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Abstract

This paper proposes a quantitative framework to analyse the interactions between
epidemiological and economic developments, and assesses the macroeconomic impact of
managing the late stage of the Covid-19 pandemic. The framework features a susceptible-
exposed-infectious-recovered (SEIR)-type model that describes the pandemic evolution
conditional on society’s mobility choice, and a policy unit that chooses mobility optimally to
balance lives and livelihood objectives. The model can be matched to daily data via a fast
and robust empirical procedure, allowing a timely policy analysis as situations evolve. As of
10 March 2021, the projected median output loss across 27 advanced and emerging market
economies in 2021 is about 21/4% of pre-pandemic trends. This projected outcome hinges
on a sustained progress in vaccination and no major epidemiological setbacks. Vaccination
impediments or a third-wave surge in infection rate could raise median output loss to
3− 33/4%. In the most severe scenario, virus mutations that compromise existing immunity
could require more protracted lockdowns. In this case, median output loss may reach 5% in
2021 alone, with further repercussions in subsequent years.
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1 Introduction

The Covid-19 pandemic is both a global health and economic crisis. As of 10 March 2021,

more than 2.6 million lives have been lost to the disease, more than one million of which

occurred since December 2020 as a result of a second wave of infections. Authorities around

the world have put in place drastic measures to restrict human interaction and curb the virus

spread, extending them as needed to suppress a resurgence of cases. These measures, while

necessary from a public health standpoint and enacted as a means to end the crisis, have led

to macroeconomic consequences of truly historic proportions. Output losses during the ‘great

lockdown’ of 2020 are as high as 8% on average, exceeding even the sharp contraction associated

with past financial crises. The macroeconomic damages are higher still for those reliant on the

most affected sectors, such as tourism and services.

The arrival of vaccines in late 2020 ushered in a new phase of the pandemic and opened

up the possibility of a quick and smooth ‘pandexit’. After showing high efficacy in trials, several

vaccines are being quickly rolled out in a number of countries, particularly in advanced economies

that have secured most of the available dosages. At the same time, significant challenges

and risks remain in the months ahead. If the production and take-up of vaccines disappoint,

economic activity could suffer again. Virus mutations could also present unpredictable new

challenges, possibly negating the effects of vaccines. Should these downside risk scenarios play

out, what would be the resulting macroeconomic consequences? How long should lockdowns

and mobility restrictions be expected, and to what extent? These questions are of first-order

importance for macroeconomists and those in charge of fiscal, monetary and regulatory policies.

This paper provides a simple analytical and data-driven framework to assess

macroeconomic consequences of managing the late stage of the pandemic. The framework

consists of two interdependent blocs, designed to capture the interactions between the pandemic

evolution and economic decisions. The first is a susceptible-exposed-infectious-recovered (SEIR)

model1 describing the epidemiological dynamics, featuring time-varying infection and death

rates, which depend on public policy and societies’ behaviour. The second bloc describes how

societies react to pandemic developments, by choosing the level of mobility to strike a balance

between limiting deaths and containing economic disruptions. Together, the two blocs provide

a structural description of how the pandemic and economic activity co-evolve. The resulting

dynamic system can then be used to formulate projections, conduct policy analysis and examine

implications of various pandemic scenarios.

Understanding how the pandemic evolution and economic decisions interact is central to

key policy issues at present. How quickly countries lift their lockdown measures depends on

these considerations. How much vaccination is needed to attain herd immunity depends not

only on how many susceptible people remain in the population, but also how actively they

interact with potentially infectious individuals. The latter is a function of economic activity,

and in turn a reflection of how the society reacts to the pandemic. The approach in this paper

1This classic epidemic model (and its close cousin, the SIR model) dates back to the early 20th century, and
captures the epidemic evolution via a system of differential equations. Infections arise from random encounters
between susceptible and infectious people, with overall probabilities determined by the sizes of these groups in
addition to the disease’s infectiousness. See Kermack and McKendrick (1991) for a reprint of original papers,
and Hethcote (2000) for a modern discussion of the model.
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makes this interdependence explicit, which is essential given the pervasive relevance of economic

considerations in designing policies to tackle the pandemic.

This paper contributes to a burgeoning literature on this interaction2 by providing a

flexible and robust empirical routine for matching the model to data, allowing fast simulations

across a wide range of countries and scenarios as daily information becomes available. This is

achieved via a two-step algorithm. The first step uses the SEIR model to filter out the data-

implied infection and death rates in a non-parametric way, with little computational costs. The

second stage involves a parametric fitting of these filtered series, in particular estimating the

contribution from mobility to the infection rate, which provides the basis for constructing out-of-

sample forecasts. Meanwhile, the second policy bloc derives the mobility reaction function in an

analytically convenient form to save computational times. Implementing a complete update and

producing forecasts for 27 advanced and emerging market economies takes only a few minutes.

Once matched to data, the model is capable of producing forecasts of output losses under a

wide range of pandemic scenarios. Three are considered: a resurgence of infection rate unrelated

to mobility (third wave), a stall in vaccination, and virus mutations that cause reinfection. The

macroeconomic implications of these scenarios in terms of annual GDP losses are notable,

particularly in the case of reinfection. At the same time, the degree of vulnerability to these

scenarios differs across countries. Notably, emerging market economies that are making slower

progress in vaccination are particularly exposed to a resurgence of infection rate.

