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The drivers of cyber risk∗

IÑAKI ALDASORO, LEONARDO GAMBACORTA, PAOLO GIUDICI and THOMAS LEACH†

ABSTRACT

Cyber incidents are becoming more sophisticated and their costs difficult to quantify. Using a unique

database of more than 100,000 cyber events across sectors, we document the characteristics of cyber in-

cidents. Cyber costs are higher for larger firms and for incidents that impact several organisations simul-

taneously. The financial sector is exposed to a larger number of cyber attacks but suffers lower costs, on

average, thanks to proportionately greater investment in information technology (IT) security. The use of

cloud services is associated with lower costs, especially when cyber incidents are relatively small. As cloud

providers become systemically important, cloud dependence is likely to increase tail risks. Crypto-related

activities, which are largely unregulated, are particularly vulnerable to cyber attacks.
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I. Introduction

Information technology (IT) has become a critical component of well-functioning economies, underpin-

ning economic growth over the past decades. Organisations of all sizes in both the public and private sector

are becoming ever more interconnected and reliant on IT products and services, such as cloud-based systems

and artificial intelligence. Accordingly, there is a growing exposure to cyber risks. Cyber risk commonly

refers to the risk of financial loss, disruption or reputational damage to an organisation resulting from the

failure of its IT systems. These episodes include malicious cyber incidents (cyber attacks) where the threat

actor intends to do harm (e.g. ransomware attacks, hacking incidents or data theft by employees). In the

wake of recent high-profile cyber attacks such as the WannaCry incident in May 2017, public awareness of

these threats is on the rise (see Figure 1).

Notes: Number of online searches for “cyber risk” and “operational risk” over the last decade. Worldwide search interest is relative

to the highest point (=100). Data accessed on 7 Feb 2020.

Source: Google Trends.

Figure 1
Interest on cyber risk is on par with operational risk.

Firms actively manage cyber risk and invest in cyber security. However, cyber costs are difficult to

quantify. In the financial sector, cyber risks are a key “known unknown” tail risk to the system and a

potential major threat to financial stability.1 More broadly, cyber risk in sectors that play a critical role in

the economic infrastructure could have systemic implications and should be viewed as a matter of national

security (Brenner, 2017). Despite the acknowledgement of such consequences, information concerning the

costs, drivers and potential mitigating factors of cyber incidents is relatively scarce.

This paper seeks to help fill this gap. The analysis uses a detailed dataset of over 100,000 cyber events

across all sectors of economic activity. We first document some stylised facts. The frequency of cyber

incidents rose strongly in the decade to 2016, but has since receded somewhat. This reduction could reflect

1In March 2017, the G20 Finance Ministers and Central Bank Governors noted that “the malicious use of information and
communication technologies could disrupt financial services crucial to both national and international financial systems, undermine
security and confidence, and endanger financial stability”.
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increased investment in cyber security, but also delays in discovery or reporting.2 The average cost of cyber

events has been increasing constantly over the last decade. We find that certain economic sectors display a

greater resilience to cyber incidents: for example, the financial sector has experienced a higher frequency

of cyber incidents but these have been on average relatively less costly. Regarding the type of incident,

privacy violations and phishing/skimming scams fraud in short are the most frequent but least costly. Data

breaches, in turn, are both relatively frequent and costly, while business disruptions are quite infrequent but

can have high costs.

The richness of the database also allows us to examine the relationship between firm, sector and event-

specific characteristics and the relative cost of cyber events. The main empirical results can be summarised

as follows.

First, we identify the key drivers contributing to the costs of cyber-related events. Firm size measured in

terms of total revenues is positively correlated with the average cost of an event, implying that larger firms

tend to incur larger costs. However, the elasticity is quite low: a 1% increase in total revenues is associated

with a 0.2% increase in cyber costs. We also find that that cyber events which impact multiple firms at

the same time (i.e. “connected” events) are also associated with higher costs. Cyber-related incidents can

occur unintentionally by human error, e.g. a bug in some internally developed software; or can also be

caused by an actor with malicious intent.3 Malicious cyber attacks have, on average, lower costs, because

most incidents simply reflect general discontent. However, some actors seek a profit or to inflict the largest

possible losses and damage. Indeed, a quantile analysis reveals that at the tail of the sample distribution

this relationship is reversed and in fact malicious incidents are associated with higher costs. This finding

indicates that, while most attackers are stopped before they can do considerable harm, a successful attacker

can go on to cause extensive damage. Incidents related to crypto exchanges, which are largely unregulated,

produce higher losses.

We then look at the role of developing technological capabilities to reduce cyber costs. Many firms,

especially if they are smaller, could lack the specific knowledge needed to make rational decisions about

which software or cyber security provider to choose. Information asymmetries between firms can further

exacerbate problems when investments in new technologies do not pan out as expected (Zhu and Weyant,

2003). How can firms mitigate these risks? We find that investment in technological skills pays off in terms

2This phenomena is widely recognised in the operational risk literature (see Aldasoro et al. (2020); Carrivick and Cope (2013).
The dataset used in this analysis did not contain sufficient information concerning the dates of events, thus an “end-of-sample” bias
could not be accurately estimated.

3The best known types of cyber attack are: man-in-the-middle attacks, cross-site scripting, denial-of-service attacks, password
attacks, phishing, malware and zero-day exploits. Man-in-the-middle attacks occur when attackers insert themselves into a two-
party transaction. Cross-site scripting is a web security vulnerability that allows attackers to compromise the interactions a victim
has with a vulnerable application. Denial-of-service attacks flood servers with traffic to exhaust bandwidth or consume finite
resources. Phishing is the practice of stealing sensitive data by sending fraudulent emails that appear to be from a trustworthy
source. Malware (i.e. “malicious software”) is a software designed to cause damage to IT devices and/or steal data (examples
include so-called Trojans, spyware and ransomware). A zero-day exploit is an attack against a software or hardware vulnerability
that has been discovered but not publicly disclosed. The discovery of a zero-day exploit can result in a situation where both the
customers and vendors of the IT asset are now subject to cyber attacks for which no pre-defined detection signatures or remedial
patches are available. Exacerbating this situation are commercial firms that conduct research to sell zero-day exploits on the open
market. Some of these firms, such as Zerodium, pay large cash rewards (up to $2.5 million) for high-risk vulnerabilities.
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of reducing the cost of cyber events. In particular, firms in sectors that employ more IT specialists, use more

computers and provide more IT training to staff, are better equipped to mitigate the costs stemming from a

cyber event. From a policy perspective, these findings can inform governments and cross-sector regulators

regarding the mitigating steps that can be taken to reduce the cost of cyber incidents and which sectors are

lacking in such areas.

Cybersecurity activities provided by third-party service providers are an alternative to risk transfer mech-

anisms. Rowe (2007) argues that, if multiple organisations share the same service provider, economies of

scale and information-sharing can create positive externalities. Cloud technology can reduce IT costs, im-

prove resilience and enable firms to scale better (Financial Stability Board, 2019). However, the technology

strengthens interdependence across firms that have shared exposures to similar (or even the same) cloud

service providers. For example, several cloud suppliers may use a common operating system so that, if

the operating system has a vulnerability, it could create a correlated risk across all cloud suppliers. By

analysing the cost-benefit trade-off, we find that the use of cloud services is associated with lower costs of

cyber events. While this speaks to the resilience of cloud technology, it should be interpreted with caution.

As firms’ exposure to cloud services increases and cloud providers become systemically important, cloud

dependence is likely to increase tail risks (Danielsson and Macrae, 2019).

Of particular concern is the exposure to cyber risk of financial institutions and infrastructures, given the

critical services they provide (Kopp et al., 2017; Committee on Payments and Market Infrastructures, 2014).

Following the financial crisis, banks in particular became a target for activists.4 We interact a finance sector

dummy variable with our baseline regressors to assess average costs of losses relative to other sectors. While

the frequency of attacks in the financial sector is high relative to others, the sector is better at mitigating the

cost of attacks. This could be the outcome of more proactive policy, regulation and investment in risk

management and governance practices with respect to information technology.

Cryptocurrencies have emerged as a challenge to established financial institutions and currencies. De-

spite initial claims of superior security, the cryptocurrency space has suffered numerous cyber attacks. This

notoriety stems both from attacks on crypto-exchanges due to poor security standards and due diligence on

internal controls,5 as well as from the use of cryptocurrencies as ransomware that is difficult to trace, e.g.

WannaCry (Kshetri and Voas, 2017). We find that the average cost of crypto-related events is significantly

higher. These costs are not independent of the soaring price of cryptocurrencies in recent years. We docu-

ment the existence of a strong positive correlation between the price of bitcoin and the intensity of attacks

on crypto-exchanges. To quantify this relationship, we use a Probit model to show that an increase in the

price of bitcoin increases the likelihood of future attacks on crypto-exchanges. However, the inverse rela-

tionship is not found to be significant, i.e. there is no price decrease following cyber incidents related to

cryptocurrencies.

Finally, we use data on the level of IT spending across sectors to assess which sectors may be over- or

4For a list of attacks on banks see: https://carnegieendowment.org/specialprojects/protectingfinancialstability/timeline.
5Analytics firm Chainalysis reported that approximately $1 billion worth of cryptocurrency was stolen from digital currency

exchanges in 2018 (https://news.bitcoin.com/report-two-hacker-groups-stole-1-billion-from-crypto-exchanges/).
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underspending on their IT security. This analysis can act as a helpful indicator to policymakers as to which

sectors may be exposed due to underinvestment in IT systems. We find that, across all sectors, there is a

deficit in IT-spending. This is concerning, as the threat of cyber-related incidents is likely to increase in

the future. Some sectors, however, exhibit an adequate level of spending. Such is the case of the finance

and insurance sector. The dividend of such investments is evident through our other analyses, whereby the

observed cost of attacks for that sector is lower. This result does not provide a reason for firms in sectors

that are in a spending surplus to cut back on their investments, as the threat landscape continues to evolve.

The rest of the paper is organised as follows. Section II discusses related literature. Section III contains

a description of the data. Section IV discusses our baseline results. Section V looks at the impact of

technological skills on cyber losses. Section VI explores whether exposure to cloud services affects the

cost of cyber events. Section VII examines the relationship between the price of bitcoin and the hacking of

crypto exchanges. Section VIII zooms in on the financial sector. Section IX analyses the optimal amount of

IT spending across sectors. Finally, Section X summarises the main conclusions.

