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Abstract

Extending a standard credit-risk model illustrates that a single factor can
drive both expected losses and the extent to which they may be exceeded in
extreme scenarios, ie “unexpected losses.” This leads us to develop a framework
for forecasting these losses jointly. In an application to quarterly US data on loan
charge-offs from 1985 to 2019, we find that financial-cycle indicators – notably,
the debt service ratio and credit-to-GDP gap – deliver reliable real-time forecasts,
signalling turning points up to three years in advance. Provisions and capital that
reflect such forecasts would help reduce the procyclicality of banks’ loss-absorbing
resources.
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1 Introduction

In seeking to align banks’ loss-absorbing resources with actual risks, authorities have
introduced forward-looking elements in accounting and prudential standards. These
standards target complementary aspects of the time-varying probability distribution of
future losses. Namely, IASB (2014) and FASB (2016) seek to align provisions, or the
amount of assets that banks write down, with expected losses (EL). In turn, BCBS
(2017) sets regulatory capital for “unexpected” losses (UL), or the extent to which EL
may be exceeded in extreme scenarios.

Even though EL and UL are in principle intertwined, the literature has studied
them separately. It has been mostly pessimistic about the cyclical properties of EL and
has addressed time variation in UL only indirectly, through attempts to identify early
warning indicators of banking crises.1 In this paper, we propose a unified, parsimonious
and head-on treatment of EL and UL, which delivers accurate real-time (that is, out-
of-sample) forecasts.

Theory. To motivate our empirical analysis, we extend the theoretical model be-
hind credit-risk requirements in Basel III (Gordy, 2003, Vasicek, 1991) by incorporating
time variation in the risk distribution. In this extension, the target level of a bank’s
loss-absorbing resources depends on two systematic factors: an unforecastable factor
that drives the clustering of loan defaults and a forecastable “phase switching” factor
that drives loss-rate swings in boom-bust transitions. Our model reveals that improved
forecasts of the phase-switching factor should lead to adjustments to both EL and UL
estimates. Depending on the strength of the default-clustering factor, these adjust-
ments could be in opposite directions. And to the extent that time variation in EL and
UL has a common driver, forecasting either aspect of the loss distribution would carry
information about the other one. This prompts us to forecast EL and UL jointly.

The empirical framework, our main contribution, has two components. The first
is a model for forecasting jointly and in real-time the level of quarterly loss rates (first
moments of the loss distribution) and the attendant squared forecast errors (second
moments). The second component is a methodology for aggregating the first- and
second-moment forecasts in order to derive EL and UL over the lifetime of a bank’s

1EL forecasts have been discussed in Covas and Nelson (2018), Abad and Suárez (2017), Gon-
charenko and Rauf (2020), Chae et al (2018), Lu and Nikolaev (2020), and Loudis and Ranish (2019).
On early warning indicators of banking crises, see Detken et al (2014), Tölö et al (2018), Aldasoro et
al (2018) and references therein.
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loan portfolio.2 We apply this framework to data from 1985q1 to 2019q2 on the US
banking sector’s quarterly loss rates, as measured by net charge-off rates on loans to
the private non-financial sector.

The first component of our framework comprises direct forecasting models for the
first and second moments.3 In these models, we employ forecast variables that have been
used extensively in the related literature (unemployment rate, output gap, credit spread,
term spread, real interest rate, and the S&P 100 volatility index) or have had a good
track record as early warning indicators of system-wide banking crises (debt-service
ratio, the credit-to-GDP gap, and the property-price gap). We start by estimating the
model on a “training sample” from 1985q1 to 1999q4, using the estimates to forecast the
two moments in each of the twelve subsequent quarters, ending with 2002q4. This is
in line with regulatory texts and banking industry practice (Loudis and Ranish, 2019),
which indicate three years as the longest “reasonable and supportable” forecast horizon.
We then proceed to construct similar out-of-sample forecasts by sequentially adding
one quarter to the sample.

Our preferred forecasts stem from the joint estimation of a linear specification for
the first moments, employing only the debt service ratio (DSR), and a multiplicative
heteroscedastic specification for the second moments, employing only the credit-to-GDP
gap (C2Y). These forecasts are better than alternatives reflecting multiple forecast
variables or (more elaborate) non-linear specifications, or separate forecasts of the first
and second moments. We reach this conclusion on the basis of four assessment metrics,
evaluated at each forecast horizon: root mean squared errors (RMSE), the correlation
between forecasted and actual series, the number of excess/insufficient turning points
in the time series of forecasts relative to the actual time series, and the time distance
between forecasted and actual turning points.

Some examples of the assessment results are as follows. At the 12-quarter horizon,
the correlation metric for DSR-based first-moment forecasts is at around 60%, at least 15
percentage points higher than the corresponding metrics underpinned by other forecast
variables. And the former metric increases by about 30 percentage points when the first-
moment forecasts are derived jointly with C2Y-based second-moment forecasts. In turn,

2This is a departure from the standard definition of UL, which calls for estimating a high percentile
of the lifetime loss distribution (Gordy, 2003). Mindful of this, we forecast such a percentile in Appendix
D on the basis of quantile regressions. However, we do not obtain meaningful results.

3Direct forecasting is discussed by eg Marcellino et al (2006), and the multiplicative heteroscedastic
specification, pioneered by Harvey (1976), has recently been applied by eg Adrian et al (2019) in the
context of GDP growth.
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Figure 1: Catching or missing turning points. An observation in quarter T is equal to: a real-
time forecast at T (expected lifetime losses (EL), unexpected lifetime losses (UL) set to 2 forecasted
standard deviations, Moody’s KMV 3-year expected default frequency (EDF)), or the corresponding
materialization of risk from T onward (perfect-foresight losses, Moody’s 3-year default rate), or histori-
cal loan-loss provisions (LLR) at T , based on incurred loss (IL) accounting. EL + UL = loss absorbing
resources (LAR). The Moody’s and Moody’s KMV series refer to US high-yield non-financial corpo-
rates (NFC). A high-yield three-year default rate is defined as the share of NFCs that are rated C or
CC in quarter T + 12 after being rated between BB+ and CCC- in quarter T .

the correlation metric for these second-moment forecasts is above 20% and consistently
positive across horizons, in contrast to corresponding forecasts that condition on other
variables. Last but not last, our preferred forecasts stand out by capturing exactly the
number of turning points at effectively all horizons and by pinning down the timing of
turning points, with errors of three or fewer quarters.

In the second part of our empirical exercise, we aggregate the forecasts of quarterly
losses over the loan portfolio’s lifetime. Following regulatory practice and the literature
(FASB, 2016, Covas and Nelson, 2018, and Loudis and Ranish, 2019), we make standard
simplifying assumptions regarding the portfolio’s rundown structure, as well as the
behavior of losses beyond the maximum forecast horizon. These assumptions and our
first-moment forecasts deliver directly forecasts of the portfolio’s EL.

The aggregation of the forecasts of quarterly second moments is more challenging. It
rests on an additional set of identification restrictions (which we confirm subsequently
in the data) and delivers an estimate of the standard deviation of the portfolio’s lifetime
losses. In turn, a scalar multiple of this standard deviation results in a UL forecast,
with the magnitude of the scalar being at the bank’s or its supervisor’s discretion.

The EL and UL forecasts fare quite well if based on our preferred first- and second-
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moment specifications. While EL accounts for only 60% of the perfect-foresight lifetime
loss rates at the height of the great financial crisis (GFC), it matches the time profile
of these loss rates throughout the sample, pinning down each turning point (Figure
1, left-hand panel). By contrast, historical loan-loss reserves – based on incurred loss
(IL) accounting – signal turning points with a significant delay (centre panel). In turn,
UL tracks closely the time profile of the difference between perfect-foresight losses and
EL, especially starting from 2004q3. Setting UL to two times the forecasted standard
deviations of lifetime loss rates – akin to targeting the 98th percentile of a normal
distribution – results in the sum of EL and UL – a proxy for a bank’s loss-absorbing
resources – covering actual loss rates in each quarter of the sample (left-hand panel).

Since the success of forecasts hinges on the information content in the estimation
sample, we rerun the above analysis for sub-portfolios, whose time profiles differ from
that of the aggregate portfolio. Indeed the sub-portfolio comprising commercial-and-
industrial (CI) loans experiences heavy losses during the recession in the early 1990’s,
which do not come across as sharply in the “training” sample at the aggregate level
but contain useful information for subsequent forecasts. As a result, the subsequent
forecasts for CI loans are more accurate in some respects than those for the aggregate
portfolio, matching better the upswing during the GFC.

Literature. Our paper relates directly to the literature on loss-rate forecasts, which
has been spurred recently by the introduction of EL provisioning standards for banks in
2018. A number of papers have found that forecasts become unreliable beyond a rather
short horizon, of about 0-to-2 quarters (Covas and Nelson, 2018, Krüger et al, 2018,
and Abad and Suárez, 2017). Likewise, Moody’s KMV expected default frequencies
(EDFs) reveal that this problem also permeates proprietary loss forecasts that rely on
stock market information (Figure 1, right-hand panel). Such EL forecasts are naturally
interpreted as undermining financial stability by leading to procyclical provisioning:
the under-provisioning in tranquil times would underpin excessive leverage and under-
pricing of risks that fuels credit booms, while the over-provisioning in recessions would
amplify busts. Moreover, the above “sceptical” literature argues that EL provisioning
would be more destabilizing than the unquestionably procyclical IL provisioning.4

By contrast, we show that it is possible to derive accurate EL forecasts up to 12
4For similar arguments, see Goncharenko and Rauf (2020) and Risk.net (2018a and b). For analyses

of the procyclicality of IL provisioning, see Borio and Lowe (2001) and, more recently, Huizinga and
Laeven (2019). For how the Spanish “dynamic provisioning” addressed this procyclicality pre-GFC, see
Jiménez et al (2017). The post-GFC introduction of EL provisioning on an international scale seeks
to improve the timeliness of banks’ provisions (Cohen and Edwards, 2017).
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quarters in advance. The essential elements that distinguish our empirical framework
from that of the “sceptical” literature and deliver reliable forecasts are: first, using
forecast variables with a good track record as early warning indicators of banking crises
and, second, forecasting first and second moments jointly. Moreover, we also show that
our forecasts are countercyclical not only in the context of the credit-risk cycle but
also in that of the business cycle. While this result arises on the basis of real-time EL
and UL forecasts – reflecting joint one-step estimates of the first and second moments
of loss rates – Chae et al (2018) reach a similar conclusion for EL only when there is
perfect foresight about a macroeconomic variable (a house-price index) with information
content about loss rates. In turn, Lu and Nikolaev (2020) construct accurate out-of-
sample EL estimates from a large set of forecasting variables.

To the best of our knowledge, we propose the first UL forecasts for a loan portfolio.
Our exercise is inspired by the literature on early warning indicators of banking crises
(Detken et al, 2014, Tölö et al, 2018, and Aldasoro et al, 2018). By identifying such
indicators of reasonable reliability, this literature provided the intellectual impetus for
the countercyclical capital buffer in bank regulation (BCBS, 2017). Our results show
that some of these indicators underpin the success of direct UL forecasts.

Should banks be expected to develop and use accurate long-horizon forecasts of loss
rates, such as the ones in this paper? Literature on the inherent procyclicality of the
financial system suggests that private incentives probably get in the way (Borio and
Zhu, 2008, and Gorton and Ordoñez, 2014). It is in banks’ interest to ride on and
contribute to credit booms for as long as these last and then pass on losses to the
public purse in system-wide busts (Acharya, 2009). Thus, even if banks have accurate
long-horizon forecasts at their disposal, public policy measures may be needed to ensure
that such forecasts actually underpin loss-absorbing resources.

