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Central Counterparty Exposure in Stressed Markets

Abstract

Time is valuable, particularly in stressed markets. As central counterparties (CCPs) have become system-

ically important, we need to understand the dynamics of their exposure towards clearing members at high

frequencies. We track such exposure and decompose it, yielding the following insights. The composition of

CCP exposure is fundamentally different in the tails. At extreme levels or during rapid increases, there is el-

evated crowding. This is the result of clearing members all concentrating their positions on a single security

or a particular portfolio, which is desirable if motivated by hedging but worrying if due to speculation.



1 Introduction

Regulators are worried about central counterparty (CCP) risk management in fast markets. Sudden extreme

price dislocations (“flash crashes”)1 coupled with super-human trading speeds could have systemic conse-

quences. If traders are unable to deliver on their trades, then CCPs become liable for their losses because

a CCP effectively insures the counterparties in these trades. The margins posted by these defaulting traders

might not be sufficient to cover these losses. A recent example is the 2018 failure of a Nasdaq clearing

member, when losses swallowed up two-thirds of the default fund.2 A mutualized loss of this kind might

itself trigger further defaults, in which case the event could become potentially systemic.

State-of-the-art risk management at CCPs is therefore of first-order importance. CPMI-IOSCO (2017)

emphasizes the need for monitoring intraday CCP exposure (p. 32):

Adverse price movements, as well as participants building larger positions through new trading

(and settlement of maturing trades), can rapidly increase a CCP’s exposures to its participants.

This exposure can relate to intraday changes in both prices and positions. For the purposes

of addressing these and other forms of risk that may arise intraday, a CCP should address and

monitor on an ongoing basis. . .

In this paper we propose a way for CCPs to monitor their exposure on an intraday basis, with a focus

on stressed markets. In such markets, trading is likely to be fast-paced and data therefore stream at extreme

speeds. The approach should be able to cope with such “big data” challenges. More importantly, the

monitoring should yield valuable economic insights that generate an understanding of “what just happened,”

and potentially guide interventions.

1On February 5, 2018, VIX futures jumped 20 points, which is the largest daily increase since the 1987 stock market crash. On
October 7, 2016, the British pound dropped by almost ten percent in just eight minutes. On January 15, 2015, the Swiss franc rose
by about 20% against the euro within five minutes after the Swiss National Bank announced that it abandoned its peg against the
euro as per immediately.

2On September 10, 2018, the Nordic-German power spread increased by more than 17 times the average daily change which
triggered the trader’s default.
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We turn to the academic literature to formulate hypotheses to guide our high-frequency analysis of CCP

exposure. Several studies have identified a fire-sale channel as the root cause of price dislocations. The

narrative is as follows. During normal times, arbitrageurs smooth prices by trading against pricing errors

(thereby essentially engaging in market-making). Suppose that at some point a critical mass of traders

crowds into a single risk factor. That is, their portfolio positions are very similar, say, long a book-to-market

or size-based portfolio.3 If these positions suddenly experience a significant loss, then arbitrageurs face high

variation margin calls (to mark-to-market their positions). If these arbitrageurs are capital-constrained then

they might be forced to free up capital by selling some of their positions. This selling pressure might trigger

trades at fire-sale prices, thus leading to more losses, triggering further selling, etc. (Shleifer and Vishny

1997, Gromb and Vayanos 2002, Brunnermeier and Pedersen 2009). Perhaps the most prominent example

of such dynamic is the “quant meltdown” where the arbitrageurs were hedge funds and the portfolios were

indeed factor-based portfolios (Khandani and Lo 2007, 2011). This type of fire-sale channel implies that

extreme exposures coincide with elevated crowding, price crashes, and volatility spikes.

With these motivations in mind, let us now discuss in more detail how we proceed in the rest of this

paper. We develop an approach for tracking and decomposing CCP exposure intradaily. The exposure

measure is based on the tail risk of losses in an oncoming period, aggregated across all clearing members

(Duffie and Zhu 2011, Menkveld 2017).4 The measure relies on analytical results that are all straightforward

to compute. It further allows for decomposition across clearing members or securities.

We implement the approach on a sample of high-frequency CCP data to test three hypotheses on CCP

exposure in stressed markets. We define such markets for a CCP as ones where either its exposures are at

the highest levels or its exposure changes are extremely high.5 The three hypotheses pertain to the following

3Wagner (2011) clarifies that these arbitrageurs could hold diversified portfolios, yet be exposed to the fire-sale channel. It is
position diversity that is the driving force here, not the level of diversification.

4Menkveld (2017) extends Duffie and Zhu (2011) to focus on the tail risk in losses as opposed to mean losses.
5One could argue that the tails are not riskier to a CCP because higher exposures against clearing members are insured by the

latter posting higher margins with the CCP. While this is true, it is also true that, if there are losses that exceed the margin, they
exceed it by a larger amount in the tail (i.e., loss given default is likely to be larger). A deeper analysis of risk net of margin and
other forms of collateralization (e.g., the default fund) are beyond the scope of this study as intraday margin and default-fund data
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questions:

1. Are extreme increases in CCP exposure driven by the same factors as regular exposure changes? Or

does one see, for example, elevated crowding?

2. Is the same true for extreme levels as opposed to extreme changes? Again, is crowding a larger part

of it?

3. Finally, when comparing CCP exposure for these extreme levels relative to normal levels, is the rela-

tive contribution of clearing-member house accounts higher relative to client accounts? If so, then this

is worrisome as clearing members are typically highly leveraged financial intermediaries and therefore

less able to absorb large shocks.