II. Related literature

Cyber- and IT-related risks can be seen as a relevant component of operational risks. Costs are difficult

to quantity, however, given the absence of high-quality data. Establishing policies to encourage long-term

data collection about incidents and security breaches is crucial in informing effective policies for security

actions and outcomes (Wolff, 2014).6 Recent policy initiatives represent an encouraging step forward,7 but

information on cyber incidents and cost is still limited.

Most of the few empirical studies on cyber risk rely on collected publicly available data sources. Gold-

stein et al. (2011) study how the exposure to IT operational risk, or the risk of failures of operational IT

systems, could translate into significant losses in firms’ market value. Biener et al. (2015) emphasise the

distinct characteristics of cyber risks compared to other operational risks. The presence of highly interre-

lated cyber losses, lack of data, and severe information asymmetries, hinder the development of a sustainable

cyber insurance market, an essential element to encourage improvements in cyber resilience. Romanosky

(2016) and Chande and Yanchus (2019) use the Advisen dataset to study losses from cyber events across

sectors and provide an initial estimate of firm risk by sector. Our paper builds on their work by looking at

how characteristics of sectors’ management of IT resources can mitigate costs.

The literature highlights that the observed heterogeneity in cyber costs across sectors heavily depends

on the environment in which each firm operates as well as IT security investments. Kamiya et al. (2018)

6The high degree of uncertainty and variability surrounding cost estimates for cyber security incidents has consequences for
policy-makers. For example, it is difficult to foster robust insurance markets, as well as to make decisions about the appropriate
level of investment in security controls and defensive interventions (Biener et al., 2015; Wolff and Lehr, 2017).

7The European Union recently passed the Network and Information Security Directive (NISD). Meanwhile, the U.S. Congress
passed the Cybersecurity Information Sharing Act (CISA). These new initiatives aim to encourage, or require, that more information
about cyber security incidents be shared with, or reported to, entities other than the ones who detect those incidents. Due to the
new class of threats and corresponding insurance needs, frequent updating of the reporting requirements is needed to maintain an
accurate picture of the cyber threat landscape (Wolff and Lehr, 2018; Rowe and Gallaher, 2006).
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find that cyber attacks are more likely in industries that face less intense product market competition and

in industries with higher growth opportunities. Moreover, controlling for firm characteristics, they find

that, among the major industries, cyber attacks are more likely in service industries, wholesale/retail trade,

and transportation and communications. Makridis and Dean (2018) also find heterogeneity in cyber attack

episodes amongst sectors when it comes to data breaches. In particular, companies in the finance, insurance,

retail and merchant sectors are the biggest targets.

Regulation can also play a key role in firms’ motives for security investments. Using the results of a

survey conducted on more than 700 firms, Rowe and Gallaher (2006) find that the vast majority of reporting

firms believe that regulation has increased the overall level of security. However, some firms reject this view,

because excessive cyber security costs imposed by regulation could stifle firms’ ability to innovate (Etzioni,

2011). While our paper does not enter into the debate on who should bear the cost of cyber security, we

find that sectors with a more robust policy framework toward cyber risk tend to reap benefits by reducing

the costs of cyber incidents.

Some sectors provide critical infrastructure for the functioning of the economy. Cyber attacks on the

financial sector could create possible cascade failures that are not completely understood or adequately

quantified by sector-specific simulations (Brenner, 2017). Kopp et al. (2017)) note that the financial sector

is a frequently targeted sector due to its high exposure to IT and its credit intermediation role. Kashyap and

Wetherilt (2019) outline some principles for regulators to consider when regulating cyber risk in the financial

sector. The Basel Committee has also published guidelines for banks regarding best practice regarding cyber

risk.8 Given that financial institutions tend to maintain better data collection practices due to regulatory

reporting, empirical studies focusing on this sector are more developed.

Using a large cross-country panel, Aldasoro et al. (2020) find that cyber losses represent a relatively

small share of operational losses for banks. In recent years, however, losses from cyber events saw a spike,

with a corresponding increase in risk. The value-at-risk (VaR) associated with cyber events can range from

0.2% to 4.2% of banks’ income.9 This amounts to around a third of operational VaR, despite representing a

minor share of the latter in terms of frequencies and loss amounts. The extent of operational and cyber losses

depends on the supervisory environment. A higher quality of supervision as measured by a financial and

supervisory quality index is associated with lower losses, in terms of both frequency and amount. Credit

booms and periods of accommodative monetary policy are associated with higher operational losses in the

future, but have no effect on cyber losses.

Duffie and Younger (2019) analyse a sample of twelve systemically important U.S. financial institutions

and suggest these firms have sufficient stocks of high-quality liquid assets to cover wholesale funding runoffs

in a relatively extreme cyber event. From the literature on operational risk, the size of financial institutions

is positively linked with the size of operational losses (Shih et al., 2000; Curti et al., 2019). A large share of

banks’ operational losses can be traced to a breakdown of internal controls (Chernobai et al., 2011). Due to

8See Basel Committee on Banking Supervision (2018)
9Estimates by Bouveret (2018) based on data collected from media and newspaper articles across countries point to sizeable

potential losses in the financial sector. His estimate of value-at-risk ranges between 14% to 19% of net income.
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its special nature, in Section VIII, we devote particular attention to the drivers of cyber risks in the financial

sector and how these could differ from other economic sectors.

Another element that could alter the relative cost of a cyber attack is the reliance on cloud services.

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service provider interaction (Mell

and Grance, 2011). Firms are benefiting from cheap computing resources, although as more firms become

dependent on clouds, this increases risk correlation among them. Through shared software, hardware and

vendors, incidents could spread more quickly, leading to higher overall costs (Welburn and Strong, 2019).

Lloyds (2017) suggests that economic losses due to cloud service disruption can vary. The average loss

of such disruptions can be between US$15.6 billion and US$53 billion, depending on factors such as the

different organisations involved and for how long the cloud service disruption lasts. Lloyds (2018) reports

that, given the state of the cyber insurance industry today, a cyber incident that takes a top-three cloud

provider offline in the US for 3 to 6 days would result in losses to policy holders between US$6.9 billion

and US$14.7 billion.

A few studies also try to evaluate the potential systemic costs of cyber incidents by making a number

of assumptions on interlinkages among sectors and cascade effects. Dreyer et al. (2018) estimate the direct

gross domestic product costs of cyber crime to be between US$275 billion and US$6.6 trillion, using a

sample of 60 countries. Romanosky (2016) estimates the annual cost of cyber incidents to be approximately

US$8.5 billion.

A novel part of the literature looks at the occurrence of cyber attacks on cryptocurrency exchanges due to

their relatively poor security standards. Moore and Christin (2013) find that the average transaction volume

on bitcoin exchanges is negatively correlated with the probability they will close prematurely and positively

correlated with the probability of experiencing a breach. We further develop this aspect by analysing the

correlation between the price of bitcoin and the intensity of attacks on crypto-exchanges.

III. Data

A. Cyber events

Our dataset includes 115,415 cyber incidents. The data are obtained from Advisen, a for-profit organi-

sation which collects information from reliable and publicly verifiable sources such as websites, newsfeeds,

specialised legal information services, multiple online data breach clearinghouses and federal and state gov-

ernments in the United States.10 Due to the nature of how the data are collected, it is not possible to obtain

all information desirable for each event. For example, the total loss amount could be disclosed by the public

source from which it was collected, but in many cases firms do not to release details of their losses due to

10Most cyber incidents go unreported. Typically, only the larger and the more relevant ones become public and are included in
the Advisen database.
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reputational concerns (Biener et al., 2015; Pretty, 2018). We return to this particular issue later (Section

IV), but it is important to recognise upfront that whilst there are many observations in the database, one

drawback is that several variables are sparsely populated.

Each cyber incident is linked to an ultimate parent company and includes, amongst others, the following

characteristics: i) case type (e.g. data breach, phishing); ii) affected count (e.g. in the event of a data breach,

how many details were stolen); iii) accident date; iv) source of the loss; v) type of loss; vi) actor (e.g. state-

sponsored, terrorist, etc); vii) loss amount; viii) company size (proxied by total revenues); iv) company type

(e.g. government, private); x) number of employees; xi) North American Industry Classification System

(NAICS) code identifying the sector of the firm that suffered the cyber incident; and xii) geography (i.e. the

area where the incident occurred).

The majority of losses reported in the database occur in the Americas region (North, Central and South

America; see Table I). In particular, 86 per cent of the episodes took place in the United States. This is

largely due to the fact that information regarding cyber losses is easier to collect in the US as a result of

a higher degree of freedom of information. The region with the next largest occurrence of cyber events is

Europe and, lastly, Africa. Data limitations imply these statistics are not to be taken as a representation of

the population of cyber incidents that occur globally.

Asia Africa Americas Europe Oceania Total

Frequency 3739 345 102459 7627 1024 115415
Total losses 4079.95 1793.37 28988.08 4299.89 362.41 39523.82
Mean loss 19.43 99.63 2.06 6.29 4.53 2.62
Standard deviation of loss 89.34 399.53 47.41 44.36 19.64 49.97

Notes: All numbers referring to losses are reported in USD millions. The mean and standard deviations are
calculated only over the observations that have data for the loss amount available. 221 incidents could not be
assigned to a country / region.

Table I
Summary of geographic location of incidents

Table II contains summary statistics of the frequency and losses by sector.11 By frequency, “Financial

and insurance activities” (FI) is the most affected. This sector is typically targeted due to lucrative rewards

from a successful attack. However, the FI sector shows some resilience, as despite being subject to many

attacks, the mean cost of a cyber incident is not as high as in other sectors. The sector with the highest aver-

age costs is “Transportation and storage”, followed by “Wholesale Trade” and “Professional, Scientific and

Technical” (PST). The standard deviation of costs in these sectors is quite large, implying that most likely

the distribution of losses has a heavy tail. In terms of overall costs, the “Information and Communication

Technology” (ICT) sector ranks first.