Roadmap. Section 2 fixes ideas with a simple theoretical setup that delivers time-
varying expected and unexpected losses and allows for studying attendant forecasts.
Section 3 develops the empirical framework. Then Section 4 applies this framework
to US data, assesses the accuracy of the forecasts and relates them to business-cycle
indicators. Section 5 concludes. The appendices contain proofs of theoretical results
and technical aspects of the empirical strategy.
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2 Theoretical model

We consider two banks with loan exposures. Each bank uses all its available information
to derive expected losses (EL) and unexpected losses (UL), or the difference between
the (1− α) quantile of the loss distribution and EL. And it sets provisions and capital
equal to the perceived EL and UL, respectively. Since the sum of provisions and capital
amounts to loss absorbing resources (LAR), each bank perceives its own probability of
default (PD) as equal to α.5 While the above elements match the model underpinning
bank regulation, we extend this model by introducing time variation in the probability
distribution of losses. And we assume that, in case a bank defaults, an identical bank
replaces it, facing the same loss distribution that the defaulted bank would have faced.
In this setting, we study the interplay of perceived EL and UL, both over time and
across different information sets.

In each period t, the loan portfolio is asymptotic and composed of homogeneous
loans, with each loan subject to two systematic and one idiosyncratic risk factors. It
is asymptotic in the sense that the number of constituent loans approaches infinity,
n → ∞. The loans are homogeneous in the sense that each one is of size 1/n and has
the same probability of default (PD), which can vary over time. A borrower j defaults

on its loan in period t if the realisation of its stochastic assets, ρ (It)Gt+
√

1− ρ (It)
2Zj,t,

is below a threshold d (It). The systematic and idiosyncratic risk factors Gt and Zj,t are
standard normal variables that are mutually independent and i.i.d. over time. Since
the realization of Gt influences the likelihood of joint loan defaults, we refer to it as the
“default clustering” factor. The other systematic factor, It, influences the probability
of individual default, through d (It), and the loading on the default-clustering factor,
ρ (It) ∈ (0, 1). It is binary, capturing turning points between boom (It = 0) and bust
phases (It = 1) of the financial cycle. We will refer to It as the “phase switching” factor.
For parsimony, we set loss-given-default to 100% for all borrowers.

Since the effect of idiosyncratic factors washes out in the aggregate, portfolio-level
5For our purposes, it does not matter whether α is set strategically by the bank or stems from

regulatory requirements. The internationally agreed regulatory standards, Basel III (BCBS, 2017),
target explicitly α = 0.001 over a one-year horizon under the internal ratings-based approach for
credit risk.
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losses depend only on the systematic factors:6

Λ (Gt, It) = Φ

d (It)− ρ (It)Gt√
1− ρ (It)

2

 , (1)

where Φ stands for the standard normal CDF. And since a portfolio’s size is 1, portfolio
losses are equal to the loan-loss rate. If a bust is to generate higher losses for any
realisation of Gt, then d (0) < d (1) or ρ (0) < ρ (1).

2.1 Alternative information settings

In order to zoom in on the implications of forecasting the financial cycle, we assume
that It is inherently forecastable, whereas Gt is not. We then differentiate the banks
in terms of their capacity to forecast It. Thus, for instance, anticipating a bust would
translate into higher EL and UL because of adjustments to the perceived d (It) and
ρ (It), as opposed to adjustments related to Gt.

Concretely, the two banks differ in terms of the information they have when setting
LAR at the beginning of any period t. Each information set comprises full knowledge of
the model parameters and the stochastic properties of the systematic factors, {Gt, It}.
The difference stems from what banks know about the phase in period t. One of the
banks sets LAR for period t on the basis of complete knowledge (CK) of the phase
It = ιt. This is the CK bank. The other bank’s date-t information set contains only
past realizations of the risk factors, of which only the latest phase, ιt−1, has useful
content. From the perspective of this “incomplete knowledge” – or IK – bank, the
likelihood that phase ιt−1 prevails in t is equal to π (ιt−1) ∈ (0, 1).7

6Gordy (2003) provides the theoretical underpinnings of the asymptotic single risk-factor model,
which features only Gt and Zj,t. That paper imposes weak conditions on the shape, continuity and
differentiability of these factors’ distribution functions and delivers an expression similar to (1).

7A similar Markov switching setup underpins studies of the effects of ratings-sensitive capital re-
quirements on banks’ capital buffers over the business cycle (see Peura and Jokivuolle (2004) and
references therein). While a more complex perceived distribution of the loss rate would emerge from
assuming that the only information about the phase stems from the history of loan losses, this would
not alter the qualitative implications of different knowledge about the phase.
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2.1.1 Complete knowledge

A CK bank conditions on ιt and sets LAR to cover the realisation of losses when Gt is
at its α-percentile:

Λα,CK (ιt) = Φ

d (ιt)− ρ (ιt) Φ−1 (α)√
1− ρ (ιt)

2

 . (2)

In turn, the expected loss rate is equal to the probability of loan default:

ELCK (ιt) = Φ (d (ιt)) . (3)

Finally, the unexpected loss rate perceived by the CK bank is ULα,CK (ιt) = Λα,CK (ιt)−
ELCK (ιt).

2.1.2 Incomplete knowledge

An IK bank’s LAR, Λα,IK (ιt−1), is the implicit solution of the following equation in
terms of Λ:

π (ιt−1) Φ

d (ιt−1)−
√

1− ρ (ιt−1)2Φ−1 (Λ)

ρ (ιt−1)

 (4)

+ (1− π (ιt−1)) Φ

d (ι˜t−1

)
−
√

1− ρ
(
ι˜t−1

)2
Φ−1 (Λ)

ρ
(
ι˜t−1

)
 = α.

where ι˜t−1 is the value of I that did not materialize in period t− 1. The left-hand side
of this expression is equal to the probability of losses exceeding Λ, as perceived by the
IK bank (Appendix A).

Further, the IK bank perceives an expected loss rate equal to

ELIK (ιt−1) = π (ιt−1) Φ (d (ιt)) + (1− π (ιt−1)) Φ
(
d
(
ι˜t
))

(5)

and an unexpected loss rate equal to ULα,IK (ιt−1) = Λα,IK (ιt−1)− ELIK (ιt−1).
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Figure 2: Implications of missing a turning point. The two states under each set of bars
correspond to ιt−1 and ιt, respectively. A bank’s PD refers to ιt. The underlying parametrization
is: pd(0) = 2%, pd(1) = 6%, α = 0.1%, π(0) = 95%, π(1) = 66%, ρ =

√
0.01 (left-hand panel) and

ρ =
√

0.2 (right-hand panel).

2.2 Failing to forecast phase switches

To illustrate consequences of failing to foresee a switch from one financial-cycle phase
to another, we compare the two banks’ PDs from the perspective of the CK bank, that
is from the perspective of the best attainable information set. For concreteness, we
focus on a scenario where the latest phase is a boom, i.e. ιt−1 = 0. The implications
are symmetric for ιt−1 = 1. The underlying proofs are in Appendix A.

While the CK bank’s PD is always α, the IK bank’s can be lower or higher (Figure
2). Concretely, the latter PD is below target if the boom phase continues (boom-boom
scenarios: dots below diamonds) and above target if there is a switch to a bust (boom-
bust scenarios). This reflects LAR excesses, respectively shortfalls. The shortfalls are
largest when the boom-to-bust switch entails both higher probabilities of loan defaults
and higher loadings on the default-clustering factor, ρ (ι) (right-hand panel).

More interestingly, an IK bank with a lower through-the-cycle loading on the
default-clustering factor has a higher PD. To derive this result, we set ρ (0) = ρ (1) = ρ

and conduct comparative statics with respect to ρ. The result is illustrated in Figure
2, as the boom-bust dot in the left-hand panel is above that in the right-hand panel.
The underlying intuition is as follows. A lower ρ implies that phase-contingent losses
are more certain, i.e. that ULα,CK and ULα,IK are lower, which leads to lower capital
levels in the left-hand panel than in the right-hand panel. The flip side of this is a
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lower likelihood that the unforecastable default-clustering factor (Gt) would undo the
implications of missing a phase switch (It). Thus, when the phase-contingent losses are
more certain, it is also more certain than missing a phase switch would be detrimental.

The literature has established some stylized facts on how the importance of the
clustering factor changes with the portfolio type. This importance surfaces in the data
as correlations of borrowers’ asset returns.8 Düllmann et al (2007), Zhang et al (2008)
and Bams et al (2012) measure such correlations and deliver the following takeaway: the
importance of the clustering factor is lower in portfolios comprising exposures to smaller
or riskier entities. Given this, our theoretical model implies that – all else the same –
IK banks holding such portfolios would have a larger LAR shortfall in a boom-to-bust
switch.

2.3 Theoretical motivation of the empirical analysis9

Despite its extremely stylized nature, the theoretical model captures salient features of
both credit loss rates and existing real-time forecasts of these rates. Similar to Figure 2,
real-world loss rates tend to undergo distinct boom-bust phases, with abrupt switches
from low to materially higher levels and vice-versa (Figure 1, left-hand panel, solid
lines). In turn, consistent with the message of Figure 1 (right-hand panel), much of
the literature has delivered real-time forecasts that miss the turning points of phase
switches (Covas and Nelson, 2018, Krüger et al, 2018, and Abad and Suárez, 2017).
Reminiscent of the IK bank, these forecasts result in LAR shortfalls when banks enter
a bust phase and excesses when they exit this phase.

Seen through the prism of the theoretical model, a key objective of our empirical
exercise below is to show that it is possible to enrich the information set of the IK bank
in order to improve its forecasts of phase switches. Such an improvement – based on
information in addition to the latest observed phase ιt−1 – would imply that the IK
bank would perceive the probability of remaining in a boom as evolving over time and
increasing in the run-up to a switch. Symmetrically for the probability of remaining
in a bust. Effectively, the IK bank’s perceptions of both ELIK and ULa,IK – and the
corresponding provisions and capital – would line up more closely with those of the CK
bank, ELCK and ULa,CK .

8In contrast to this literature, which employs borrower-level evidence, the data we employ below is
at the portfolio level and do not allow us to derive the relative role of different factors.

9See Appendix A for proofs of statements in this subsection.
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The direction of such an alignment may differ between EL and UL, depending on the
loan portfolio. Granted, an improvement of the IK bank’s forecasts is sure to increase
the perceived EL prior to a boom-to-bust switch (Figure 2, either panel, provisions in
boom-bust scenario). However, the IK bank may adjust its perception of UL either up
or down. The reason is that, from the perspective of this bank, UL is driven not only
by the unforecastable default-clustering factor Gt but also by uncertainty as regards the
phase-switching factor It. And when the latter uncertainty is sufficiently high relative
to the loading on Gt, the IK bank would perceive a higher pre-bust UL than the CK
bank (Figure 2, left-hand panel, capital in boom-bust scenario). From such an initial
condition, aligning the IK bank’s perceptions with those of the CK bank entails a
decline in ULa,IK . Conversely, if the loading on Gt is sufficiently high relative to the
uncertainty about It, then ULa,IK increases in order to approach ULa,CK (right-hand
panel, capital in boom-bust scenario). All this underscores that an improvement to the
phase-switching forecasts needs to be applied consistently to EL and UL.