Our empirical analysis of these questions is based on a high-frequency 2009-2010 sample of a European

CCP: the European Multilateral Clearing Facility (EMCF). The EMCF was the largest equity CCP in Europe

and later merged with DTCC in the US to become the world’s largest equity CCP. Counterparty risk arises

in equity trading because the settlement of a trade typically occurs three days after it is concluded. A trade

therefore is like a three-day forward contract between a buyer and a seller. Counterparty risk then pertains

to the possibility that one side might default in this period. Admittedly, analysis of a CCP that insures

credit default swaps or interest rate swaps would have been more relevant in terms of systemic risk, but

disaggregated CCP data are extremely hard to come by (see literature review below). The application to

actual CCP data could therefore in and of itself be considered a contribution.6

There are several key findings. First, CCP exposure changes, on average, are almost entirely driven by

changes in the positions of clearing members due to their trading. However, when zooming in on extreme

exposure increases, security volatility and position crowding start to contribute substantially. For the top

are unavailable to us.
6We do not know how our findings compare to CCP exposures in the market for credit default swaps or for interest rate swaps

for lack of evidence. We do, however, believe that our approach could be implemented for trading in these markets in spite of their
different market structure (which features mostly over-the-counter trading as opposed to trading via a central limit order book).
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100 increases they collectively contribute 30% where volatility contributes 13% and crowding 17%.

Second, we find a similar result when comparing the full sample with the subsample of high exposure

levels — more crowding in the latter. More specifically, CCP exposure concentrates on a few clearing mem-

bers and a smaller set of risk factors. For example, comparing the full sample with the top 1% subsample,

the contribution of the largest five members increases from 28% to 47%. The contribution of the largest

principal component across all risk factors increases from 7% to 42%.

Third, it is not true that at high exposure levels the CCP is relatively more exposed to house accounts.

There is only a modest increase from 67% to 70% when comparing the full sample to the top 1%. However,

we do find stronger concentration within the set of house accounts. A large share of the total house-account

exposure originates from just a few clearing members.

In sum, the findings collectively suggest that stronger crowding/concentration characterizes CCP expo-

sure both for large exposure increases and at extremely high exposure levels. There is, however, only a

minor increase in the contribution of house accounts at these high levels.

One additional finding worth emphasizing is that idiosyncratic events can severely impact CCP expo-

sure. For example, a disappointing earnings announcement by Nokia at noon on April 22, 2010 caused its

share price to fall by about 15% in the minutes afterwards, leading to an exposure increase of almost 16

times its average size. The decomposition of the exposure change shows that volatility is the largest com-

ponent causing the jump. The exposure jump, however, was only a relatively small part of the extremely

large CCP exposure increase that day. Most of this appears to be caused by clearing members increasing

their Nokia position, either long or short, during heavy trading in the afternoon. (Note that this is a non-

trivial finding as the large volumes could have been due to traders reducing their positions after observing

elevated volatility.7) The decomposition of exposure changes further reveals a substantial contribution of

the crowding component that day. Members tilted their portfolio towards Nokia. Altogether, the Nokia ex-
7Bignon and Vuillemey (2019, Fig. 3 and A1) do a forensic analysis on the Paris commodity futures CCP that failed in 1974.

They, for example, find that there was elevated activity (in terms of transactions) in the half year before failure, but open positions
declined (measured in 1000 tons sugar).
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ample neatly illustrates the paper’s main finding that volatility and crowding become important components

of CCP exposure in the tails.

Our paper contributes to a rapidly expanding empirical literature on central clearing. CCP trade data

disaggregated across members are scarce. Proprietary daily data have been used to compare CCP exposure

to the margins collected (Jones and Perignon 2013, Menkveld 2017, Lopez et al. 2017). Duffie et al. (2015)

analyze a snapshot of bilateral exposures on uncleared credit default swaps to assess the netting efficiency

potential of central clearing. Event studies on CCP introductions yield insights in how trading is affected

(Loon and Zhong 2014, 2016, Menkveld et al. 2015, Benos et al. 2016). We contribute to this literature

by proposing an approach to monitoring CCP exposure intradaily along with an economically motivated

decomposition. The methodological contribution relative to Menkveld (2017) is that we decompose his

exposure measure to diagnose the nature of exposure changes. Although Menkveld (2017) discusses how to

decompose across clearing members, he does not decompose exposure changes into changes in the various

variables that enter the exposure computation (e.g., changes in volatility, changes in return correlations, or

changes in positions). Such a decomposition is needed to test the first hypothesis.8

The paper contributes to a nascent literature on CCP systemic risk. Capponi et al. (2015) analyze the

endogenous build-up of asset concentration due to central clearing. Amini et al. (2015) investigate partial

netting for a subset of liabilities in a network setting that accounts for knock-on effects and asset liquidation

effects. Glasserman et al. (2015) compare margining in dealer markets and a centrally cleared market.

Menkveld (2016) endogenizes the fire-sale premium that a CCP will have to pay in the catastrophic state in

which a critical mass of members default and liquidity supply is thus impaired.9

The rest of the paper is organized as follows. Section 2 formalizes and motivates the three overriding

hypotheses. Section 3 presents the approach to monitoring and decomposing CCP exposure. Section 4

8More precisely, Menkveld (2017) shows that there is a positive time-series correlation between crowding and CCP exposure at
a daily level. This paper, however, studies exposures intradaily and decomposes changes into all variables that enter the calculation
of ExpCCP.

9A related set of papers does not focus on concentration and systemic risk but rather on incentives and economic efficiency
includes Koeppl et al. (2012), Fontaine et al. (2014), Acharya and Bisin (2014), Biais et al. (2016), Huang (2019).
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describes the data and discusses implementation issues. Section 5 presents the empirical results of testing

the three hypotheses. Section 6 concludes.

2 Hypotheses

This section develops three hypotheses that will be taken to the data. Each hypothesis is stated formally and

then followed by a motivation.

Hypothesis 1. The drivers of CCP exposure changes are different in the (right) tail.