To be sure, the analysis does not account for all shocks impinging on GDP. Factors such

as macroeconomic policies, health effects on labour supply and the impact on sentiments are

clearly important, but are taken into account only implicitly via the reduced-form relationship

between mobility and output.3 The mobility-output relationship itself may also be unstable or

nonlinear: it could weaken over time as economies better adapt to restrictions, but could also

strengthen in a non-linear way if restrictions prompt bankruptcies or credit losses and set off

financial amplifications. Given these uncertainties, the output loss projections here should be

used in conjunction with more comprehensive macroeconomic assessments.

The paper is organised as follows. Section 2 presents the model, detailing the two blocs.

Section 3 describes the empirical procedure and the construction of projections. Simulation

results as well as scenarios are discussed in section 4, before section 5 concludes.

2 The model

This section describes in turn the two model blocs: the epidemiological bloc which takes mobility

as given, and the policy bloc specifying how the society sets mobility in response to pandemic

2A running theme is the optimal lockdown policy, e.g. Álvarez et al. (2020), and Fernández-Villaverde and Jones
(2020). Several papers emphasise how agents may not internalise the risk of infecting others and take too little
precautionary measures, lending justifications to government-organised lockdowns: e.g. see Eichenbaum et al.
(2020), Bethune and Korinek (2020), Jones et al. (2020), and Boissay et al. (2020). Acemoğlu et al. (2020)
analyse the benefits of targeted lockdown designed to reduce mortality of the elderly population (analogous to
this paper’s analysis of targeted vaccine distribution). Economic-epidemiological models have also been used to
explore the wealth and income distribution impact of the pandemic (Kaplan et al. (2020)), and international
spillovers through trade and production networks (Çakmaklı et al. (2020)).

3Output losses in 2020 would have likely been much larger without the sweeping fiscal and liquidity policy
support. Using the sensitivity of output to mobility in 2020 to convert mobility projections into output terms
for 2021 amounts to assuming a stable policy reaction function, which may or may not be the case.
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Figure 1: Model schematic

developments.

2.1 The epidemiological model

The epidemiological model is an enriched SEIR variety, building on Li et al. (2020) with several

key extensions. The population is divided into 12 compartments, and people transition between

them over time as shown in Figure 1. A person starts off as being healthy but susceptible to

the virus, belonging to the first box on the left. A contact with an infected individual may

expose the person to the virus; if so, she moves to the next compartment. After an incubation

period, she becomes infectious, capable of infecting other susceptible people. The person then

either gets sick and stays at home (undetected by authorities), gets tested and placed under

official quarantine, or becomes hospitalised. In any of these three states, the person is effectively

isolated as she can no longer pass the virus on to others. The person then either recovers or

dies from the disease. For modelling purposes, this sub-group of effectively quarantined people

are further divided into those that eventually die and recover, following Li et al. (2020). If

a susceptible person receives an inoculation and successfully develops an immunity, she joins

the vaccinated group and runs no risk of becoming exposed. An immunity, acquired either

naturally or through vaccination, could however wane over time, hence the arrows that flow

from recovered and vaccinated groups back to susceptible group.

The SEIR model describes mathematically the evolution of population in these 12 states,

as a function of the initial states and the rates at which population flows across states in each

period. These dynamics are represented by 12 difference equations, corresponding to the states:
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Table 1: SEIR model notation

States (in total number)

St Susceptible population
Et Exposed, not yet infectious
It Infectious population
UDt Undetected, sick at home; will die
QDt Detected, quarantined; will die
HDt Detected, hospitalised; will die
URt Undetected, sick at home; to recover
QRt Detected, quarantined; to recover
HRt Detected, hospitalised; to recover
Rt Recovered population
Dt Dead population
Vt Effectively vaccinated population
N Total population

Transition rates/probabilities

γt Time-varying component of infection rate
ri Incubation-to-infection transition rate
rd Infection-to-quarantine transition rate
rdth Death rate
rri Recovery rate
rrh Recovery rate, once hospitalised
pd Probability of being detected by tests
ph Probability of being hospitalised
pdtht Probability of dying, once infected
rv Vaccination per unit time
rre Reinfection rate (immunity loss)

Note: Transition rates refer to probabilities per unit time, which in this case is a day.

∆St+1 = −γtStIt/N + rre(Rt + Vt)− rv (2.1)

∆Et+1 = γtStIt/N − riEt (2.2)

∆It+1 = riEt − rdIt (2.3)

∆UDt+1 = rdpdtht (1− pd)It − rdthUDt (2.4)

∆QDt+1 = rdpdtht pd(1− ph)It − rdthQDt (2.5)

∆HDt+1 = rdpdtht pdphIt − rdthHDt (2.6)

∆URt+1 = rd(1− pdtht )(1− pd)It − rriURt (2.7)

∆QRt+1 = rd(1− pdtht )pd(1− ph)It − rriQRt (2.8)

∆HRt+1 = rd(1− pdtht )pdphIt − rrhHRt (2.9)

∆Rt+1 = rri(URt +QRt) + rrhHRt − rreRt (2.10)