The ultimate reason for forecasting EL and UL jointly stems directly from equation
(1), which indicates that realized losses (Λt) are the joint outcome of the default clus-
tering factor (Gt) and the phase-switching factor (It). This suggests that an accurate
forecast of It (and thus EL) is essential for deriving reliable estimates of the real-world
distribution of Gt (and thus UL) on the basis of loss data. But it also suggests that the
relationship runs in the other direction as well: UL forecasts would determine which EL
forecasts are consistent with observed loss rates.

3 Framework for loss forecasts and their evaluation

The empirical framework for estimating a loan portfolio’s loss distribution bears sim-
ilarities and differences with the stylized theoretical model in the preceding section.
Similar to that model, we will break down the estimates of LAR into EL and UL esti-
mates. For the former, we will forecast the level of loss rates at different horizons and
– using standard assumptions about the portfolio’s amortization – will combine these
first-moment forecasts into an estimate of the cumulative EL over the life of the portfo-
lio. Importantly, the first-moment exercise will provide essential input into our forecasts
of horizon-specific squared forecast errors (second moments). Prompted by our theoret-
ical model, we will verify whether there are benefits in the other direction: whether the
joint estimation of first and second moments improves the quality of the former. Then,
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relying on identification conditions, we will use the second-moment forecasts to con-
struct the portfolio’s lifetime cumulative UL. Given the pronounced boom-bust pattern
of realized loss rates, we will pay close attention to the extent to which our forecasts
match turning points in the data.

The empirical object of ultimate interest is the lifetime loss rate, Λt. On each date
t, Λt depends on: the length of the portfolio’s (remaining) life, M , i.e. the number of
periods (henceforth, quarters) it takes for the principal, Lt, to reach zero; the quarterly
loss rates, µt+h, taking place h quarters into the future, where h ∈ {1, ...,M}; and the
remaining principals at the beginning of the corresponding quarters, Lt+h−1. Concretely,
Λt = (1/Lt)

∑M
h=1 Lt+h−1µt+h.

3.1 First moments: forecasting expected losses

The goal of our first-moment forecasts is to generate the expected lifetime loss rate, Λet .
To this end, we follow the spirit of FASB (2016) and implement two simplifications.10

First, we assume a deterministic linear rundown of the portfolio, lt+h ≡ Lt+h/Lt =

(1− h/M), which implies that

Λet =
M∑
h=1

(
1− h− 1

M

)
µet+h|t (6)

where µet+h|t is the date-t expectation of the quarterly loss rate materialising h quarters
into the future.11 Second, we recognise that the maximum horizon at which the data
allow for meaningful forecasts – i.e. µ̂t+h|t, where h = 1, ..., H – would typically be
shorter than the time to maturity: H < M . Beyond H, we assume that the loss rates
converge linearly and deterministically to their long-term average, µ, over N quarters
and remain at this level thereafter. Concretely, this implies the following structure for

10See in particular paragraphs 326-20-30-8 and 326-20-30-9.
11Equation (6) incorporates two further simplifications. First, it does not include discounting, as

permitted by FASB (2016), paragraph 326-20-30-3. This simplification allows for a more transparent
comparison between forecasted and realized lifetime loss rates. Second, we abstract from the fact that
the run-down of the portfolio would reflect defaults. One way of modelling this would have been to
set lt+h = (1− h/M)

∏h
i=1 (1− µt+i). This would have implied that Λt is a non-linear function of

quarterly loss rates, µt+h, thus overburdening the forecasting exercise with higher moments that are
of second-order in the context of equation (6).
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the expected quarterly loss rates:

µet+h|t =


µ̂t+h|t forh = 1, ..., H(
1− h−H

N

)
µ̂t+H|t +

(
h−H
N

)
µ forh = H + 1, ..., H +N

µ forh = H +N + 1, ..., M

. (7)

Thus, our task reduces to obtaining the forecasts µ̂t+h|t for each h = 1, ..., H, which
we do by estimating the following econometric model (Jordà, 2005):

µt+h|t =
K∑
k=0

(
βh,kµt−k + γ′h,kzt−k

)
+ υt+h|t, (8)

whereK determines the forecast-variable lag, and zt includes a constant and can include
additional forecast variables either directly or as non-linear transformations.12 When
the standpoint is quarter T and the horizon is h, we use only the relevant realizations of
the forecast variables available until then, {zt}t∈{T0,...,T−h}, to obtain β̂h,k and γ̂

′
h,k, which

then lead to the following real-time forecast: µ̂T+h|T =
∑K

k=0

(
β̂h,kµT−k + γ̂′h,kzT−k

)
.13

The forecast error is υ̂T+h|T = µT+h − µ̂T+h|T .

3.2 Second moments: forecasting the variance of forecasting er-

rors

The variance of the errors in the forecast of lifetime loss rates is:

var (Λt − Λet ) = E
(
l′t..t+M−1υ̂t+1..t+M υ̂

′
t+1..t+M lt..t+M−1

)
(9)

= l′t..t+M−1E
(
υ̂t+1..t+M υ̂

′
t+1..t+M

)
lt..t+M−1

≡ l′t..t+M−1Ωtlt..t+M−1,

where lt..t+M−1 = (lt, ..., lt+M−1)′, υ̂t+1..t+M =
(
υ̂t+1|t, ..., υ̂t+M |t

)′, and Ωt is the covari-
ance matrix of quarterly forecast errors over the entire life of the loan. We estimate
first the diagonal of Ωt, thus obtaining the diagonal matrix diag

(
Ω̂t

)
, and then the

12Since we use direct rather than recursive forecasts based on e.g. a linear VAR system for h > 1, it
is also straightforward to replace (8) with a non-linear forecasting function. However, an additive error
term is necessary for applying the approach in Section 3.2 to second-moment forecasts. We consider
one such specification in Appendix C, Table C.4.

13We use T to denote the timing of a forecast and t as a generic index of time.
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off-diagonal terms.
The diagonal terms of Ωt are equal to the potentially time-varying variances E(υ̂2

t+h|t),
for h = 1, ..., H, and – given the assumed deterministic reversion of loss rates in (7) –
to 0 for h = H + 1, ...,M . For h = 1, ..., H, we base our forecasts on wt, which may
but need not be the same as the variable(s) underpinning first-moment forecasts, zt.
Concretely, we follow Harvey (1976) in assuming multiplicative heteroskedasticity of
the following form:

E(υ̂2
t+h|t) = exp

(
K∑
k=0

(
δ′h,kµt−k + θ′h,kwt−k

))
, (10)

where wt contains a constant. Ultimately, from the standpoint of quarter T and for a
given horizon h = 1, ..., H, we estimate jointly (8) and (10) using {zt}t∈{T0,...,T−h} and
{wt}t∈{T0,...,T−h}. This delivers, inter alia, the (h, h) element of the diagonal matrix of

variances: diag
(

Ω̂T

)
h,h

= exp
(∑K

k=0

(
δ̂′h,kµT−k + θ̂′h,kwT−k

))
.

To estimate the off-diagonal terms of Ωt, we need an identifying restriction. Specif-
ically, we assume that the correlation between forecast errors for horizons h1 and h2 is
time invariant – corr

(
υ̂t+h1|t, υ̂t+h2|t

)
= ρj, where j = h1 − h2 > 0 – and then confirm

that this assumption is borne out in the data.14 Then, denoting corr (υ̂t+1..t+M) by Θ,
it follows that Θ = (diag (Ωt))

− 1
2 Ωt (diag (Ωt))

− 1
2 , which delivers the second-moment

forecast that we are after:

Ω̂t =
(
diag

(
Ω̂t

)) 1
2

Θ̂
(
diag

(
Ω̂t

)) 1
2 (11)

Thus, the only remaining estimate we need is of the correlation matrix, Θ̂. From the
standpoint of quarter T , we obtain Θ̂ on the basis of the entire relevant set of in-sample
forecast errors,

{
υ̂t+h|t

}
t∈{T0,...,T−H}

.

3.3 Forecast evaluation

Focusing on one horizon, h, at a time, we evaluate our forecasts on the basis of four
metrics. The first two metrics capture the general match between forecasts and the
corresponding realizations: root mean squared error (RMSE) and correlation. The
other two capture the capacity of forecasts to signal turning points: the number of

14See Appendix C, Figure C.4.
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excessive/insufficient turning points in the forecasted relative to the realized series, and
the average distance between the turning points in these series.15

Since the latter two metrics are nonstandard, we explain them in the rest of this
sub-section, focusing on first moments for concreteness. For the excessive/insufficient
turning points, we first identify peaks and troughs in the realized series. By the Harding
and Pagan (2002) algorithm, there is a peak at t if

µt−P , ..., µt−1 < µt > µt+1, ..., µt+P ,

where P determines the identification window. A trough is identified with the inequal-
ities reversed. And we apply the same criteria to the forecasted series,

{
µ̂t+h|t

}
t
, for

each horizon h ∈ {1, ...H}. The absolute value of the difference between the number
of identified peaks and troughs in the realized series and that number in the forecasted
series delivers the metric “excessive/insufficient turning points” for each h. It would be
zero for the ideal forecast.

To assess the alignment between the forecasted and realized peaks and troughs, we
construct the average standardized distance between peaks and troughs. To this end,
we align the time series of realized loss rates {µt}t with the corresponding forecast,{
µ̂t|t−h

}
t
, for h ∈ {1, ..., H} . Given this alignment, we start from a peak (trough) in

the series of forecasts and determine the minimum between (i) the time distance to
the nearest peak (trough) in the realized series, and (ii) the forecast horizon, h. We
then divide this minimum by h and average across all peaks/troughs in the series of
forecasts. The resulting standardized metric ranges from the ideal value of 0 to 1. At
the latter value, forecasts do not provide any information about turning points.

In order to assess the performance of forecasts as signals of turning points, it is
necessary to consider the latter two metrics jointly. This is because the “distance”
metric is depressed (respectively, inflated) artificially if there are excessive (respectively,
insufficient) peaks/troughs.

15More standard measures of signaling capacity, such as the Area Under the Receiver Operating
Characteristic, cannot be meaningfully applied in our context, as there are too few peaks and troughs
in the loss rates over our prediction sample.
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4 Application

We apply our empirical framework to quarterly US data from 1985q1 to 2019q2.16 We
start from a training sample consisting of the first 15 years of observations, 1985q1-
1999q4, and then expand it by one quarterly observation at a time to generate our
(pseudo) real time forecasts. In line with the literature (Covas and Nelson, 2018,
and Loudis and Ranish, 2019), we set the maximum forecast horizon to three years
(H = 12), the transition period to two years (N = 8) and the maturity of the portfolio
to 7.5 years (M = 30).17 With these choices, our first forecasts for the quarterly losses
are µ̂00q1|99q4,..., µ̂02q4|99q4.

The loss-rate data are quarterly charge-off rates at different levels of portfolio ag-
gregation. For our benchmark analysis, we consider net charge-off rates (i.e. gross
charge-offs net of recoveries) on loans to the total private non-financial sector. Then, to
shed further light on our results, we also consider charge-off rates on sub-portfolios of
specific loan types. The exact definitions and sources for all data series are in Table B.1,
Appendix B.

We consider eight (candidate) forecast variables. These include variables that have
been extensively used to forecast credit loss rates: the unemployment rate (URt), an
output gap measure (OGt), a corporate credit spread (CSt), a term spread (TSt), an
(ex-post) real short-term interest rate (RIRt), and a volatility index (V XOt).18 VXO
is almost identical to the better-known VIX (correlation 0.99) but is available over
a longer period. We also include three financial cycle indicators that have exhibited
good early warning properties for banking crises: the debt service ratio (DSRt), the
credit-to-GDP gap (C2Yt) and the house price gap (HPGt).