CCP exposure changes can be driven by a variety of factors that are either price-related (e.g., volatility or

correlation) or trade-related (i.e., trade causes member positions to change). We expect the latter to dominate

CCP exposure changes in normal times. However, we conjecture that turbulent periods are characterized by

elevated volatility and lots of trading. The strong positive correlation of volatility and trading volume is a

well-known stylized fact in the microstructure literature (e.g., Jones et al. 1994).

The intense trading at times of extremely high volatility does not necessarily imply that CCP exposure

increases rapidly. A sudden volatility increase might actually trigger traders to reduce their existing positions

to contain risk. Such trading benefits a CCP as it reduces its exposure.

On the other hand, a volatility shock might lead to (more) speculation in which case traders increase their

positions. A heterogeneity in beliefs or in signals might generate such stronger position taking (e.g., Kim

and Verrecchia 1994). Or, in a more recent paper, Crego (2019) proposes a channel by which risk-averse

informed traders strategically wait to trade on their (idiosyncratic) signal until the arrival of a public signal

which removes significant uncertainty. Either way, member positions would increase in magnitude and CCP

exposure rises as a result.

An even more worrisome channel that could cause high volatility and fast trading is a so-called self-

reinforcing fire-sale channel. For example, financially constrained arbitrageurs (hedge funds, sell-side
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banks, high-frequency traders, etc.) hit by adverse price shocks might have to quickly liquidate their large

positions and thereby cause transitory price shocks (Shleifer and Vishny 1997, Gromb and Vayanos 2002,

Brunnermeier and Pedersen 2009).

Such liquidations would not be a concern if these arbitrageurs had diverse positions (Wagner 2011).

This is not the case, however, if these traders followed similar trading strategies and their portfolios thus

crowd on a small set of risk factors/portfolios (Stein 2009). In such scenario, there might not be enough

cash-in-the-market to liquidate these positions and markets have to clear at fire-sale prices. A prominent

example is the “Quant Meltdown” of 2007 when quantitative equity market-neutral hedge funds crowded on

similar trading strategies and made record losses (Khandani and Lo 2007, 2011). The risk that a CCP finds

itself in such scenario is particularly high when there is substantial crowding in its members’ portfolios.

To test for such crowding in stressed markets, one needs to be able to decompose changes in CCP

exposure into price- and trade-related components. One of the trade-related components should then be

crowding across clearing members.

Hypothesis 2. The structure of CCP exposure levels is different in the (right) tail.

Hypothesis 2 restates Hypothesis 1 but this time in terms of levels instead of changes. The reason to also

study whether there is, for example, elevated crowding for extreme exposure levels is derived from studies

on historical CCP failures. Bignon and Vuillemey (2019) study the 1974 failure of the Paris Commodity

Clearing House. They show that in a year starting from November 1973 the position of the largest clearing

member rose from 9% of the total open position in sugar futures to 56% of it. Another example is the

1987 failure of the Hong Kong Futures Guarantee Corporation where at the point of failure the largest four

members had accumulated 80% of the short position in all contracts (Cox 2015).

If crowding is prominent, understanding what causes the crowding requires one to be able to decompose

the exposure level across clearing members and across risk factors. The reason is that strong crowding could

occur when outstanding positions are held by only a few clearing members. The CCP failures in Paris and
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Hong Kong are examples of such crowding. There is, however, a more opaque way for there to be elevated

crowding. In the extreme case, all clearing members contribute equally to CCP exposure but they crowd on

a single risk factor, for example a particular security or portfolio. The 2007 Quant Crisis is an example of

such “risk-factor crowding.” Let us turn to a simple example to make this distinction between the two types

of crowding as clear as possible.

Suppose there are four clearing members and two assets with independently distributed payoffs. First

consider the baseline case of member 1 and member 2 having traded one unit of asset A and therefore having

open and opposite positions in this asset. Suppose the same holds for member 3 and 4 in asset B. In this

baseline case there is no crowding. Let us now consider the two polar cases of crowding. An example of

perfect member crowding is when member 1 and 2 trade as in the baseline case, and member 3 and 4 refrain

from trading. The reason is that there is concentration in CCP exposure as only two members contribute.

For an example of perfect risk-factor crowding, consider again the baseline case but now with member 3

and 4 also trading one unit of asset A. Note that in this case all clearing members contribute equally to CCP

exposure, yet there is perfect crowding. In both cases there is a strong correlation in portfolio returns across

clearing members which increases the expected aggregate loss and therefore CCP exposure (Menkveld 2017,

Section 1.5).

When testing the second hypothesis it is desirable to measure how much crowding contributes to CCP

exposure and whether such crowding is member or risk-factor crowding. We discuss in detail in Section 3.3

how to measure crowding with the proposed CCP exposure measure.

Hypothesis 3. The relative contribution of house accounts to CCP exposure increases in the (right) tail.

The third hypothesis focuses on the two types of clearing-member account: house accounts and client

accounts. House accounts capture the trades that clearing members do for their own books whereas client

accounts register their cleared trades on behalf of clients. It is worth decomposing CCP exposure across these

two types of account as one could argue that CCP exposure to house accounts carries more risk. Clearing
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members are often highly leveraged financial intermediaries whose trading is unlikely to be pure hedging.

For example, they often engage in market making to absorb temporary order imbalances. Therefore more

exposure to house accounts at times of high CCP exposure is worrisome. Testing the third hypothesis will

show whether or not this is the case.

3 Approach

This section presents an approach to monitoring CCP exposure intradaily. It is based on the framework

proposed by Duffie and Zhu (2011) and extended by Menkveld (2017) to include tail risk and crowding. CCP

exposure is essentially a measure that is based on the distribution of losses in clearing member accounts for

the oncoming period. We study the Value at Risk (VaR) for these losses following Menkveld (2017).10 We

first present the exposure measure in detail, then show how one could decompose exposure change needed

for testing the first hypothesis, and finally present the decomposition of exposure level which is needed for

testing the second and third hypotheses.