∆Dt+1 = rdth(UDt +QDt +HDt) (2.11)

∆Vt+1 = rv − rreVt (2.12)

where Table 1 summarises the model notations. The mechanism of the model is similar to that of

the basic SEIR model. Each period, γtStIt/N new infections emerge, representing the number of

susceptible individuals St who catch the virus and transition to the exposed type Et (equations

2.1 and 2.2). These new infections arise from contacts between susceptible and infectious groups

governed by the aggregate matching function StIt/N multiplied by the infection rate γt.
4 The

exposed people Et become infectious after some virus incubation period (equation 2.3). The

infectious individuals It can pass the virus along to susceptible ones, until they are detected

at rate rd and join one of the six quarantine states, {UDt, QDt, HDt, URt, QRt, HRt}, with

probabilities corresponding to the transition rates and likelihood of being assigned to each

state (equations 2.4-2.9). These states, not present in the barebone SEIR model, are explicitly

4An aggregate matching function assumes random pairwise matching between individuals, satisfied when e.g. the
spatial distribution of individual types is ‘well-mixed’.
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included to match the model to observed data. They are divided into those that self-isolate

at home (UDt, URt), those that are placed under quarantine after confirmed by official tests

(QDt, QRt) and those that hospitalised after testing positive (QDt, QRt). People exit quarantine

either by recovering (joining Rt, equation 2.10) or dying (joining Dt, equation 2.10), and are

pre-allocated at the quarantine stage. Vaccination removes people from the susceptible group

(equations 2.1 and 2.12) while reinfection puts them back in the pool.

As in the simple SEIR model, the dynamics of infections depend primarily on two factors:

how infectious the disease is, and how many people are susceptible to it. Specifically, the virus

spreads faster than it dies out if the pool of infected individuals (Et + It) is growing, namely if

γt
rd
St
N

> 1 (2.13)

At the start of the pandemic where S0/N ≈ 1, the condition becomes γ0/r
d > 1, which motivates

the definition of the basic reproductive number R0 ≡ γ0/rd. The left hand side of condition 2.13

can be thought of as the effective reproductive number for arbitrary period t, which depends on

the infection rate γt and the size of susceptible population St/N . There are two (non-exclusive)

strategies for slowing infections - one could suppress γt through social distancing and lockdowns,

or seek to lower the number of susceptible individuals. The latter herd immunity could be

achieved by allowing the pandemic to run its course or implementing mass-scale vaccinations.

The infection rate γt is posited to consist of two parts, reflecting the influence from

societies’ behaviour and epidemiological properties of the virus:

γt = γmt + γdt (2.14)

The first term γmt represents the contribution from economic activity, as a more vibrant economy

entails greater human interactions and a higher infection rate. It is posited to be increasing in

mobility mt ∈ [−1, 0], measured as a percentage deviation from the pre-pandemic level:

γmt = β0 exp(β1mt) (2.15)

The functional form recognises potential nonlinearity, as the rate of infections may decline less

than one for one with a reduction in overall mobility (e.g. due to superspreaders). This term

captures the central tradeoff between lives and livelihood facing the policymaker - slowing down

infections requires lower mobility and economic activity.

The auxiliary term γdt captures all other time-varying determinants of the infection rate

unrelated to mobility. It picks up the effects of health precautions such as mask wearing,

hand washing and social distancing in daily lives which can reduce the infection rate without

disrupting economic activity. It also includes infection rate ‘shocks’ owing to seasonal patterns of

the virus, greater human contact during festive seasons (conditional on mobility), importations

of cases from other countries, and virus mutations. For baseline out-of-sample policy simulation,

γdt is posited to follow a mean-reverting process:

γdt = ργdt−1 + εt (2.16)
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where εt is white noise, and ρ can be estimated using the past data. One could also construct

scenarios of a new virus strain associated with a higher infection rate, by assuming a persistent

shock to εt.

The model features an effectively vaccinated group, Vt, namely the people who successfully

obtain immunity from vaccines rather than through exposure to the virus. Vaccination confers

two benefits. First, it directly subtracts from the susceptible group and accelerates the

achievement of herd immunity without incurring deaths, a shortcut as depicted in Figure 1.

The second benefit depends on how vaccines are distributed. Prioritising the distribution to

the elderly population with the highest mortality risk would reduce the overall fatality rate,

quantifiable using the demographic data as done below. There are also other possible strategies

of distributing the vaccines, e.g. vaccinating the group which are more likely to interact with

others, such as healthcare professionals, frontline workers or younger population could contribute

to lowering the infection rate. Introducing these effects into the model could be done in principles

by linking vaccinations to γt, but is not attempted below. Vaccinations received after exposure

are assumed to be ineffective, hence there is no transition path from state Et to Vt (such

transition can be easily introduced however if an interim vaccination later proves effective).