In applying our empirical framework to these data, we proceed as follows. When
forecasting a variable, we always consider its two latest (auto-regressive) observations.
Then, outside robustness exercises, we add the two latest observations of only one
forecast variable at a time for first-moment forecasts and a potentially different forecast

16The methodology could also be applied to forecasting non-performing loan (NPL) rates. Gambera
(2000) obtains first-moment NPL forecasts from both direct and iterative methods. They find that
linear specifications, employing a small set of variables, deliver reliable out-of-sample forecasts over
short horizons, up to two quarters. That said, much of the related literature seeks to identify NPL
determinants in-sample (see Ghosh (2015) and references therein).

17Drehmann and Juselius (2012) find that the remaining maturity on the stock of US private non-
financial sector loans is about 10 years (40 quarters) on average. With discounting, the effective
remaining maturity is shorter. By setting M = 30 quarters, we proxy for the effect of discounting.

18We also considered growth rates of real credit, real GDP, real house prices and real equity prices.
The performance of these variables is poorer than that of those we use.
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variable for second-moment forecasts. The lag parameter in equations (8) and (10) is
thus K = 1.

We settle on the ultimate forecasts through the following steps. We start with purely
first-moment forecasts to inform ourselves on how to proceed for the joint forecasts of
first and second moments. Namely, our preliminary exercise is to derive first-moment
forecasts on the basis of equation (8) or a non-linear variant and a battery of forecast
variables. Then, we evaluate the forecasts of the alternative models, as outlined in
Section 3.3. Since the second moments are squared errors in the first-moment forecasts,
it is important to avoid using poor first-moment forecasts, which would distort the
forecast errors. Thus, keeping only the best first-moment model from the preliminary
exercise, we move to a joint forecast of first and second moments, i.e. equations (8) and
(10). At this stage, we explore alternative second-moment forecast variables and identify
the best joint first- and second-moment forecasts, again on the basis of the evaluation
metrics in Section 3.3. Lastly, we aggregate the chosen first-moment forecasts to derive
a time series of EL over the lifetime of the bank’s portfolio – per equation (6) – and
use the chosen forecasts of the lifetime portfolio variance – per (11) – to construct the
lifetime UL.

4.1 First moments: forecasting quarterly loss rates

We explore sequentially linear and non-linear models of the level of quarterly loss rates.

4.1.1 Linear specification

In our linear specifications, the regressors zt in equation (8) are untransformed forecast
variables. For a visual assessment of the results, we focus on a subset of the forecast vari-
ables zt and plot the time series of the forecasts they deliver alongside the corresponding
realized loss rates in Figure 3. We then examine more formally the performance of each
zt in Table 1. To avoid cluttering these and similar figures and tables below, we report
results only for h ∈ {1, 4, 8, 12}.19 And, in order to filter out high-frequency outliers,
we identify peaks and troughs on the basis of two-year windows, i.e. setting P from
Section 3.3 to 8.

As a benchmark, we start with forecasts obtained from a purely auto-regressive
specification. Given the persistent boom-bust phases in the realized loss rates and

19For example, for h = 4, the series is µ̂h=4 = (µ̂00q4|99q4, µ̂01q1|00q1, ..., µ̂19q2|18q2)′.
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Figure 3: First moments. Realized and forecasted quarterly loss rates based on OLS estimates of
equation (8) with lag parameter K = 1. The forecast variable in zt is: DSRt = debt service ratio,
OGt = output gap, or TSt = term spread. An observation in quarter t is equal to: a real-time forecast
formed at T = {t− 4, t− 8, t− 12} or the corresponding realization at t.
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zt : – DSRt C2Yt HPGt URt OGt CSt TSt RIRt V XOt

h Root mean square error
1 0.13 0.14 0.13 0.13 0.13 0.12 0.13 0.13 0.14 0.13
4 0.46 0.47 0.45 0.48 0.44 0.40 0.42 0.47 0.54 0.45
8 0.70 0.69 0.70 0.63 0.67 0.73 0.71 0.64 0.76 0.72
12 0.81 0.71 0.75 0.85 0.79 0.85 0.82 0.71 0.88 0.89

Correlation (realized vs. forecasted)
1 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98
4 0.75 0.79 0.77 0.74 0.78 0.82 0.80 0.75 0.68 0.77
8 0.27 0.60 0.44 0.53 0.41 0.22 0.27 0.58 0.35 0.17
12 0.00 0.58 0.43 0.29 0.11 -0.06 0.06 0.40 0.13 -0.22

Excess/insufficient turnings
1 0 0 0 0 0 1 1 1 1 1
4 2 0 1 3 1 0 2 1 2 2
8 2 0 1 1 0 1 2 2 1 2
12 2 0 1 1 0 3 2 1 1 2

Standardized average distance
1 0.75 0.75 0.75 1.00 0.75 0.50 1.00 0.75 1.00 0.75
4 1.00 0.92 1.00 0.42 1.00 0.42 0.50 0.58 0.58 0.67
8 0.88 0.42 0.46 0.58 0.79 0.79 0.88 0.38 0.63 0.88
12 0.69 0.17 0.83 0.69 0.53 0.44 0.61 0.50 0.28 0.67
# best 1 8 1 3 3 7 0 2 0 0

Table 1: First moments. Evaluation of forecasted quarterly loss rates based on OLS estimates of
equation (8) with lag parameterK = 1 and horizon h as indicated. The forecast variable in zt is: DSRt

= debt service ratio, C2Yt = credit-to-GDP gap, HPG = house price gap, URt = unemployment rate,
OGt = output gap, CSt = corporate bond spread, TSt = term spread, RIRt = real interest rate,
or V XOt = volatility index. The row “# best” counts the number of times an indicator is the best
performer (boldface values).

the abrupt switches between these phases, these forecasts tend to miss turning points.
This is visible quite clearly in the time series plots (Figure 3, top left-hand panel)
and is then confirmed by the four metrics in Table 1 (first column). While the “auto-
regressive” forecasts are highly correlated with realized loss rates at the short horizons,
the correlation deteriorates substantially for h > 4. At such horizons, the purely auto-
regressive forecasts miss two turning points completely and flag the other ones with
material lags (the distance metric is close to 1).

The debt service ratio (DSR) stands out with its forecasting performance of the level
of loss rates.20 Visually, the DSR-based forecasts help improve on the auto-regressive

20Relatedly, Banerjee and Kharroubi (2020) find that debt service burden at the sectoral level is an
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specifications by matching better turning points in realized loss rates at all horizons
(Figure 3, top right-hand panel). In comparison, any gains of the OG- or TS-based fore-
casts are difficult to detect (bottom, left-hand panel). That said, the plots reveal that
no forecast accounts for the full swing of loss rates during the GFC and all underpredict
these rates’ post-GFC levels.

In terms of the evaluation metrics (Table 1), the overall top performer is DSR
(second column), featuring the best score in 8 out of the 16 cases. DSR-based forecasts
have low RMSEs, are highly correlated with realized loss rates, and identify the exact
number of turning points. Importantly, the (standardized) distance between forecasted
and realized turning points declines as the horizon increases, indicating that the DSR
detects turning points well in advance. For its part, OG outperforms at the short
horizons (sixth column). Since most variables fare well at such horizons, however, the
gains of the OG-based forecasts are modest.

The performance of the other variables is quite patchy. That of the credit-to-GDP
gap is consistent – even if mediocre – across most horizons but breaks down at the
longest ones, e.g. h = 12. The term spread (TS) performs similarly as the DSR in
terms of RMSE and the correlation metric but its quarter-to-quarter volatility results
in it flagging too many peaks and troughs (Table 1, eighth column). We also see why
Krüger et al (2018) are quite sceptical about real-time loss-rate forecasts: closely related
to the VIX that they focus on, VXO is among the worst performers in our exercise (last
column).

Since the best performers in Table 1 change with the metric and the horizon, dif-
ferent forecast variables may carry complementary information about loss rates. We
thus examine forecasts based on multi-variate versions of zt. We report the results in
Figure C.1 and Table C.1 in Appendix C.

The gains of combining several variables are modest at best, not least because such
combinations do not lead to better forecasts of the magnitude of losses during the
GFC and continue to underpredict post-GFC losses. Concretely, we first examine a
specification that combines the best performers at specific horizons in Table 1, ie the
debt service ratio, the output gap and the term spread (Table C.1, second column). This
does not yield any substantive gains over forecasts based only on the debt service ratio
(first column). We then consider a specification that combines the unemployment rate,
the output gap and the house price gap (third column), akin to the exercise in Covas and

(in-sample) predictor of firm exits.
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Nelson (2018). Given this paper’s pessimism as regards real-time loss-rate forecasts, it
is hardly surprising that these forecast variables deliver subpar performance, especially
in the case of signaling turning points. Finally, in order to consider all forecast variables
discussed in Krüger et al (2018), we add the credit spread, the term structure and the
volatility index to the latter specification (fourth column). But this actually decreases
forecasting accuracy and adds high frequency noise to the forecasts, highlighting the
implications of in-sample overfitting.

4.1.2 Non-linear specifications

Next we allow for a non-linear relationship between forecast variables and loss rates,
possibly due to amplification mechanisms that play out only in specific financial en-
vironments, corresponding to specific levels of the forecast variables. Concretely, we
revert to considering a single forecast variable (in addition to auto-regressive terms),
and estimate three specifications. In the first two, we let the relationship between loss
rates and the forecast variable be, respectively, quadratic and asymmetric around the
forecast variable’s real-time mean. The third specification – which we estimate with
non-linear least squares – features an exponential forecasting function and an additive
error term. Tables C.2-C.4 in Appendix C define each specification and report the corre-
sponding results. The bottom line is that these richer specifications do not consistently
deliver better forecasts of loss rates, even though they introduce greater complexity.

In sum, simple models, based on auto-regressive terms and a single forecasting
variable forecast well the turning points of realized loss rates at long horizons. However,
neither these nor more elaborate specifications – which generate limited and inconsistent
improvements – succeed in matching the amplitude of loss-rate swings. These swings
may thus be related to the inherently unexpected part of the loss process – e.g. its
second moments – which we investigate next.

4.2 First and second moments: forecasting jointly quarterly loss

rates and forecast errors’ variances

The stylized theoretical model underscores benefits of forecasting second moments. For
one, it implies that second and first moments rise in tandem: that is, predictability de-
clines exactly when the expected level rises. Thus, the poor match between forecasted
and realized first moments during the GFC should not be surprising and should mo-
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Figure 4: First moments (estimated jointly with second moments). Realized and forecasted
quarterly loss rates based on joint maximum likelihood estimation of equations (8) and (10) with lag
parameter K = 1. The forecast variables (in addition to auto-regressive terms) are: DSRt = debt
service ratio (in zt for first moments) and DSRt, C2Yt = credit-to-GDP gap, HPGt = house price
gap, or OGt = output gap (in wt for second moments). An observation in quarter t is equal to: a
real-time forecast formed at T = {t− 4, t− 8, t− 12} or the corresponding realization at t.

tivate second-moment forecasts. In addition, the model suggests that studying second
moments should generate useful information for first-moment forecasts. The empirical
exercise to which we turn next reveals that this is indeed borne out in the data.