3.1 The CCP exposure measure: A VaR of aggregate loss

Consider the case of a single CCP, I securities, and J clearing members (or traders, the two terms will be

used interchangeably). Pt is an I × 1 vector consisting of current security prices. Rt is an I × 1 vector that

contains next period’s security returns. Rt is assumed to be normally distributed:11 Rt ∼ N(0,Ωt) where Ωt

is the I × I covariance matrix of security returns. Let n j,t be the I × 1 vector of member j’s current positions

expressed in euro. The portfolio return in euro for the member in the next period is then a scalar X j,t where

X j,t = n′j,tRt.

Collect all n j,t into an I × J matrix Nt which thus becomes the (euro) position matrix of all members.

10Duffie and Zhu (2011) study the mean loss which is invariant to the level of crowding — the VaR loss is not.
11The normality assumption yields analytic results for CCP exposure along with a natural decomposition. To stay close to

normality in the data, the sample clock will run in volume time (for details see Section 4.2.)
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Collect all X j,t into the J × 1 vector Xt which thus becomes the future return vector for all members, where

Xt = N′t Rt. Since Xt is linear in Rt, Xt is normally distributed: Xt ∼ N(0,Σt) where Σt = N′t ΩtNt is the J × J

covariance matrix of (euro) portfolio returns.

As a CCP is exposed to losses, define

L j,t = −min
(
0, X j,t

)
(1)

as the loss in member j’s portfolio. Then aggregate loss At is:

At =
∑

j

L j,t. (2)

Duffie and Zhu (2011) propose to base CCP exposure on the mean aggregate loss:

E (At) (3)

and derive an analytical expression for it which suffices for their analysis of netting efficiency. Menkveld

(2017) considers the VaR of aggregate loss a more appropriate measure for CCP exposure and refers to it as

ExpCCP. Following standard practice and maintaining tractability, Menkveld (2017) uses the delta-normal

method to compute the VaR:

ExpCCPt ≡ VaR(At) = E(At) + αvar(At)
1
2 , (4)

where α is a parameter that needs to be calibrated. We follow Menkveld (2017) and use ExpCCP as our

exposure measure. In Appendix A we list all the results needed to compute ExpCCP.
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3.2 Decomposition of CCP exposure change

The first hypothesis states that the drivers of CCP exposure change are different in the tail. As discussed

in the hypothesis section, sudden extreme CCP exposure increases might be driven by volatility shocks

and crowding in addition to position changes. To test such a hypothesis one needs to decompose exposure

changes and verify to what extent volatility and crowding contribute a larger part in the tail.

We propose to decompose exposure changes based on a relatively straightforward one-factor-at-a-time

(OFAT) approach (Daniel 1973). The underlying factors will consist of price-related factors and trade-

related factors. Price-related factors include security return volatility, correlation, and price level. Trade-

related factors are member positions and crowding across members. The remainder of this subsection de-

scribes the approach in detail.

Let us start by writing ExpCCPt as defined in (4) as a function of the underlying variables:

ExpCCPt = f (Σt) . (5)

To arrive at a meaningful decomposition across factors, we use the following two insights:

1. Following the financial econometrics literature we decompose covariance matrices into their diagonal

and off-diagonal components (Bollerslev 1990, Engle 2002):

Ψt = DΨt RΨt DΨt , (6)

where DΨt is a diagonal matrix with ψii,t as the i-th diagonal element and RΨt is the correlation matrix

associated with the covariance matrix Ψt. This decomposition will turn out to be useful to identify

correlation effects in security returns and crowding across members.

11



2. Σt is itself a function of “deeper” variables:

ExpCCPt = f (Σt) = f
(
NtΩtN′t

)
= f

(
Ωt, Pt, Ñt

)
, (7)

where the variables are: the covariance matrix of security returns Ωt, the price level Pt, and the

member portfolio matrix Ñt expressed in terms of the number of securities (as opposed to Nt which is

expressed in euro). The reason for using Ñt instead of Nt is to be able to pull out a price-level effect

when considering the change from Nt−1 to Nt.

Combining (6) and (7) yields:

ExpCCPt = f (Σt) = f
(
DΣt RΣt DΣt

)
= f

(
DΣt

(
DΩt ,RΩt , Pt, Ñt

)
,RΣt

(
DΩt ,RΩt , Pt, Ñt

))
, (8)

which expresses ExpCCPt in terms of price-related variables (DΩt , RΩt , Pt) and trade-related variables (Ñt).

The OFAT decomposition changes these variables sequentially from their value at t − 1 to their value at t.

The sequencing matters (as will be discussed in-depth at the end of this subsection) and we pick the baseline

sequencing motivated by the following principles:

• We first change price variables and then change trade variables. The reason for this sequencing is

that it identifies a pure price effect. In other words, the price components communicate what the CCP

exposure change would have been had members’ portfolios not changed.

• Changes in idiosyncratic volatility precede changes in correlations. In other words, we first consider

changes in the diagonal and then changes in the off-diagonal of a covariance matrix. This approach

makes interpretation of the components straightforward: Changes in variances become pure in the

sense that they are evaluated keeping correlations constant.
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These principles therefore suggest the following baseline OFAT decomposition:

∆ExpCCPt = f
DΣ

 1
DΩt ,

2
RΩt ,

3
Pt,

4
Ñt

 ,RΣ

 1
DΩt ,

2
RΩt ,

3
Pt,

5
Ñt


− f

(
DΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

)
,RΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

))
,

(9)

where the sequencing is illustrated by the (red) numbers on top of the various variables. The decomposition

yields five components. For example, the first component RetVolat is computed as:12

RetVolat = f
(
DΣ

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

)
,RΣ

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

))
− f

(
DΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

)
,RΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

))
,

(10)

which captures the contribution of volatility change.

We list the five components below and discuss each of them in detail. Note that the numbering corre-

sponds to the red numbers in (9):

Price components.