11The sectors are based on NAICS. For details, see /https://www.census.gov/eos/www/naics/.
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Frequency Total loss Mean loss Std. dev. of loss

Accommodation, food and beverage 2829 496.91 2.22 7.31
Administrative and support service 22062 3477.81 0.78 17.83
Agriculture, forestry, fishing and hunting 80 0.01 0.01 0.01
Arts, entertainment, and recreation 969 147.22 1.94 5.27
Construction 1020 358.66 2.49 23.42
Educational services 4631 147.26 0.57 2.34
Financial and insurance activities 27792 6321.09 1.69 15.45
Healthcare and social assistance 8688 597.80 1.06 9.55
Information and communication 9524 6402.59 5.51 76.22
Management of companies and enterprises 437 259.62 4.12 13.95
Manufacturing 3926 2006.67 5.61 32.24
Mining, quarrying, and oil and gas 126 8.92 0.52 1.69
Other services 2655 300.42 1.28 7.24
Professional, scientific and technical 10629 8777.63 5.54 114.79
Public administration 6704 2145.67 4.25 50.08
Real estate activities 1370 110.97 0.78 3.09
Retail trade 6452 2889.54 3.44 23.78
Transportation and storage 1154 2201.43 16.80 90.68
Utilities 530 36.13 0.38 1.39
Wholesale trade 2422 2202.03 8.01 120.60
Total 115415 39523.82 2.62 49.97

Notes: All numbers referring to losses are reported in USD millions. The mean and standard deviations are calculated
only over the observations that have data for the loss amount available. In addition, 1415 incidents were not assigned a
sector.

Table II
Summary of Advisen data by sector

Figure 2 shows how events are distributed by sector over time. The overall distribution across sectors in

terms of frequency remains relatively stable. Much of the growing frequency of events can be attributed to

the FI sector as well as the “Administrative and Support Service” sector. Increases in the frequency of cyber

incidents in the FI sector following the great financial crisis may be partly driven by targeted attacks on

banks due to their role in the crisis. The peak in costs in 2011 was shared largely amongst the FI, PST and

ICT sectors. This coincides with a year of excessive losses due to data breaches (Figure 3), which suggests

that multiple firms across sectors may have been affected by cyber incident that resulted in a loss of data

either for the firm or personal records.

Following the categorisation of Bouveret (2018), we present in Table III a summary of losses and the

frequency by categories of event types. The bulk of cyber incidents are related to data breaches and fraud.

Together, these account for over 100,000 of the events in the sample. However, for observations that contain

information on loss amounts, business disruptions seem to cause the most damage on average, where the

mean loss is twice as large as for data breaches. While a business disruption is likely to have a large “direct”

costs for the firm, the reputational costs of a data breach may be much higher and difficult to calculate, as

several people may be affected as a result of the breach.

9
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Figure 2
Distribution of frequency and costs of cyber incidents by sector over time

For comparison, we also present in Table IV summary statistics using an alternative definition adopted

by Romanosky (2016). Here there is a nuanced difference related to privacy events. Privacy violations

refer to when the firm is actually responsible for the incident, i.e. it has committed a breach of individuals’

privacy and not incurred the incident itself. In the categorisation presented in Table III, privacy violations

were grouped together with fraud. For the other categories, security incidents are more or less analogous

to business disruptions, phishing and skimming are a fraction of fraud as the larger component was made

up by privacy violations under the previous definition. Data breaches are defined similarly to the previous

definition. In terms of frequency, privacy violations are the most commonly occurring incident (44 per cent

of the cases). This is likely due to the fact that reporting requirements having been in place for a longer

period for privacy incidents than for other types of incident. Moreover, it is easier to assign conclusive

responsibility of the incident in privacy cases than in others (Chande and Yanchus, 2019). The total cost of a

data breach grows with the amount of records stolen. Therefore, if hackers are able to obtain large volumes

of records, the costs can soar as millions of individuals can be affected.
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Data breach Business disruptions Fraud Other Total

Frequency 53500 4915 56308 692 115415
Total losses 19155.30 8657.35 11679.12 32.04 39523.82
Mean loss 9.97 26.48 0.91 1.69 2.62
Standard deviation of loss 119.23 123.77 19.71 2.57 49.97

Notes: All numbers referring to losses are reported in USD millions. The mean and standard deviations are calculated only
over the observations that have data for the loss amount available. The Data breach category contains incidents that resulted
in a loss of data either for the firm or personal records; The Business disruptions category contains items such as hacking or
denial of service (DoS) attack; The Fraud category contains privacy violations and phishing/skimming incidents.

Table III
Summary by type of cyber incident

Figure 3 depicts the distribution by case type through time.12 The most recent end of the data is prob-

ably subject to an underreporting bias, as it takes time for incidents to be discovered and acknowledged.

Therefore, we expect the numbers from 2016 onwards to increase as more information becomes available in

the future. There has been an increasing trend in terms of frequency, in line with the growing concern over

cyber risks. This is likely driven by a few factors. First, several frameworks and legislation have come into

place that encourages the reporting of cyber incidents. Second, the barrier to accessibility to carrying out

cyber attacks has become lower as competent computing skills are no longer required to carry out attacks.

The reduction in more recent years could represent the effects of increased investment in cyber security,

but should be taken with caution due to the above mentioned reporting bias. Concerning the distribution

by frequency over time, the increase has largely been attributed to privacy violations, which may point to

the improvements in reporting. Costs, on the other hand, peaked in 2011, largely due to spikes in privacy

violations and data breaches.

Security incident Data breach Phishing/skimming Privacy Other Total

Frequency 5908 54066 3629 51120 692 115415
Total losses 8699.98 20090.55 2732.95 7968.30 32.04 39523.82
Mean loss 10.05 9.02 11.06 0.68 1.69 2.62
Std dev. of loss 77.07 110.85 73.35 17.50 2.57 49.97

Notes: All numbers referring to losses are reported in USD millions. The mean and standard deviations are calculated only
over the observations that have data for the loss amount available. Security incidents include hacking, DDoS-type attacks or
internal IT failures. The Data breach category contains incidents that resulted in a loss of data either for the firm or personal
records; The Privacy category refers to incidents when the firms have breached the privacy rights of individuals; Phishing and
skimming largely refer to the sending of emails that are intended to solicit personal information from victims, as well as the
copying of credit card details.

Table IV
Summary by type of cyber incident – Alternative classification

12The categorisation is based on the fixed effects used in the regression which is closely aligned to Romanosky (2016). See
Section IV for details.
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Figure 3
Distribution of frequency and costs of cyber incidents by case type over time

Figure 4 reports the frequency of cyber incidents that stem from external actors, including criminal

organisations, state-backed entities or terrorist groups. Attacks deriving from these entities tend to be highly

sophisticated, with the potential to cause significant monetary costs. Criminal groups’ and terrorists’ cyber

crime skills are continuously improving. Governments, firms and individuals thus need to be increasingly

proactive in guarding their cyber-assets. States have also turned to cyber attacks. A spike is observed in

2016, when hackers associated with North Korea breached Bangladesh Bank’s systems and used the SWIFT

network to send fraudulent money transfer orders.13

B. Cloud dependency and technological skills

We use data from the OECD to proxy heterogeneity in the development of IT resources per sector and

also to study the effects of a different adoption of cloud services on the cost of cyber incidents. Data are only

available for a subset of sectors and also for a selected number of countries. When merging the two datasets,

we therefore lose information on some sectors. Moreover, a lack of consistent data across countries and

time in the database limits to some extent the analysis of cross-country heterogeneity and the differential

effects through time. We assume that there is heterogeneity amongst sectors in these variables, but that the

levels by sectors persists across the countries included in the database and also through time in our sample

data, which range from 2002-2018. While these assumptions may be restrictive, the exercise provides a first

attempt at giving empirical evidence of the link between IT investment /cloud dependency and the costs of

13See https://reut.rs/34Qhh4a.
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Figure 4
Frequency of cyber incidents by external actors

cyber incidents.14 This is useful for policymakers, as it provides insights as to what factors can help reduce

costs stemming from cyber risks and, in particular, which sectors are relatively more vulnerable to cyber

attacks.

We construct global indicators of IT investment and cloud dependency across sectors. We take the

average across regions and time to form a composite indicator for OECD countries. We take the average

across regions and time to form a composite indicator for OECD countries. Formally, if xi, j,t is the indicator

of interest in sector i, of country j, at time t, we compute the proxy variable for sector xi as follows:

xi =
1

ni ·m j
∑

j
∑

t

xi,t, j (1)

where, ni is the number of countries that reported at time t and m j is the number of periods for which

country j reported data.

We construct three variables that explain the level of technological development of a sector:

1. Staff training, the percentage of firms in each sector which gives staff a specific IT training;

2. PC users, the percentage of staff in each sector that use a computer in their everyday work;

3. Specialist Staff, the percentage of firms that employ staff specialised in IT or related areas.

14Indeed, the US does not report this information and the database has a large skew towards the US. Thereby, much of the
assumption is based on the fact that the distribution across sectors in the database acts as a good proxy for the distribution of sectors
in the US.
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As an indication of cloud dependency, we define the variable Cloud to be the percentage of businesses

per sector that have purchased cloud services. Table V contains the computed proxies for the four variables

over the sectors for which data was available, and Table VI presents summary statistics. The incidence

of cloud services is highest for the ICT sector, followed by the PST sector and the FI sector. In terms of

technological capabilities, the ICT and FI sectors stand out, followed by the PST sector.

Cloud Sta f f Training PCUsers SpecialistSta f f

Manufacturing 23.95 23.33 41.74 24.33
Construction 23.68 14.63 37.89 12.80
Wholesale trade 27.00 29.12 64.93 29.54
Retail trade 20.60 20.15 44.07 17.81
Transportation and storage 22.72 19.62 43.22 19.75
Accommodation, Food and beverage 18.20 12.22 31.34 10.50
Information and communication 54.41 59.11 89.80 74.61
Financial and insurance activities 32.74 56.94 84.92 65.10
Real estate activities 30.60 26.55 64.98 23.18
Professional, scientific and technical 38.19 34.99 82.43 36.64
Administrative and support service 27.84 21.09 40.94 21.55

Notes: All figures are percentages. The countries reporting data to the OECD on technological skills and
cloud dependency are the following: Australia, Austria, Belgium, Brazil, Canada, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Latvia. Lithuania,
Luxembourg, Mexico, Netherlands, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Turkey and United Kingdom. The time period over which the data was averaged is 2005-2012.

Table V
Summary of OECD data

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Cloud 18.2 23.2 27.0 29.1 31.7 54.4 10.2
Sta f f Training 12.2 19.9 23.3 28.9 32.1 59.1 15.7

PCUsers 31.3 41.3 44.1 56.9 73.7 89.8 21.2
SpecialistSta f f 10.5 18.8 23.2 30.5 33.1 74.6 20.8

Table VI
Summary statistics for OECD technological skills and cloud variables

C. IT spending by sector

To evaluate whether certain sectors may be underinvesting in IT security, we use a dataset of IT spending

gathered from the Information Week 500 (IW500) annual survey. The database provides a reflection on the

investment in IT across sectors from firms, based largely in the US (and Canada). The original data is

categorised by sectors as defined by IW500. Kennedy and Stratopoulos (2017) provide a mapping of these
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self-defined categories to the NAICS categorisation.15

The data are available from 2005-2014 for most NAICS sectors. We take an average across the years for

each sector to evaluate whether each sector has, on average during this period, overspent or underspent on

IT resources.