Both recovered and vaccinated population are assumed not to be silent carriers.5

The death probability conditional on infection is posited to be:

pdtht = (1 + η(ξt − 1))p̃dtht (2.17)

p̃dth,t is the underlying death probability which varies with epidemiological factors and sanitary

standards, but does not take into account the effect of targeted vaccination allocation. It

includes the effects of improved health professionals’ proficiency in dealing with the Covid-19

patients, which may have led to falling fatality rates since the start of the pandemic in many

countries. It also potentially captures the effects of virus mutations and ICU occupancy surge

which may push up pdtht . Next, ξt ∈ [0, 1] is the death-reduction factor under a perfectly targeted

distribution strategy with vaccines allotted to population in descending order of their ages. ξt

is a function of Covid-19’s age-specific fatality probability p∗dth(age), the age distribution F and

the size of vaccinated population Vt/N :

ξt =

∫ F−1(1−Vt/N)

0
p∗dth(age)dF (age) (2.18)

The parameter η ∈ [0, 1] controls the degree to which countries’ actual vaccine distribution

conforms to this ideal targeted strategy.6 With η = 1, the death probability is equal to the

theoretical lower bound ξtp̃
dth
t , while η = 0 implies random vaccine distribution and pdtht = p̃dtht .

The model allows for the possibility that the recovered population may eventually lose

5Vaccinated people could in principles harbour the virus (e.g. in their nasal cavities) and able to transmit it to
others. The practical importance of this in practice remains disputed, and early evidence from Israel and the
UK suggests that vaccinations indeed help limit transmission - see Mallapaty (2021). Nonetheless, accounting
for this mode of transmission within the model is possible, and entails splitting Rt and Vt into carrier and
non-carrier sub-types.

6In some countries, the elderly have in fact been purposely excluded, given concerns about the vaccine effectiveness
for their group. As mentioned, other vaccination strategies, e.g. involving front-line workers, have also been
adopted.

6



their immunity and become susceptible again. While so far rare, reinfections have been

confirmed in several cases and it is possible for people to lose their immunity over sufficiently

long period of time. Virus mutations could also increase this likelihood by evading the immune

system’s detection. In the reinfection scenario considered below, I assume both the recovered

and vaccinated groups could potentially lose immunity.

2.2 Mobility policy function

The society has a preference for maintaining mobility (a proxy for economic activity) and

avoiding additional deaths. At time t it chooses mt to maximise:

Ut0 =
∞∑
t=t0

[
−
(

∆d̃t

)2
− φm2

t

]
(2.19)

where φ > 0 is the relative weight on economic activity in comparison to lives saved. I assume no

discount factor and define ∆d̃t as the additional deaths (in percent of population) attributed to

mobility decisions mt made at time t, incurred at any point in the future. The link between mt

and ∆d̃t is dictated by the epidemiological equations 2.1-2.12. In assuming no discount factor

and hence making no differentiation regarding the timing of deaths, the formulation greatly

reduces the dimensionality of the problem and implies a relatively simple optimality condition

as I now show.7

∆d̃t can be derived via backward induction. At any arbitrary period τ , the policymaker

can tally up the number of individuals who either just pass away or will eventually do so:

∆(Dτ + UDτ +QDτ +HDτ ) = rdpdtht Iτ−1 (2.20)

namely it is proportional to the size of infectious population in the period prior. Summing

up over all τ at which deaths could be traced back to mt, the left-hand term becomes ∆d̃t by

definition:

∆d̃t = rdpdtht
∑

∀τ |mt→τ

Iτ−1 (2.21)

while the corresponding right-hand term
∑
∀τ |mt→τ Iτ−1 is the size of infectious population that

could be linked to mobility choice made at time t. Working backward to time t, the policymaker

knows that its mobility choice mt affects the flows of people into the infectious or exposed (set

to be infectious in the future) pool according to:

∆(It + Et) = γtStIt/N − rdIt (2.22)

Equating It+Et implied by equation 2.22 to
∑
∀τ |mt→τ Iτ−1, one then establishes a link between

7The optimal policy problem can also be cast in terms of balancing between current mobility and death flows
at some fixed date, either current or future. The conventional dynamic programming technique could then be
used in principles, as long as one assumes a discount factor strictly less than 1. But the high number of state
variables means prohibitive computational costs in practice.
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mt and ∆d̃t, which is given by

∆d̃t = pdtht rdit(1 + γtst − rd) (2.23)

where it ≡ It/N , st ≡ St/N .

The optimal policy problem is given by the maximisation of term 2.19 subject to the

constraint 2.23. The first-order condition is given by

−φmt = ∆d̃t
∂∆d̃t
∂mt

(2.24)

The right-hand side depends on mt via γt = γmt + γdt = β0 exp(β1mt) + γdt . This is particularly

convenient as one only needs to keep track of st and it rather than all 12 state variables, as if

the model was a stripped-down SIR type. The optimal policy can then be solved numerically

as a function of st, it, p
dth
t and γdt .

3 Empirical procedure

3.1 Data and calibration

Confirmed cases and deaths

Confirmed cases and deaths are the primary observable inputs for matching the epidemiological

model to data, and are generally subsets of total cases
∑
∀t It and total deaths Dt in the model.

Denoting confirmed cases and deaths by DTt and DDt respectively, the evolution of DTt and

DDt follow:

∆DT t = rdpdIt (3.1)

∆DDt = rdth(HDt +QDt) (3.2)

These observation equations establish a link between epidemiological model predictions and

data.

