In the research presented

here, I show that the mechanics of ETF rebalancing distorts futures prices, and I measure
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the resulting gap in a model-independent way.

Third, my research adds to the literature on futures markets and the financialization of

commodities. Tang and Xiong (2012), Basak and Pavlova (2016) study the financialization of

commodities due to institutional flows. Singleton (2013) argues that flows from institutional

investors have contributed significantly to the increase in oil prices prior to 2008. Mou (2011)

studies commodity roll of index funds. Most studies on hedging pressure in futures markets

use lower-frequency data (quarterly or weekly) on investors’ positions to analyze price impact.

However, hedging pressure is more likely to be pronounced over short time horizons in the

current era of high-frequency trading. Using ETFs to analyze the impact on prices allows

the capture of these transitory price effects, since trading demand is observed on a daily

basis. The research presented here shows that in markets with a high proportion of ETFs,

the demand from these funds is strongly related to the futures premium.

Fourth, my paper also adds to the extensive literature on limits to arbitrage and slow-

moving capital. Shleifer and Vishny (1997) develop a simple model with noise trader risk and

show that arbitrage could persist. Garleanu et al. (2009) show that dealers provide liquidity

in option products and charge for the unhedgeable risks they take due to the impossibility

of trading continuously, and due to transaction costs. Gromb and Vayanos (2018) develop a

theoretical framework in which financially constrained arbitrageurs exploit price-discrepancies

across segmented markets. In the research presented here, I document segmentation in the

VIX futures market and illustrate that price discrepancies can persist due to the risk of

trading against ETFs.

II. Data and institutional details

I construct a unique data set on ETFs and their underlying securities in VIX and

commodities: US natural gas, silver and oil. The data come from several sources. Daily

prices, flows, holdings, assets under management, volume of trading, and other characteristics

of ETFs come from the websites of the sponsors, from the Center for Research in Security

Prices (CRSP), and from Bloomberg. Daily data on futures prices, open interest, and volume
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of trading are from the Chicago Board Options Exchange (CBOE). Daily data on S&P 500

Index options come from OptionMetrics. The data on futures and spot prices for commodities

are from Bloomberg and the US Energy Information Administration (EIA). The analyzed

period is generally June 2004 to February 2018 for VIX and June 2006 to June 2020 for

commodities; however, some data are only available for a shorter time period as indicated in

the figures and tables.

A. The presence of ETFs in different markets

Figure 1 shows the proportion of ETFs in the total market capitalization for several

markets. The black lines on the graphs show that the proportion of ETFs periodically exceeds

40% of the total market capitalization for VIX, natural gas and oil. The share of ETFs in

equities is much smaller and constitutes less than 2%, on average, for most equity indices.

Panel A of Table I summarizes the proportion of ETFs in the total market capitalization and

in daily trading volume across several markets. In the following analysis, I focus mainly on

VIX ETFs and ETFs in the markets for natural gas, oil and silver given their larger share of

the respective market.

[Figure 1 and Table I about here]

B. Institutional details

Unlike most equity ETFs that physically invest in the underlying assets, VIX and com-

modity ETFs obtain price exposure by entering into positions in futures contracts. Most

ETFs follow a benchmark based on the first two futures contracts.5 They gradually roll their

exposure from the first-month contract to the second-month contract (daily for VIX and over

a period of five days each month for commodity markets). Some ETFs also aim to maintain a

constant daily leverage ratio, L, which can also be negative (for inverse ETFs). For example,

5There are also silver ETFs that hold physical silver: I exclude these from the analysis since they do not
rebalance on a daily basis, but physically hold the asset. Some VIX ETFs invest in fourth to seventh-month
futures contracts but their share is much lower. I analyze these in section IA.3 in the Internet Appendix.
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if the benchmark return is 5%, a double-leveraged (L = 2) ETF should return 10%, whereas

an inverse ETF (L = −1) should return -5%. I analyze the exact trading motives of ETFs

further in section IV. ETFs are limited to trade in the futures contracts in a mechanical way

to minimize their tracking errors. This can lead to a reduction in price informativeness.

C. Summary statistics

Panel B of Table I presents summary statistics for VIX. The VIX futures market is

in contango (futures larger than spot) 78% of the time. The distribution of VIX futures is

positively-skewed, particularly for short maturities. The average slope of the short end of

the futures term structure steepened after the introduction of ETFs. The first-month futures

basis6 went up from 0.06 to 0.79, and the spread between the second and the first-month

futures contracts increased from 0.46 to 1.37. The spreads for other futures maturities that

are not influenced by ETFs, are little changed. The plot in Figure IA.1 shows that the realized

VIX futures premium (the return for an investor who sells short a fully collateralized VIX

futures contract and holds it until maturity Ft,T−FT,T

Ft,T
) has increased since the introduction of

ETFs in January 2009 for the most ETF-influenced maturities of one and two months. The

effects are similar even if I exclude the 2008–2009 financial crisis. These facts provide initial

evidence that the introduction of ETFs is related to the increase in premiums embedded in

VIX futures prices.

In the next three sections, I focus my analysis predominantly on VIX given that this is

the most ETF-dominated market in the world. Another benefit of the VIX market is that I

can construct a model-free synthetic futures contract that is not directly influenced by ETFs,

which allows me to disentangle ETF-induced price distortions. In section V., I present the

results for commodity ETFs as a robustness check.

6For convenience, I call Ft,T − St basis throughout the paper. Since the VIX futures term structure is in
contango most of the time, it is more convenient to work with Ft,T −St rather than St−Ft,T . T is maturity,
Ft,T is time t’s price of a futures contract expiring at T , St is time t’s spot price.
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III. The impact of ETFs on futures prices in the VIX market

In this section, I study the impact of trading demand by ETFs on VIX futures prices. I

isolate a non-fundamental component of the futures premium and show that this component

is strongly related to ETFs’ rebalancing.

A. Details on VIX

VIX is an important asset for investors because it provides a natural hedge against

market downturns. V IX2
t is a portfolio of options that measures risk-neutral expectation of

realized variance of the S&P 500 Index return (assuming no jumps) over the next month:

V IX2
t = EQ

t (Rvart,t+30).7 In a world with jumps, V IX2
t measures risk-neutral entropy of the

S&P 500 Index return as Martin (2015) demonstrates. Thus, by construction, VIX increases

in turbulent times when volatility spikes and aggregate economic uncertainty increases. An

important feature of the market for VIX futures, which distinguishes it from traditional

futures markets, is that there is no cost-of-carry relation because the spot asset is, in essence,

not physically tradable. Since the portfolio of options underlying the VIX calculation is

changing almost continuously, in practical terms it is impossible to trade VIX due to large

transaction costs. The simplest way to get exposure is by trading VIX futures.

The market for VIX derivatives has grown considerably over the past decade and has

become the largest market for volatility for short maturities (e.g., Mixon and Onur, 2015). As

of 2018, the total notional value of VIX futures exceeded that of variance swaps for maturities

of less than one year. The total dollar volatility exposure (in terms of vega) of VIX futures

was close to $8 billion (bn) per month. Part of the massive increase in volatility investing

was due to the rise of ETFs, which provided a simple and cost-efficient way to invest in VIX.

Figure IA.2 in the Internet Appendix shows the large increase in open interest of VIX futures

after the introduction of ETFs, particularly for the most ETF-influenced maturities of one

and two months.

7As realized variance is a consistent estimator of quadratic variation (e.g., Cheng, 2019).
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The inception of ETFs was a market innovation that allowed many retail investors who

could not easily trade volatility before, to enter the VIX futures market. Data from Thomson

Reuters Institutional Holdings show that the fraction of institutional holdings in VIX ETFs

was less than 24%, on average, in 2009–2018. The case of VIX provides a useful laboratory to

study the effects of large ETF share in the underlying market and the consequences of letting

retail investors enter more sophisticated markets through ETFs. These effects can be useful

to predict the impact of larger ETF presence in other markets that were less accessible to

retail investors before, e.g., less-liquid corporate bond markets. I discuss further the features

of ETFs that allow retail investors to easily enter more sophisticated markets in section V.

B. The impact of ETF demand on futures prices

I start the analysis by studying the effect of ETF rebalancing demand on the VIX

futures curve and run the following regression:

bt,i = α + β1D
$,all
t,i + β2b

H
t,i + γCtrlt,i + εt,i, (1)

where bt,i is either the absolute basis for maturity one month (bt,1 = Ft,T1 − St), or the

spread between two subsequent futures (most results are with the second-month spread:

bt,2 = Ft,T2 − Ft,T1). In some specifications bt,i is the relative basis or the relative spread

(bt,1 = Ft,T1−St

St
, bt,2 = Ft,T2−Ft,T1

Ft,T1
). St is the spot price, Ft,T1 is the price of the first futures

contract and Ft,T2 is the price of the second one. I use basis as the main dependent variable,

instead of the raw futures price, to isolate price movements mostly related to futures premiums

as opposed to the spot price. I analyze separately first-month basis and spread, instead of

first and second-month bases (as in Mixon and Onur, 2015) to disentangle the local effects

of ETF demand on different parts of the curve.8

8Since the second-month basis is the first-month basis plus spread (Ft,T2−St = Ft,T2−Ft,T1 +Ft,T1−St =
bt,2 + bt,1), using the second-month basis as the dependent variable could capture some of the effects of ETF
demand on the first-month basis. Therefore, I focus on spread to isolate the residual price impact between
the first and the second-month contracts. The estimates of the second-month basis regressed on D$,all

t,2 are
also strongly statistically significant.
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D$,all
t,i is the net dollar demand from all ETFs for maturity i at time t computed as the

sum of changes in dollar holdings of futures contracts from t− 1 to t for all ETFs. To isolate

the effect of a larger share of ETF demand from a pure increase in the size of the overall

market, I normalize the demand from ETFs by market capitalization. bHt,i is the basis or

spread of a hedge asset. The hedge asset is a synthetic VIX futures contract with the same

maturity as the traded one but not influenced by ETF demand: the next subsection explains

the exact replication. bHt,i absorbs any asset-specific shocks. Ctrlt are controls for spot price,

open interest, days to maturity, variance of the benchmark, and liquidity (bid-ask spreads).

If ETF demand has an impact on futures prices, β1 6= 0.

The results from regression (1) are presented in Table II. For comparison, I standardize

all independent variables. Columns 1 and 6 show that one standard deviation rise in ETF

demand as fraction of total market capitalization (2.42% for the first-month futures contract

and 5.73% for the second) increases the front-month basis by 0.21 volatility points (27% in

relative terms) and the spread by 0.10 volatility points (9% in relative terms). The estimates

for the relative basis are larger in magnitude as seen from columns 2 and 6. The effect

is robust to using absolute ETF demand (columns 3 and 7) and to other checks: demand

calculated with lagged returns, and relative basis and spread scaled by days to maturity

(unreported for brevity). The fact that β1 > 0 is evidence of the impact of ETF demand on

the price of underlying futures contracts.

[Table II about here]

The effects of ETF demand are significant only for the respective maturities in which

ETFs invest, but there is limited evidence of significant changes in the slopes of other parts

of the curve: the estimates for the spreads of third, fourth, fifth and sixth-month futures

contracts are mostly insignificant.9

9The results for VIX ETFs investing in midterm maturities of the futures (section IA.3 of the Internet
Appendix) show that their demand is significant for bt,5, bt,6 but less significant for bt,4 and bt,7.
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C. The ETF futures gap

Table II illustrates that an increase in ETF demand pushes up short-term basis and

spread. Although the OLS regressions control for a large set of observable characteristics,

the estimates could be biased due to endogeneity if both ETF demand and futures prices

are influenced by a fundamental omitted variable. To address this concern, I disentangle

the non-fundamental component of prices and analyze whether the effect of ETF demand

manifests itself through an increase in that component.