1. RetVola: The impact of a change in return volatility on CCP exposure change. This effect captures

the well-known empirical fact that volatility is time-varying (commonly referred to as GARCH or

stochastic volatility in the financial econometrics literature).

2. RetCorr: The additional impact of a change in the correlations of security returns on CCP exposure

change. The time-varying nature of such correlations is another well-known empirical fact and can be

identified, for instance, through a dynamic conditional correlation (DCC) model (Engle 2002).

3. PrLevel: The additional impact of a change in the price level of securities. This effect is entirely

due to covariance matrices being defined in relative terms (i.e., they are based on relative returns as

opposed to euro returns). For example, a covariance matrix might not have changed in the interval,

12We include explicit formulas for all five components in Appendix B for completeness.
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but if price levels dropped, then CCP exposure dropped because the latter is defined in terms of the

euro. Such effect is picked up by PrLevel.

Trade components.

4. TrPosition: The additional impact of trades. These trades might expand or reduce members’ existing

positions. CCP exposure therefore does not necessarily increase after new trades. It declines if their

overriding effect was to reduce members’ outstanding positions.

5. TrCrowding: The additional impact due to changes in the correlations of member portfolio returns,

beyond what is caused by changes in the correlations of security returns (as that change is captured

by RetCorr). TrCrowding is therefore solely the result of position changes due to trading. If these

portfolio correlations increase (in magnitude) then CCP exposure increases.13

In Appendix C, we illustrate the decomposition of exposure changes by presenting a simple example. We

discuss how the various components change when changing either price- or trade-related variables.

In-depth discussion of component identification. The identification of the components that drive expo-

sure change in the tail (∆ExpCCP) deserves a more thorough discussion. Such identification is non-trivial

for essentially two reasons. First, exposure is a non-linear function of the various variables (e.g., security

return correlations, member positions). A decomposition therefore cannot assign changes uniquely to the

various components. To illustrate this point consider the following two simple functions: the linear function

f (x, y) = x + y and the non-linear one g(x, y) = xy. For f , any change can be uniquely decomposed as

∆ f = ∆x + ∆y.

For g, however, any change is non-trivial to write in terms of ∆x and ∆y. The approach we picked is

OFAT, which can decompose ∆g in two ways. One can first change x and then y, yielding [g(x + ∆x, y) −
13Note that this is a narrower definition of crowding than the one that underlies the CrowdIx indicator in Menkveld (2017). An

increase in the correlations of security returns would lead to a higher level of CrowdIx because crowding in Menkveld (2017) is
more broadly defined in terms of risk factors. We use the narrower definition here to distinguish between a change in security-return
correlations and crowding due to position changes.
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g(x, y)] + [g(x + ∆x, y + ∆y) − g(x + ∆x, y)] = [(∆x)y] + [(x + ∆x)∆y)] whereby the terms in square brackets

correspond to the contribution of x and y, respectively. Alternatively, one can first change y and then x,

yielding [g(x, y + ∆y) − g(x, y)] − [g(x + ∆x, y + ∆y) − g(x, y + ∆y)] = [x∆y] + [∆x(y + ∆y)] where the first

term gets assigned to y and the second to x. In summary the OFAT decomposition in this case is:

Sequencing x component y component

First x, then y (∆x)y x∆y + (∆x)(∆y)

First y, then x (∆x)y + (∆x)(∆y) x∆y

Note that the interaction term (∆x)(∆y) gets assigned to the component that is updated later. In economic

applications there might be reasonable arguments to pick a reasonable baseline sequencing (as in our case),

but it is always useful to consider all possible sequences and report lower and upper bounds to the size of

each component. The wedge between the two bounds tells the researcher to what extent the decomposition

critically depends on the sequencing that the researcher picked.

Second, if the objective is to study how time series ∆ f and ∆g are driven by ∆x and ∆y, the identification

of components for both ∆ f and ∆g suffers from non-zero correlations between the underlying variables.

Consider the case of a perfect correlation between ∆x and ∆y in the time series. Then any function-value

changes are driven by changes in both x and y simultaneously. The individual contribution of each variable

therefore can not be (statistically) determined. This is a genuine feature, not a flaw, of our method. The co-

movement in x and y is itself an important property of the system. We will return to this issue in Section 5.1

where we study co-variation across exposure components.

3.3 Decomposition of CCP exposure level

Testing the second and third hypotheses requires a decomposition of CCP exposure levels (as opposed to

exposure changes). To test whether there is more crowding at higher exposure levels, it is desirable to de-

compose CCP exposure across members and across securities. If one finds more concentration either across
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members (member crowding) or across securities (risk-factor crowding), then there is elevated crowding as

discussed in Section 2.

ExpCCP being homogeneous of degree one in member portfolio volatility and in security volatility

suggests a natural decomposition. Let us focus on the decomposition across members to clarify (Menkveld

2017, Section 1.5). As ExpCCP is homogeneous of degree one in member portfolio risk σ j
14, applying

Euler’s homogeneous function theorem yields:15

ExpCCP =
∑

j

σ j

(
∂

∂σ j
ExpCCP

)
. (11)

The contribution of member j therefore is:16

ExpCCP j = σ j

(
∂

∂σ j
ExpCCP

)
=

√
1

2π
σ j +

∑
i∈{J}

α

σA

(
π − 1

2π

)
σiσ jM(ρi j), (12)

where σA is the standard deviation of aggregate loss and M is defined in (15) in Appendix A. This result

shows that member j’s contribution to ExpCCP is equal to its portfolio risk σ j times the (marginal) price of

such risk in terms of CCP exposure ∂
∂σ j

ExpCCP. This type of decomposition is used when testing for ele-

vated member-crowding on high exposure levels (H2) and for verifying whether house accounts contribute

more to ExpCCP in these conditions (H3).

A decomposition across securities is derived analogously where the risk units are ωk
17 instead of σ j.

A detailed derivation is included as Appendix D. This decomposition is used to test for elevated risk-factor

crowding at high exposure levels (H2).