IV. Identifying the drivers of cyber costs

Policy-makers, insurance companies and firms have a great interest in developing models that can ex-

plain the cost of cyber incidents. With respect to data breaches, using Ponemon data, Jacobs (2014) uses a

regression framework to link the cost of a breach to the number of records that have been compromised. Ro-

manosky (2016) uses the Advisen data to expand on this methodology, including a broader set of variables

in the regression: firm size, a dummy for whether an incident was malicious, a dummy for the case in which

a firm suffered multiple losses, the number of records stolen and the effect of lawsuits. We expand on this

methodology in two ways. First, we widen the scope of the regression to include a wider set of incidents

and not only data breaches. We then enrich the dataset further with sector-level explanatory variables that

can be used to address the impact of IT investment across sectors and the dependency on cloud technology.

As noted above, there are some data limitations. One is the limited information on losses relative to

the events in the sample. The full sample consists of over 100,000 incidents. However, much of the data is

sparsely populated and, in particular, not every observation has information on the costs incurred.16 Another

limitation relates to the OECD data is used to complement our dataset, which is only provided for a limited

number of sectors. Taking into account these limitations, the sample is reduced to 3,228 observations. We

present below some additional information on the explanatory variables used in the benchmark regression.

Firm size. Curti et al. (2019) suggest that firm size positively correlated with the size of their operational

losses, using data for financial institutions. This could have three main explanations: i) losses are correlated

with the level of a firms’ activity; ii) institutional complexity and ii) moral hazard incentives arising from

“too-big-to-fail.” Our paper evaluates if the positive correlation persist for other sectors beyond financial

institutions. Evidence supporting larger losses at larger firms may warrant increased attention from regu-

lators towards such firms. In the financial sector, negative externalities associated with institutions that are

perceived as not being allowed to fail due to their size, interconnectedness, complexity, lack of substitutabil-

ity or global scope are well documented. However, there is little empirical evidence that characterises a

firm’s risk-profile with respect to cyber incidents. Biener et al. (2015) note a U-shaped relationship between

firm size and average losses. We test for the existence of this relationship by including a squared term in the

regression. To proxy the size of the firm incurring the loss we use the log of revenues. We test the robustness

of our results by performing regressions using number of employees as an alternative proxy for firm size.

Connections among cyber events. Cyber attacks and incidents in general could exhibit features of conta-

15For details on how this mapping was constructed, we refer the reader to the paper of Kennedy and Stratopoulos.
16As indicated by Jones and Freund (2014) other loss forms, such as productivity or certain response costs are often not reported

publicly. This is a limitation of the Advisen database and data losses should be considered as a lower bound.
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gion (Baldwin et al., 2017; Eisenbach et al., 2020). Incidents that impact multiple-firms could lead to greater

costs in absolute value. On the other hand, the costs could be more distributed across firms. We include a

variable that captures how many firms were linked to one specific cyber event in order to provide evidence

on this effect.

The Advisen database provides information to link related incidents. For example, if hackers infiltrated

one firm and were able to manoeuvre their way into the system of another, the losses would occur at two

different firms but the incidents are linked to the same attack. We use this information to construct a variable

that denotes how many losses were related to a specific incident. To return to the example, assuming the two

firms were the only ones to be affected, the connection variable would be 2.17

Malicious events. Cyber incidents include a broad set of malicious and non-malicious events. We

test whether cyber-attacks (malicious) cause more damage or whether inadvertent incidents are equally

damaging. We divide the categorical variable of case types (e.g. DDoS attack, accidental data leak, IT

processing error) into two broad categories, malicious and non-malicious, based on whether the incident

was done with intent to cause damage or occurred as a result of an accident. Based on this categorisation,

we construct a dummy variable labelled HackerType, which is equal to one if the event had malicious intent.

Control variables. In order to control for the possible existence of trends or anomalies in specific periods

of time, we use year dummies. We also include a set of dummies for the sectors reported in Table V. Lastly,

we include a set of dummy variables for different types of incident:

• Security incident: an incident that compromises or disrupts corporate IT systems (computers or net-

works) or their intellectual property. For example, hacking and consequently extorting corporate

information or a denial of service (DoS) attack.

• Data breach: includes unintended disclosure of information (e.g. accidental public disclosure of

customer data, improper disposal of information) and/or theft of computers containing personal infor-

mation of employees or customers of a firm.

• IT implementation errors: faulty hardware or software containing bugs that lead to outages or losses.

• Phishing/Skimming: the sending of emails purporting to be from reputable companies in order to

convince individuals to reveal personal information to subsequently commit identity theft and the

illegal copying of information from the magnetic strips found on credit and debit cards (usually via

hardware devices on ATM machines).

• Privacy violation: unauthorised collection, use or sharing of personal information. For example,

unauthorised collection from cell phones, GPS devices, cookies, web tracking or physical surveil-

lance. This is distinguished from data breaches as an act committed by the firm as opposed to against

the firm.

• Other: cyber-related losses that were not attributed to one of the above categories.

Table VII presents summary statistics for the baseline variables. The average cost of a cyber event is
17We note that this variable likely acts as a lower bound on the number of related incidents, as some are unable to be traced to a

root cause or may have gone unnoticed or unreported by some firms.
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large, at $12.4 million. However, the distribution of the costs is highly skewed: the median is roughly

100,000 dollars. About 40% of the events are malicious (HackerType, caused by a cyber attack). The

variable Connections indicates that, on average, the number of events connected to any given event is about

6, with a median of 2. This suggests that the distribution is skewed towards a longer tail, i.e. there are a few

events with many connections.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Cost ($m) 0.0 0.0 0.1 12.4 1.5 4,000.0 106.8
HackerType - - - 0.4 - - -
Connections 1.0 2.0 2.0 6.1 3.0 79.0 11.4
Revenues ($m) 0.0 2.6 48.0 13,950.7 3,680.7 496,785.0 40,633.2

Notes: Costs and revenues are reported in millions of US dollars. HackerType is a dummy variable, hence only
the mean is reported which corresponds to the proportion of events which were of a malicious nature.

Table VII
Summary statistics for the baseline variables

Our empirical strategy is similar to Romanosky (2016). The regression is performed at a cross sectional

event level. That is, each observation corresponds to a different cyber event. The empirical model is given

by the following equation:

log(Cost) = β0 +β1FirmSize+β2Connections+β3HackerType+β4FE +u (2)

where, Cost is the total cost associated with the cyber event measured in US dollars,18 FirmSize is the log-

arithm of the reported revenue for the firm which incurred the loss,19 Connections are the number of events

found to be related to the given loss event (that is, the events that have the same root cause), HackerType is

a dummy variable which takes the value of 1 if the event was caused by a cyber attack with malicious intent

or 0 otherwise. FE are the fixed effects: specifically, we use the year in which the event occurred as a time

fixed effect, the sector of the firm which incurred the loss as a sectoral fixed effect and the type of incident

(e.g. data breaches, phishing and skimming, etc). To sum up, equation 2 explains the average costs of cyber

incidents as a function of: i) a firm size effect, related to the size of the company which suffered the loss; ii)

a contagion effect, proxied by the number of related events; iii) a malicious/cyber attack dummy effect; iv)

fixed effects that absorb time, sector and event type variation.

Table VIII contains the results from estimating equation 2. The different columns report specifications

that include different sets of fixed effects. Specifically, Model I includes only a Year fixed effect; Model II

only a Sector fixed effect; Model III only an incident type fixed effect and, finally, Model IV all fixed effects.

The larger the size of a firm, the higher the estimated cyber incident costs. The elasticity coefficients

18The costs are nominal. For robustness, we have also run the regressions using as dependent variable the logarithm of cyber
costs expressed in real USD terms. The results were unchanged.

19Using the number of employees as an alternative measure of firm size brings to very similar results.
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imply that a one percent increase in a firm’s total revenues is associated with a 0.23-0.26 percent increase in

the costs of a cyber event. This result is robust to different sets of fixed effects and significantly different from

a unitary elasticity. The number of related events (connections), which proxies how systemic or contagious

a cyber event is, is also positively correlated with the costs of a cyber event. The semi-elasticity coefficients

imply that if a cyber incident is connected with another event the overall cost increases between 1.8-2.2%.

This result as well is robust to different specifications of the fixed effects. Moreover, it is in line with the

intuition that the more systemic events carry the highest impact and therefore are more costly. For example,

the cyber event that is most connected in our database (connected with other 79 related cyber incidents) has

a cost that is almost double, other things being equal.

Dependent Var: log(Cost)

I II III IV

FirmSize
0.231***

(0.01)
0.259***

(0.02)
0.237***

(0.01)
0.227***

(0.01)

Connections
0.020***

(0.01)
0.018***

(0.01)
0.018***

(0.01)
0.022***

(0.01)

HackerType
-0.066
(0.12)

-0.323**
(0.13)

-0.617**
(0.29)

-0.511*
(0.28)

Year Y N N Y
Sector N Y N Y

Incident Type N N Y Y

R2 0.177 0.125 0.125 0.199
Obs 3228 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table VIII
Drivers of cyber costs: baseline specification

Events associated with malicious behaviour (HackerType) are relatively less costly (up to 60% less) than

other event types. Cyber attacks get significant press coverage and it is therefore reasonable to expect them

to be more costly. However, the results show that there are other cyber events, such as IT implementation

and processing errors, that are more costly. Moreover, cyber security actions adopted by many firms protect

them from the effects of malicious cyber incidents. There are various tools, like anti-virus software, that are

able to predict and manage cyber attacks more effectively than events that occur as a result of human error

inside firms. All in all, this result indicates that while cyber attacks typically receive more media attention,

other things being equal, they could be less damaging on average- than other cyber events. That being said,

this should not be taken as a reason to gloss over the threat that is posed by malicious cyber attacks as we

will show in the subsequent quantile analysis (Section IV.B). Moreover, well co-ordinated cyber attacks can

go undiscovered for a long time, in which case the cost of the attack can be difficult to estimate or even

identify.