One of the benefits of analyzing the VIX market is that I can directly measure deviations

in the futures price due to ETF demand by constructing a synthetic futures contract from

a market with no ETFs, and comparing its price to that of the ETF-influenced futures

contract. The idea is simple. I calculate EQ
t (ST ) (Q is the risk-neutral measure) from option

prices without making any parametric or distributional assumptions. By comparing Ft,T and

EQ
t (ST ), I can isolate the component of the VIX futures premium that is different between the

futures market and the options market. Then, I test directly which of the two futures prices

(the ETF-influenced one Ft,T , or the synthetically constructed one EQ
t (ST )) is a less-biased

estimate of the fundamental spot price at expiration. To illustrate the approach, note that

basis can be decomposed as follows:10

Ft,T − St = Ft,T − EQ
t (ST )︸ ︷︷ ︸

ETF futures gap

+

Synthetic basis︷ ︸︸ ︷
EQ
t (ST )− ST︸ ︷︷ ︸

Realized V IX premium

+ ST − St.︸ ︷︷ ︸
Spot V IX change

(2)

The decomposition shows that time t’s basis consists of the ETF futures gap (EFG),

the realized VIX premium (RVP), and the spot VIX change. The element of interest in

this decomposition is the EFG. This component is different from zero if there is market

segmentation or other frictions. I show that ETF demand manifests itself through an increase

in this non-fundamental part of the futures price in sections C.2 and C.3.

10Spread can be decomposed as follows: Ft,T2 −Ft,T1 = Ft,T2 −St− (Ft,T1 −St) = (EFGt,T2 −EFGt,T1) +
(RV Pt,T2 −RV Pt,T1) + (ST2 − ST1).

13



C.1 Calculating the EFG

To calculate the EFG for maturity T1, I measure EQ
t (ST1) = EQ

t (V IXT1→T2) using the

definition of variance:11

VarQ
t (V IXT1→T2) = EQ

t

(
V IX2

T1→T2

)
−
(
EQ
t (V IXT1→T2)

)2

⇐⇒ EQ
t (V IXT1→T2) =

√
EQ
t (V IX2

T1→T2)− VarQ
t (V IXT1→T2).

(3)

The first term under the square root can be calculated using portfolios of S&P 500 Index

options with maturities T1 and T2 = T1 + 30 days that replicate V IX2
t→T1 and V IX2

t→T2 ,

respectively (analogous to the calculation of forward rates from spot rates):

(T2 − T1)EQ
t (V IX2

T1→T2) = (T2 − t)(V IX2
t→T2)− (T1 − t)(V IX2

t→T1)

⇐⇒ EQ
t (V IX2

T1→T2) =
(T2 − t)V IX2

t→T2 − (T1 − t)V IX2
t→T1

T2 − T1
.

(4)

Alternatively, one can use variance swap prices to estimate EQ
t (V IX2

T1→T2). By using the

definition of VIX as a measure of risk-neutral entropy of the S&P 500 Index return, it is

straightforward to show that the result is also valid with jumps (the proof is in the Appendix,

section A.1). Full details about the empirical calculation of the synthetic VIX futures are in

sections A.1, A.2 of the Appendix and IA.1 of the Internet Appendix.

The second term under the square root in Eq. (3) can be calculated using a static

portfolio of out-of-the-money (OTM) VIX options and applying a result from Breeden and

Litzenberger (1978) similar to Martin (2017):

VarQ
t (V IXT1→T2) = 2Rf,t→T1

(∫ Ft,T1

K=0
putt,T1(K)dK +

∫ ∞
K=Ft,T1

callt,T1(K)dK
)
, (5)

where Rf,t→T1 is the constant gross risk-free rate. An important point is that the results in

Eq. (3), Eq. (4), and Eq. (5) rely on no parametric or distributional assumptions about the

11Similar to Carr and Wu (2006) and Dong (2016).
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S&P 500 Index or VIX.

[Figure 2 about here]

Figure 2 shows the dynamics of the EFG for maturities at 1–2 months.12 Figure A2

shows the EFG scaled by the futures price since VIX futures prices are lower for the period

after 2013, on average. The last two columns of Panel B in Table I present summary statistics

for the EFG. The numbers illustrate that the EFG is positive, on average, but highly volatile

and positively-skewed. The first-month EFG is 0.61 volatility points (113% of the first-month

basis), and the second-month EFG is 0.89 volatility points (62% of the second-month basis),

on average. The largest EFGs were observed during the 5th February 2018 VIX spike (the

so-called “Volmageddon”), when the gap exceeded 20 volatility points for both maturities as

seen from the daily plots in Figure IA.3 in the Internet Appendix.

[Figure 3 about here]

The decomposition of basis in Eq. (2) shows that the positive impact of ETF demand

observed from Table II must happen either through changes in the EFG, or the synthetic

basis EQ
T (ST )− St, or both.

C.2 Does ETF demand manifest itself through the EFG?

Figure 3 shows that the EFG and the rebalancing demand from ETFs move together.

To test whether ETF demand manifests itself through the EFG, I run regression of the EFG

on ETF demand:

EFGt,i = α + β1D
$,all
t,i + β2EFGt−1,i + γCtrlt,i + εt,i. (6)

12Unfortunately, there are often no VIX options with expirations of five, seven, and eight months and it
is thus impossible to calculate VarQ

t (V IXT1→T2) without interpolating the volatility surface. The quality of
the VIX options data for three, four, six months and nine months are also worse than that for one and two
months. For these reasons, the graphs show the EFG for 1–2 months.
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I scale the EFG by the futures price to address potential concerns about the magnitude of

the effects being driven by fluctuations in the futures price (the results with the unscaled

EFG are similar) and add the lagged EFG to account for autocorrelation. The estimates

from columns 1 and 4 of Table III show that one standard deviation rise in ETF demand

as a share of market capitalization is related to a contemporaneous increase in the EFG

by 0.55% (0.17 volatility points) for the first month and by 1.09% (0.23 volatility points)

for the second month. The effects are robust to using demand not scaled by open interest

(columns 2 and 6), and are greater in magnitude: 0.70% and 1.15%, respectively. The

positive and statistically significant estimates show that the rebalancing of ETFs increases

the non-fundamental component of prices.

The first-month EFG is related to funding liquidity: a standard deviation rise in the

TED spread (spread between 3-month LIBOR in USD and the interest rate of Treasury bills)

increases the gap by 0.37–0.47%. These results suggest that part of the gap could be due to

arbitrageurs’ inability to close positions easily in times of crisis when liquidity dries up, or

could be due to funding constraints consistent with Garleanu and Pedersen (2011) and Gromb

and Vayanos (2002). I discuss other potential explanations for the EFG (discretization errors,

illiquidity, difference in margin requirements) in section V.

[Table III about here]

The last two columns in Table III show that ETF demand has no significant impact

on the synthetic basis EQ
t (ST1) − St and spread EQ

t (ST2) − EQ
t (ST1) from Eq. (2). This fact

illustrates that ETF demand manifests itself through an increase in the non-fundamental

component of prices (EFG). The synthetic futures contract captures the part of the price

that is not related to ETF demand.

C.3 EFG-fundamental or non-fundamental?

The existence of the ETF futures gap is evidence that the risk-neutral measure imputed

from S&P 500 Index and VIX option prices (Q) gives a different forecast of the realized

spot price at maturity compared to the risk-neutral measure from the VIX futures market.
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However, a priori, the mere presence of the gap does not mean that the futures price Ft,T is a

poor estimate of the fundamental value. It is possible that price discovery takes place in the

ETF-influenced market, and therefore, the gap exists because of fundamental information

about the realized spot instead of non-fundamental price pressure in the futures market.

Compared to most studies on price discovery in equity markets that usually rely on in-

formation shares (Hasbrouck, 1995) or price reversals and variance ratios (Ben-David et al.,

2018), this paper makes use of the beneficial setting of the futures market where price dis-

covery is easier to measure. In equity markets, the horizon over which prices convert to

the fundamental value is not fixed and they can theoretically deviate for many periods, since

stocks do not have a fixed maturity. Moreover, the fundamental value itself is hard to observe.

In contrast, in futures markets, futures prices must convert to the spot price at expiration,

since futures contracts have finite maturity. In addition, there is only one fundamental cash

flow: the spot price, which is observable.

Since at maturity T , both EQ
T (ST ) and FT,T are equal to ST , the only cash flow (spot

price) of the synthetic and the ETF-influenced contract is exactly the same. Thus, I can

directly test which of the two futures prices (synthetic or observed) is more informative

about that cash flow. If the EFG exists because of price discovery, the ETF-influenced

futures would be a better predictor of the realized spot price at maturity. Checking this

prediction is straightforward.

Using the identity Ft,T−St = Ft,T−FT,T +ST−St and without making any assumptions,

I test whether time t’s basis Ft,T − St predicts subsequent changes of the spot ST − St

(fundamental information), or the futures Ft,T − FT,T (non-fundamental premium), or both.

I run two simple predictive regressions in the spirit of Fama and Bliss (1987):13

ST − St = α1 + β1(Xt,T − St) + ε1,t, (7)

13Running regressions (7) and (8) with ST −St, FT,T −Ft,T and Ft,T −St scaled by the time to maturity of
the futures yields similar results. The results are also unchanged if I control for lags of VIX, time to maturity
of the futures, liquidity, open interest, and other factors.
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XT,T −Xt,T = α2 + β2(Xt,T − St) + ε2,t, (8)

where Xt,T is either the observed futures Ft,T , or the synthetic one EQ
t (ST ). By subtracting

Eq. (8) from Eq. (7), we see that β1 − β2 should be equal to one. The closer β1 is to 1,

the more predictive power the futures price has for the fundamental cash flow (spot price at

maturity) and the less information it has about the non-fundamental premium. Higher R2

in Eq. (7) also means that Xt,T contains more information about the spot change.

[Table IV about here]

Table IV shows the results from the two regressions. The estimates show that β1 is

closer to one for the synthetic futures compared to the traded one: e.g., β1 = 1.03 compared

to β1 = 0.83 for the second futures. β1 is not statistically different from one for the synthetic

futures at the 5% level. R2 is 1.5 times larger for the synthetic contract relative to the traded

one, which illustrates that the synthetic contract has a larger explanatory power for the spot

price change. These results show that the synthetic futures contract is a better predictor of

the fundamental cash flow than the traded futures contract. In other words, the EFG is not

related to price discovery.

These findings can be justified by the differences between the VIX futures market and

the S&P 500 and VIX option markets. First, the S&P 500 and VIX option markets are more

than three times larger (in terms of dollar vega) than the VIX futures market for maturities

below 2 months, on average for 2009–2018. Second, the option market is dominated by

banks, hedge funds, and other more sophisticated investors compared to the VIX futures

market which is largely dominated by ETFs.

Since the EFG is not due to price discovery, the only explanation for the gap is then

variation in risk premiums: it could be riskier to trade against ETFs in the futures market

(due to unhedgeable risks as in Garleanu et al. (2009) or downward-sloping demand curves

as in Shleifer (1986)). I show in subsection B of section V. that trading strategies to extract

the EFG earn high Sharpe ratios, which is consistent with the risk-premium explanation.

Since ETFs passively follow the exact rolling rules of the indices they track to minimize the
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tracking error, they have a large hedging demand. If ETF counterparties have a limited

capacity to absorb this demand, they would require a premium for providing liquidity and

trading in the opposite direction. That premium would be incorporated in the futures price

and would make it a worse predictor of the only cash flow of the asset, giving rise to the EFG.

To investigate this explanation, I next study the motives of ETFs’ trading and the inherent

risks for arbitrageurs.

IV. Understanding the EFG: decomposition of ETF demand

To understand the source of the EFG, I decompose the rebalancing demand from ETFs

into three major components: calendar rebalancing, leverage rebalancing and flow rebalanc-

ing, and study the risks associated with each one.

A. Calendar rebalancing

Since futures have an expiration date, to maintain their exposure, VIX and commodity

ETFs need to roll out of the maturing contracts before these contracts expire and initiate

new positions in longer-maturity contracts. Calendar rebalancing is mechanical and arises

exogenously due to futures expiration. Most ETFs in VIX and commodity markets are based

on a benchmark that is rolling from the first-month futures contract to the second one over

a period of several days. For VIX, the benchmark is a constant-maturity weighted average

position: every day, a typical long ETF invests fraction αt of its wealth in the first-month

futures contract, and 1− αt fraction in the second one, s.t. αtT1 + (1− αt)T2 ≈ 21 days. T1

is the time to maturity of the first-month futures contract in business days, T2 is the time to

maturity of the second one, and 21 is the typical number of business days in the rebalancing

period (month). For example, suppose that today (t) T1 = 21 days, T2 = 42 days and

consider a long ETF: αt = 1, 1 − αt = 0. Tomorrow, both futures contracts are closer to

maturity: T1 = 20 days, T2 = 41 days, so to keep the duration of the portfolio constant at

(roughly) one month, the ETF allocates wealth as follows: αt+1 = αt− 1
21 = 20

21 , 1−αt+1 = 1
21 .