14σ j is the square root of the j-th diagonal element of the portfolio return covariance matrix Σ.
15Time subscripts are suppressed here for the sake of brevity.
16This equation corresponds to Menkveld (2017, equation (27)). Note that there is a typo in (27) as

√
1/(2π) should have been

multiplied by σ j instead of σ2
j . This typo has been corrected in (12) below.

17ωk is the square root of the k-th diagonal element of the security return covariance matrix Ω.
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4 Application

This intermezzo section presents the data and discusses various implementation issues. These issues in-

clude normality of returns (needed for ExpCCP), estimation of the return covariance matrix, and setting the

parameter α in the delta-normal VaR.

The data sample used for testing the hypotheses was made available by the European Multilateral Clear-

ing Facility (EMCF). EMCF, now merged with DTCC in the US to become EuroCCP, is an equity CCP

for Nordic equity markets, including Denmark, Finland, and Sweden. The sample consists of trade records

with time stamp, transaction size, transaction price, an (anonymized) counterparty ID, and information on

whether it was a house- or client-account trade. A trade done on a house account is for a clearing member’s

own book whereas a client-account trade is done on behalf of its customers.18 The sample runs from Octo-

ber 19, 2009, through September 10, 2010, and includes trades on almost all exchanges: NASDAQ-OMX,

Chi-X, Bats, Burgundy, and Quote MTF. The only exchange with Nordic trades that it did not clear was

Turquoise. Turquoise, however, had a market share of less than 1% at the time.

An equity CCP insures counterparty credit risk for equity trades in the period that starts when a trade is

concluded and ends when it settles. When an exchange concludes a trade, the money and the securities are

not immediately transferred. Such transfer happens three days later in our sample. Should one side to the

trade defaults in this period, the CCP inherits its position and the trade will follow through all the way to

settlement.

A three-day deferred settlement is conceptually similar to a three-day forward contract between the two

sides of the trade. To fix language, we therefore refer to yet-to-settle positions as “positions.” Note that these

positions change overnight in the absence of any trade. This change is simply due to settlement of legacy

trades and these trades are therefore removed from member positions. In other words, if a member does

18The post-crisis EMIR regulation in Europe requires a CCP to segregate trades on house accounts from those on client accounts
as of 2013. Our data sample precedes this date but EMCF had already implemented such segregation.
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Table 1: Summary statistics. This table presents summary statistics for the CCP data sample. Trades on house
accounts are done for a clearing member’s own book. Trades on client accounts are done for clients.

Panel A: General information
Number of trading days 228
Number of stocks 242

Number of accounts
House accounts 87
Client accounts 139
Total 226

Panel B: Trade information across stocks
Mean Standard deviation Median

Mean of daily number of trades 1,180 2.112 204
Mean of daily volume (shares) 797,844 2,148,216 66,286
Mean of daily volume (euro) 9,042,586 19,535,974 743,348

Panel C: Trade information across clearing members (by account type)
All accounts House accounts Client accounts

Mean of end-of-day position (euro) 0 -11,237 11,567
Standard deviation of end-of-day position (euro) 1,535,067 1,880,137 1,069,244
Within-member standard deviation end-of-day position (euro) 619,105 988,685 387,785

not trade for three consecutive days, his position in all equities becomes zero as all his earlier trades settled.

Finally, we refer to a member’s set of open positions at any point in time as his portfolio. We emphasize that

this should not be confused with a member’s portfolio in terms of its equity holdings. It simply refers to the

yet-to-settle trades as these are relevant for CCP exposure since it is for these open positions that the CCP

insures counterparty risk.

4.1 Data

Summary statistics. Table 1 introduces the sample by presenting various summary statistics. The sample

captures trading in 242 stocks on 228 days. It contains 226 trading accounts, 87 of which are house accounts

and the remaining 139 are client accounts.

The table shows that Nordic stocks are reasonably actively traded, leading to substantial variation in

account positions. On average stocks are traded 1,180 times per day, generating an average volume of e9

million. The standard deviation in account positions is e1.5 million. The corresponding within-account

standard deviation is relatively modest: e0.6 million. In other words, most variation in positions is across

accounts. Separating between house and client accounts shows that house-account positions tend to be larger
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in magnitude. Their standard deviation is e1.9 million whereas it is e1.1 million for client accounts. In

addition, the average of end-of-day positions is zero as for every buyer there is a seller.

4.2 Implementation issues

Volume clock to recover normally distributed returns. It is well known that financial returns are not

normally distributed when sampled using the wall clock. Returns exhibit negative skewness and excess

kurtosis especially at high frequencies. However, the financial econometrics/microstructure literature has

shown that normality of security returns can be recovered when time is measured on a volume clock as

opposed to the wall clock (Clark (1973), Ané and Geman (2000), Easley et al. (2012)). When using a

volume clock, security prices are sampled each time a pre-specified amount of volume has been traded.

It turns out returns based on such prices are much closer to being normally distributed with less negative

skewness and less excess kurtosis.

As normally distributed portfolio returns are needed for computing ExpCCP,19 we use a volume clock in

our empirical analysis inspired by Easley et al. (2012). We set the average number of volume bins per day to

34, which corresponds to a 15-minute frequency on the wall clock as the market is open from 9:00 to 17:30.

The bin size therefore is picked to be the average daily euro volume divided by 34 yielding 6770 ExpCCP

observations. The choice for a 15-minute frequency is common in the microstructure literature as it strikes

a balance between sample size and microstructure noise (Hansen and Lunde 2006). As a robustness check,

we consider other frequencies as well (see Section 5.1 and Appendix E.2).