Figure 5 shows the evolution of the estimated year fixed effect coefficients over time. The error bars
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Figure 5
Year fixed effects from Table VIII

denote two standard deviations around the estimated coefficient. The average cost of an event each year

(on a log scale) is increasing since 2008. This trend could be driven by a number of causes. The growth in

IT complexity and interconnectivity of systems has led to new challenges regarding the use of IT solutions

(Hanseth, 2007) and increasing sources of risks (Beck et al., 1994, 1992). Recent evidence suggests that it is

now easier than ever to launch cyber attacks as cyber criminals have developed a lucrative market in selling

do-it-yourself hacking kits and services. For example, in 2014, a Swedish citizen was charged with selling

a ransomware and offering technical support to buyers, making as much as $350,000 in the process.20

Figure 6 shows the distribution of the estimated sectorial fixed effect coefficients. Accommodation and

Food, Manufacturing and Real Estate have the highest average cost per event, whereas Administration and

Support and ICT have the lowest.

The Finance and Insurance sector (circled in red in Figure 6) is below the average across sectors. It is

important not to misinterpret this result as reflecting that the financial sector suffers fewer incidents; rather,

risks in this sector seem to be better managed. Financial institutions indeed have always been a prime target

for cyber-criminals due to what is often referred to as Sutton’s rule.21 While evidence suggests there is

no shortage of attempts to penetrate the financial sector, attackers find it much harder to succeed. Due to

the nature of their business, financial organisations need to develop security measures and actively manage

cyber risks, also supported by regulation (we discuss more in detail this point below).22 Financial firms

20https://www.bloomberg.com/news/articles/2014-05-19/u-s-malware-probe-said-to-yield-dozens-of-global-arrests.
21Sutton’s rule states that, when diagnosing, one should first consider the obvious. The law is named after the famous bank

robber Willie Sutton (1901 1980), who reputedly replied to a reporter’s inquiry as to why he robbed banks by saying “because
that’s where the money is”.

22Regulation of cyber security tends to vary by sector. In the US three main regulations address cyber security at the federal
level: the 1996 Health Insurance Portability and Accountability Act, the 1999 Gramm-Leach-Bliley Act and the 2002 Homeland
Security Act (aimed at healthcare organisations, financial institutions, and federal agencies respectively). At the international level,
progress is constantly made to harmonise principles for banks. In December 2018 the Basel Committee on Banking Supervision
published a report on the range of cyber-resilience practices (Basel Committee on Banking Supervision, 2018).
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spend considerable sums on IT security systems and support from cyber security experts, which make them

well equipped to reduce costs from cyber events, in particular cyber attacks.

●

●

● ●

●

●

●

●

●

●

●

O

11

12

13

Ac
c.

 &
 F

oo
d

Ad
m

in
. &

 S
up

po
rt

C
on

st
ru

ct
io

n
Fi

na
nc

e 
an

d 
In

su
r.

In
fo

. a
nd

 c
om

m
.

M
an

uf
ac

tu
rin

g
Pr

of
., 

Sc
i. 

an
d 

Te
ch

R
ea

l e
st

at
e

R
et

ai
l t

ra
de

Tr
an

sp
or

t
W

ho
le

sa
le

 tr
ad

e

S
ec

to
r 

F
ix

ed
 E

ffe
ct

Figure 6
Sector fixed effects from Table VIII

Figure 7 shows the incident type fixed effects. Controlling for other factors, the more costly incident

types are IT-related and Phishing/Skimming events. The IT category includes configuration, implementation

and processing errors. The latter could be due to computer glitches, poorly designed software or failed

software upgrades. As noted above, phishing is the fraudulent practice of sending emails purporting to be

from reputable companies in order to convince individuals to reveal personal information, such as passwords

and credit card numbers.23 Other things being equal, these types of attacks can be particularly damaging in

terms of monetary losses.

A. Testing the presence of non-linear relationship in firm size and cyber event connections

Biener et al. (2015) note that the costs of cyber incidents have a U-shaped relationships with firm size

i.e. small firms and large firms incur larger losses. Moreover, and contrary to our result, they find that low

connectivity events are associated with higher costs. The logic behind their finding is that as the number of

firms connected to the event grows, the costs are distributed amongst more firms and tends to dilute. The

different results could be due to the presence of a non-linear relationship that is not captured by the linear

baseline regression (2). We check the robustness of our results in two ways.

First, we plot in Figure 8 the relationship between connections and cost (left hand panel) and between

size and cost (right hand panel). In the first case, there is weak evidence of a positive relationship that is

reduced in the last part of the distribution. In the second case, there are signs of a weak positive correlation

but no sign of a U-shaped relationship.

23While phishing is conducted online, skimming is the in-person act of copying information from a card via a handheld tool the
size of a lighter, or a device that fits neatly over a gas station pump or ATM. Both allow thieves to scan the account information off
of a card’s magnetic strip.
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Figure 7
Incident type fixed effects from Table VIII

Second, we test for the presence of a non-linear relationship more formally, by including quadratic terms

in equation 2. Table IX presents the results. There is no significant quadratic relationship for FirmSize.

There is evidence of a quadratic relationship between the number of cyber event connections and costs.

However, the maximum is reached for around 25 connections. Costs grow non-linearly with the number of

entities connected to an incident and start to decline only for episodes with a very high number of connec-

tions.

Dependent Var: log(Cost)

I II

FirmSize 0.259***
(0.04)

0.232***
(0.01)

FirmSize2 -0.003
(0.00)

Connections -0.050***
(0.01)

Connections2 0.001***
(0.00)

HackerType -0.388
(0.28)

-0.421
(0.28)

Year Y Y
Sector Y Y

Incident Type Y Y

R2 0.195 0.206
Obs 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table IX
Baseline regression with second order terms
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(a) Connections versus the logarithm of costs

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●●

●
●

●

●●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●●●●
●●
●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●●
●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●●

●●

●

●●

●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●●
●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●
●

●●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●
●●
●
●

●

●●
●●
●
●

●

●●●●●

●

●
●●
●●
●●
●
●

●●

●
●
●

●

●
●
●●
●

●

●

●

●●●
●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●●

●●
●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●●

●

●

●

●

●●
●

●

●●

●●

● ●

●●●●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●
●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●●

●

●

●

●

●●
●●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

● ●

●

●

●

● ●

●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●
●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

● ●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●●

●

●●●

●

●

●● ●

●

● ●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

0

5

10

15

20

−5 0 5 10

log(Revenues)

lo
g(

C
os

t)

(b) Revenues versus the logarithm of costs

Figure 8
Relationship of the logarithm of costs against select regressors

B. Quantile regressions

Losses stemming from cyber incidents could be characterised by a “heavy-tailed” distribution (Cohen

et al., 2019). Therefore, it is reasonable to assume that the impact of the variables used may vary across

different cost quantiles. In particular, the tails could be fundamentally different from the rest of the distri-

bution. To check for the presence of different effects along the distribution of costs, we re-run our baseline

regression at varying cost quantiles. The quantiles used are the 25%, 50%, 75%, and 90%. We present the

results of this test in Table X.

The baseline regression is reported in the first column. FirmSize and Connections display a similar

relationship when moving from lower to higher quantiles. The magnitude of the coefficients becomes larger

towards the upper quantiles, although in both cases there is a decline between the 75th and 90th percentiles.

Interestingly, the HackerType variable, which is originally observed to have a negative coefficient, changes

sign at the 90th percentile. While the majority of malicious events are other things being equal – less

damaging than those that are accidental, sophisticated hacks can actually exacerbate costs at the tail end of

the distribution.24

C. Standard error clustering

Note that the residuals of equation 2 may be correlated across numerous dimensions and one useful

robustness check is to use clustered standard errors. However, clustering usually reduces the precision

of the standard errors and could automatically reduce the significance of the results (Cameron and Miller

(2015)). The question is: which dimension should be chosen to cluster, if any? Abadie et al. (2017) argue

that clustering is either a sampling design or an experimental design issue. From the sampling perspective,

24We repeat a similar quantile regression for each of the regressions run in the subsequent sections. However, there was no
significant material change to the results presented.
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Dependent Var: log(Cost)

Mean 25% 50% 75% 90%

FirmSize 0.227***
(0.01)

0.167***
(0.01)

0.263***
(0.02)

0.289***
(0.02)

0.249***
(0.02)

Connections 0.022***
(0.01)

0.009
(0.01)

0.019**
(0.01)

0.027***
(0.00)

0.022***
(0.01)

HackerType -0.511*
(0.28)

-1.007***
(0.20)

-0.512
(0.34)

-0.193
(0.21)

0.521**
(0.22)

Year Y Y Y Y Y
Sector Y Y Y Y Y

Incident Type Y Y Y Y Y

Obs 3228 3228 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table X
Quantile regressions

we should consider whether there are clusters in the population of interest that are not represented in the

sample. On the other hand, clustering is an experimental design issue if the assignment is correlated within

the clusters.

Table XI takes a pragmatic approach and shows the results of the complete model when clustering along

different dimensions: by sector, year, type of event (CaseType) or by connected events (Events). Results

remain qualitatively similar.

Dependent Var: log(Cost)

I II III IV

FirmSize
0.227***

(0.04)
0.227***

(0.03)
0.227***

(0.04)
0.227***

(0.02)

Connections
0.022***
(0.009)

0.022
(0.014)

0.022***
(0.009)

0.022
(0.015)

HackerType
-0.511
(0.38)

-0.511
(0.44)

-0.511***
(0.09)

-0.511*
(0.27)

Year Y Y Y Y
Sector Y Y Y Y

Incident Type Y Y Y Y

R2 0.199 0.199 0.199 0.199
Obs 3228 3228 3228 3228
σc Sector Year CaseType Events

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, clustered standard errors in parentheses.

Table XI
Alternative standard error clustering for baseline regression
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V. Does the development of technological skills mitigate cyber costs?

Sectors that face shortages in IT skills and investment in staff training may leave themselves exposed

to cyber risks. In this section, we use sector aggregate data from the OECD as a measure of technology

skills across firms. While the frequency of cyber events may depend on exogenous factors, their impact (or

severity) can be mitigated by maintaining sound IT practices. Based on this we postulate the following:

Hypothesis 1. A higher development of technological skills can mitigate losses from cyber incidents.

This hypothesis reflects our prior belief that the development of technological skills should reduce the

severity of costs associated with cyber events. IT plays an integral role in day-to-day business across all

sectors, hence those with greater human capital with respect to technological skills should manage the risks

more effectively.