After 21 business days, T1 = 0 days, T2 = 21 days, the long ETF has completely rolled out of
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the expiring contract and is 100% invested in the new one month contract, and then the cycle

starts again. S&P500 (2019) provides more information on the benchmark of VIX ETFs.

Calendar rebalancing of ETFs can be seen from the dynamics of open interest in the VIX

futures market.14 Before ETFs were introduced, the change in open interest did not have a

clear pattern. The left panel of Figure A4 in the Appendix shows typical dynamics before the

introduction of ETFs. However, in the post-ETF period, the change in open interest follows

a typical pattern, as shown in the right panel: open interest spikes as soon as the futures

has two months till expiration and ETFs start to buy it. Once the contract has less than

one month till expiration, ETFs start to sell it and open interest declines. The hump-shaped

dynamics can be well identified with net ETF positions.

B. Leverage rebalancing

Another important feature of ETFs in VIX and commodity markets is that many of

them are leveraged, or inverse, which makes it possible to estimate the impact of leverage-

induced trading on prices. Leverage rebalancing is mechanical and arises exogenously due

to the maintenance of a constant leverage at a high frequency.15 Leveraged ETFs aim to

return Lrt+1 every day, where rt+1 is the daily return on the benchmark from t to t+ 1 and

L is the leverage (fixed in the prospectus for each leveraged ETF and constant over time).

AUM at time t+ 1 should then be At+1 = At(1 + Lrt+1). An important feature of leveraged

ETFs is that, to maintain a constant leverage, they always have to rebalance in the same

direction as the benchmark. This is true both for leveraged long (L > 1) and inverse (L < 0)

14Calendar rebalancing is not perfectly predictable as the exact rebalancing amount depends on the assets
under management (AUM) of the ETF, which in turn depend on the contemporaneous realized return as I
show in part C of this section.

15Most ETFs use swaps to obtain a levered exposure. The swaps’ exposure is transmitted to the futures
market by the swap counterparties. Leveraged funds seek to deliver L multiplied by the daily performance of
the benchmark index before fees and expenses. With fees and expenses, their effective leverage can be slightly
different from L. The analysis is largely unchanged, however, as L can be replaced with L̂ = L(1−φ), where
φ is the tracking error due to fees and expenses. Leverage rebalancing throughout the paper focuses on the
rebalancing to maintain a constant leverage with respect to the benchmark but ignores the leverage implicit
in futures positions for simplicity.
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ETFs: if the benchmark increases (decreases), long ETFs have to increase (decrease) their

long position, whereas inverse ETFs have to close (open) some short positions. The derivation

is straightforward (Cheng and Madhavan, 2009). At time t, the exposure of a leveraged ETF

is LAt. One period later, the actual exposure is LAt(1 + rt+1), whereas the desired exposure

is LAt+1 = LAt(1+Lrt+1). Hence, to maintain a constant leverage, the ETF has to rebalance

by

δt+1 = LAt+1 − LAt(1 + rt+1) = L(L− 1)Atrt+1. (9)

For example, consider a double-leveraged (L = 2) ETF with $10 of AUM (At). The

ETF buys $20 worth of futures by borrowing another $10. Suppose that the price goes up by

10%, then the futures position is worth $22. Now, the leverage is 1.83 = 22/12. To maintain

the leverage constant at 2, the ETF has to borrow additional $2(= L(L− 1)Atrt+1) and use

it to buy $2 of futures contracts. This brings back the leverage to 2 = 24/12.

Since L(L− 1) > 0 for any leverage L 6∈ [0, 1], Eq. (9) shows that rebalancing demand

is of the same sign as rt+1. This means that trading demands by long and inverse ETFs do

not offset, but instead reinforce each other. Since they trade in the same direction, leveraged

ETFs can magnify price changes, creating a feedback channel for prices. This mechanism is

similar to gamma hedging.

To quantify the potential impact of leverage rebalancing of all N ETFs in a given

market, I calculate the leverage rebalancing multiplier Γt = ∑N
j=1 Lj(Lj − 1)Aj,t. The red

line in Figure 1 shows Γt as a share of the market across several assets. This number is

around 1.33 for the VIX market at the beginning of February 2018, which means that if the

benchmark spiked by 10%, 13.3% of the total market capitalization would be the additional

buying demand from all ETFs due to leverage rebalancing. A similar situation was observed

in the oil market in April 2020 when the potential amplification due to leverage rebalancing

was 53% of the market size. Leveraged ETFs are present in a variety of asset classes beyond

VIX and commodities: equities, bonds and currencies (Kyle and Todorov, 2020). However,

their share of the underlying market is the largest in VIX and commodities.

Leverage rebalancing is, essentially, a momentum trade, as it involves buying after
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price increase and selling after price decrease. Market-makers who trade against ETFs are

then contrarian and carry the risk of meeting ETF demand in case of large price changes.

Risk-averse arbitrageurs would demand a premium for bearing this risk. If there are flows

ut+1, the total rebalancing demand by a leveraged ETF from t to t + 1 becomes δt+1 =

L(L− 1)Atrt+1 + Lut+1.

C. Total ETF demand decomposition

To understand the motives of ETFs’ trading, I decompose the daily rebalancing demand

by an ETF with a leverage of L (L = 1 for a non-leveraged ETF) during the rolling period

of K days (K = 21 for VIX, K = 5 for most commodity markets). Full derivation details

are in section A.3 of the Appendix. In dollar terms, the total rebalancing demand for the

first-month futures contract (computed as dollar change in holdings from t to t+ 1) is:

D$
t+1,1 =Ft+1,T1(

L(αt − 1
K

)At+1

Ft+1,T1

−LαtAt
Ft,T1

)=αt

(
LAt(1+Lrt+1)+Lut+1−LAt(1+rF1

t+1)
)
−L
K
At+1

=− L

K
At(1+Lrt+1)︸ ︷︷ ︸
calendar reb.

+αtAtL(L−1)rt+1︸ ︷︷ ︸
leverage reb.

+ (αt −
1
K

)Lut+1︸ ︷︷ ︸
flow reb.

+αt(1− α̂t)LAt(rF2
t+1 − rF1

t+1)︸ ︷︷ ︸
remainder

,

(10)

where rF1
t+1, rF2

t+1 are the net returns on the first-month and the second-month futures contracts,

respectively, α̂t = αtFt,T1
αtFt,T1 +(1−αt)Ft,T2

, and rt+1 = α̂tr
F1
t+1 + (1− α̂t)rF2

t+1 is the net return on the

benchmark.

Eq. (10) illustrates that the total rebalancing demand can be decomposed into four

components: calendar rebalancing due to the roll from the first-month to the second-month

futures contract, leverage rebalancing to maintain a constant leverage L, flow rebalancing due

to inflows or outflows, and a remainder. Analogously, the total dollar rebalancing demand

for the second-month futures contract is:

D$
t+1,2 = L

K
At(1+Lrt+1)︸ ︷︷ ︸
calendar reb.

+(1−αt)AtL(L−1)rt+1︸ ︷︷ ︸
leverage reb.

+(1−αt+
1
K

)Lut+1︸ ︷︷ ︸
flow reb.

−α̂t(1−αt)LAt(rF2
t+1−rF1

t+1).︸ ︷︷ ︸
remainder

(11)
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The total dollar rebalancing of all N ETFs in a given market is: D$, all
t+1,1 = ∑N

j=1 D
$, j
t+1,1,

D$, all
t+1,2 = ∑N

j=1 D
$, j
t+1,2.

Calendar rebalancing is exactly the opposite for the first-month and the second-month

futures contracts. In a market where ETFs are net buyers of futures (∑N
j=1 LjAj,t > 0),

calendar rebalancing decreases D$,all
t+1,1 and increases D$,all

t+1,2 (except for extreme realizations

of rt+1). Leverage rebalancing is always in the same direction as the realized return on

the benchmark. Inflows (rise in flow rebalancing) increase both D$,all
t+1,1 and D$,all

t+1,2, whereas

outflows decrease both of them. The effect of the remainder is due to the fact that the ETF

benchmark is a weighted average of the first-month and the second-month futures contracts.

Therefore, the return on the second-month futures contract can have an impact on prices for

the first (and vice versa) through ETF demand.

On average, in the VIX market, the largest component of rebalancing demand is cal-

endar rebalancing. Flow rebalancing is also large, and sometimes exceeds 75% of the total

rebalancing demand from VIX ETFs, as seen from Figure 4. Leverage rebalancing has been

growing since 2012, and represented more than 40% of total demand at the start of 2018.

The remainder has been historically low (less than 5%). There are several pieces of evidence

that ETFs follow their benchmarks and rebalance in the way described in this part as I show

in section IA.2 in the Internet Appendix.

[Figure 4 about here]

The decomposition of ETF demand developed in this section is flexible, and can ac-

commodate various types of ETFs. It is not a feature of VIX and commodity ETFs, but

can be used to analyze the impact of ETF demand in other asset classes. All ETFs have to

rebalance due to investor flows and hence, flow rebalancing is present in ETFs across asset

classes. The same holds for leverage rebalancing because leveraged ETFs are present in eq-

uity, fixed income, and foreign exchange markets, albeit with a smaller proportion. Calendar

rebalancing also has a close analogue in equity and fixed income markets. In VIX and com-

modity markets, this type of demand arises because futures contracts expire and ETFs have
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to substitute the positions with new contracts. Analogously, equity ETFs have to rebalance

in case of inclusions or exclusions of stocks in the benchmark index. Fixed income ETFs also

have to rebalance in a similar way when underlying bonds expire, or when there is a change in

the benchmark index due to the inclusion or exclusion of bonds. Thus, the effect of different

types of ETF rebalancing can also be studied in other markets.

D. ETFs can affect prices even in a market with a zero net share of ETFs

Eq. (10) and Eq. (11) illustrate that the composition of the market (the proportion of

ETFs with different leverages) matters in determining the total rebalancing demand and, as

a result, the ETF impact on futures prices. For example, consider a market where there are

no flows and the size of all long ETFs is exactly equal to the size of all inverse ETFs so that

the net share of ETFs is zero (∑N
j=1 LjAj,t = 0). However, the net ETF demand in that

case will not be zero as Eq. (10) and Eq. (11) show. In such a market, flow rebalancing,

remainder, and the predictable part of calendar rebalancing ( L
K
At) are all zero. The only

sources of rebalancing are leverage rebalancing and the leverage-induced part of calendar

rebalancing ( 1
K
AtL

2rt+1), both of which can be quite large despite the equal size of all the

long and inverse ETFs. Moreover, since leverage rebalancing is always in the same direction

as the benchmark return, even in an equal-sized market the potential amplification of price

changes can be substantial.

This observation is in contrast to the ordinary view that ETFs have no price impact if

the size of long ETFs is exactly equal to that of inverse ETFs. In fact, providing liquidity

in such a market should be compensated by a large risk premium because the potential

distorting effects of leverage rebalancing are substantial. For example, a market with $100

of L = 1 ETFs is exactly the same in net demand terms to a market with $100 in L = 2

ETFs (with a total exposure of 2 · $100) and $100 in L = −1 ETFs. However, the potential

leverage rebalancing in the first market is zero, whereas in the second market, it is four times

the size of the market ($400 = 2 · (2− 1) · $100 + (−1) · (−1− 1) · $100) multiplied with the

realized return on the benchmark. A 10% spike in the benchmark has no feedback effects in

the first market, but leads to an additional buying pressure of 40% (4 · 10%) of the whole
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market size due to mechanical leverage rebalancing in the second market.

E. Example: the VIX market in 2018

A prominent real-world example of these effects was the VIX market in the beginning

of February 2018. The net share of ETFs then was close to zero, but the potential distorting

effect due to leverage rebalancing was 133% of the total market (as shown in Figure 1). On

5 February 2018, the ETF benchmark spiked by 96%, which means that more than 127% of

the market was allocated to buying VIX futures contracts purely due to mechanical leverage

rebalancing. This additional buying pressure contributed to the price increase, pushing the

EFG to more than 20 volatility points as shown in Figure IA.3. Following the spike, the

largest inverse VIX ETF at that time (XIV) was delisted after dropping more than 90% in

price (e.g., Bloomberg, 2018).

F. Risks posed by ETF demand

Consider arbitrageurs who trade against ETFs in the futures market. If agents are com-

petitive and could hedge perfectly (as in a standard Black-Scholes economy), ETF demand

pressure would have no effect. However, in practice, arbitrageurs cannot do that as they face

incomplete markets because of discrete trading, transaction costs, jumps in the underlying,

and other factors (e.g., Garleanu et al., 2009). If arbitrageurs cannot perfectly hedge the

ETF exposure, they bear non-fundamental risk of ETF demand shocks on three main fronts.