Mobility

The proxy for mt is the average of three Google Mobility sub-indices: (i) retail and recreation,

(ii) transit and (iii) workplaces. When aggregated over time, the mobility index has a strong

association with the level of output. Indeed, differences in average mobility during 2020 alone

explain much of cross-country variations in output losses during the period, almost 50% in

R-square terms (Figure 2; see also Rungcharoenkitkul (2021)).

Mobility is translated into output losses in GDP terms using country-specific conversion

factors, assuming a linear relationship between the two. The factors are ratios of cumulative

forecast revisions of 2020 growth made over the course of the year (the difference between

consensus GDP growth forecasts for 2020 made at the end of 2020 and those made at the start

of the year) and average mobility during 2020. In graphical terms, a country’s conversion factor

is the slope of the line going through the origin and the country’s annotation in Figure 2. This

8
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Figure 2: Mobility-output relationship

measure captures in a simple way countries’ potentially different output sensitivities to mobility,

for instance due to the relative importance of the services sector or reliance on external demand

and international travel.

Vaccination

The number of effectively vaccinated individuals Vt is a weighted average of partially- and

fully-vaccinated groups, reflecting different degrees of immunity. For a required dosage of two

injections, I assume one injection confers a 50 percent chance of immunity, while two doses are

95 percent effective at granting an immunity.8 No attempt is made to differentiate between

vaccine types. New daily effective vaccinations map to rv in the model equation 2.12. To

estimate the impact of targeted vaccine distribution on average death probability, I use age-

specific fatality rates from O’Driscoll et al. (2020) and country-specific demographic data from

the United Nations.

Initialising states

Initial states are guided by data and informed priors. For each country, the analysis starts

when confirmed domestic cases reached or first exceeded 100. Total confirmed cases and deaths

on this date initialise DT0 and DD0 respectively, with D0 = DD0/p
d to reflect undetected

deaths and R0 = 5D0 by assumption. These imply total people under quarantine of C0 ≡
DT0 − pd(D0 + R0), which are apportioned across six quarantine states according to relative

8This assumption is motivated by the trial results of the Pfizer-BioNTech vaccine. See Polack et al. (2020).
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Table 2: Initial values and calibrated parameters

Initial values

DT0 = Confirmed cases
DD0 = Confirmed deaths
D0 = DD0/p

d

R0 = 5D0

C0 ≡ DT0 − pd(D0 +R0)
E0 = kC0/p

d

I0 = kC0/p
d

UD0 = C0(1/p
d − 1)pdth0

HD0 = C0p
hpdth0

QD0 = C0(1− ph)pdth0

UR0 = C0(1/p
d − 1)(1− pdth0 )

HR0 = C0p
h(1− pdth0 )

QR0 = C0(1− ph)(1− pdth0 )
V0 = 0
S0 = N−all other model states

Calibrated/derived parameters

ri = log(2)/5 ; incubation time 5 days
rd = log(2)/2 ; virus detection 2 days
rdth = 0.5
rri = log(2)/10 ; recovery time 10 days
rrh = log(2)/15 ; recovery time 15 days
pd = 0.2
ph = 0.15
rv = 0.5(new partial doses)+0.95(new

complete doses)
rre = log(2)/1000 ; lost immunity after

1000 days
pdth0 = ∆DD1/(r

dth(DD0 − pd(R0 +D0))

Note: Left column shows initial state values, in order of their derivation. k is calibrated to match the basic

reproductive number of 6 - see explanation after equation 3.3. Right column shows calibrated parameter values,

chosen to match epidemiological properties of the Covid-19 as well as data on vaccination and death.

likelihood ph and (unknown) pdth0 . The initial death probability pdth0 is solved by inverting

the observation equation 3.2 and substituting for HD0 and QD0 to match next-period death

data. The initial exposed and infectious population are posited to a multiple of quarantined

population: E0 = I0 = kC0/p
d, where the unknown k is determined below. V0 is zero as

vaccines were not available initially, and S0 is the residual number of population. See Table 2

for a summary of initial state values.

Calibrating epidemiological parameters

Transition rates and probabilities ri, rd, rdth, rri, rrh, pd, ph are calibrated to the Covid-19

characteristics, assuming these are constant and similar across economies (see also Li et al.

(2020)). These are set in relation to the median time spent in the states, e.g. the incubation

median time is about 5 days, which implies the incubation-to-infection daily transition

probability ri = log(2)/5 (using a continuous-time approximation). The median virus detection

time is 2 days, the median recovery time is 10 days, the median recovery time conditional on

hospitalisation is longer at 15 days. The probability of being detected by tests pd is set to 0.2

– for each confirmed case, there are 5 more who are undetected.9 Those in quarantine who

eventually succumb to the disease die on average after about one day and a half (rdth = 0.5).

Probability of hospitalisation conditional on being detected is 15%. The vaccination pace rv is

as described above, and the reinfection rate is rare with median person losing immunity after

about 3 years. See Table 2 for a summary of parameter calibrations.

9One could argue that the detection probability depends on test intensity, making pd time-varying. This is not
considered here however.
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3.2 Filtering infection rate and death probability

The model has two remaining unknowns: the time-series of infection rate γt, and the time-series

of death probability pdtht . Data are used to recover these, as follows.