Dependent Var: log(Cost)

I II III IV

FirmSize 0.335*** (0.04) 0.373*** (0.05) 0.307*** (0.03) 0.232*** (0.01)
Connections 0.022*** (0.01) 0.022*** (0.01) 0.022*** (0.01) 0.022*** (0.01)
HackerType -0.519* (0.28) -0.519* (0.28) -0.520* (0.28) -0.519* (0.28)

FirmSize×Sta f f Training -0.002*** (0.00)
FirmSize×PCUsers -0.002*** (0.00)

FirmSize×SpecialistSta f f -0.002*** (0.00)
FirmSize×Γ -0.001*** (0.00)

Year Y Y Y Y
Sector Y Y Y Y

Incident Type Y Y Y Y

R2 0.202 0.202 0.201 0.202
Obs 3228 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XII
The role of technological skills in mitigating cyber costs

Since the OECD skills variables are aggregated at the sectoral level, they are subsumed in sectoral fixed

effects. For this reason, to observe the effect of technological skills on the severity of cyber losses we include

them as interaction terms with the baseline regressors. In particular, we modify equation 2 by including one

extra interaction term at a time. For example, if we consider the interaction term between FirmSize and

Sta f f Training we have the following:

log(Cost) = β0 +β1FirmSize+β2Connections+

β3HackerType+β4FirmSize×Sta f f Training+FE +u
(3)

Table XII contains the estimated coefficients for the regression model in equation 3. Each of the spec-
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ifications includes the interaction of FirmSize with one of the variables expressing technological skills.

Model I includes the interaction of FirmSize with Sta f f Training; Model II the interaction of FirmSize with

PCUsers; Model III the interaction of FirmSize with SpecialistSta f f ; Model IV the interaction of FirmSize

with a linear combination of the technology dependence variables, equivalent to the principal component

corresponding to the largest eigenvalue, Γ.

From Table XII, consider first the baseline regressors FirmSize, Connections and HackerType. Their

signs are the same as those in the baseline regression. The magnitudes and significance of the Connections

and HackerType variables remain consistent, whereas FirmSize has a higher magnitude making room for

the significant negative coefficients estimated for the interaction term including the same variable. The

coefficients of the interaction terms reveal that all of the technological skills variables have a statistically

significant mitigating effect on costs.

Consider two events, occurring at firms of equivalent size, but of differing sectors. Our results suggest

that a firm from the sector with better development of technological skills manages costs more effectively:

there is a reduction in the severity of costs between 0.1-0.2% for every unit increase in the skills variables.

To see what difference that can make, we compare the effect on costs for firms of the same size from the

sector with highest development of technological skills to that of the lowest. For Sta f f Training, the sectors

with the highest and lowest values are Information and communication (59%) and Accommodation, food

and beverage (12%), respectively. The expected costs of cyber losses are 9.5% 25 lower in the former than

in the latter. For PCUsers and SpecialistSta f f , under the same assumptions, the difference in expected

costs between the least and most technologically developed sectors are 11.7% (Information and commu-

nication versus Accommodation, food and beverage) and 12.4% (Information and communication versus

construction) respectively.

Table XIII contains the estimated coefficients for the regression model in equation 3 with the inclusion of

the number of connected events with different sectorial measures expressing technological dependence. The

structure is similar to that of Table XII. The results for the baseline regressors (FirmSize, Connections and

HackerType) are qualitatively similar, but Connections in this case is larger in magnitude, accommodating

the significant negative coefficient in the interaction terms. The interaction terms in the different columns

indicate a statistically significant mitigating (negative) effect on the expected costs of a cyber event. The

magnitude of the interaction terms is 0.001 across all specifications. This reflects a reduction in the expected

severity of costs between 0.1% for every unit increase in the skills variables, given a constant number of con-

nections. A similar comparison of most versus least technologically advanced sectors for our three variables

yields to expected losses that are 4.7%, 5.9% and 6.2% lower for the sectors with higher technological skills

(for a given level of connections).

25This is computed as: (59−12)×0.002≈ 0.095.
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Dependent Var: log(Cost)

I II III IV

FirmSize 0.227*** (0.01) 0.226*** (0.01) 0.227*** (0.01) 0.227*** (0.01)
Connections 0.069*** (0.01) 0.086*** (0.02) 0.066*** (0.01) 0.027*** (0.01)
HackerType -0.556** (0.28) -0.554** (0.28) -0.564** (0.28) -0.560** (0.28)

Connections×Sta f f Training -0.001*** (0.00)
Connections×PCUsers -0.001*** (0.00)

Connections×SpecialistSta f f -0.001*** (0.00)
Connections×Γ -0.001*** (0.00)

Year Y Y Y Y
Sector Y Y Y Y

Incident Type Y Y Y Y

R2 0.203 0.202 0.203 0.203
Obs 3228 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XIII
Technological skills and connected events

Table XIV presents the results of interacting the Hacker type variable with the technological skills vari-

ables. The structure is similar to XII and XIII. The coefficients of the baseline regressors FirmSize and

Connections are similar to those obtained in Tables XII and XIII. By contrast, when the interaction terms

are included, HackerType becomes statistically not significant, at all levels. Moreover, the interaction terms

are not statistically significant.

Dependent Var: log(Cost)

I II III IV

FirmSize 0.228*** (0.01) 0.227*** (0.01) 0.228*** (0.01) 0.227*** (0.01)
Connections 0.022*** (0.01) 0.022*** (0.01) 0.021*** (0.01) 0.022*** (0.01)
HackerType -0.067 (0.40) -0.372 (0.49) -0.203 (0.37) -0.513* (0.28)

HackerType×Sta f f Training -0.011 (0.01)
HackerType×PCUsers -0.002 (0.01)

HackerType×SpecialistSta f f -0.007 (0.01)
HackerType×Γ -0.004 (0.00)

Year Y Y Y Y
Sector Y Y Y Y

Incident Type Y Y Y Y

R2 0.2 0.199 0.2 0.2
Obs 3228 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XIV
Technological skills and incidents with malicious intent
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VI. Does cloud technology alter cyber risks?

Cloud technology enables firms to rent computing power and storage from service providers, which gives

them flexibility in their storage costs. In this way, some fixed costs become marginal costs of production.

Moreover, cloud computing poses positive externalities such as the reduction of energy consumption and

carbon emissions (Etro, 2015).

However, cloud computing also faces some risk, and in particular involves firms inherently placing a

lot of trust in vendors of cloud technology (Urquhart, 2009). The presence of a market failure through

information asymmetry between buyer and vendor is rather well recognised. Often users of cloud services

may not know the exact location of their data or the other sources of the data collectively stored with theirs.

Cloud computing can be a double-edged sword. On one hand, firms are implicitly purchasing the cyber

security expertise of vendors like Microsoft, Google and Amazon. This can be especially beneficial for

firms with low IT budgets and a general lack of IT skills, which as was highlighted in the previous section

can be detrimental when it comes to the expected costs of cyber losses. That said, firms are still responsible

for maintaining sound IT practices, as individual servers can still be at risk of compromise through poor

security. Cloud computing can also be a target for cyber-criminals. Clouds of multiple entities (providers)

could be formed; such configuration is only as strong as its weakest link. If this link can be identified and

exploited, this renders the entire cloud vulnerable. Consequently, an attacker can do considerable damage

across multiple entities by exploiting a weakness in one firm (Kaufman, 2009).26

Cloud computing could pose a concern in terms of systemic risk. Providers of cloud services, undoubt-

edly have some of the best cyber security experts and ultimately provide highly secure services, but tail-risks

could lead to substantial losses and potentially bring the economy to a halt (Danielsson and Macrae (2019)).

Moreover, the market for cloud services is highly concentrated, and there are warnings about increased ho-

mogeneity and the greater risk of single points of failure.27 Through shared software, hardware and vendors,

incidents could, in principle, spread more quickly, leading to higher overall costs. The impact of the use of

cloud services in the case of cyber attacks can thus go both ways, and clearly depends on the benefit-risk

analysis. Based on the discussion above, we make the following hypothesis.

Hypothesis 2. A higher dependency on cloud technologies can alter losses from cyber events. However, the

net benefit depends on the connectivity of the cyber incidents and the size of the shock.

We test our hypothesis by using data collected from the OECD on purchases of cloud technology by

sector. The rationale is that firms with higher investment in cloud technologies are consequently more

exposed to the benefits and risks that come with it.

We look at two regressions including the cloud variable. In the first one, the cloud dependency variable

is introduced as a simple regressor and – due to the multicollinearity issue previously discussed – the sector

fixed effect is omitted. We then include it as an interaction with the Connections variable and keep the fixed

26For a full discussion of the benefits and risks of cloud computing see Catteddu (2009).
27For a discussion of cloud service providers as critical infrastructures and potential policy responses, see Carr et al. (2019).
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effects. Cloud computing increases the potential for connectivity between firms and thus it is interesting to

evaluate the impact of events with a high connectivity and high usage of cloud services. If we consider the

second specification with the interaction between Cloud and Connections we have the following equation:

log(Cost) = β0 +β1FirmSize+β2Connections+

β3HackerType+β4Cloud×Connections+β5FE +u
(4)

We present the results of the regressions in Table XV. The higher the investment in cloud services, the

lower the cost of cyber events: the coefficient on cloud dependence in the second column is negative and

significant. A similar negative coefficient occurs for the interaction term between Connections and Cloud

in the third columns. In other words, increasing cloud dependence reduces the impact of connected cyber

attacks. This result, however, needs a qualification. Whether, and under what conditions, clouds absorb or

spread losses depends on the size of the shock and the connectivity of sectors. As long as the negative shocks

are sufficiently small, clouds could act as a shock absorber. Ideally, cyber attacks would be fully neutralised

by the cloud’s cyber security technologies and cloud users would not be affected. However, once the attack

is able to overcome the clouds’ security barriers, the same features that make a cloud more resilient may

become sources of instability.

Dependent Var: log(Cost)

I II III

FirmSize 0.227*** (0.01) 0.223*** (0.01) 0.228*** (0.01)
Connections 0.022*** (0.01) 0.022*** (0.01) 0.076*** (0.02)
HackerType -0.511* (0.28) -0.527* (0.28) -0.572** (0.28)

Cloud -0.015*** (0.00)
Connections×Cloud -0.002*** (0.00)

Year Y Y Y
Sector Y N Y

Incident Type Y Y Y

R2 0.199 0.191 0.203
Obs 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XV
Dependence on cloud technology and cyber costs

VII. Does the price of Bitcoin motivate hackers?

Cryptoassets have grown in interest and trading volumes since the advent of Bitcoin (Nakamoto, 2008).