For our joint first- and second-moment forecasts, we apply the maximum-likelihood
estimator of Harvey (1976) simultaneously to (8) and (10). Given the results in the
previous section, we set zt = DSRt in (8) and then consider sequentially each of the
eight forecast variables for wt in (10). We report the time series of forecasted quarterly
loss rates and error variances, together with the corresponding actual observations, in
Figures 4 and 5. The assessment metrics are in Table 2.

While the performance of second-moment forecasts varies across horizons (Figure
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Figure 5: Second moments (estimated jointly with first moments). Realized and forecasted
squared errors in first-moment forecasts based on joint maximum likelihood estimation of equations
(8) and (10) with lag parameter K = 1 and horizon h as indicated. The forecast variables (in addition
to auto-regressive terms) are: DSRt = debt service ratio (in zt for first moments) and DSRt, C2Yt =
credit-to-GDP gap, or OGt = output gap (in wt for second moments). An observation in quarter t is
equal to: a real-time forecast formed at T = {t− 4, t− 8, t− 12} or the corresponding realization at t.

5), the joint estimation improves visibly the first-moment forecasts (compare Figures
3 and 4). The latter is in particular the case for first-moment forecasts based on the
debt service ratio, the credit to GDP gap, or the property price gap. The improvement
comes mostly from post-GFC quarterly loss rates being no longer under-predicted. In
parallel, most – but not all – of the plots in Figure 5 reveal a reasonable match between
the high level of squared errors during the GFC and their real-time forecasts.

The evaluation metrics in Table 2 confirm that the joint first- and second-moment
estimation improves the performance of first-moment forecasts. This is seen by com-
paring the upper part of Table 2 with the second column of Table 1 (where we forecast
only first moments on the basis of zt = DSRt). The improvement is strongest when
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the accompanying second-moment models employ one of the financial cycle measures:
debt service ratio, credit-to-GDP gap or property price gap. All of these specifications
lead to: a decline in RMSEs; an increase in the correlation between realized and fore-
casted losses, especially at the longer horizons; and a preservation or improvement of
the already good turning-point identification. Using other variables for second-moment
forecasts does deliver some improvements – notably, in the case of the output gap or
the term structure – but only at the shorter horizons.

To assess the performance of second-moment forecasts, we need to refer to (model-
dependent) squared forecast errors, as the actual variances are not observable. In this
case, we use only two metrics: the RMSE and the correlation between realized and
forecasted series (Table 2, lower part). The other two metrics are uninformative (and
thus unreported), as squared forecast errors are too erratic to allow for a meaningful
identification of turning points.

The best second-moment forecasts condition on the debt service ratio (DSR) or
the credit-to-GDP gap (C2Y). The DSR-based forecasts are particularly impressive at
the longer horizons, where they deliver the lowest RMSE and the highest correlation
metric. While these forecasts are also decent at the shortest horizons, they break down
at intermediate horizons, at which they deliver negative correlations between forecasted
and realized series. By contrast, C2Y underpins consistently good results across all
horizons, with a correlation metric above 60% for 8-quarter forecasts.

We conclude this subsection with an assessment of the statistical significance and
stability of the coefficients in two forecast models, both employing DSR for the first mo-
ments, and DSR and C2Y, respectively, for the second moments (Appendix C, Figures
C.2 and C.3). In the first-moment part of either model, the (sum of) auto-regressive
parameters and (the sum of) DSR parameters are fairly stable. In line with earlier
results indicating poor predictive power of the auto-regressive coefficients, these coeffi-
cients decline substantially with the horizon and become mostly (jointly) insignificant
at h = 12. By contrast, the DSR coefficients are significant and positive at all horizons
and throughout the forecast period, indicating that a high debt service ratio systemat-
ically predicts higher losses in the future. Turning to the second-moment parts of the
models, the auto-regressive coefficients are less stable than in the first-moment parts,
whereas the coefficients on the DSR and, especially, C2Y remain mostly stable, positive
and significant.
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zt : DSRt DSRt DSRt DSRt DSRt DSRt DSRt DSRt DSRt DSRt

wt : – DSRt C2Yt HPGt URt OGt CSt TSt RIRt V XOt

h Root mean square error
1 0.13 0.14 0.13 0.14 0.13 0.13 0.13 0.13 0.13 0.13
4 0.45 0.44 0.45 0.45 0.44 0.44 0.46 0.44 0.46 0.47
8 0.61 0.58 0.59 0.56 0.59 0.59 0.60 0.61 0.62 0.61
12 0.71 0.63 0.68 0.63 0.70 0.73 0.67 0.66 0.72 0.70

Correlation (realized vs. forecasted)
1 0.99 0.98 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.98
4 0.78 0.83 0.83 0.82 0.80 0.80 0.80 0.80 0.79 0.76
8 0.67 0.69 0.74 0.75 0.70 0.70 0.68 0.67 0.66 0.67
12 0.46 0.70 0.86 0.86 0.52 0.46 0.58 0.54 0.47 0.50

Excess/insufficient turnings
1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 2 0
12 0 0 2 0 0 0 2 0 0 0

Standardized average distance
1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
4 0.67 0.67 0.50 0.67 0.67 0.75 0.50 0.67 0.75 0.67
8 0.33 0.38 0.29 0.29 0.33 0.33 0.33 0.33 0.33 0.33
12 0.22 0.36 0.31 0.36 0.25 0.25 0.28 0.31 0.17 0.17

Quarterly variances, E(υ2
t+h)

Root mean square error
1 0.13 0.07 0.10 0.11 0.10 0.07 0.14 0.17 0.14 0.34
4 0.56 0.58 0.58 0.65 0.55 0.55 0.54 0.56 0.56 0.62
8 0.80 0.93 0.86 0.82 0.79 0.81 0.81 0.82 0.76 0.82
12 1.01 0.90 1.04 1.33 0.96 1.04 1.18 0.97 1.11 1.06

Correlation (realized vs. forecasted)
1 0.15 0.27 0.23 0.19 0.17 0.36 0.11 0.13 0.18 0.09
4 0.00 -0.01 0.21 -0.12 0.07 0.11 0.43 0.10 -0.04 0.04
8 -0.06 -0.07 0.64 -0.13 -0.06 -0.07 0.03 -0.17 -0.02 -0.11
12 -0.29 0.36 0.23 -0.11 -0.21 -0.26 -0.13 -0.13 -0.22 -0.27
# best 7 11 12 10 7 10 8 7 8 8

Table 2: First and second moments. Evaluation of forecasts based on joint maximum likelihood
estimates of equations (8) and (10) with lag parameter K = 1 and horizon h as indicated. The forecast
variables (in addition to auto-regressive terms) are: DSRt = debt service ratio (in zt for first moments)
and DSRt, C2Yt = credit-to-GDP gap, HPG = house price gap, URt = unemployment rate, OGt =

output gap, CSt = corporate bond spread, TSt = term spread, RIRt = real interest rate, or V XOt =
volatility index (in wt for second moments). The row “# best” counts the number of times an indicator
is the best performer (boldface values).
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4.3 Lifetime loss rates

As Sections 4.1 and 4.2 deliver respectively quarterly loss rates {µ̂t+h|t}t,h and the
attendant variance-covariance matrix {Ω̂t}t, we revert to Sections 3.1 and 3.2 to derive
loss forecasts over the loan portfolio’s lifetime, Λet , and the lifetime variance of these
losses. In this section, we study the properties of two versions of Λet and lifetime variance
estimates. For each version, we estimate first and second moments simultaneously,
employ the debt service ratio (DSR) in a linear specification of the first moments – per
equation (8) – and rely on a multiplicative heteroskedasticity specification for the second
moment, per equation (10). The versions differ in that one of them employs the DSR
and the other one the credit-to-GDP gap (C2Y) for the second-moment specification.
As indicated by Tables 2 and C.1-C.4, these forecasts perform consistently the best
across horizons among a battery of alternatives.

To assess first- and second-moment forecasts of lifetime loss rates, we compare them
to the corresponding perfect-foresight magnitudes. Importantly, the latter are different
from actual loss rates. We construct perfect-foresight first moments on the basis of
equations (6) and (7), where we replace forecasts µ̂t+h|t with actual observations µt+h
for horizons h = 1, ..., H but maintain the subsequent deterministic reversion to the
historical long-term average. Likewise, we base perfect-foresight second moments on
the actual residual obtained from estimating equation (8) for h = 1, ..., H, and set these
residuals to zero for h > H. In this way, we assess the forecasts over the “reasonable
and supportable” horizon.

Our assessment reveals that forecasts of lifetime losses perform in general even better
than the forecasts of quarterly losses, as horizon-specific errors tend to wash out. This is
seen by comparing Figures 4 and 5 with Figure 6. The forecasted and perfect-foresight
lifetime losses exhibit synchronous ups and downs throughout the sample period, even
though the former falls short of the latter when the GFC sets in (Figure 6, top panels).
In an indication that the GFC-induced losses were genuinely higher than what one
could have expected in real time, the forecasted lifetime variances of portfolio losses
explain well the swings in the corresponding squared forecast errors from 2006 onward
(bottom panels). At the beginning of the sample period, the second-moment forecasts
appear as overly conservative.

The good forecasting performance at the level of lifetime losses is confirmed more
formally in Table 3, where we report results for the same evaluation metrics as above.
The correlations between forecasted and perfect-foresight series are above 0.8 for the
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Figure 6: First and second moments over the portfolio’s lifetime. An observation in quarter
T is equal to: a real-time forecast at T or the corresponding materialization of risk from T onward.
The series are based on forecasted and realized quarterly magnitudes as well as expression (7) for the
deterministic evolution of losses beyond the maximum forecast horizon. The forecast variables (in
addition to auto-regressive terms) are: DSRt = debt service ratio (in zt for first moments) and DSRt

or C2Yt = credit-to-GDP gap (in wt for second moments).
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Lifetime EL Variance of lifetime # best
forecast errors

zt wt RMSE Corr. Turn. Dist. RMSE Corr.
DSRt DSRt 1.19 0.81 0 0.33 3.38 0.16 3
DSRt C2Yt 1.23 0.86 0 0.33 2.49 0.58 5

Table 3: Lifetime expected loss (EL) and error variance. The evaluations are based on fore-
casted and perfect foresight lifetime magnitudes that incorporate corresponding quarterly magnitudes
as well as expression (7) for the deterministic evolution of losses beyond the maximum forecast horizon.
The forecast variables (in addition to auto-regressive terms) are: DSRt = debt service ratio (in zt for
first moments) and DSRt or C2Yt = credit-to-GDP gap (in wt for second moments). The column “#
best” counts the number of times an indicator is the best performer (boldface values).

first moments and almost 0.6 for the C2Y-based second-moment results. Each model
identifies the right number of turning points and the standardized average distance
between forecasted and perfect-foresight turning points is 0.33, or two quarters divided
by the average six-quarter forecast horizon. Overall, the model that employs C2Y for
second-moment forecasts outperforms the one employing DSR for all but one of the
evaluation metrics.21

4.3.1 Provisions and capital

What would banks’ provisions and capital have looked like if they had been based on
our forecasts? To answer this, we first assume that expected loss (EL) provisions are
set according to our forecasts of lifetime loss-rate levels, on the basis of either of the
two models that we focus on in Section 4.3. In addition – remaining agnostic about the
probability distribution of loss rates – we assume that capital is set to match unexpected
losses (UL) that equal two, three or four standard deviations of lifetime losses.