Our implementation follows the volume-clock literature except for two notable differences. First, instead

of creating the clock security-by-security based on security-specific volume, we group all securities together

and create the clock based on market volume. Suppose the clock starts now, then the latest prices are stacked

into a vector. If the volume bin is one million euros, we wait until one million euros were traded across all
19More specifically, the conversion of portfolio-return correlations to portfolio-loss correlations is done with the M function in

(15) which relies on assuming normality.
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Table 2: Statistics on member portfolio returns: Wall- versus volume-clock. This table presents various statistics
based on realized euro returns for member portfolios. These statistics are presented for wall-clock and volume-clock
returns to assess to what extent the returns are normally distributed. The statistics include skewness, excess kurtosis,
and the Jarque-Bera statistic. The latter combines the former two and is computed as (S 2 + K2/4)/6, where S is
skewness and K is excess kurtosis. The clock runs in 15-minute intervals for the wall-clock and for a bin size that, on
average, makes a volume bin last 15 minutes. Statistics are presented for the largest five members in terms of volume,
for all five pooled, and for all members pooled.

Skewness Kurtosis Jarque-Bera
Member Wall-clock Volume-clock Wall-clock Volume-clock Wall-clock Volume-clock

1st largest -0.47 -0.05 15.51 1.97 10.06 0.16
2nd largest 1.96 0.19 46.60 3.15 91.12 0.42
3rd largest 1.50 0.01 30.66 3.16 39.54 0.42
4th largest 1.96 0.27 109.55 3.96 500.69 0.66
5th largest -0.29 -0.24 8.69 3.42 3.16 0.50
Largest 5 pooled 1.01 0.03 46.79 3.20 91.38 0.43
All pooled -0.62 -0.19 205.47 18.46 1759.19 14.20

securities, and at that moment we again stack the latest prices of all securities into a vector. Returns are

then computed based the standard log-difference. The benefit of this approach is that we have a market-

wide volume clock that allows ExpCCP to be calculated in volume time. Moreover, the wall clock is not

completely ignored as we reset the volume clock at market open. This way the analysis avoids mixing in

overnight effects and thus focuses on intraday exposures only.20

To assess whether volume-clock returns are indeed closer to normal than wall-clock returns, we com-

pare various statistics for member portfolio returns. Wall-clock returns are based on a 15-minute sampling

frequency. Table 2 presents skewness, excess kurtosis, and the Jarque-Bera statistic which includes both

skewness and kurtosis. Under the null of normality, these statistics are zero in expectation. These statistics

are reported for the largest five clearing members, for all five pooled, and for all members pooled, respec-

tively.

The results show strong evidence in favor of the volume-clock when returns are required to be normal.

All three statistics are substantially closer to zero for each of the five largest members. When pooled,

skewness drops from 1.01 to 0.03, kurtosis drops from 46.79 to 3.20, and the Jarque-Bera statistic drops

from 91.38 to 0.43. Similar patterns hold when considering all members instead of the largest five only.

20In case of any residual trades due to imperfect grouping at the end of each day, they are included in the last bin.
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These statistics suggest that, consistent with the literature, non-normality is indeed much less of an issue for

volume-clock returns.21

Estimation of time-varying return covariance. To account for time-varying volatility in returns, we

estimate Ωt as the exponentially weighted moving average (EWMA) of the outer product of returns. This

approach is in line with standard practice (e.g., RiskMetrics and EMCF) and corresponds to estimating an

IGARCH(1,1).

What remains is to pick the EWMA decay parameter. RiskMetrics uses 0.94 for their highest frequency:

daily returns. As round-the-clock variance is 38 times larger than the intraday 15-minute variance we pick

the decay parameter to be 0.9984 (because 0.998438 = 0.94). Ωt is therefore calculated recursively as:22

Ωt = (1 − 0.9984)Rt−1R′t−1 + 0.9984Ωt−1. (13)

The sample used for our analysis starts on December 7, 2009, but we use data as of October 19, 2009 to

have a burn-in period for Ωt. We start off the recursion with the zero matrix but given that 0.94 corresponds

to a half-life of 11 days, the effect of this choice is negligible by the time we arrive at December 7, 2009.

Pick α to make ExpCCP a 1% VaR. CPMI-IOSCO (2012) recommends that a CCP use a 1% VaR to set

margins. We follow this lead and calibrate the alpha parameter in our delta-normal VaR to 2.5 to achieve an

exceedance rate of 1%.23

21Easley et al. (2012) sample E-mini future returns based on volume-clock and find similar evidence of partial recovery of
normality.

22Given that overnight return variance is about four times the variance of an intraday 15-minute period, we update the covariance
matrix after an overnight return Rt−1 by Ωt = (1 − 0.99844)R̃t−1R̃′t−1 + 0.99844Ωt−1 where R̃t−1 = Rt−1/

√
4.

23Note that aggregate loss is not normal since it is the sum of truncated normals.
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Figure 1: CCP exposures, both levels and changes. This figure plots CCP exposure ExpCCPt. Panel (a) plots
exposure levels and Panel (b) plots exposure changes. Each shaded area corresponds to one month. A wider area
indicates a higher monthly volume as the clock runs in volume time.

5 Results

In this section we first present the time series of CCP exposure. Several salient spikes will be discussed. In

the three subsequent subsections we test the three hypotheses in Section 2.

Figure 1 plots the time series of CCP exposure: ExpCCPt. Panel (a) plots exposure levels and shows

one particularly large spike in May 2010. This turns out to be the peak month of the Greek sovereign

debt crisis.24 ExpCCP reached e5 million that month, which means that the 1% VaR of losses across all

24A review of the main events in this month is as follows. On May 5 mass protests erupted in Greece against the imposed austerity
measures, with three deaths reported. This social unrest led to concerns that it could jeopardize the rescue package proposed by
the European Union and the International Monetary Fund on May 2. To fund this intervention and future ones, the European
Commission created the European Financial Stabilisation Mechanism on May 9 (EC 2010). On May 10, the European Central
Bank announced the Securities Markets Program to address “dysfunctional” securities markets (ECB 2010).
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members in the oncoming volume bin is e5 million. Although this is about triple the average level, it is

still a relatively moderate amount and would not cause a systemic crisis in and of itself. As stated in the

introduction, equity CCPs are unlikely to be systemic but as CCP data are extremely scarce we are privileged

to have access to such data. We believe that it is interesting to study ExpCCP dynamics (which is what we

do in the remainder of the section) to test several hypotheses.