The first and most important one is leverage rebalancing. This is a relatively new

type of rebalancing by institutional investors with a large market share that has been under-

researched, partly because leverage ratios of mutual funds or hedge funds are rarely publicly

observable. Leveraged ETFs provide a useful laboratory to study the effects of leverage-

induced trading on a daily basis. An important observation is that arbitrageurs cannot

hedge the leverage rebalancing of ETFs by matching long and inverse ETF demands, since

the two are of the same sign as rt (as L(L − 1) > 0). Kyle and Todorov (2020) show that

leverage rebalancing exposes investors to higher-order cumulants and thus introduces a source

of convexity that is not easy to hedge similar to Garleanu et al. (2009).
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Intuitively, since both long and inverse ETFs are momentum traders, arbitrageurs who

trade against ETFs are contrarian (“carry”) traders. If the underlying asset is volatile but

ends close to the initial value during the trading period, arbitrageurs collect the “carry”

gains. However, if the underlying asset drifts steadily in either direction with little volatility,

arbitrageurs lose money due to the negative exposure to squared realized returns (momen-

tum loss). In option terminology, arbitrageurs have a positive vega but negative gamma.

Figure A5 illustrates the idea on a simple binomial tree. For an extensive discussion of the

risks and returns of the market-making strategy that trades against leveraged ETFs in VIX,

commodities, equities, bonds and currencies, see Kyle and Todorov (2020).

Hedging the exposure to leveraged ETFs would require frequent trading in a rolling

position of one-month and two-months options on futures, and rebalancing the position on

a daily basis (and even more frequently around market close). In turbulent times the hedge

portfolio would still be imprecise since ETF tracking errors are magnified (Kyle and Todorov,

2020). Thus, trading against leverage rebalancing exposes arbitrageurs to unhedgeable risks

due to the impossibility of trading continuously in the benchmark, transaction costs, and

tracking errors. Agents would require premium for bearing these risks. Leverage rebalancing

amplifies price changes by moving prices in the direction of benchmark returns: positive

returns increase Ft,T1 and Ft,T2 (as well as EFGt,1 and EFGt,2), whereas negative returns

decrease both prices and EFGs.

The second area of risk for arbitrageurs is calendar rebalancing. This type of demand

depends on realized returns and is not perfectly predictable. Maintaining a constant leverage

by leveraged ETFs impacts also calendar rebalancing. The non-linear response of calendar

rebalancing arises because leveraged ETFs track benchmark returns multiplied with the re-

spective leverage (the term Lrt+1 in the brackets for calendar rebalancing from Eq. (10) and

Eq. (11)). Hence, calendar rebalancing inherits the non-linearity of leverage rebalancing (in

L, and, in continuous time, in the realized return rt+1). Thus, part of this rebalancing could

also be hard to hedge.

Another feature of calendar rebalancing is that arbitrageurs mechanically bear the risk
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of widening price discrepancies before expiration. By trading against the calendar demand

from ETFs, ETF counterparties would typically sell the two-months futures contract and

then buy it back from ETFs once the contract becomes a one-month futures contract. The

right graph in Figure A4 illustrates that usually the increase in open interest for the second-

month contract is similar in size to the decrease in open interest for the first-month contract.

This observation shows that the new contract positions initiated by ETFs when the futures

has maturity of two months, are closed before expiration, once the futures has maturity of

one month. This fact suggests that ETF counterparties also close the futures position before

maturity and bear the risk of widening price gaps.

If ETFs are net long futures (as for most of the sample), calendar rebalancing would

push up EFGt,2 and push down EFGt,1 over time. In some periods between the end of 2014

and 2016, net ETF demand is short futures due to the rise of inverse ETFs. In those episodes,

ETFs sell the two-months contract and buy the one-month contract: calendar rebalancing

works in the opposite direction. The selling pushes two-months futures prices lower and

decreases the two-months EFG as shown in Figure 2.

The third area of risk for arbitrageurs is flow rebalancing. The effects of this rebalancing

could be pronounced if inflows happen at times when arbitrageurs are more constrained. For

example, inflows to VIX ETFs when VIX spikes would require arbitrageurs to short-sell VIX

futures at a time when financial constraints could be binding. Risk-averse investors would

require a premium for increasing their short VIX positions at such times. Flow rebalancing

could also have indirect effects through calendar rebalancing. For example, inflows increase

ETFs AUM and raise the amount of calendar rebalancing that ETFs perform in future periods.

Prices would react in anticipation of these effects. Flow rebalancing would push futures prices

and EFGs in the direction of flows. Inflows would increase these variables, whereas outflows

would decrease them. The price impact of the three major types of ETF rebalancing is

illustrated in Figure 4.

Short-term price impact can translate into longer-term price deviations (futures pre-

mium and EFG) through at least two channels. First, leverage rebalancing and flows could
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make arbitrageurs’ financial constraints binding. For example, a temporary spike in price

due to leverage rebalancing could trigger financial constraints if arbitrageurs have a short

position from the previous period. In anticipation of this risk, prices can deviate for several

periods. Second, both leverage rebalancing and flows ultimately end up as parts of calendar

rebalancing since they change the AUM of the ETF and these AUM end up rolling from the

first-month to the second-month futures contract. Calendar rebalancing is a lower-frequency

component of price impact. Moreover, it mechanically introduces short-termism of arbi-

trageurs since they cannot wait until expiration as explained above. This short-termism can

lead to long-term price deviations as shown in Shleifer and Vishny (1997), and Gromb and

Vayanos (2002).

G. Empirical evidence on the impact of demand components

The estimates from columns 3 and 6 of Table III show that leverage rebalancing has

the largest impact on the EFG: one standard deviation rise is related to an increase of 0.91%

(0.24 volatility points) in the first-month EFG and 1.38% (0.35 volatility points) in the

second-month EFG. Calendar rebalancing has a negative impact on the front-month gap and

a positive impact on the second but the coefficients are much smaller. Flow rebalancing has

a positive impact on the second month EFG: one standard deviation rise is related to 0.20%

higher EFG. The signs are as predicted in section F. Unreported variance decomposition of

the EFG also shows that it is most sensitive to leverage rebalancing. These results indicate

that the non-fundamental, ETF-induced pat of futures prices is most strongly related to

leverage rebalancing, consistent with the unhedgeable risks faced by ETF counterparties.

V. Robustness checks, trading strategies, and commodity ETFs

In this section, I explore alternative explanations for the EFG and construct trading

strategies based on the EFG. I also study the effects of ETFs in commodity markets.
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A. Other explanations for the EFG

Several factors could explain the EFG, in addition to ETF demand. First, there is a

discretization error when computing VarQ
t (V IXT1→T2) in Eq. (5), since a continuum of strikes

is not observable in practice, and the integral is approximated with a sum. However, due to

the convexity of call and put option prices, this error would bias the risk-neutral variance

downwards, pushing the EFG even higher. Therefore, my calculations would underestimate

the true gap. I perform several robustness checks to deal with truncation and discretization

errors as described in section IA.1 of the Appendix.

The second possible explanation is that the EFG is driven by illiquidity in the options

market. To replicate EQ
t (V IX2

T1→T2) and VarQ
t (V IXT1→T2), one has to trade deep OTM

options. Lack of liquidity in those options and higher transaction costs could explain the

existence of the gap. However, Figure A3 shows that this is not the case: the EFG calculated

with bid and ask option prices is nearly identical to the one from Figure 2.

Another plausible explanation for the gap could be the difference in margin requirements

between futures and options markets. The margin-based explanation alone would struggle

to explain why the gap takes both positive and negative values, since margins are unlikely

to be higher in the futures market than in the options market (typically, futures margins are

much smaller). However, funding constraints could explain some of the time variation in the

EFG. Shleifer and Vishny (1997) and Gromb and Vayanos (2002) show that when arbitrage

capital is scarce, price gaps can exist and persist. Investors could scale back positions during

crisis times and could be reluctant to engage in arbitrage if fearful of undesired liquidation

of positions at a loss, in case the price discrepancy widened. Garleanu and Pedersen (2011)

argue that price discrepancies between two identical assets should depend on the shadow cost

of capital, which is often proxied by the TED spread (e.g., Barras and Malkhozov, 2016).

The positive coefficient on the TED spread for the first-month EFG in Table III shows that

funding constraints might explain some of the variation in the gap.

I present additional robustness checks in subsection A.4 in the Appendix. The results

show that the EFG is not driven by hedging pressure in the options market. The positive
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impact of ETF demand on the EFG is robust to different sub-periods and is greater after

2013, when ETFs become a larger share of the market.

B. Trading strategy

The replicating portfolio for the synthetic futures in Eq. (3) involves buying S&P 500 op-

tions with maturity T2 and selling S&P 500 and VIX options with maturity T1. This portfolio

replicates variance as it gives (EQ
t (ST1))2, whereas VIX futures are quoted in volatility units.

Investors can adapt the number of contracts to profit from the EFG in the following way. If the

EFG is positive, buying one unit of the replicating portfolio and selling EQ
t (ST1) units of VIX

futures contracts has a positive payoff today: EQ
t (ST1)Ft,T1−(EQ

t (ST1))2 = EQ
t (ST1)EFGt,1 > 0

and zero payoff at maturity T1 (ignoring transaction costs and assuming continuum of op-

tion strikes). If the the EFG is negative, the strategy involves buying EQ
t (ST1) units of VIX

futures contracts and selling the replicating portfolio. The Sharpe ratios of the strategy with

T1 = 47 days (one of the most frequent durations of the second-month futures) is 1.22. The

high Sharpe ratio of the strategy is consistent with the analysis in subsection F of section IV.

as investors face significant unhedgeable risk by trading against ETFs and are compensated

for bearing it.

Table AIII in the Appendix shows that a higher EFG decreases realized futures returns

till maturity: a 1% increase in the EFG predicts 1.66% lower return for the first-month futures

contract, and 1.59% lower return for the second. These effects are strongly statistically

significant and robust to various factors. Therefore, another strategy to benefit from the

EFG is to short-sell VIX futures when the EFG is positive, and to buy VIX futures when the

EFG is negative. The Sharpe ratio of this strategy is 1.78 with an annualized return of 51%

for the second-month futures.

C. Commodity ETFs

A possible concern is that the impact of ETFs on prices documented so far could be

particular to the VIX market due to the special nature of the underlying contract. This raises

the question about the applicability of the results to other markets. To address this concern,
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in this section I study several commodity ETFs with a relatively high share of the respective

futures market: natural gas, oil and silver. Relative to VIX ETFs, these ETFs represent a

smaller fraction of the market and one would expect a lower price impact.

Compared with the VIX market, in commodity markets it is harder to construct a

synthetic futures contract with exactly the same price at expiration as the traded one. I

control for asset-specific fundamental shocks by including in the regression the closest futures

contract with no ETFs traded for each commodity. For US natural gas futures traded on

the New York Mercantile Exchange (NYMEX), I use Intercontinental Exchange (ICE) gas

futures (81% correlation). For silver, there was only one liquid futures contract specification

before 2011, so I use the closest precious metal: gold (93% correlation). For US crude oil, I

use Brent oil (99.7% correlation). I align contracts so that they are expressed in the same

units and account for differences in expiration dates. I use relative basis as the dependent

variable, instead of the difference between the ETF-influenced futures price and that of the

control contract, due to the concern that some systematic factors have changed the pricing

across the two markets as explained in section IA.4 in the Internet Appendix.

The results of regression (1) using relative basis and spread for each commodity market

are presented in Table V. The estimates show that ETF rebalancing is related to commodity

futures prices, which illustrates that the impact of ETFs on prices is a general observation as

opposed to being a feature of the VIX market alone. The lower magnitude of the estimates

in Table V compared to Table II is related to the lower share of ETFs in commodity markets

relative to the VIX market.

[Table V about here]

Compared to the other demand components, leverage rebalancing has the largest impact

on basis in the oil market, and on spread in the natural gas market. Calendar rebalancing

has significant impact on basis for natural gas, oil and silver, with the largest coefficient for

natural gas.16 Flow rebalancing is less statistically significant in all three markets.

16The rolling period for commodity markets is usually from the 6th to the 10th business day of each
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D. What is so special about ETFs?