Proponents of cryptoassets suggest they have the potential to improve financial inclusion, user experience,

and reduce transaction costs. However, they could also amplify cyber risks. In particular, intermediaries
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like market exchanges where cryptoassets are traded have been a target for cyber-criminals. Exchanges

handle billions of dollars (or equivalents) in investor assets as well as providing various other services.

While financial regulation establishes a separation between trading platforms and custodians to mitigate

possible conflicts of interest, there are no similar requirements for intermediaries operating in the crypto

space (Massad, 2019).

Financial regulators also mandate financial institutions to maintain high security practices. Cyber sce-

narios are now being factored into stress testing.28 At the moment, these crypto firms fall out of the remit of

such regulations as well.29 This lack of regulation may also leave these intermediaries vulnerable to cyber

risks.

The incentive to attack firms that hold cryptoassets is a function of the price of cryptoassets. As this

price increases, the potential pay-off and hence the incentive to launch an attack on firms that store large

quantities of cryptocurrencies becomes greater. To investigate this relationship, we operate in different steps.

First, we filter the database for events that are related to cryptocurrencies and create a dummy variable for

these events. By including this dummy in the cost regression, we are able to verify if these events have an

additional impact on cyber costs. In a second step, we look at the relationship between the frequency of

crypto-related attacks and the price of Bitcoin.

The frequency of attacks correlates with the price of Bitcoin. The upper panel of Figure 9 shows the

frequency of attacks on crypto exchanges over the past four years. The lower panel reports the price of

Bitcoin (averaged across the top four exchanges). The increase in price and frequency of attacks up until

late 2017 indicates that monetary incentives could be motivating hackers. On the flipside, the price decline

following this peak in attacks may be the consequence of wavering confidence of investors due to evidence

of exploits. However, this decline may also be the result of improved security at exchanges. It should be

noted that the frequency of attacks is a lower bound of the real number, as the number of unsuccessful

attacks is not reported.

Based on the above discussion, we formulate the following three hypotheses:

Hypothesis 3. Events related to cryptocurrencies are, on average, more costly.

Hypothesis 4. Rising valuations in the price of cryptocurrencies can lead to an increase the frequency of

crypto-related cyber events involving.

Hypothesis 5. Cyber incidents involving crypto exchanges can have a negative impact on cryptocurrency

prices.

To test these hypotheses, we employ price data collected from crypto exchanges, and we build three

28The Bank of England has piloted some cyber-attack scenarios as part of its stress testing of banks. See
https://www.reuters.com/article/us-boe-cyber-tests/bank-of-england-to-test-banks-resilience-to-cyber-attacks-idUSKCN1QM1H7.

29There are some specific regulations, such as the BitLicense in New York that is granted to firms that are operating in the crypto
space. These regulations are not as restrictive as the benchmark financial regulations, but do require firms to prove they have a
sound risk management framework. However, these regulations are applied at state level, hence a firm wishing to circumvent them
need only shift its operations outside of the state of New York.
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Figure 9
Frequency of attacks on crypto exchanges and the price of bitcoin

different regression models. In the first, we modify equation 2 by including a dummy variable that equals

one for crypto related events. The regression equation becomes

log(Cost) = β0 +β1FirmSize+β2Connections+

β3HackerType+β4Cryptorelated +u
(5)

Results are presented in Table XVI, where for convenience we also report the baseline model in the

first column. The coefficient of the CryptoRelated variable in the second column indicates approximately

a 128% higher expected cyber cost when the incident is crypto-related, i.e. more than twice as high as a

non-crypto related event. This effect is statistically significant.

Dependent Var: log(Cost)

Baseline All Security Incidents Data Breaches Phishing/Skimming Privacy

FirmSize 0.227***
(0.01)

0.230***
(0.01)

0.195***
(0.06)

0.170***
(0.02)

0.126**
(0.06)

0.303***
(0.02)

Connections 0.022***
(0.01)

0.021***
(0.01)

0.016
(0.02)

0.027***
(0.01)

-0.003
(0.03)

-0.016
(0.01)

HackerType -0.511*
(0.28)

-0.527*
(0.28)

-0.468
(0.30)

CryptoRelated 1.285**
(0.55)

-1.976*
(1.08)

2.614***
(0.82)

3.095*
(1.58)

5.060*
(2.97)

Year Y Y Y Y Y Y
Sector Y Y Y Y Y Y

Incident Type Y Y N N N N

R2 0.199 0.201 0.418 0.136 0.556 0.304
Obs 3228 3228 250 1334 169 1452

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XVI
Impact on costs of crypto-related cyber incidents: Romanosky definitions
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Is the higher cost of attacks on crypto exchanges directly linked to the type of attack these exchanges

suffer? To answer this question, we perform regressions on subsets of the data that have been partitioned

by the type of incident, following Romanosky’s definitions (see Table IV). Interestingly, incidents involving

cryptocurrencies are particularly costly for categories associated to events likely to yield monetary gains.

For example, hackers attacking crypto exchanges are more likely to engage in phishing/skimming schemes

to try and obtain user passwords and steal funds rather than launch a DDoS attack that result in damages to

the exchange and its users but is less likely to derive monetary gains. Similar results are obtained dividing

the cyber incidents on the base of the Bouveret (2018) definitions (see Table III).

To evaluate the second hypothesis, we look at the relationship between the likelihood of a cyber event

and the price of Bitcoin. In particular, we investigate whether price increases are associated with a higher

probability of future attacks on crypto-exchanges. To this end we use a Probit regression with, respectively,

the weekly and fortnightly lag of Bitcoin price:

CryptoEventt = Φ(β0 +β1 log(Pricet−k)) (6)

where, CryptoEventt is a binary variable indicating whether a crypto-related event occurred, Φ(·) is the

cumulative distribution function of the standard normal, and Pricet−k is the daily price of Bitcoin at lag k

averaged from the leading four market exchanges. Table XVII shows a positive correlation between the 7

and 14-day lags of the price of bitcoin and the probability that a cyber event occurs. The effect is significant,

indicating that the probability of an event occurring following a price rise is more likely. The coefficients

imply an increase of the z-score by 0.13-0.12, for 7 and 14 day lags respectively. To better interpret this

effect we can evaluate the derivative:

∂Φ(Xiβ )

∂ log(Pricet−k)
= Φ(β0 +β1 log(Pricet−k))β1 (7)

Taking the derivative and evaluating at the mean of log(Pricet−k):

∂Φ(Xiβ )

∂ p̄t−7
= 0.014,

∂Φ(Xiβ )

∂ p̄t−14
= 0.013 (8)

where, p̄t−k denotes the mean of log(Pricet−k). These estimates are the marginal effects, i.e. the effect on

the dependent variable (probability of a crypto-related cyber-event occurring) in response to a change in the

independent variable (log of bitcoin price) evaluated at its mean value. We interpret the result as follows: a 1

unit increase at the logarithm of the mean price of Bitcoin leads to a 1.4% (1.3%) increase in the likelihood

of there being a crypto-related cyber event one (two) week(s) later.

Finally, to evaluate our third hypothesis and observe the impact of a cyber-event on the price of Bitcoin

we look at the inverse relationship. We regress a lag of the binary variable on the first difference (returns) of

the bitcoin price

∆Pricet = β0 +β1ExchangeEventt−k (9)
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Dependent Var: CryptoEvent

I II

Intercept
-2.09***
(0.164)

-2.1***
(0.16)

Pricet−7
0.13***
(0.023)

Pricet−14
0.12***
(0.023)

AIC 1536 1536
Obs 2237 2230

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XVII
Hackers respond to the economic incentives of a rising Bitcoin price

The results are presented in Table XVIII. The coefficients are not significant: there is no effect of cyber

events occurring at crypto exchanges on the subsequent price of bitcoin. This test has to be treated with

caution. To observe this relationship may indeed require price data at a higher frequency, and also the

precise time at which the information regarding the cyber event became public, which is not available in our

dataset.

Dependent Var: ∆Price

I II

Intercept
0.56

( 4.96)
1.3

(4.96)

CryptoEventt−1
9.38

(14.85)

CryptoEventt−7
3.1

(14.8)

R2 0.000 0.000
Obs 2243 2237

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XVIII
Crypto-related cyber attacks do not affect the price of Bitcoin

VIII. Is the financial sector more resilient?

The financial sector handles trillions of dollars in transactions every day, assuring the correct functioning

of the payment system in the economy. Due to their pivotal role, banks and other financial institutions are

inherently interconnected and heavily reliant on information technology. External events like a cyber attack

or an IT failure can therefore lead to severe consequences for the financial system: if a single node in the
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network of financial firms fails, a domino effect and cascades of failures could take place. The shocks could

propagate in the network through various mechanisms.

In principle, a more interconnected financial system could help to absorb shocks. Especially in the case

of small shocks, a strongly connected system can act as a loss absorber, insulating balance sheet exposures.

However, as discussed for the case of cloud dependency, if the size of the shock is large, a dense connectivity

could amplify its effects (Acemoglu et al., 2015; Haldane and May, 2011).

In terms of cyber-physical connections, financial market infrastructures tend to exhibit a “hub-and-

spoke” architecture, where many transactions between banks are facilitated by intermediaries, e.g. payment

systems, clearing houses. This structure is not particularly robust to shocks (Albert et al., 2000). These

intermediaries are essentially hubs in the network and affecting them (potentially through a cyber attack)

could lead to cascading failures over numerous dimensions e.g. financial and cyber-physical.

The financial system is heavily regulated and a substantial share of its revenues are invested in protecting

itself from the fragilities discussed above. Has this large investment in cyber security been effective so far?

In Section IV, we tried to answer this question by analysing the fixed effects in the cost equation 2. In

particular, we showed that the financial sector, other things being equal, has an expected cyber cost that is

lower than other (less protected) sectors.

In this section, we investigate this relationship more explicitly. Specifically, we introduce a dummy

variable that indicates whether the event occurred in the financial sector and then look at the interaction

between this term and other variables across several regressions. To isolate the effect from the financial

sector, we use the more granular NAICS definitions to construct a dummy that is specific to financial sector

firms (excluding insurance). The dummy is introduced as an interactive term with the variables in our

regressions.

The results from interacting the term with the technological skills variables are contained in Table XIX.

While the three baseline regressors confirm the previous general findings, the (negative) impact of techno-

logical skills variables for the financial sector (see interaction terms) is stronger than in other sectors. All

measures of investment in technological skills decrease the expected cost in the financial sector by more

(reductions range between 0.3% and 1.3%, depending on the measure used). All in all, these results indicate

that investment into information technology in the financial sector is money well spent.