Our forecasts would have resulted in provisions that account for the accumulation,
as opposed to the materialization, of credit risk to the extent that they track the
lifetime losses realized over the forecast horizon. Indeed, as indicated in the top panels
of Figure 6, risk started accumulating in 2004q4 (black lines) and this is when the
forecast-implied provisions would have started picking up as well. By the peak of
the GFC in 2009, these provisions would have resulted in banks accumulating loan-loss
reserves that amount to about 60% of the subsequently realized losses. And the reserves

21While these are indirect forecasts of lifetime loss rates’ first and second moments – resulting from
aggregating quarterly loss-rate forecasts – they fare generally better than direct forecasts of lifetime
losses: compare Table 3 to Table D.1 in Appendix D.
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Figure 7: Capital adequacy. “Excess” loss is equal to the difference between perfect-foresight and
expected losses (Figure 6, top panels). Unexpected losses (UL) are equal to two, three or four times
the forecasted standard deviation of lifetime forecast errors (Figure 6, bottom panels).

would have started declining in 2009q3, three quarters after credit risk starts declining.
By contrast, historical reserves – based on incurred loss accounting – start picking up
only in 2007q3 and start declining in 2010q2 (Figure 1).22

The capital implied by our UL forecasts would have been largely sufficient to cover
perfect-foresight losses. Concretely, “excess” losses (relative to forecast-implied provi-
sions) will have been effectively covered by capital set equal to four times the DSR-
based standard-deviation forecasts or two times the C2Y-based forecasts (Figure 7).
While only the DSR-based UL forecasts match closely the time profile of excess losses
throughout most of the sample time period, both DSR- and C2Y-based forecasts deliver
a particularly close match from 2008q4 onward.

Importantly, the forecasts we have derived so far fare better – in the sense of deliver-
ing sufficient loss absorbing resources – than direct forecasts of lifetime portfolio losses
(Appendix D). This is the case when we construct UL on the basis of second-moment
forecasts (Figure D.1) or on the basis of quantile regressions (Figure D.2). The main
reason is that these alternative forecasts fail to account for the magnitude of loss rates’
increase during the GFC.

22Admittedly, historical LLR are not fully comparable with the other series in the figure. While LLR
reflect the outstanding loans in banks’ portfolios, perfect-foresight losses and model-based provisions
reflect the assumptions in expression (7).
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Dependent variable
EL IL EL IL EL IL EL IL EL IL

CBO 0.020∗
(0.011)

−0.013∗
0.007

LW 0.034∗
0.018

−0.023∗∗
0.011

IMF 0.032∗∗∗
0.010

−0.002
0.009

OECD 0.029∗∗∗
0.009

0.003
0.006

HP 0.017
0.016

−0.005
0.009

R-squared 0.97 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.96 0.99

Table 4: Cyclicality of provisions. The dependent variable is either lifetime expected losses (EL),
per Section 4.3.2, when the forecast variables (in addition to auto-regressive terms) are debt service
ratio (for first moments) and credit-to-GDP gap (for second moments), or historical loan-loss reserves
under incurred loss (IL) accounting. The regressors – contemporaneous to the dependent variable – are
alternative output-gap measures: CBO = Congressional Budget Office, LW = Laubach-Williams, IMF
= International Monetary Fund, OECD = Organisation for Economic Co-operation and Development,
and HP = Hodrick–Prescott. Each reported coefficient comes from a regression equation including
also a constant and two auto-regressive terms. The sample is from 1999q4 to 2018q4 for EL (effective
sample of 75 quarters) and 1999q3 to 2019q2 for IL (effective sample of 78 quarters). Statistical
significance at the 10% and 5% levels is denoted by * and **, respectively.

4.3.2 Cyclicality of forecasts

Would the provisions generated by our forecasts have helped dampen the procyclicality
of the financial system? Concretely, would these provisions have been higher dur-
ing macro-economic expansions and lower in recessions. We address this question by
sequentially regressing the EL provisions implied by our first-moment forecasts on al-
ternative contemporaneous output-gap measures (as well as two auto-regressive terms).
Then, we repeat the exercise, replacing EL provisions with US banks’ actual loan loss
reserves (LLRs), underpinned by incurred loss (IL) provisions. We report the results in
Table 4.

The overall conclusion is that replacing IL with EL provisions would have helped
dampen procyclicality. In the EL regressions, the coefficients on alternative measures
of the output gap are always positive and are significant in four out the five cases. By
contrast, in the IL regressions, the coefficients are negative in four of the cases and
significantly so in two of them.23

23These results are consistent with two stylised facts: (i) high GDP growth going hand-in-hand with
low loss rates and short-term loss forecasts (Banerjee et al, 2020, and Fatouh and Giansante, 2020);
and (ii) accurate long-term forecasts of credit losses increasing while concurrent loss rates are low.
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4.4 Digging deeper: sub-portfolios

To understand better how our findings depend on properties of the underlying data, we
rerun the above exercises on specific sub-portfolios that exhibit different time profiles
of the loss rates. The sub-portfolios we consider comprise: real estate (RE), commercial
and industrial (CI), or consumption (CO) loans. For each sub-portfolio, we plot fore-
casted and perfect-foresight time series for lifetime losses and forecast errors (Figures 8
and 9) and report the corresponding values of the assessment metrics (Table 5).24

The overarching message is that forecasts perform well to the extent that the initial
– or training – sample contains information about turning points in loss rates and the
boom-bust amplitude in these rates. In the case of RE and CO loans, there is little
such information up until the GFC. Thus, unsurprisingly, each of the alternative models
and forecast variables fares dismally when it comes to forecasting losses on such loans
during the GFC. By contrast, the boom-bust cycle that CI loans undergo during the
training period is comparable to that during the GFC. As a result, we obtain accurate
forecasts of the magnitude of loss rates on such loans and the attendant turning points.
In some respects, these forecasts are even better than those for the overall portfolio:
compare the first row in Table 3 with the second row in the middle panel of Table 5.
Much of the improvement is due to a better match of the up-swing in loss rates during
the GFC: compare Figures 6 and 8. As earlier, the best forecasts are those that rely
on financial cycle indicators, notably the DSR.

Taken together, the sub-portfolio results bode well for future forecasts. They suggest
that the errors in the forecasts of the aggregate loan-loss rates during the GFC reflect the
lack of key information about the RE and CO sub-portfolios, as opposed to model mis-
specification or a wrong choice of forecast variables. As such information accumulates
over time, future real-time forecasts should be better than the current ones.

5 Conclusions

This paper investigates whether it is possible to derive accurate real-time forecasts of
credit loss rates. We pay particular attention to whether the forecasts correlate with
realized loss rates and signal turning points in these rates even at the longest “reason-
able and supportable” horizons. Our main finding is that direct forecasts – relying on
straightforward specifications and using financial cycle indicators, such as the debt ser-

24Results at the level of quarterly losses are available upon request.
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Figure 8: First moments over the lifetime of sub-portfolios. An observation in quarter T
is equal to: a real-time forecast at T or the corresponding materialization of risk from T onward.
The series are based on forecasted and realized quarterly magnitudes as well as expression (7) for
the deterministic evolution of losses beyond the maximum forecast horizon. The sub-portfolios are:
real estate loans, commercial and industrial (CI) loans, and consumer loans. The right hand panels
show results when the forecast variable (in addition to auto-regressive terms) is the same for first- and
second-moment forecasts: DSRt = debt service ratio (real estate and CI loans) or C2Yt = credit-to-
GDP gap.
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Figure 9: Second moments over the lifetime of sub-portfolios. An observation in quarter
T is equal to: a real-time forecast at T or the corresponding materialization of risk from T onward.
The series are based on forecasted and realized quarterly magnitudes as well as expression (7) for
the deterministic evolution of losses beyond the maximum forecast horizon. The sub-portfolios are:
real estate loans, commercial and industrial (CI) loans, and consumer loans. The right hand panels
show results when the forecast variable (in addition to auto-regressive terms) is the same for first- and
second-moment forecasts: DSRt = debt service ratio (real estate and CI loans) or C2Yt = credit-to-
GDP gap.
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Lifetime EL Variance of lifetime # best
forecast errors

zt, wt RMSE Corr. Turn. Dist. RMSE Corr.
Real-estate loans

– 1.56 0.65 0.00 0.74 33.93 -0.06 1
DSRt 1.51 0.76 0.00 0.49 33.65 0.08 4
C2Yt 1.59 0.73 1.00 0.91 193.32 0.03 0
HPGt 1.72 0.54 1.00 0.91 16.33 0.28 2
URt 1.59 0.64 1.00 0.74 81.30 -0.02 0
OGt 1.61 0.64 0.00 0.74 19.24 -0.02 1
CSt 1.61 0.64 1.00 0.57 108.29 0.13 0
TSt 1.59 0.66 1.00 0.57 35.12 -0.01 0
RIRt 1.72 0.70 0.00 0.57 29.17 0.08 1
V XOt 1.66 0.67 0.00 0.91 337.06 0.13 1

C&I loans
– 1.02 0.56 2.00 0.74 18.30 0.23 0
DSRt 0.62 0.86 0.00 0.41 2.40 0.18 4
C2Yt 1.00 0.65 1.00 0.47 13.19 0.00 0
HPGt 1.90 0.21 1.00 0.73 18.36 0.56 1
URt 0.92 0.70 1.00 0.29 13.08 0.25 1
OGt 0.91 0.63 1.00 0.65 13.48 -0.15 0
CSt 1.15 0.54 1.00 0.41 13.27 0.27 0
TSt 0.76 0.76 1.00 0.53 7.43 -0.05 0
RIRt 0.96 0.75 2.00 0.57 8.44 -0.26 0
V XOt 1.11 0.58 2.00 0.69 22.83 0.38 0

Consumer loans
– 2.14 0.54 2.00 0.68 255.90 0.57 0
DSRt 1.71 0.67 1.00 0.81 67.16 0.13 1
C2Yt 1.98 0.72 0.00 0.56 43.30 -0.02 3
HPGt 2.18 0.57 2.00 0.79 133.94 0.45 0
URt 2.11 0.71 1.00 0.97 14.44 0.17 2
OGt 2.09 0.57 1.00 0.84 151.94 0.59 0
CSt 2.24 0.41 1.00 0.97 488.60 0.00 0
TSt 1.76 0.67 1.00 0.68 48.93 0.03 0
RIRt 2.06 0.57 1.00 0.84 181.53 0.39 0
V XOt 2.24 0.54 1.00 0.84 299.99 0.61 1

Table 5: Lifetime expected loss (EL) and error variance for sub-portfolios. The evalua-
tions are based on forecasted and perfect-foresight lifetime magnitudes that incorporate corresponding
quarterly magnitudes as well as expression (7) for the deterministic evolution of losses beyond the
maximum forecast horizon. The forecast variable (in addition to auto-regressive terms) is the same for
first- and second-moment forecasts: DSRt = debt service ratio, C2Yt = credit-to-GDP gap, HPG =

house price gap, URt = unemployment rate, OGt = output gap, CSt = corporate bond spread, TSt =

term spread, RIRt = real interest rate, or V XOt = volatility index. The row “# best” counts the
number of times an indicator is the best performer within each portfolio (boldface values).
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vice ratio and credit-to-GDP gap – fare remarkably well, especially if first and second
moments of the loss distribution are estimated jointly. This finding is important for
policy, as it indicates that banks are in a position to set adequate provisions and capital,
in line with the objectives of the expected-loss-provisioning and Basel III standards.

Future research would assess the generality of the above findings. To what extent
are they relevant for portfolios weighted towards specific exposure types – e.g. SMEs
vs large corporates – or specific jurisdictions? How would the result change for different
measures of loss rates, such as those based on delinquencies, or for loss rates on traded
credit securities?