The reader might be wondering what is so special about the price impact of ETFs

compared to that of other investment vehicles like mutual funds. There are several important

features that distinguish ETFs from traditional mutual funds. First, ETFs make it easier for

retail investors to enter the market. ETFs usually have lower investment minimums than

index mutual funds, which decreases the barrier to entry for smaller investors. ETFs also

allow these investors to avoid the special accounts and documentation required for mutual

funds. ETFs are also beneficial for retail investors because they eliminate the need to manage

collaterals and expiration dates.

Second, ETFs have lower expense ratios than index mutual funds and can be traded

intradaily as opposed to just once per day like mutual funds. The fact that ETFs can be

traded like a stock allows investors to use them for short-term bets. Leveraged ETFs also

make it easier for investors to lever up, which could be beneficial for investors that could

not obtain leverage otherwise. These features make it easier for retail investors to enter the

market, consistent with the empirical evidence reported in section II. The influx of retail

investors can have impact on the price formation process in futures markets (Aramonte and

Todorov, 2021). Third, ETFs follow a passive investment strategy and trade in a mechanical

way to minimize tracking errors. Mutual funds generally follow more active strategies.

There is a difference between a market dominated by ETFs and that dominated by other

investors who roll out of futures before expiration. The fact that ETFs are mechanically

forced to roll out on a daily basis to minimize tracking error creates crowded trades in similar

instruments at the same time: the passive strategy of ETFs could move prices. In contrast,

a market where investors roll out of contracts in a non-coordinated way is likely to have

less pronounced impact on prices since the trades can be executed at different times. The

anticipation of concentrated selling by ETFs before expiration could decrease prices and lead

month. This is the case for ETFs that follow benchmarks based on S&P Goldman Sachs Commodity Indices.
Some ETFs follow Dow Jones Commodity Indices and rebalance from the 5th to the 9th business day of each
month.
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to counter-intuitive price dynamics. A prominent example of these effects was the drop

of oil prices below zero in April 2020 (Aramonte and Todorov, 2021) and the consequent

terminations of several oil ETFs.

VI. Conclusion

This paper shows that ETFs put pressure on prices in the most ETF-dominated asset

classes: VIX and commodities. The research uses a model-independent approach for repli-

cating the value of a VIX futures to isolate a non-fundamental gap in prices that is strongly

related to the rebalancing of ETFs. The paper proposes a simple test based on the specifics of

the futures market to show that the gap is not related to price discovery. Trading strategies

to benefit from the gap deliver Sharpe ratios above one.

The paper also provides a decomposition of ETF demand into three main components:

calendar rebalancing due to the roll from one futures contract to another, flow rebalancing

due to inflow/outflow of money to the fund, and leverage rebalancing due to the maintenance

of a constant daily leverage. The framework is flexible to accommodate various types of

ETFs, including equity and fixed income ETFs. The results show that leverage rebalancing

has the largest impact on the price gap. This type of ETF trading amplifies price changes and

introduces unhedgeable risks for ETF counterparties, exposing them negatively to variance.

The results from this research show that ETFs affect prices of underlying assets in the

current era of an increasingly large ETF presence. While ETFs can increase liquidity and

trading volume by attracting new capital, they also withdraw liquidity during extreme market

times. These effects could be magnified if ETFs were used by unsophisticated, short-horizon

investors. The recent termination of the largest inverse VIX ETF in 2018 and the extreme

events and ETF closures in the oil market in 2020 are prominent examples of such effects.

ETFs are transforming the financial industry and increasingly acting as a “wrapper of views”

rather than a “wrapper of assets” by allowing investors to get exposure to various trading

strategies across traditional, and alternative asset classes. Time and future research will help

us understand the consequences of greater ETF presence across asset classes.
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Figure 1. ETF fractions of total market capitalization and the potential impact of leverage
rebalancing for VIX, gas, silver and oil. Monthly averages for the two front contracts. The market
capitalization is calculated as number of futures contracts multiplied by the futures price. The solid black
line shows net ETF fraction (long ETFs minus inverse ETFs) in the total market capitalization of the first
and second futures contracts:

∑N
j=1 LjAj,t/Mkt capt, where Lj is the leverage of ETF j (Lj<0 for inverse

ETFs) and Aj,t are its assets under management (AUM) at time t. The data for the largest VIX ETF (VXX)
are reported irregularly before July 2011, which explains the gaps for VIX before that date. The dashed red
line is Γt/Mkt capt: a measure of the total rebalancing demand by leveraged ETFs (explained in part B of
section IV.) scaled by market capitalization.
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Figure 2. ETF futures gap: monthly averages. The figure shows the dynamics of the ETF futures gap
(EFG) for one and two months maturities after the introduction of the first VIX ETF (29 January 2009).
The grey dotted lines indicate two standard deviations. EFG is in volatility points.

Aug 01 Sep 01 Oct 01

−
4

−
3

−
2

−
1

0
1

2

EFG and demand, 1m

2015

●

EFG
Demand

●
●

●

●

●
●

●
●●●

● ●
●

●●
● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

−
60

0
−

40
0

−
20

0
0

20
0

40
0

D
em

an
d,

 m
ill

io
n

E
F

G
, v

ol
at

ili
ty

 p
oi

nt
s

Aug 01 Sep 01 Oct 01

−
3

−
2

−
1

0
1

2
3

EFG and demand, 2m

2015

● ●

●

●
●●

●●
●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

−
40

0
−

20
0

0
20

0
40

0
60

0

D
em

an
d,

 m
ill

io
n

E
F

G
, v

ol
at

ili
ty

 p
oi

nt
s

Figure 3. EFG and rebalancing demand from ETFs. The left panel illustrates the daily dynamics
of the first-month EFG, the right panel of the second-month EFG. Demand is daily, in million USD. The
graphs show a representative sample (August 2015 – October 2015) to illustrate the typical pattern since it
is harder to see the dynamics with daily data over long periods.
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Figure 4. Decomposition of ETF demand. The top left panel illustrates the dynamics of VIX ETFs’
demand decomposition. Demand is in absolute values. The top right panel and the two bottom panels show
the effects of change in calendar, leverage, and flow rebalancing on the futures curve: assuming ETFs are net
long VIX futures (

∑N
j=1 LjAj,t > 0) and with illustrative numbers. The blue line illustrates the curve before

the impact of the rebalancing demand, the red and green ones after it. Maturity is in months, futures price
in volatility points.

36



Tables

Table I

Summary statistics
The table presents summary statistics. Panel A shows the average fraction (over time) of ETFs in total market
capitalization and in volume of trading for several markets. The fraction in total market capitalization is
calculated as dollar size of all ETFs divided by the dollar capitalization of the benchmark index. ETF fraction
in trading volume is calculated similarly. The data are at a daily frequency, from the first ETF trading date in
a given asset to June 2020 (February 2018 for VIX). Panel B shows summary statistics for the VIX market. S
is spot VIX, FT1 , FT2 are the first and second generic futures, respectively. All prices are in volatility points.
Basis is FT1 − S, spread is FT2 − FT1 . rV XX is the daily return on the largest long VIX ETF (ticker VXX),
EFGT1 and EFGT2 are the ETF futures gaps for the first and second-month contracts, respectively. The
units (except skewness, kurtosis and number of observations) for spot, futures, basis, spread, EFGT1 and
EFGT2 are volatility points, the units for rV XX are %. The lowest EFGs were observed during the peak of
the 2008 financial crisis, the largest ones during the VIX spike on 5 February 2018. The data are at a daily
frequency and the sample ends in February 2018. The starting dates are determined by the first date when
the data become available: June 2004 for the first five columns, February 2009 for rV XX , and March 2006
for the last two columns. The “before ETFs” period is prior to 29 January 2009. The “after ETFs” period is
after 29 January 2009 and the length of the period is the same as the one for the “before ETFs” period for
each time series. The “before ETFs, excl. crisis” period is prior to 15 September 2008.

Panel A: ETFs’ fraction in several markets

Market Long
ETFs fraction (%)

Inverse
ETFs fraction (%)

Net
ETFs fraction (%)

ETFs fraction
in trading volume (%)

VIX 40.89 16.42 24.47 206.68
Natural Gas 16.88 2.72 14.16 19.12
Oil 13.49 2.06 11.43 12.57
Silver 7.16 1.97 5.19 22.63
Gold 3.56 0.62 2.94 10.12
Nasdaq 1.96 0.01 1.95 36.61
S&P 500 1.14 0.04 1.10 21.59
Russell 2000 0.09 0.05 0.04 12.30
Treasuries 7-10 years 0.00 0.00 0.00 0.00

Panel B: Summary statistics for the VIX market
S FT1 FT2 Basis Spread rV XX EFGT1 EFGT2

Mean 18.57 19.11 20.00 0.54 0.89 -0.17 0.61 0.89
Mean, before ETFs 18.87 18.93 19.38 0.06 0.46 0.63 1.18
Mean, before ETFs, excl. crisis 16.70 17.15 17.96 0.45 0.81 0.78 1.26
Mean, after ETFs 23.63 24.42 25.78 0.79 1.37 0.87 1.60
Std. dev. 9.13 8.34 7.53 1.79 1.76 3.20 1.05 1.48
Min 9.14 9.60 11.32 -23.31 -21.10 -14.25 -7.72 -7.08
Max 80.86 67.95 59.77 4.98 5.45 33.44 20.83 20.39
10% 11.43 12.20 13.13 -0.64 -0.55 -3.47 -0.23 -0.40
50% 15.60 16.22 17.50 0.69 1.01 0.00 0.46 0.70
90% 28.27 28.10 29.39 2.01 2.35 28.33 1.77 2.52
Skewness 2.57 2.26 1.87 -4.72 -3.96 1.45 2.46 2.37
Kurtosis 11.84 9.50 7.35 43.71 32.9 13.53 60.90 27.17
Observations 3,442 3,442 3,397 3,442 3,397 2,260 2,619 2,636
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Table II

Impact of ETF demand in the VIX market
The table presents regression results for the first-month basis bt,1 (Columns 1–4), and the spread between
the first-month and the second-month futures contracts bt,2 (Columns 5–8). Columns 1 and 5 present the
regressions for absolute basis and spread, the rest for relative basis and spread. D$,all

t,i is the ETF demand for
the i−th futures contract. Columns 3 and 7 use raw demand, whereas all other columns use demand scaled
by total market capitalization. Calendar rebalancing, leverage rebalancing, flow rebalancing, and remainder
are calculated based on Eq. (10) and Eq. (11). All demand components are scaled by market capitalization.
The estimates on the four components do not exactly add up to the estimate for total demand because the
variables are standardized. bH

t,i is the relative basis of a hedge asset (synthetic futures contract constructed
from options), σ2

bmk,t is intra-day variance of the ETF benchmark (calculated using 5-minute intervals), OIt,i

is open interest for futures i, St is spot price. Liquidity (Liqt,i) is the relative bid-ask spread (Ask−Bid
Mid ) of

the VIX futures contract. αt is the fraction of ETF wealth invested in the front-month futures contract. All
independent variables are standardized. Here and in all subsequent tables standard errors are computed using
the Newey-West (e.g., Newey and West, 1987) estimator with three lags. The major results were unchanged
with more lags. *,**, and *** indicate statistical significance at the 10%, 5%, and 1% levels. Here and in all
subsequent tables the number of observations is less than the number of days in the sample due to missing
data for some of the explanatory variables. Daily frequency, February 2009 – February 2018.