The sequences γt and pdtht are reverse-engineered period by period from future observations

using the model equations as restrictions. First, solve the observation equation 3.1 (for ∆DTt)

backward using the dynamic equations to get:

γt =
N

riStIt

[
∆DTt+2

rdpd
− (1− rd)2It − ri(2− rd − ri)Et

]
(3.3)

Recall that k determines E0 and I0 hence, according to equation 3.3, pins down the initial

infection rate γ0. Exploiting the fact that γ0/r
d ≡ R0, k is calibrated to produce the basic

reproductive number R0 = 6 based on a study from Wuhan (see Sanche et al. (2020)).

I simulate the dynamic system 2.1-2.12 and concurrently filter out γt using equation 3.3

subject to a non-negativity constraint γt > 0,∀t, using initial conditions S0, I0, E0 and an end-

point assumption ∆DTT+2 = ∆DTT+1 = ∆DTT , where T is the last in-sample period. This

fast and robust algorithm recovers the entire time-series of γt as well as the model’s latent state

variables within the sample.

Similarly for pdtht , solving the observation equation 3.2 (for ∆DDt) together with the

dynamic equations 2.1-2.12 gives:

pdtht =
∆DDt+1 − rdth(1− rdth)(HDt +QDt)

rdthrdpdIt
(3.4)

where pdtht is restricted to be non-negative and assuming ∆DDT+1 = ∆DDT . The result is the

time-varying fatality probability consistent with fatality data and the model.

Figure 3 depicts γt and pdtht for selected countries. Their fluctuations stem from a

confluence of factors. The infection rate was highest at the initial stage of the pandemic,

but declined sharply probably because social distancing and other restrictive measures came

into effects. Death probability pdtht was similarly higher early on in the pandemic, generally

peaking in April at the height of the first wave when hospitals were most congested. The

probability then declined substantially, in some cases approaching zero, as infections slowed

and treatment improved. The second wave saw the death probability picking up again, though

for most countries this has been smaller than the 2020 peak.

3.3 Projections

Joint epidemiological-mobility projections entail forecasting γt and pdtht (in addition to making

assumptions about vaccination, to be described in the next section). Recall that γt depends

in part on mobility, which endogenously evolves with the pandemic: γt = γmt + γdt and γmt =

β0 exp(β1mt) (equation 2.14 and 2.15). To estimate how much mobility mt affects the infection
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Figure 3: Infection rate and fatality probability

rate γt, I optimise over β0 and β1 to minimise the mean-square prediction error:

min
β0,β1

T∑
t=1

(γt − β0 exp(β1mt))
2 (3.5)

The resulting estimates β̂0, β̂1 imply the residual infection rate γdt ≡ γt−γ̂mt for t ≤ T , which has

zero sample mean by construction. The autoregressive parameter ρ governing γdt in equation

2.16 can then be estimated via a linear regression, which is then used to forecast γdt for t > T .

Intuitively, this formulation assumes that the effects impinging on the infection rate from all

factors outside mobility dissipates in the future.

The society takes the estimates β̂0, β̂1 and γdt as given when choosing the optimal mobility.

The welfare weight φ on mobility is estimated for each country, by taking the latest observations

mT , iT , sT , γ̃T and backing out the implicit value of φ that satisfies the first-order condition 2.24

holds. That is, the society is assumed to choose mobility optimally in the last period, which

reveals its preferences. The resulting policy function completes the forecasting procedure for γt

The evolution of death probability pdtht , as stated in equation 2.17, depends in part on how

pervasive and targeted vaccinations are. Abstracting from these vaccine effects, it is assumed

for simplicity that the underlying fatality probability follows a martingale:

p̃dtht = p̃dtht−1 (3.6)

Thus, any changes in the effective death probability pdtht owe entirely to vaccination. This implies

that, in the absence of reinfection, pdtht is weakly decreasing with time. One justification for this

assumption is that any progress made to reduce fatality rate through therapeutic procedures

should be permanent if knowledge is not lost. At the same time, the assumption ignores other

potentially important factors, such as the effects of ICU congestion, fatality rate associated

with new virus strains, or the disease-mitigating (as opposed to disease-blocking) immunity

12



developed by population over time. The current framework could be modified to accommodate

these extensions however, assuming data are available to identify these effects.

4 Managing pandexit: scenario analysis

This section presents the epidemiological-economic projections under various scenarios.

4.1 Baseline scenario: smooth pandexit

The baseline scenario assumes steady progress in vaccinations. Those that have started

their inoculation campaign could continue vaccinating at a linear pace and deplete all contracted

dosages by end of 2021. For those that have contracted more dosages than entire population,

any excess supply is assumed to translate into a faster vaccination roll-out.10 As before, new

daily effective vaccinations under this assumption are taken to be rv in the model equation

2.12. The distribution of vaccines are assumed to be highly targeted, with η = 0.8 in equation

2.17. Reinfection continues to be extremely rare, with a median loss of immunity after roughly

3 years (rre = log(2)/1000).

Results

Figure 4 shows the simulation results for the United States as an illustration. In the top left

panel, the total confirmed cases DTt are projected to level off by the second quarter below 10%

of total population, as the infectious population It continuing to fall. The stock of confirmed

deaths on the top-right panel reaches its peak at about 0.175% of population. The two panels

also show how closely the filtered series DTt and DDt match the data on confirmed cases and

deaths respectively within the sample.