Finally, it is key to acknowledge that even the best forecast models would be in a
position to flag in advance some but not all boom-bust switches. Such models would
combine economic reasoning with systematic empirical relationships to forecast busts
that are endogenous outcomes of excessive risk taking during booms. However, any
forecast model would inevitably fail to predict busts that are rooted in inherently ex-
ogenous shocks, such as the fallout of the Covid-19 outbreak. To be prepared for the
outsize losses that stem from such shocks, the financial system should build forecast-
independent – that is, precautionary – loss-absorbing resources.
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A Proofs

We first consider Λα,CK (ιt), per (2). Since Φ is an increasing function, Λα,CK (ιt)

increases in d (ιt). In turn, Λα,CK (ιt) is guaranteed to be increasing in ρ (ιt) if Φ−1 (α) <

0 or, equivalently, if α < 0.5. This would be always the case in practice since α is the
targeted probability of bank failure over a year. Thus, d (0) < d (1) or ρ (0) < ρ (1)

implies that a bust calls for higher loss-absorbing resources than a boom.
We then derive equation (4) and show that it has exactly one solution in terms of

Λ. Provided that the latest phase is ιt−1, an IK bank knows the following for a given
level Λ of LAR:

Pr (loan losses > Λ)

= π (ιt−1) Pr
G

(loan losses > Λ|G, ιt−1) + (1− π (ιt−1)) Pr
G

(
loan losses > Λ|G, ι˜t−1

)
= π (ιt−1) Pr

G

Φ

d (ιt−1)− ρ (ιt−1)Gt√
1− ρ (ιt−1)2

 > Λ


+ (1− π (ιt−1)) Pr

G

Φ

d (ι˜t−1

)
− ρ

(
ι˜t−1

)
Gt√

1− ρ
(
ι˜t−1

)2

 > Λ


= π (ιt−1) Φ

d (ιt−1)−
√

1− ρ (ιt−1)2Φ−1 (Λ)

ρ (ιt−1)


+ (1− π (ιt−1)) Φ

d (ι˜t−1

)
−
√

1− ρ
(
ι˜t−1

)2
Φ−1 (Λ)

ρ
(
ι˜t−1

)


which leads to the left-hand side of (4). Since this expression is monotonic in Λ and
converges to 1 (respectively, 0) as Λ→ 0 (respectively, 1), there is exactly one value of
Λ that sets it equal to α.

To derive the IK bank’s excess/shortage of LAR, we show that Λα,IK (ιt−1) is sand-
wiched as follows: Λα,IK (ιt−1) ∈

(
Λα,CK (0) ,Λα,CK (1)

)
. Since each of the two sum-

mands on the left-hand side of (4) is strictly decreasing in Λ, the left-hand side of
(4) is smaller (respectively, larger) than α if Λα,IK (ιt−1) ≥ Λα,CK (1) (respectively, if
Λα,IK (ιt−1) ≤ Λα,CK (0)). Finally, since (4) has exactly one solution, we obtain the
desired result.

To derive the dependence of the IK bank’s PD on a through-the-cycle loading on
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Gt, we set ρ (0) = ρ (1) = ρ while preserving d (1) > d (0). When an IK bank’s
LAR is equal to Λ and the phase is ιt, this bank defaults in period t with probability

PDIK = Φ

(
d(ιt)−
√

1−ρ2Φ−1(Λ)

ρ

)
, which implies Λ = Φ

(
d(ιt)−ρΦ−1(PDIK)√

1−ρ2

)
. Referring to

(4), imposing ιt−1 = 0 and ιt = 1, and using the latter equation to substitute for Λ

delivers:

d (1)− d (0)

ρ
= Φ−1

(
PDIK

)
− Φ−1

(
α− (1− π (0))PDIK

π (0)

)
,

where the left-hand side is strictly positive and decreases in ρ, and the right-hand side
increases in PDIK . Thus, this expression implies dPDIK/dρ < 0, which confirms that
an IK bank’s PD is higher for a lower ρ.

To show that an improvement in the IK bank’s information reduces
∣∣ELCK (1)− ELIK (0)

∣∣
and

∣∣ULα,CK (1)− ULα,IK (0)
∣∣ , we first note that such an improvement is equivalent to

decreasing π (0) in period t when ιt = 1. It is immediate that ∂
∣∣ELCK − ELIK∣∣ /∂π (0) =

∂
(
ELCK − ELIK

)
/∂π (0) > 0 and limπ(0)→0

(
ELCK − ELIK

)
= 0. Then, we note that,

by the earlier sandwiching result, (4) implies dΛα,IK (0) /dπ (0) < 0 and limπ(0)→0 Λα,IK (0) =

Λα,CK (1). The desired result in terms of UL follows immediately.
Finally, we show that, for a sufficiently low ρ (ιt−1) and ρ (ιt), the IK bank would

enter a boom-bust switch – whereby ιt−1 = 0 and ιt = 1 – with a higher perceived
UL than the CK bank. As ρ (ιt) → 0, ULα,CK (ιt) → 0. In turn, when ρ (0) → 0

and ρ (1) → 0, the IK bank perceives probability of 1 − π (ιt−1) that date-t losses will
be higher than ELIK (ιt−1). Thus, as long as 1 − π (ιt−1) ≥ α – i.e. as long as the
perceived probability of switching phases is higher than the targeted PD for the bank
– limρ(0)→0

ρ(1)→0

ULα,IK (ιt−1) > 0. By continuity, this implies that there exists ρ > 0 such

that ULα,IK (0) > ULα,CK (1) – that is, the IK bank is over-capitalized – provided that
ρ (0) < ρ and ρ (1) < ρ.
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B Data

Variables Definition Sample Source
µt Charge-Off on total Loans and Leases at Commercial Banks 85q1-19q2 Fed
DSRt Debt service ratio 79q1-18q4 BIS
C2Yt Deviation between credit-to-GDP ratio and 79q1-18q4 BIS

its one-sided HP-filtered trend (λ = 400000)
HPGt Deviation between real residential property price 84q1-18q4 BIS

and and its one-sided HP-filtered trend (λ = 400000)
URt Unemployment rate 79q1-18q4 IMF
OGt Deviation between real GDP and its one-sided 82q1-19q1 National data

HP-filtered trend (λ = 1600)
CSt Spread between Seasoned Baa and Aaa 79q1-19q3 Moody’s

Corporate Bond Yields
TSt Spread between 10 year and 1 one year yeild on 79q1-19q3 Fed

government bonds
RIR Difference between the 3-month federal funds 80q1-19q1 Datastream, national data

rate (annualized) and yoy CPI index growth
V XOt CBOE S&P 100 Volatility Index 86q1-20q2 CBOE

Table B.1: Variable definitions, data sources, and sample period. Sources: Federal reserve
board (Fed), Bank for International Settlements (BIS), and Chicago Board Options Exchange (CBOE).
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C Additional results

z1t : DSRt DSRt URt URt

z2t : OGt OGt OGt

z3t : TSt HPGt HPGt

z4t : CSt
z5t : TSt
z6t : V XOt

h Root mean square error
1 0.14 0.14 0.12 0.13
4 0.47 0.48 0.44 0.45
8 0.69 0.71 0.64 0.69
12 0.71 0.73 0.90 0.84

Correlation (realized vs. forecasted)
1 0.98 0.98 0.99 0.98
4 0.79 0.78 0.78 0.77
8 0.60 0.57 0.51 0.38
12 0.58 0.54 0.26 0.14

Excess/insufficient turnings
1 0 1 0 1
4 0 0 1 4
8 0 0 1 5
12 0 0 1 4

Standardized average distance
1 0.75 0.50 1.00 0.75
4 0.92 0.67 0.58 0.42
8 0.42 0.33 0.67 0.38
12 0.17 0.11 0.53 0.47
# best 8 6 5 1

Table C.1: First moments, with multiple forecast variables. Evaluation of forecasted quarterly
loss rates based on OLS estimates of equation (8), with lag parameterK = 1 and horizon h as indicated.
The forecast variables in zt are subsets of the following list: DSRt = debt service ratio, C2Yt = credit-
to-GDP gap,HPG = house price gap, URt = unemployment rate, OGt = output gap, CSt = corporate
bond spread, TSt = term spread, RIRt = real interest rate, or V XOt = volatility index. The row
“# best” counts the number of times an indicator is the best performer (boldface values). The first
column reproduces the results for zt = DSRt from Table 1.
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z1t : DSRt DSRt C2Yt HPGt URt OGt CSt TSt RIRt V XOt

z2t : – DSR2
t C2Y 2

t HPG2
t UR2

t OG2
t CS2

t TS2
t RIR2

t V XO2
t

h Root mean square error
1 0.14 0.13 0.13 0.14 0.14 0.12 0.20 0.13 0.15 0.14
4 0.47 0.44 0.51 0.65 0.46 0.41 0.77 0.48 0.56 0.54
8 0.69 0.65 0.90 0.79 0.69 0.72 0.86 0.64 0.79 0.72
12 0.71 0.70 0.92 1.06 0.78 0.84 0.86 0.73 0.87 0.91

Correlation (realized vs. forecasted)
1 0.98 0.98 0.98 0.98 0.98 0.99 0.96 0.98 0.98 0.98
4 0.79 0.86 0.70 0.52 0.76 0.82 0.13 0.74 0.65 0.65
8 0.60 0.48 -0.06 0.41 0.38 0.26 -0.17 0.55 0.28 0.24
12 0.58 0.53 -0.03 -0.01 0.04 0.03 0.01 0.37 0.07 -0.23

Excess/insufficient turnings
1 0 0 0 0 0 1 1 1 1 0
4 0 1 2 2 1 1 2 1 2 1
8 0 1 3 1 1 3 2 0 3 2
12 0 0 2 1 1 3 4 2 1 2

Standardized average distance
1 0.75 0.75 1.00 1.00 0.75 0.50 0.75 0.75 1.00 0.75
4 0.92 0.92 0.83 0.75 1.00 0.92 0.75 0.58 0.67 0.92
8 0.42 0.46 0.79 0.50 0.88 0.54 0.54 0.38 0.54 0.75
12 0.17 0.19 0.89 0.75 0.69 0.47 0.47 0.33 0.33 0.75
# best 7 4 1 1 1 3 1 4 0 1

Table C.2: First moments, with quadratic terms. Evaluation of forecasted quarterly loss rates
based on OLS estimates of equation (8) with lag parameter K = 1 and horizon h as indicated. The
forecast variables (in addition to auto-regressive terms) are zt = (z1t, z2,t)

′, where , z2t = z2
1t and z1t is:

DSRt = debt service ratio, C2Yt = credit-to-GDP gap,HPG = house price gap, URt = unemployment
rate, OGt = output gap, CSt = corporate bond spread, TSt = term spread, RIRt = real interest rate,
or V XOt = volatility index. The row “# best” counts the number of times an indicator is the best
performer (boldface values). The first column reproduces the results for zt = DSRt from Table 1.
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z1t : DSRt DSRt C2Yt HPGt URt OGt CSt TSt RIRt V XOt

z2t : – DSR+
t C2Y +

t HPG+
t UR+

t OG+
t CS+

t TS+
t RIR+

t V XO+
t

h Root mean square error
1 0.14 0.13 0.13 0.14 0.13 0.12 0.14 0.13 0.14 0.13
4 0.47 0.43 0.47 0.55 0.46 0.40 0.56 0.48 0.56 0.50
8 0.69 0.63 0.71 0.78 0.68 0.71 0.83 0.64 0.78 0.73
12 0.71 0.71 0.73 1.03 0.78 0.82 0.84 0.74 0.87 0.92