Dependent variables bt,1 bt,2
(1) (2) (3) (4) (5) (6) (7) (8)

D$,all
t,i 0.21∗∗∗ 1.04∗∗∗ 0.89∗∗∗ 0.10∗∗ 0.13∗∗ 0.29∗∗∗

(0.07) (0.18) (0.16) (0.05) (0.07) (0.11)
Calendar rebt,i -0.81∗∗∗ 0.15∗

(0.13) (0.09)
Leverage rebt,i 0.36∗∗ 0.07

(0.17) (0.13)
Flow rebt,i 0.77∗∗∗ 0.40∗∗∗

(0.11) (0.15)
Remaindert,i 0.29∗ 0.24

(0.16) (0.23)
bHt,i 0.98∗∗∗ 4.63∗∗∗ 4.83∗∗∗ 4.38∗∗∗ 0.64∗∗∗ 3.04∗∗∗ 3.10∗∗∗ 2.71∗∗∗

(0.13) (0.22) (0.21) (0.19) (0.05) (0.17) (0.16) (0.16)
σ2
bmk,t 0.08 0.13 0.08 0.004 -0.06∗ -0.20 -0.24 -0.30∗∗

(0.06) (0.15) (0.19) (0.15) (0.03) (0.14) (0.16) (0.14)
OIt,i -0.19∗∗∗ -0.49∗∗ -0.16 0.03 -0.44∗∗∗ -1.25∗∗∗ -1.54∗∗∗ -1.25∗∗∗

(0.05) (0.24) (0.21) (0.20) (0.04) (0.20) (0.20) (0.20)
St -0.35∗∗∗ -2.46∗∗∗ -1.49∗∗∗ -1.80∗∗∗ -0.66∗∗∗ -3.34∗∗∗ -2.98∗∗∗ -3.02∗∗∗

(0.11) (0.29) (0.19) (0.21) (0.08) (0.25) (0.20) (0.20)
Liqt,i -0.18∗∗∗ -0.48∗∗∗ -0.15 -0.18 -0.14∗∗∗ -0.63∗∗∗ -0.38∗∗∗ -0.53∗∗∗

(0.05) (0.16) (0.12) (0.12) (0.03) (0.13) (0.13) (0.11)
αt 0.03 0.20 -0.13 -0.21 -0.13∗∗∗ -0.46∗∗∗ -0.54∗∗∗ -0.60∗∗∗

(0.04) (0.17) (0.16) (0.15) (0.03) (0.14) (0.13) (0.13)
Observations 1,882 1,882 1,882 1,882 1,839 1,839 1,839 1,839
R2 0.71 0.73 0.65 0.67 0.47 0.51 0.50 0.52
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Table III

Impact of ETF demand on EFG
The table presents regression results for the one and two-months ETF futures gap (EFG) scaled by the
futures price (EF Gt,1

Ft,T1
and EF Gt,2

Ft,T2
). Columns 1–3 show the results for EFGt,1, columns 4–6 for EFGt,2. The

last two columns present the results of regression (1) for the synthetic basis and spread. Columns 2 and 5
use raw demand, whereas all other columns use demand (or demand components) scaled by total market
capitalization. TEDt is the spread between 3-month LIBOR in USD and the interest rate of Treasury bills.
Refer to Table II for other variable definitions. All independent variables are standardized. Daily frequency,
February 2009 – February 2018.

Dependent variables EFGt,1 EFGt,2 bt,1, synt bt,2, synt
(1) (2) (3) (4) (5) (6) (7) (8)

D$,all
t,i 0.55∗∗ 0.70∗∗ 1.09∗∗ 1.15∗ 0.17 0.01

(0.22) (0.32) (0.45) (0.64) (0.11) (0.04)
Calendar rebt,i -0.09∗ 0.08∗

(0.05) (0.05)
Leverage rebt,i 0.91∗∗ 1.38∗∗

(0.44) (0.64)
Flow rebt,i -0.05 0.20∗

(0.08) (0.12)
Remaindert,i 0.16 0.37

(0.25) (0.27)
σ2
bmk,t 0.25 0.26 0.26 -0.19 -0.21 -0.25 -0.38∗∗∗ -0.07

(0.44) (0.44) (0.34) (0.68) (0.61) (0.55) (0.15) (0.05)
OIt,i -0.65∗∗∗ -0.74∗∗∗ -0.89∗∗∗ 0.16 -0.17 -0.11 -0.32∗∗∗ -0.36∗∗∗

(0.22) (0.20) (0.17) (0.24) (0.14) (0.18) (0.10) (0.07)
St 0.01 -0.07 -0.77∗∗∗ 0.63∗∗∗ 0.55∗∗∗ 0.30 -1.33∗∗∗ -0.99∗∗∗

(0.17) (0.10) (0.20) (0.24) (0.20) (0.23) (0.16) (0.11)
Liqt,i -0.001 -0.14 0.03 -0.06 -0.10 -0.16 -0.29∗∗∗ -0.03

(0.14) (0.10) (0.08) (0.13) (0.11) (0.13) (0.07) (0.05)
TEDt 0.47∗∗∗ 0.37∗∗∗ 0.45∗∗∗ -0.21 -0.26 -0.21

(0.16) (0.11) (0.11) (0.13) (0.19) (0.15)
EFGt−1,i 0.42∗∗∗ 0.42∗∗∗ 0.43∗∗∗ 0.64∗∗∗ 0.64∗∗∗ 0.64∗∗∗

(0.06) (0.04) (0.04) (0.06) (0.05) (0.04)
αt -0.40∗∗ -0.05 0.35∗∗∗ 0.35∗∗∗ 0.50∗∗∗ 0.46∗∗∗ 0.41∗∗∗ -0.12∗∗

(0.16) (0.10) (0.11) (0.10) (0.11) (0.13) (0.07) (0.05)
Observations 1,817 1,817 1,817 1,817 1,817 1,817 1,817 1,817
R2 0.23 0.20 0.27 0.44 0.46 0.47 0.46 0.26
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Table IV

Predictive power of basis
The table presents the results from a predictive regression of spot or futures price changes on basis with daily
frequency. St is spot price, Xt,T is either the traded futures Ft,T for maturity T , or the synthetic futures
EQ

t (ST ). The first two columns in each panel show the results for the traded futures, whereas the last two
present the results for the synthetic futures. Daily frequency, February 2009 – February 2018.

Panel A: Spot VIX on basis: ST − St = α1 + β1(Xt,T − St) + ε1,t

Xt,T = Ft,T Xt,T = EQ
t (ST )

T=1m T=2m T=1m T=2m
β1 0.81∗∗∗ 0.83∗∗∗ 0.93∗∗∗ 1.03∗∗∗

(0.08) (0.07) (0.07) (0.07)
R2 0.10 0.15 0.16 0.25
Observations 1,817 1,817 1,817 1,817

Panel B: VIX futures on basis: XT,T −Xt,T = α2 + β2(Xt,T − St) + ε2,t

Xt,T = Ft,T Xt,T = EQ
t (ST )

T=1m T=2m T=1m T=2m
β2 -0.19 -0.17∗ -0.07 0.03

(0.09) (0.07) (0.08) (0.07)
R2 0.01 0.01 0.00 0.00
Observations 1,817 1,817 1,817 1,817
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Table V

Impact of ETF demand in commodity markets
The table presents regression results for commodity markets. Calendar rebalancing, leverage rebalancing,
flow rebalancing, and remainder are calculated based on Eq. (10) and Eq. (11). All independent variables
are standardized. bt,1 is relative basis, bt,2 is relative spread, bH

t,i is the relative basis or spread of a synthetic
futures contract: all in %. Controls include time to maturity, variance of benchmark, spot price, open interest,
and liquidity measured by bid-ask spreads. For gas and oil, I also control for the difference in spot prices of
the control asset versus the traded contract. Daily frequency, from the first ETF introduction date in a given
market to June 2020.

Panel A: Total effect
Dependent variables Gas Oil Silver

bt,1 bt,2 bt,1 bt,2 bt,1 bt,2
(1) (2) (3) (4) (5) (6)

D$,all
t,i 0.11 0.12∗∗ 0.08∗∗∗ 0.15∗∗ 0.02 0.01

(0.08) (0.06) (0.02) (0.07) (0.02) (0.01)
bH

t,i 1.05∗∗∗ 0.62∗∗∗ 0.44∗∗ 1.65∗∗∗ 0.05∗∗∗ 0.03∗∗∗
(0.27) (0.10) (0.21) (0.47) (0.01) (0.01)

Controls Yes Yes Yes Yes Yes Yes
Observations 2,703 2,749 2,743 2,958 2,548 2,545
R2 0.31 0.34 0.33 0.44 0.31 0.54

Panel B: Split on components
Dependent variables Gas Oil Silver

bt,1 bt,2 bt,1 bt,2 bt,1 bt,2
(1) (2) (3) (4) (5) (6)

Calendar rebt,i -0.31∗∗ 0.15 -0.04∗∗∗ 0.00 -0.03∗∗ 0.02
(0.14) (0.20) (0.01) (0.01) (0.01) (0.02)

Leverage rebt,i 0.22 0.35∗∗∗ 0.17∗∗ 0.11 0.07 0.04
(0.17) (0.10) (0.07) (0.09) (0.05) (0.04)

Flow rebt,i 0.28 0.31∗∗ 0.01 0.01∗∗∗ 0.01∗ 0.00
(0.22) (0.14) (0.01) (0.00) (0.01) (0.00)

Remaindert,i 0.27 0.35 0.00 0.00 0.17 0.01
(0.22) (0.32) (0.00) (0.00) (0.18) (0.02)

bH
t,i 0.82∗∗ 0.51∗∗∗ 0.38∗∗∗ 1.85∗∗∗ 0.05∗∗∗ 0.03∗∗

(0.34) (0.15) (0.11) (0.53) (0.01) (0.01)
Controls Yes Yes Yes Yes Yes Yes
Observations 2,673 2,736 2,721 2,941 2,523 2,519
R2 0.33 0.30 0.34 0.57 0.32 0.54
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Appendix

A.1. Forward VIX derivations

RT1→T2 is the gross return on the S&P 500 Index, Rf,t→T = erf (T−t) is the constant

gross risk-free rate. Using RT1→T2 = Rt→T2
Rt→T1

, EQ
t RT1→T2 = EQ

t (EQ
T1RT1→T2) = Rf,T1→T2 , and the

definition of VIX as a measure of risk-neutral entropy (e.g., Martin, 2015):

EQ
t (V IX2

T1→T2) = 2
T2 − T1

EQ
t

(
log EQ

T1RT1→T2 − EQ
T1 logRT1→T2

)
= 2
T2 − T1

EQ
t

(
log EQ

t RT1→T2 − EQ
t logRT1→T2

)
= 2
T2 − T1

EQ
t

(
(T2 − t)rf − (T1 − t)rf − (EQ

t logRt→T2 − EQ
t logRt→T1)

)
= 2
T2 − T1

(
log EQ

t Rt→T2 − EQ
t logRt→T2 − (log EQ

t Rt→T1 − EQ
t logRt→T1)

)
= 1
T2 − T1

(
(T2 − t)V IX2

t→T2 − (T1 − t)V IX2
t→T1

)
.

(A1)

A.2. Calculating VarQ
t (V IXT1→T2)

Based on a result from Breeden and Litzenberger (1978), the price of any function g(ST )

satisfies:

1
Rf,t→T

EQ
t (g(ST ))= 1

Rf,t→T
g(EQ

t (ST ))+
∫ Ft,T

K=0
g′′(K)putt,T (K)dK+

∫ ∞
K=Ft,T

g′′(K)callt,T (K)dK.

(A2)

Take g(ST ) = S2
T , then:

1
Rf,t→T

(
EQ
t (S2

T )− (EQ
t (ST ))2

)
= 2

(∫ Ft,T

K=0
putt,T (K)dK +

∫ ∞
K=Ft,T

callt,T (K)dK
)

VarQ
t (ST ) = 2Rf,t→T

(∫ Ft,T

K=0
putt,T (K)dK +

∫ ∞
K=Ft,T

callt,T (K)dK
)
.

(A3)

Another way to get the same equation is by using RT = ST

St
in Eq. (11) of Martin (2017).
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Take T = T1, T2 = T1 + 30 days, ST1 = V IXT1→T2 , then:

VarQ
t (V IXT1→T2) = 2Rf,t→T1

(∫ Ft,T1

K=0
putt,T1(K)dK +

∫ ∞
K=Ft,T1

callt,T1(K)dK
)
, (A4)

where Ft,T1 – time t’s price of a futures on V IXT1→T2 with maturity T1,

putt,T1(K) – time t’s price of a put option on V IXT1→T2 with maturity T1 and strike K,

callt,T1(K) – time t’s price of a call option on V IXT1→T2 with maturity T1 and strike K.

The underlying asset of the call and put options is the futures on the VIX since at maturity

T1, FT1,T1 = ST1 = V IXT1→T2 , and there are no dividends.