Relatively quick stabilisation of cases and deaths owe mainly to the effects of vaccination

- shown in the centre-left panel. Under the assumed roll-out pace, all remaining susceptible

population should be inoculated by the second quarter. For the United States, the model

estimates that 40% of population had already been exposed to the virus by the time vaccination

programme began. This means only 60% of population need to be vaccinated to reach the point

of absolute herd immunity.

Support from vaccinations during the pandexit allows some easing of restrictions

immediately, with mobility projected to gradually return to its normal level in the second

quarter. Also tilting the cost and benefit in favour of opening up is the falling death probability

as a result of prioritising the elderly in the vaccination campaign. The bottom-right panel shows

the projected fatality rate in thick black line, projected to decline by about half a percentage

point in the coming months. The panel also shows the two counterfactual corner cases where

vaccines were distributed randomly and in a perfectly targeted way, showing the potential gain

from vaccine distribution given the United States’ demographic profile.

10Contracting multiple vaccines lowers the chance of being constrained by a single producer’s supply bottleneck,
which is one reason why some countries secure more dosages than needed and establish arrangements with
more than one producer.
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The model also produces a decomposition of the infection rate, providing a description of

the past as well as the outlook. The centre-right panel shows the filtered infection rate γt (red

line) and its two constituents, the contribution from mobility γmt (blue line) and the exogenous

term γdt (orange line). Initially, the infection rate was very high both because of normal human

mobility γmt , as well as the lack of health precautions and the absence of social distancing

which likely contributed to γdt . Both components plunged substantially as society responded

to the pandemic. Then the second wave caused another surge in infections around the fall of

2020, which the model largely attributed to the exogenous component γdt . Looking ahead, the

reopening of the economy would likely increase the infection rate again, though the effect on

cases and deaths would be more muted given the protection from vaccination. In assuming

stable γdt , this projection also assumes persistent uses of masks and other health precautions

during the forecasting period.

Other advanced economies that are ramping up vaccinations share similarly benign

outlook. Figure 5 compares the projections for infectious population It on the left column

and implied mobility choices on the right, for selected group of economies. The top row features

major advanced economies including France, Germany and United Kingdom together with the

United States. Infectious population should steadily decline in these economies, approaching

zero by the first half of the year allowing them to open up. Among this group, mobility

restrictions are needed the longest in Germany, as comparatively few infections to date mean

a larger susceptible population at risk. For a given pace of vaccination, it thus takes longer to

fully protect the entire population. But even in this case, mobility could return to normal by

the second quarter.

Outlook for emerging market economies (EMEs) is slightly more heterogeneous, due to

varied progress in vaccinations and different societal responses to the pandemic developments.

The bottom row of Figure 5 shows the simulation results for selected EMEs. Brazil has a

relatively high share of infectious population and is currently enduring an infection surge. But

if vaccination roll-out proceeds smoothly, infections should begin to drop in the second quarter,

allowing a quick resumption of mobility given the society’s relatively high weight on mobility. By

comparison, Korea and India have far fewer infections, but a higher weight on health objective

and a high share of susceptible population justify a cautious approach to reopening. In South

Africa, a combination of high death rate and assumed pace of vaccination suggests some mobility

restrictions may continue to be necessary.

4.2 Third wave scenario

In this third wave scenario, the infection rate jumps temporarily for factors unrelated to mobility.

One reason could be a temporary surge in the new strain which is more infectious.11 To

implement the scenario, γdt is subject to positive shocks for 10 consecutive days, before gradually

mean-reverting to zero according to its autoregressive process. Other assumptions are the same

as under baseline.

11If the new strain becomes endemic, the impact on the infection rate would be permanent instead of temporary.
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Figure 5: Baseline projections for selected economies

Results

A positive shock to the infection rate gives rise to a greater need for mobility restrictions

relative to the baseline. This scenario exposes in particular those that are vaccinating more

slowly. Figure 6 examines possible implications of a third wave shock using Germany and Brazil

respectively, as examples. In Germany, an infection rate spike triggers more cases and prompts

another round of mobility restrictions. This measure would restrain the overall infection rate

(left panel), and allow for a reopening which is postponed to the second quarter. In Brazil,

the infection rate spike could justify a particularly sharp reduction in mobility, as vaccination

has yet to reach a large part of population. Another reason is that the estimated sensitivity of

infection rate to mobility is lower in Brazil than in Germany, which means it takes sustained

mobility restrictions to contain the outbreak. In the left panel of Figure 6, γt under this scenario

stays higher than the baseline despite large reduction in mobility.
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Figure 6: Third wave: Germany and Brazil

4.3 Slower vaccination scenario

In this scenario, vaccination proceeds at a third of the baseline pace. Those that have not

started vaccination are assumed to push back the starting date from end of March to end of

June. Reasons could be related to supply, such as slow production or logistical obstacles, or

demand if part of population elect not to receive injections due to safety concerns.12 Other

assumptions are identical to baseline.

Results

Vaccination impediments tend to be more disruptive for countries that have to inoculate a large

swath of population to obtain herd immunity and are vaccinating at a relatively slow pace to

begin with. Figure 7 contrasts the outcomes of this scenario for the United States and India.