Correlation (realized vs. forecasted)
1 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98
4 0.79 0.87 0.75 0.63 0.77 0.83 0.60 0.74 0.66 0.71
8 0.60 0.57 0.27 0.36 0.39 0.31 -0.09 0.55 0.30 0.21
12 0.58 0.52 0.33 -0.01 -0.04 0.12 0.07 0.34 0.09 -0.29

Excess/insufficient turnings
1 0 0 0 0 0 1 1 1 1 0
4 0 0 2 1 1 1 2 1 2 1
8 0 1 3 1 1 1 4 3 3 3
12 0 0 2 1 0 3 4 0 1 2

Standardized average distance
1 0.75 0.50 1.00 1.00 0.75 0.50 0.75 0.75 1.00 0.75
4 0.92 0.50 0.67 0.67 1.00 0.92 0.42 0.58 0.58 1.00
8 0.42 0.46 0.79 0.33 0.67 0.71 0.38 0.38 0.63 0.79
12 0.17 0.17 0.83 0.39 0.69 0.47 0.47 0.39 0.33 0.61
# best 9 9 2 3 3 3 2 2 1 2

Table C.3: First moments with asymmetric effects. Evaluation of forecasted quarterly loss
rates based on OLS estimates of equation (8) with lag parameter K = 1 and horizon h as indicated.
The forecast variables (in addition to auto-regressive terms) are zt = (z1t, z2,t)

′, where z2t = z+
1t =

Iz1t>z̄1t · z1t, z̄1t is a real-time mean and z1t is: DSRt = debt service ratio, C2Yt = credit-to-GDP
gap, HPG = house price gap, URt = unemployment rate, OGt = output gap, CSt = corporate bond
spread, TSt = term spread, RIRt = real interest rate, or V XOt = volatility index. The row “# best”
counts the number of times an indicator is the best performer (boldface values). The first column
reproduces the results for zt = DSRt from Table 1.
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zt : DSRt DSRt C2Yt HPGt URt OGt CSt TSt RIRt V XOt

Est.: OLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
h Root mean square error
1 0.14 0.18 0.33 0.29 0.30 0.27 0.46 0.34 0.38 0.32
4 0.47 0.48 0.59 0.58 0.49 0.42 0.56 0.62 0.76 0.58
8 0.69 0.60 0.65 0.71 0.68 0.72 0.76 0.68 0.77 0.73
12 0.71 0.66 0.70 0.94 0.78 0.83 1.10 0.72 0.86 0.87

Correlation (realized vs. forecasted)
1 0.98 0.97 0.94 0.95 0.93 0.95 0.92 0.93 0.92 0.95
4 0.79 0.82 0.74 0.71 0.73 0.81 0.77 0.64 0.53 0.73
8 0.60 0.67 0.50 0.55 0.39 0.22 0.27 0.48 0.16 0.16
12 0.58 0.58 0.45 0.22 0.05 -0.07 -0.06 0.35 -0.01 -0.26

Excess/insufficient turnings
1 0 0 0 0 0 0 1 1 1 1
4 0 0 1 3 1 0 2 1 2 2
8 0 0 1 1 0 1 2 2 1 2
12 0 0 1 1 0 3 2 0 1 2

Standardized average distance
1 0.75 0.50 0.75 1.00 0.75 0.75 1.00 0.75 1.00 1.00
4 0.92 0.83 1.00 0.42 1.00 0.42 0.42 0.67 0.83 0.75
8 0.42 0.46 0.67 0.58 0.79 0.79 0.88 0.33 0.63 0.88
12 0.17 0.39 0.89 0.97 0.58 0.47 0.72 0.83 0.44 0.69
# best 8 10 0 1 0 2 1 1 0 0

Table C.4: First moments with exponential specification. Evaluation of forecasted quarterly
loss rates based on NLS estimates of µt+h|t = exp

(∑K
k=0(βh,kµt−k + γ′h,kzt−k)

)
+ υt+h|t with lag

parameter K = 1 and horizon h as indicated. The forecast variable in zt is: DSRt = debt service
ratio, C2Yt = credit-to-GDP gap, HPG = house price gap, URt = unemployment rate, OGt = output
gap, CSt = corporate bond spread, TSt = term spread, RIRt = real interest rate, or V XOt =

volatility index. The row “# best” counts the number of times an indicator is the best performer
(boldface values). The first column reproduces the results for zt = DSRt from Table 1.
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Figure C.1: First moments, with multiple forecast variables. Realized and forecasted quar-
terly loss rates based on OLS estimates of equation (8) with lag parameter K = 1. The forecast
variables in zt are subsets of the following list: DSRt = debt service ratio, HPGt = house price gap,
URt = unemployment rate, OGt = output gap, CSt = corporate bond spread, TSt = term spread,
or V XOt = volatility index. An observation in quarter t is equal to: a real-time forecast formed at
T = {t− 4; t− 8; t–12} or the corresponding realization at t. The top-left panel reproduces the results
for zt = DSRt from Figure 3.
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Figure C.2: Stability of estimates at different horizons. Sum of coefficients over k = {0, 1}
on auto-regressive terms and forecast variables per equations (8) and (10), where zt = wt = DSRt =

debt service ratio, lag length K = 1 and horizon h as indicated. An observation in quarter T refers to
a real-time estimate at T . Statistical significance at the 5% level is denoted with “x”.
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Figure C.3: Stability of estimates at different horizons. Sum of coefficients over k = {0, 1}
on auto-regressive terms and forecast variables per equations (8) and (10), where zt = DSRt = debt
service ratio, wt = C2Yt = credit-to-GDP gap, lag length K = 1 and horizon h as indicated. An
observation in quarter T refers to a real-time estimate at T . Statistical significance at the 5% level is
denoted with “x”.
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Figure C.4: Stability of correlation matrix. Forecasted lifetime variance based on estimating

the correlation matrix, Θ, (i) in real-time (black solid line) or (ii) from fixed samples as indicated in

the legend (lines in various scales of gray). The model is estimated per (8) and (10) with lag parameter

K = 1 and forecast variables (in addition to auto-regressive terms) as follows: zt = wt = DSRt =

debt service ratio (left panel) and with zt = DSRt, wt = C2Yt = credit-to-GDP gap (right panel).
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D Direct forecasts of lifetime loss rates

This appendix is in two parts. First, we derive direct forecasts of lifetime portfolio
losses and the variance of forecast errors. This is in contrast to the main text, where we
build first- and second-moment forecasts of lifetime losses from corresponding forecasts
of quarterly loss rates. Second, we forecast percentiles of the probability distribution of
lifetime losses. The forecast of a high percentile, together with a first-moment forecast,
delivers unexpected losses (UL), in line with regulatory texts.

We start by forecasting lifetime perfect-foresight losses, ΛPFt , constructed as in Sec-
tion 4.3. Given a sample of t = 1, ..., T observations on µt, we construct ΛPFt for
t = 1, ..., T − H, where the last lifetime loss, ΛPFT−H , uses observations up to T . For a
direct real-time forecast of ΛPFT , we estimate the following versions of (8) and (10):

ΛPFt =
K∑
k=0

(
βDk µt−k + γD′k zt−k

)
+ υDt (12)

E
(
(υDt )2

)
= exp

(
K∑
k=0

(
δDk µt−k + θD′k wt−k

))
(13)

for t = 1, ..., T −H and evaluate them at t = T . Two remarks are in order. First, while
(12) and (13) may appear as contemporaneous relationships, ΛPFt embeds quarterly
loss rates up to H quarters in the future. Second, since the one-quarter lag of the
dependent variable in (12) is not available in real time, we replace it with the latest
available quarterly loss rate, µt.

Targeting lifetime losses directly yields real-time forecasts that are comparable to
those in the main text in terms of first moments but inferior in terms of second moments.
Again, the best results in the current context stem from specifications in which the the
forecast variable for first moments is the debt service ratio (DSRt) and that for second
moments is either DSRt or the credit-to-GDP gap (C2Yt). The similarity of the first-
moment results, between each of these specifications and the corresponding ones in the
main text are seen by comparing the left-hand panels of Table D.1 and Table 3, as
well as Figure D.1 (red lines) and Figure 6 (top panels). In turn, the deterioration
of second-moment forecasts surfaces most clearly in Figure D.1 (blue lines), where the
implied loss-absorbing resources (LAR) remain consistently and materially below the
GFC peaks, in contrast to the capital implied by the aggregation of quarterly loss
forecasts (Figure 7). Perhaps unsurprisingly, we loose information about the variability

51



Lifetime EL Variance of lifetime # best
forecast errors

zt wt RMSE Corr. Turn. Dist. RMSE Corr.
DSRt DSRt 1.07 0.81 0.00 0.33 2.80 -0.12 5
DSRt C2Yt 1.17 0.80 0.00 0.33 2.99 0.79 3

Table D.1: Lifetime expected loss (EL) and error variance, direct forecasts. The evaluations
compare perfect-foresight lifetime magnitudes with their direct forecasts, per equations (12) and (13).
The underlying forecast variables (in addition to µt) are: DSRt = debt service ratio and C2Yt = credit-
to-GDP gap. The column “# best” counts the number of times an indicator is the best performer within
each portfolio (boldface values).

of losses when we “smooth” the data via (12) and (13) prior to forecasting.
In the current context, we can also forecast specific percentiles of the lifetime loss

distribution, in line with recent “at risk” assessments (eg Adrian et al, 2019, and Aikman
et al, 2019). We do so on the basis of a linear specification for the τ th conditional quantile
of this distribution

ΛPFt =
K∑
k=0

(
βQτ,kµt−k + γQ′τ,kzt−k

)
+ υQτ,t (14)

which we estimate by solving (eg Koenker, 2017):

argmin
ξ

T−H∑
t=K+1

(
τIυQτ,t≥0

∣∣∣υQτ,t∣∣∣+ (1− τ)IυQτ,t<0

∣∣∣υQτ,t∣∣∣) (15)

where ξ = (βQτ,0, ..., β
Q
τ,K , γ

Q′
τ,0, ..., γ

Q′
τ,K)′ and I is the indicator function.

We obtain poor forecasts of the 95th percentile of the lifetime loss distribution (Figure
D.2, green lines). For one, these forecasts undershoot perfect-foresight losses most of
the time. This is in contrast to the unexpected loss (UL) that we set equal to two times
the forecasted standard deviations in the main text (Figure 6). In addition, there are
instances in which the forecasts of the 95th percentile are lower than the corresponding
median forecasts (Figure D.2, orange lines). While this latter result may seem counter-
intuitive, it stems from the fact that the forecasts are real-time and, especially those of
the 95th percentile, rely on a small part of an already short sample.
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Figure D.1: Direct forecasts of lifetime losses. EL = expected losses, UL = unexpected losses set
to two times the forecasted standard deviation, and loss-absorbing resources = LAR. An observation
in quarter T is equal to: a real-time forecast at T or the corresponding materialization of risk from
T onward. Based on estimating equations (12) and (13), where the underlying forecast variables
(in addition to µt) are: DSRt = debt service ratio (in zt for first moments) and DSRt or C2Yt =
credit-to-GDP gap (in wt for second moments).
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Figure D.2: Median, and 95th percentile of lifetime losses, direct estimates. Based on
quantile regressions. The underlying forecast variables (in addition to µt) are: DSRt = debt service
ratio and C2Yt = credit-to-GDP gap.
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