A.3. Derivations of ETF demand decomposition

At time t, the ETF has a dollar position of LαtAt in the first-month futures contract

and L(1− αt)At in the second. It holds LαtAt

Ft,T1
units of the first-month contract and L(1−αt)At

Ft,T2

units of the second. At time t+1, the ETF holds L(αt− 1
K

)At+1
Ft+1,T1

units of the first-month contract

and L(1−αt+ 1
K

)At+1
Ft+1,T2

of the second. The total rebalancing demand (in number of contracts) for

the first-month contract from t to t+ 1 is then:

Dt+1,1 =
L(αt − 1

K
)At+1

Ft+1,T1

− LαtAt
Ft,T1

= 1
Ft+1,T1

αt(LAt(1 + Lrt+1) + Lut+1 − LAt(1 + rF1
t+1)

)
− L

K
At+1


= 1
Ft+1,T1

αt(LAt(Lrt+1 − rt+1 + rt+1 − rF1
t+1) + Lut+1

)
− L

K
At(1 + Lrt+1)− L

K
ut+1


= 1
Ft+1,T1

− L

K
At(1+Lrt+1)+αtAtL(L−1)rt+1+(αt−

1
K

)Lut+1+αt(1−α̂t)LAt(rF2
t+1−rF1

t+1)
.

(A5)

I used the fact that rt+1 − rF1
t+1 = (1 − α̂t)(rF2

t+1 − rF1
t+1), where rF1

t+1 is the net return on the

first-month futures contract, rF2
t+1 is the net return on the second, α̂t = αtFt,T1

αtFt,T1 +(1−αt)Ft,T2
, and

rt+1 = αtFt+1,T1 +(1−αt)Ft+1,T2
αtFt,T1 +(1−αt)Ft,T2

− 1 = α̂tr
F1
t+1 + (1 − α̂t)rF2

t+1 is the net return on the benchmark.
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In dollar terms, the rebalancing demand is:

D$
t+1,1 = Dt+1,1Ft+1,T1

= − L

K
At(1 + Lrt+1)︸ ︷︷ ︸

calendar rebalancing

+αtAtL(L− 1)rt+1︸ ︷︷ ︸
leverage rebalancing

+ (αt −
1
K

)Lut+1︸ ︷︷ ︸
flow rebalancing

+αt(1− α̂t)LAt(rF2
t+1 − rF1

t+1).︸ ︷︷ ︸
remainder

(A6)

Analogously, the total dollar rebalancing demand for the second futures is:

D$
t+1,2 = Dt+1,2Ft+1,T2

= L

K
At(1+Lrt+1)︸ ︷︷ ︸

calendar rebalancing

+(1−αt)AtL(L−1)rt+1︸ ︷︷ ︸
leverage rebalancing

+(1−αt + 1
K

)Lut+1︸ ︷︷ ︸
flow rebalancing

−α̂t(1−αt)LAt(rF2
t+1 − rF1

t+1).︸ ︷︷ ︸
remainder

(A7)

Eq. (A6) and Eq. (A7) can be rewritten in a way to isolate the terms multiplying L2. For

Eq. (A6):

D$
t+1,1 = (αt −

1
K

)︸ ︷︷ ︸
≥0

AtL
2rt+1−αtAtLrt+1−

L

K
At+(αt−

1
K

)Lut+1 +αt(1− α̂t)LAt(rF2
t+1−rF1

t+1).

(A8)

Running the main regressions with the non-linear terms instead of calendar and leverage

rebalancing still shows that the predictable part of calendar rebalancing ( L
K
At) is statistically

significant.

A.4. EFG: robustness checks

Table AI presents robustness checks for the EFG. The results show that ETF demand

has a greater effect after 2013, when ETFs become a larger share of the market, as seen from

columns 1–2 and 4–5.

A potential concern is that maybe the EFG arises due to price pressure in the VIX

options market after 2009, and ETF demand just happens to be correlated with this pressure.

To address this concern, I add the hedging pressure from the options market as a control

in the EFG regressions (columns 3 and 6 in Table AI). I measure the pressure in terms of

delta-hedging. For each day, I calculate the delta-hedging demand as −∑M
j=1 ∆t,jOIt,jFt,Ti

,

48



whereM is the total number of options on the futures expiring at Ti, ∆t,j is the Black-Scholes

delta of option j, and OIt,j is the total open interest for option j. I also calculate gamma-

hedging demand to account for second-order effects.17 The estimates show that the positive

and statistically significant effects of ETF demand are robust to including the measures of

hedging pressure from the options market. They are also robust to the Fama-French five

factors and momentum.

Another concern is that, even though ETF demand does not directly influence the VIX

options market, prices of options could be disrupted if investors hedge the futures exposure

with options. However, the results from Table III show that this is not the case since ETF

demand has no impact on the more fundamental, synthetic futures contract.

Anecdotal evidence from my discussions with several hedge fund traders suggests that

hedge funds are replicating the VIX futures with a portfolio of options and trading the

difference between the two, thereby extracting the EFG. Empirically, ETFs are usually net

buyers of futures contracts, whereas managed money (usually hedge funds) takes the opposite

side of the trade. Figure A1 shows the weekly positions of different types of investors in

VIX and gas markets. The graphs show that leveraged money (mostly hedge funds) is

consistently short VIX futures after 2009, whereas asset managers and dealers are mostly

net long. Table AII shows that a 100% increase in the EFG is correlated with a $33 million

decrease in hedge funds’ positions.

17Ni et al. (2021) show that hedge rebalancing by option market makers, determined by delta and gamma,
affects stock prices.
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Table AI

Robustness
The table presents robustness tests. Columns 1–2 and 4–5 show the impact of ETF demand by splitting
the main period on two sub-periods: February 2009 – December 2012 and January 2013 – February 2018.
Columns 3 and 6 present the results of a regression with the Fama–French five factors, momentum, and
hedging pressure from the VIX options market (Deltat,i and Gammat,i). Deltat,i is the negative sum of all
Black-Scholes deltas multiplied with the open interest and the futures price for all options on the first-month
or second-month futures. The negative sum captures the idea that if the total delta in the options market
is positive, the hedging demand would be negative (agents would sell the underlying to hedge the positive-
delta option position). Gammat,i is the negative sum of all Black-Scholes gammas multiplied with the open
interest and the squared price for all options on the first-month or second-month futures. Columns 7–8 show
the results for the period before ETFs. D$,all

t,i is scaled by market capitalization. RM,t −Rf,t, HMLt, SMBt,
CMAt, RMWt, Momt are the Fama–French five factors and momentum. Daily frequency, February 2009 –
February 2018.

Dependent variables EFGt,1 EFGt,1 EFGt,2 EFGt,2 EFGt,1 EFGt,2
bef 2013 aft 2013 bef 2013 aft 2013 bef 2009

(1) (2) (3) (4) (5) (6) (7) (8)
D$,all
t,i 0.35∗∗ 0.62∗ 0.51∗ 0.42∗ 1.66∗∗ 1.01∗∗

(0.17) (0.36) (0.31) (0.23) (0.70) (0.43)
σ2
bmk,t -0.14 0.47 0.26 -0.38∗ 0.04 -0.10 -0.79∗∗∗ 0.48

(0.16) (0.40) (0.30) (0.22) (0.51) (0.38) (0.30) (0.51)
OIt,i 0.73∗ -0.26 -0.11 -0.21 -0.27 -0.71∗∗∗ 0.23 -0.27

(0.43) (0.30) (0.27) (0.17) (0.39) (0.23) (0.23) (0.29)
St 0.31 -0.14 -0.20 -0.47 -0.003 0.08 -1.33∗∗ -0.42

(0.33) (0.46) (0.30) (0.35) (0.41) (0.39) (0.58) (0.55)
Liqt,i -0.14 0.06 -0.06 -0.21 0.07 -0.04 0.16 0.63∗

(0.23) (0.20) (0.16) (0.30) (0.20) (0.17) (0.20) (0.36)
TEDt -0.34 0.37∗∗ 0.32 0.22 -0.24∗ -0.08 -0.18 -0.06

(0.39) (0.17) (0.21) (0.37) (0.14) (0.18) (0.53) (0.50)
EFGt−1,1 0.56∗∗∗ 0.35∗∗∗ 0.41∗∗∗ 0.66∗∗∗ 0.59∗∗∗ 0.68∗∗∗ 0.65∗∗∗ 0.51∗∗∗

(0.08) (0.06) (0.06) (0.05) (0.08) (0.05) (0.04) (0.05)
αt -0.64∗ -0.78∗∗ -0.68∗∗∗ 0.07 0.48∗∗ 0.46∗∗∗ -0.23 1.11∗∗

(0.37) (0.35) (0.24) (0.17) (0.22) (0.13) (0.27) (0.40)
RM,t-Rf,t -0.21 -0.27

(0.23) (0.22)
Momt 0.10 -0.19

(0.15) (0.15)
SMBt 0.24 0.42

(0.34) (0.31)
HMLt 0.004 0.01

(0.30) (0.24)
RMWt 0.15 -0.27

(0.35) (0.36)
CMAt -0.52 0.30

(0.51) (0.39)
Deltat,i -0.53∗ -0.09

(0.31) (0.10)
Gammat,i -0.21 -0.14

(0.35) (0.15)
Observations 608 1,190 1,797 608 1,190 1,797 506 518
R2 0.34 0.23 0.24 0.49 0.45 0.53 0.52 0.31
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Figure A1. Positions of traders. The figure shows net futures positions of different types of traders
in the VIX market. The data are from the Traders in Financial Futures (TFF) reports by the CFTC. The
right panel shows weekly net ETF positions and net Dealer/Swap positions. The names of the different
groups of traders are the same as in the TFF classification. “Asset Mgr” are asset managers (mostly pension
funds, endowments, insurance companies and mutual funds), “Lev Money” are mostly hedge funds and other
proprietary traders.
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Table AII

Positions of leveraged money in VIX futures
The table presents weekly regressions of the positions of leveraged money (mostly hedge funds) on the ETF
futures gap. bt,1 and bt,2 are absolute basis and spread. Column 3 is with raw variables, the rest with
standardized ones. Weekly frequency, September 2006 – December 2017 (some data are missing).

Dependent variables Weekly Hedge Funds’ net positions, million USD
(1) (2) (3) (4) (5)

EFGt -8.75∗∗∗ -9.12∗∗∗ -33.05∗∗∗
(2.12) (2.56) (8.92)

ETF positionst -38.11∗∗∗ -38.45∗∗∗ -0.80∗∗∗ -44.69∗∗∗ -32.88∗∗∗
(4.15) (4.16) (0.07) (3.06) (4.57)

σ2
bmk,t -12.42∗∗ -28.35 -4.68 -8.55

(5.43) (20.12) (3.64) (7.17)
bt,1 -1.35 -2.41 -1.75 -0.47 -3.48

(2.35) (2.91) (1.89) (2.13) (2.53)
bt,2 -12.66∗∗ -12.83∗∗ -6.12∗∗∗ -12.11∗∗∗ -12.40∗∗

(5.14) (5.67) (2.20) (3.79) (5.35)
St 4.62 2.12 1.43 0.21 -1.63

(4.44) (2.27) (1.33) (4.33) (5.59)
Observations 416 416 416 452 452
R2 0.62 0.64 0.64 0.72 0.55
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Figure A2. ETF futures gap: monthly averages as share of the futures price. The figure shows
the dynamics of the ETF futures gap (EFG) for one and two months maturities after the introduction of the
first VIX ETF (29 January 2009). The grey dotted lines indicate two standard deviations. EFG is scaled by
the same-maturity futures price.
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Figure A3. ETF futures gap: bid-ask. The figure shows the dynamics of the ETF futures gap (EFG)
for one and two months maturities using bid/ask prices of options.
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Figure A4. Open interest dynamics before and after ETF introduction. The left panel shows
typical dynamics of open interest for futures maturities at one, two, three and four months for the period
before ETFs were introduced. The right panel illustrates typical dynamics after the introduction of ETFs.
The emphasized straight lines show the usual cycle of open interest. The graphs show a representative sample
(July 2007 – December 2007 and October 2012 – May 2013) to illustrate the typical pattern. To understand
the pattern, consider, for example, the four-month VIX futures in November 2012. Open interest spikes as
soon as it becomes a two-months futures contract in January 2013 and ETFs start to buy it. When it becomes
a one-month futures contract in February 2013, ETFs start to sell it and open interest declines. The increase
in the number of contracts for the two-months futures is roughly equal to the decrease in the number of
contracts for the one-month futures.
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Figure A5. Trading against opposite ETFs. The figure shows the profit dynamics of liquidity provision
to opposite ETFs using a binomial tree example. The graph illustrates the dynamics of the ETF benchmark
and the corresponding profits for an arbitrageur who sells short a pair of opposite ETFs (L = 2 and L = −2).
For each period, the parameters of the tree are u = 1.05 and ud = 1. Red areas indicate nodes where the
arbitrageur loses money, and green ones show where the arbitrageur makes profit. More color-intense nodes
indicate larger losses or profits. By trading against the leverage rebalancing of ETFs, arbitrageurs acquire a
short position if the price increases, and a long position if the price decreases. If the price drifts steadily up,
arbitrageurs lose money since they sell the asset and the price keeps increasing. If the price reverts back to
the initial value, they make a profit since they sell the asset and the price decreases.
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Table AIII

Predictive regressions of futures returns on EFG
Columns 1 and 2 show the results of monthly predictive regressions of the realized futures returns on the
EFG. For one-month futures contract, I use returns from 21 days before maturity, to expiration, since this
is one of the most frequent maturities. Similarly, for two-months futures contract, I use returns calculated
from 47 days before maturity, to expiration. rFi

t,Ti
= FTi,Ti

−Ft,Ti

Ft,Ti
. Columns 3 and 4 present daily predictive

regressions. Return on futures is already excess return because the collateral earns the risk-free rate of
interest: all futures positions are fully collateralized, with the collateral invested in three-month Treasury
bills. RM,t − Rf,t, HMLt, SMBt, CMAt, RMWt, Momt are the Fama–French five factors and momentum.
The data sample is February 2009 – February 2018. Refer to Table II and Table III for definitions of other
variables.