In the first case, as mentioned earlier, less than 60% of population need full dosages to reach

complete immunity and the baseline case assumes that this could be done within the first half

of the year. Delay in vaccination pushes the point of immunity towards the end of the year,

12According to a survey taken in January 2021, as many as 30 percent of population in 15 countries surveyed
express reluctance to receive vaccines even if they are available. See Ipsos (2021).
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Figure 7: Slower vaccination: United States and India

which justify some tightening in mobility restrictions in the interim period. Even so, mobility

should normalise by the third quarter, as only few susceptible individuals should remain. In

India by contrast, the slower vaccination scenario implies over 60% of population will remain

susceptible to the virus at the end of 2021. There is hence a need for restricting mobility quite

substantially for the entire year, as the lower-right panel shows.

4.4 Reinfection scenario

This scenario entails a pervasive loss of immunity by those who have previously recovered from

Covid-19 as well as those who have been effectively vaccinated. I assume a median immunity

loss after 60 days, so that rre = log(2)/60. This implies that about 1 percent of immune people

become susceptible to the disease again each day. A primary reason for reinfection would be

virus mutations. I assume continuous adaptation of both vaccines and the virus such that new

injections still work in preventing infection (as vaccines are tweaked to deal with new strains)

but the immunity is short-lived as the virus also continues mutating. The total vaccine supply

and the roll-out pace are kept the same as under baseline.
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Figure 8: Reinfection: Germany and United Kingdom

Results

There is a race between virus mutations and vaccination in this scenario, with the advantage

going to the fastest to adapt and the one with most ‘ammunition’. The scenario assumes quite

a rapid reinfection rate and fixed vaccine supply – hence finite ammunition for vaccines. Figure

8 shows what could happen, using Germany and United Kingdom as illustrations. Initially,

vaccination dominates and the pool of susceptible people shrinks, though at a slower pace than

the baseline due to headwind generated by reinfection. But as vaccine supply is eventually

depleted, reinfection starts to increase the susceptible pool. At this point, lockdowns become

the only tool for slowing infections. In the simulations, the United Kingdom who is making

faster progress in vaccination, is paradoxically the one that has to tighten activity more later

on, as it will be the first to run out of vaccine doses.

4.5 Output impact of various scenarios

The GDP implications of all the scenarios can be computed using the mobility-output conversion

factors as explained in section 3.1. Figure 9 shows the implied output losses by countries in

2021 relative to pre-pandemic trends, comparing the baseline scenario with the low vaccination
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Figure 9: 2021 output losses

and reinfection scenarios. Under the baseline, the cross-country median output loss for 2021

relative to no-pandemic benchmark is about 21⁄4%, much smaller than the corresponding loss in

the previous year of close to 8%. Slower vaccination raises the median output loss to about 3%,

similar to the median loss associated with the third wave scenario of about 33⁄4% (not shown

in Figure). Perhaps unsurprisingly, the reinfection scenario is the most costly, entailing 5% of

GDP forgone. The total economic costs could be much larger still in this case, as it means the

pandemic is far from over by the end of 2021.

While an infection surge appears less costly than reinfection in median terms, there is

a notable degree of heterogeneity with some countries being much more exposed than others.

In particular, for most EMEs where vaccination could progress at a slower pace, a third wave

could be even more disruptive than reinfection at least in the short term, as shown in Figure

10. By contrast, advanced economies that are making good progress with vaccinations are less

vulnerable to a third wave shock. Indeed, the protection conferred by vaccines is why many of

them could soon lift restrictive measures even if this would raise the infection rate.

5 Conclusion

The end of the pandemic may be within sight with the arrival of vaccines. But unexpected

challenges could still emerge and complicate the pandexit process. This paper quantifies the

output implications of some downside scenarios that could transpire in the coming months.

The substantial implications for output under these scenarios highlight the need for continued

vigilance, and to speed up the roll-out of vaccines particularly in countries where susceptible

populations remain high.

The projections and scenarios presented are not exhaustive. One advantage of the

framework is its flexibility, which allows it to easily accommodate various extensions, alternative
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Figure 10: 2021 output losses

assumptions and other scenarios. Detailed country-level information, e.g. regarding specific

vaccines used or preferred vaccine distribution strategy, can be easily introduced. More

substantial extensions are also possible. For instance, the mapping between mobility and output

could be enriched to take account of potential nonlinearity, e.g. arising from insolvency and

balance sheet amplifications. The closed-system construction is typical for an SEIR-type model,

but the international spillovers could still be introduced in a roundabout way, e.g. by letting the

infection rate γt be correlated across economies. Indeed, this may be where future challenges lie

in practice, given the uneven progress in vaccination which raises the prospect of the Covid-19

becoming endemic.
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Appendix A Baseline simulations

This appendix presents the full baseline simulation results for remaining 26 countries, in addition

to Figure 4 which shows the result for the United States. For simulation under alternative

scenarios, see the chart pack in https://github.com/phurichai/covid19macro.
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that will deplete all contracted dosages by end of 2021.
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that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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Note: Baseline projections of key epidemiological states and mobility. Assumes steady vaccinations at a pace
that will deplete all contracted dosages by end of 2021.
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