We next assess whether the main drivers of cyber costs are different for the financial sector (Table XX).

Model I includes an interaction term between the financial sector and each of the baseline regressors. Model

II also includes the CryptoRelated dummy and its interaction with the financial sector dummy. Lastly,

Model III includes our Cloud variable and the corresponding interaction with the financial sector dummy.
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Dependent Var: log(Cost)

I II III IV

FirmSize 0.227*** (0.01) 0.227*** (0.01) 0.227*** (0.01) 0.222*** (0.01)
Connections 0.022*** (0.01) 0.022*** (0.01) 0.022*** (0.01) 0.021*** (0.01)
HackerType -0.511* (0.28) -0.511* (0.28) -0.511* (0.28) -0.538* (0.28)

Financial×Sta f f Training -0.013** (0.01)
Financial×PCUsers -0.009** (0.00)

Financial×SpecialistSta f f -0.012** (0.00)
Financial×Γ -0.003 (0.00)

Year Y Y Y Y
Sector Y Y Y Y

Incident Type Y Y Y Y

R2 0.199 0.199 0.199 0.188
Obs 3228 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XIX
Technological skills are particularly helpful in reducing costs for the financial sector

The interaction of the financial sector dummy with FirmSize is significant and negative. While the

elasticity between cyber costs and total revenues is 0.27 for the other sectors, it drops to 0.15 for the financial

sector. Interestingly, the HackerType dummy is not significant alone but the interaction shows that malicious

events that take place in the financial sector are less costly. These results support the conjecture that the

financial sector due to regulation and higher investment in cyber security is less exposed to cyber costs

and well equipped to ride out cyber attacks. In Model II, the interaction of the financial sector dummy with

CryptoRelated events is insignificant, indicating that the financial sector (as well as the other economic

sectors) do not suffer larger costs in the case of crypto-related incidents. Interestingly, the interaction term

between the financial sector dummy and the Cloud indicator is positive, halving the coefficient on the Cloud

alone. To interpret this, think of two events that occurred in two different sectors that have an equivalent

level of cloud use, one the sectors being the financial sector. Our results imply that the expected costs of the

event in the financial sector would be higher than in the other sector.

IX. Are we investing enough in IT?

In this section we analyse the distribution of IT security spending across sectors with respect to a bench-

mark model. To do this we use a database constructed by Kennedy and Stratopoulos (2017) based on the

IW500 survey that aggregates IT spending across sectors of firms predominantly located in the US. The

benchmark model is constructed using the Gordon and Loeb (GL) model. In particular, the GL model, de-

tailed in Gordon and Loeb (2002), is typically used to assess optimal security investment at the firm level.

Here we will generalise the model to perform analysis at the sector level.

34



Dependent Var: log(Cost)

I II III

FirmSize 0.273*** (0.02) 0.277*** (0.02) 0.273*** (0.02)
Financial×FirmSize -0.125*** (0.03) -0.127*** (0.03) -0.125*** (0.03)

Connections 0.019*** (0.01) 0.018*** (0.01) 0.019*** (0.01)
Financial×Connections 0.006 (0.01) 0.008 (0.01) 0.006 (0.01)

HackerType -0.059 (0.30) -0.088 (0.30) -0.059 (0.30)
Financial×HackerType -0.998*** (0.27) -0.973*** (0.27) -0.998*** (0.27)

CryptoRelated 1.371** (0.62)
Financial×CryptoRelated -0.617 (1.28)

Cloud -0.052 (0.05)
Financial×Cloud 0.039** (0.02)

Year Y Y Y
Sector Y Y N

Incident Type Y Y Y

R2 0.209 0.21 0.209
Obs 3228 3228 3228

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01, standard errors in parentheses.

Table XX
Drivers of cyber cost: does the financial sector differ?

Each sector faces the problem of how much should be invested in IT security, given a breach probability

function, S(c,v). The breach probability function can be considered the probability of a cyber incident,

occurring in a given period. The function is dependent on two factors, the security level of the sector (i.e.

how much it invests in security), and the inherent vulnerability of that sector.

S(c,v) =
v

(αc+1)β
(10)

where c denotes the level of IT investment per sector; v∈ [0,1] is the exogenous vulnerability of suffering an

incident in the given time period; and α and β are parameters that govern the efficiency of the investment,

we use relatively standard parameterisations of α = 0.4 and β = 1.

We consider the time period to be one year, hence v translates as the probability of a sector suffering a

cyber incident in a year. In our database, every sector suffered some form of cyber incident in each year of

available data, thus we set v = 1.

We can now define the expected benefit of security investment:

Ω = λ (v−S(c,v)) (11)

where, λ is the expected losses for a given year. The expected benefit can be thus interpreted as the expected

losses without investment in security minus the expected loss given there was investment in security. The

expected net benefit is simply the expected benefit minus the cost of the investment, defined as:
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ΩB = λ (v−S(c,v))− c (12)

To compute the optimal IT security investment for one year, lastly we need to provide an estimate

for λ across each of our sectors. To do this we take a monte carlo approach and compute the annual

loss distribution in each sector.30 We assume that the frequency of incidents per year in each sector is

distributed according to a Poisson function, while the losses are Pareto-distributed (heavy-tailed). We fit

these distributions to the data in each sector. With the fitted estimates, we perform a convolution of the

distributions to get an estimate for the annual loss distributions in each sector. The expected loss is simply

the mean of the annual loss distribution.

We then need to find the optimal level of investment, c∗. Which is simply to maximise the expected net

benefit of investment with respect to c, as follows:

max
c

ΩNB(c) (13)

the solution to which is,

c∗ =
1
α
(λαβ )

1
β+1 −1 (14)

In Table XXI we report the optimal level of investment by sector. In particular, the table reports the actual

average IT expenses in each sector according to the IW500 data, our estimates of the optimal spending c∗,

and the difference between the two. The last column gives an indication of what are the sectors that are

overspending (positive difference) and which sectors are underspending (negative differences). To control

for size, the figures are reported as a percentage of firms’ revenue in each sector.

The bottom of Table XXI reports a measure for the total and indicates an overall underspending. The

financial sector overspends relative to the size of its revenues. However, the model does not take into

account the centrality of each sector with respect to the others i.e. how systemically important is each

sector. Therefore the model only allows us to analyse what the optimal level of private investment rather

than what is the optimal level for the society. We would expect that sectors that are critically important

for the functioning of society should invest more to account for the implications of losses beyond their

own. The high level of IT security investment contributes to explain our result that the financial sector

shows a good resilience against cyber incidents relative to other sectors. Other spending surplus sectors

include agriculture, manufacturing and utilities. Two sectors stand out in terms of underspending: Arts,

entertainment and recreation, and Professional scientific and technical. The entertainment industry has

indeed suffered some high-profile cyber-attacks and it is often the target of piracy criminals. Another sector

to highlight, which is often cited as a target for hackers, is the healthcare sector. The sensitive information

that is held by healthcare companies is highly sought after by criminals. While not appearing to be in

30This approach is typically used in operational risk literature and referred to as the loss distribution approach, for details on the
computation we refer the reader to Cruz et al. (2015).
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such a large deficit relative to other sectors, this sector requires increasing attention because of the potential

negative effects on individuals’ privacy.

Actual c∗ Difference

Accommodation, food and beverage 0.02 0.05 -0.03
Administrative and support service 0.05 0.16 -0.12
Agriculture, Forestry, Fishing and Hunting 0.03 0.00 0.03
Arts, Entertainment, and Recreation 0.03 0.20 -0.17
Construction 0.02 0.09 -0.07
Educational Services 0.04 0.03 0.014
Financial and insurance activities 0.06 0.01 0.05
Health Care and Social Assistance 0.04 0.05 -0.01
Information and communication 0.05 0.04 0.01
Management of Companies and Enterprises - - -
Manufacturing 0.03 0.01 0.02
Mining, Quarrying, and Oil and Gas 0.02 0.00 0.01
Other Services 0.04 0.18 -0.14
Professional, scientific and technical 0.04 0.29 -0.25
Public Administration - - -
Real estate activities 0.04 0.04 0.00
Retail trade 0.02 0.02 0.00
Transportation and storage 0.03 0.05 -0.02
Utilities 0.02 0.00 0.02
Wholesale trade 0.02 0.08 -0.06
Total 0.03 0.07 -0.04

Notes: The figures in the table refer to the fraction of revenues spent on IT security invest-
ment. Data were unavailable for the Management of companies and enterprises, and Public
administration sectors.

Table XXI
Summary of IT spending versus optimal spending across sectors

X. Conclusions

The digital revolution has increased the interconnectivity and complexity of the economic system. The

use of technology and internet has improved firms’ productivity, but also makes them vulnerable to the

spread of viruses and malware. Moreover, the greater use of cloud services exposes further important eco-

nomic sectors to common risks, especially in case of cyber attacks.

Despite the large and growing exposure to cyber risks, cyber costs are difficult to quantify. Using a

unique database of more than 100,000 cyber events across sectors, we document the characteristics of cyber

incidents and help quantify cyber risk. The average cost of cyber events has increased over the last decade.

These costs are higher for larger firms and more connected events, and relatively lower for cyber events with
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malicious intent (cyber attacks), especially if the attack is not conducted on a large scale.

The financial sector experiences the highest number of cyber incidents (especially of a malicious type,

privacy and lost data incidents). However, banks and insurance companies incur more limited losses relative

to other sectors, likely due to the effects of regulation and higher investment in cyber security.

We document that developing technological skills helps firms mitigate the costs of cyber incidents, as

does more reliance on cloud services. This last result should be taken with caution and qualified. As cloud

connectivity increases and cloud providers become systemically important, cloud dependence is also likely

to increase tail risks.

Crypto-related activities, which are largely unregulated, are associated with higher losses. We observe

the existence of a positive correlation between the price of bitcoin and the intensity of crypto-related cyber

events. With rising Bitcoin prices there is an increased incentive to attack exchanges, a vulnerable part of

the cryptoasset ecosystem. Stronger regulation of the activities of intermediaries that operate in cryptoasset

markets is likely necessary as the expected costs for cyber-related events are also significantly higher than

for other events.

Finally, we do a first evaluation of over- or underspending on IT budgets by sector. While our analysis

does not account for the systemic implications of failures in specific critical sectors, the results can inform

policymakers as to where to direct their attention in order to improve the economy’s overall cyber resilience.
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