Dependent variables rF1
t,T1 rF2

t,T2 rF1
t rF2

t

(1) (2) (3) (4)
EFGt,i -1.66∗∗∗ -1.59∗∗∗ -0.01∗ -0.02∗∗∗

(0.52) (0.41) (0.01) (0.01)
σ2
bmk,t 0.01 0.01 0.01∗∗∗ 0.01∗∗∗

(0.02) (0.02) (0.00) (0.00)
OIt,i -0.06∗∗ -0.07∗∗ 0.00 -0.01∗

(0.03) (0.03) (0.00) 0.00)
St -0.05 -0.05 0.001 -0.0003

(0.03) (0.05) (0.002) (0.0005)
Liqt,i 0.01 0.07∗∗∗ 0.00 0.00

(0.03) (0.03) (0.00) (0.00)
TEDt -0.02 -0.04∗ -0.00 -0.01∗∗∗

(0.02) (0.02) (0.00) (0.00)
αt 0.05∗∗∗ -0.02 0.00 -0.00

(0.01) (0.02) (0.00) (0.00)
RM,t −Rf,t -0.05∗∗∗ 0.01 -0.00 0.00

(0.01) (0.02) (0.00) (0.00)
HMLt 0.08∗ 0.03 -0.00 0.00

(0.05) (0.07) (0.0) (0.00)
SMBt 0.001 -0.04 0.00 -0.00

(0.03) (0.04) (0.00) (0.00)
CMAt -0.11∗∗ -0.15∗∗ -0.00 -0.00

(0.05) (0.07) (0.00) (0.00)
RMWt -0.01 0.07 -0.00 0.00

(0.03) (0.07) (0.00) (0.00)
Momt 0.01 0.08∗∗∗ -0.00 0.00

(0.02) (0.02) (0.00) (0.00)
Observations 94 90 1,847 1,805
R2 0.20 0.48 0.11 0.06
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Internet Appendix

IA.1. Details on the synthetic VIX futures calculation

V IX2
t→T1 , and V IX

2
t→T2 are calculated using the exact same procedure as outlined in the

CBOE VIX White Paper. The correlation between the calculated VIX and the CBOE-quoted

one for a maturity of one month is 99.8%.

Empirically, sometimes no S&P 500 Index options expire at the exact same time as VIX

futures. VIX futures typically expire in the morning of the Wednesday before the third Friday

of the month (the settlement value is calculated using special opening quote values). There

are always options expiring 30 days after, since these are used to calculate the settlement

price of VIX. S&P 500 Index options (weeklys) also cease trading on Wednesday, but are

p.m.-settled and expire at 4:00 p.m. I deal with this issue in several ways. First, I compute

EQ
t (V IX2

T1→T2) using the evening quotes for options. Second, I interpolate in the volatility

space to get prices of options expiring in the morning, and compute EQ
t (V IX2

T1→T2) using

these prices. With both approaches, the estimates for the EFG shared similar patterns as

in Figure 2. Sometimes, especially before weeklys were introduced, there were no S&P 500

Index options expiring at the same time as VIX futures. For those, I interpolate V IX2
t→T1

using the nearest (usually within 1–2 days) expiring option contracts.

For the computation of VarQ
t (V IXT1→T2), I need the futures price Ft,T1 . I tested three

different ways to estimate it. First, by finding the strike for which put and call prices are

closest (analogous to the calculation of VIX). Second, by implementing an iterative procedure

to find Ft,T1 = EQ
t (V IXT1→T2) that makes Eq. (3) hold. Third, by using the traded VIX

futures price. The main results were similar with each of the three estimates.

A potential concern for the computation of V IX2
T1→T2 is the existence of discretization

errors. As a robustness check, similar to Aït-Sahalia et al. (2018), I calculated forward VIX

by interpolating the volatility surface and finding option prices for all strikes following the

methodology of Carr and Wu (2009). The EFG was less volatile and smaller in magnitude,

on average, but the main results of the paper were unchanged. As another robustness test, I

calculated the EFG using minimum price instead of mid-point price for each option in Eq. (5)
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similar to Kadan and Tang (2020). The main results of the paper were unchanged but the

EFG was underestimated even more using this approach.

Another concern is that the specific rules used by the CBOE for selecting options to

calculate VIX could lead to instabilities in the intra-day value of the index, especially during

extreme market movements as noted by Andersen et al. (2011). However, I use the CBOE

methodology to compute forward VIX on a daily basis. These instabilities should be less

severe than on an intra-day basis (e.g., Aït-Sahalia et al., 2018).

IA.2. Evidence on ETF rebalancing

There are several pieces of evidence that ETFs (irrespective of their legal structure as

a fund or note) follow their benchmarks and rebalance in the way described in section IV.

First, anecdotal evidence from my discussions with several ETF managers and authorized

participants suggests that ETFs have no incentive to deviate from the benchmark,18 as their

performance is evaluated based on the tracking error. The compensation for ETF sponsors

arises from fees but not from over-performance or under-performance. Second, some of the

ETFs make their daily holdings publicly observable. The change in holdings actually seen

matches the one predicted by the rebalancing from Eq. (10) and Eq. (11). Third, the implied

weekly net positions of ETFs closely follow the reports from the CFTC, as seen in Figure A1,

although the match is not perfect because the CFTC data are weekly, and the holdings are

aggregated for ETFs and other dealers. Eraker and Wu (2017) also conclude that VIX ETFs

track their benchmark indices fairly well at a daily frequency.

IA.3. Mid-term VIX ETFs

Table IA.1 shows the results of regression (1) for mid-term VIX ETFs. These ETFs

invest one third of their AUM in the fifth-month futures contract, one third in the sixth-

month one, and roll one third from the fourth-month to the seventh-month futures contract

on a daily basis. The results from Table IA.1 illustrate that ETF demand has an impact only

on the fifth-month spread and the sixth-month spread, mainly due to leverage rebalancing

18Except in extreme situations, e.g., negative spot prices as in the oil market in 2020.
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and flows. The effects of calendar rebalancing are less pronounced, probably because mid-

term VIX ETFs constitute a lower fraction of open interest compared to short-term VIX

ETFs. One standard deviation rise in leverage rebalancing increases the fifth-month spread

by 0.25%, and the sixth-month spread by 0.33%.
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Table IA.1

Mid-term VIX ETFs
The table presents the results of regression (1) for mid-term VIX ETFs. Columns 1–4 correspond to the
relative spread of 4–7 months futures. Panel B shows the estimates for ETF demand components. All
independent variables are standardized. Refer to Table II for variable definitions. Daily data, February 2009
– December 2017.

Panel A: Total effect
Dependent variables bt,4, rel bt,5, rel bt,6, rel bt,7, rel

(1) (2) (3) (4)
D$,all
t,i -0.17 0.13∗∗ 0.12∗ 0.01

(0.11) (0.06) (0.06) (0.02)
bHt,i 4.21∗∗∗ 4.35∗∗∗ 4.98∗∗∗ 5.30∗∗∗

(1.00) (0.94) (0.97) (1.44)
rbmk,t -0.06 -0.02 -0.02 -0.06∗

(0.05) (0.06) (0.07) (0.03)
σ2
bmk,t -0.18∗ -0.15∗∗∗ -0.12 -0.01

(0.10) (0.03) (0.09) (0.08)
OIt,i 0.15 0.78∗∗∗ 0.82∗∗∗ 0.45∗∗∗

(0.21) (0.23) (0.18) (0.10)
St -2.47∗∗∗ -1.61∗∗∗ -0.96∗∗∗ -0.75∗∗∗

(0.27) (0.30) (0.28) (0.18)
Liqt,i -0.48∗∗ -0.10∗∗∗ -0.70∗ -0.91∗∗∗

(0.24) (0.02) (0.41) (0.16)
αt -0.18∗∗ -0.03 0.07 0.10

(0.08) (0.07) (0.07) (0.06)
Observations 1,732 1,720 1,724 1,731
R2 0.50 0.38 0.38 0.27

Panel B: Split on components
Dependent variables bt,4, rel bt,5, rel bt,6, rel bt,7, rel

(1) (2) (3) (4)
Calendar rebt,i -1.58∗ 0.26

(0.84) (0.81)
Remaindert,i 1.40 -0.24

(1.38) (0.27)
Leverage rebt,i -0.25 0.25∗∗ 0.33∗∗ 0.17

(0.31) (0.12) (0.13) (0.28)
Flow rebt,i -0.30∗∗ 0.10∗ 0.15 -0.81

(0.12) (0.06) (0.151) (0.63)
Observations 1,697 1,685 1,694 1,692
R2 0.58 0.41 0.35 0.30
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IA.4. Commodity markets-specifics

In the regressions for commodity markets, I use relative basis as the dependent variable,

instead of the difference between the ETF-influenced futures price and that of the control

contract, due to the concern that some systematic factors have changed the pricing across

US and European markets in the post-ETF period. In particular, gas prices in the US have

fallen substantially after the increase in shale gas drilling from 2010, and the difference with

prices in Europe has widened. US crude oil prices have also diverged from Brent during

the period 2010–2013 due to local supply factors.19 Thus, using absolute levels of futures

prices of the control asset to isolate the impact of ETFs could capture other changes in cross-

market factors. However, using relative basis and assuming that storage costs have changed

in a similar way for both the ETF-influenced and the control contracts (which is a within-

market factor) is a more realistic assumption, as anecdotal evidence suggests. To account

for the above-mentioned changes in cross-market factors, I control for the difference in spot

prices between US and Europe in the respective basis and spread regressions. This difference

captures the systematic change across the two markets, which is not influenced by ETFs as

ETFs trade in the futures contract.

19After 2010, increased volumes of crude oil from North Dakota and Canada flowed into Cushing (where
WTI US crude oil is delivered). These inflows led to a build-up in inventories and decreased the price of US
crude oil, widening the spread with Brent.
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IA.5. Additional figures and tables
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Figure IA.1. Realized VIX futures premium before and after ETFs. The left chart shows the
average size of the VIX futures premium for different maturities before ETFs (June 2004 – January 2009)
and after ETFs (February 2009 – February 2018). The right one presents the same premium but the “before
ETFs” period excludes the 2008 crisis episode: the time frame is June 2004 – September 2008. The premium
is calculated as the annualized net return of a short-seller of a VIX futures Ft,T−FT,T

Ft,T
, where T (Term) is

maturity in months. If the increase in premium after ETFs was driven by a general rise in the price of variance
risk, one would expect a more uniform increase in the premium for all maturities. Instead, the graphs show
a large rise for the most ETF-dominated maturities of one and two months, and a little change or even a
decrease in premiums for other maturities.
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Figure IA.2. Open interest dynamics. The left panel shows the dynamics of open interest (monthly
averages) in the VIX market for futures with maturities at 1–8 months. The dotted vertical line indicates
the date when the first ETF was introduced. The right panel shows the fraction of ETFs in open interest
(monthly averages) for futures with maturities at 1–8 months.
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Figure IA.3. ETF futures gap: daily plots. The figure shows the dynamics of the ETF futures gap
(EFG) for one and two months maturities after the introduction of the first VIX ETF (29 January 2009).
EFG is in volatility points, daily frequency.
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