This result provides new evidence, from the angle of CCP exposure, on the spillover effects of the Greek

sovereign debt crisis that have been extensively discussed in the literature. For example, Mink and De Haan

(2013) find that news about the Greek bailout generally led to abnormal stock returns for European (includ-

ing Nordic) banks: Positive returns for regulatory initiatives that favor banks, negative returns otherwise.

Bhanot et al. (2014) find that Greek yield spread increases are associated with negative abnormal returns on

financial stocks throughout Europe. Beetsma et al. (2013) document spillover effects from the Greek yield

spread to those of other European countries and Candelon et al. (2011) find similar evidence when studying

credit default swaps on sovereign debt. We will revisit the Greek crisis when decomposing ExpCCP in

Section 5.2.

Panel (b) of Figure 1 plots exposure changes instead of levels. It shows that periods with high levels

do not necessarily correspond to periods with extreme intraday increases. It is the latter that CPMI-IOSCO

(2017) is particularly worried about when presenting its latest guidance on CCP risk management. The

largest peak corresponds to the idiosyncratic event when Nokia announced earnings that were far below

analyst expectations at noon on April 22, 2010. Its share price dropped by about 15% in subsequent minutes.

Volume jumped and remained high throughout the afternoon, 400% above what volume was in the morning

of that day. We revisit the Nokia event when decomposing ∆ExpCCP in Section 5.1.
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Table 3: Decomposition of changes in CCP exposure. This table presents the decomposition of CCP exposure
change for the full sample, the top 100, and the top 10 increases, respectively. Panel A presents the decomposition in
euro. Panel B presents the same decomposition but in percentage. The five components capture changes in security
return volatility (RetVola), security return correlations (RetCorr), the pricing level (PrLevel), members’ outstanding
positions (TrPosition), and the crowding measure of member positions (TrCrowding).

Full sample Top 100 ∆ExpCCP Top 10 ∆ExpCCP

Panel A : CCP exposure change decomposition in euro
RetVola 272 10,949 69,311
RetCorr 113 3,555 -89
PrLevel -133 3,195 -5,324
TrPosition 14,255 38,002 39,445
TrCrowding 443 8,186 15,571
∆ExpCCP 14,949 63,887 118,914

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 17.1% 58.3%
RetCorr 0.8% 5.6% -0.1%
PrLevel -0.9% 5.0% -4.5%
TrPosition 95.4% 59.5% 33.2%
TrCrowding 3.0% 12.8% 13.1%
∆ExpCCP 100.0% 100.0% 100.0%

5.1 H1: The drivers of CCP exposure changes are different in the (right) tail

Hypothesis 5.1 essentially states that extremely large increases of CCP exposure are different in nature

compared to regular changes. As discussed in the hypothesis development section (Section 2), they are

likely to reflect a jump in volatility and elevated trading. There might also be crowding if members all tilt

their portfolio to the single risk factor at the heart of the turbulence (in the later part of the section, we

explore the Nokia event to illustrate). These stand in contrast to “average” changes in CCP exposure that we

conjecture to mostly reflect member position changes due to trade.

To test the first hypothesis, we decompose CCP exposure changes into various components for three

samples: the full sample and subsamples with the largest 100 and the largest 10 increases. Table 3 presents

the decomposition results and yields the following insights. First, for the full sample exposure changes seem

to be driven only by member position changes: TrPosition dominates all other components.

Second, when zooming in on the top 100 and top 10 ∆ExpCCP, a different picture emerges. While

TrPosition drops to 59.5% and 33.2% respectively, two other components, volatility and crowding, become

much more important. Although the volatility component makes up only 1.8% of exposure changes for the
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full sample, it jumps to 17.1% and 58.3% for the top 100 and top 10 increases, respectively. The crowding

component is only 3.0% of exposure changes for the full sample but jumps to 12.8% and to 13.1% for the

top 100 and top 10 increases, respectively.

Third, the price and correlation components remain small in the two subsamples and sometimes turn

negative. Note that the components can be either positive or negative as they can either increase or reduce

CCP exposure; and when scaled by the total positive exposure change (∆ExpCCP), the negative components

lead to negative percentages. Importantly, the relative contribution of the various components add up to

100%.

Interestingly, the price component contributes -4.5% in the top 10 ∆ExpCCP. We speculate that this

result must be driven by price crash events that are typically accompanied by high volume and volatility

spikes. A lower price level per se reduces CCP exposure, simply because CCP exposure is denominated in

euro. Suppose the 1% VaR is to lose 20 cents on one euro. ceteris paribus, the 1% VaR would be to lose 10

cents on 50 euro cents (i.e., with price-level halved). The “exposure” dropped from 20 cents to 10 cents in

this example due to a lower price level.

One, however, should not conclude that price crashes serve to reduce exposure. This goes back to our

discussion of the identification of components. Price crashes might be coupled with volatility and positions

in the sense that conditioning on extreme price drops, tail events for volatility or position changes become

more likely. We further scrutinize the identification of the components at the end of this section with the

help of CoVaR (Tobias and Brunnermeier 2016).

Overall, all of these findings support the hypothesis that extreme increases in CCP exposure are different

in nature than overall changes. Specifically, while CCP exposure changes on average are almost entirely

driven by member position changes, extreme ones exhibit substantial contributions from volatility changes

and changes in crowding.

In Appendix E we show that our findings are robust to changing the estimate of the time-varying return
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covariance and changing the sampling frequencies. One notable result worth mentioning here is that for

lower frequencies the differences between the full sample and the top 10 subsample get attenuated. This

highlights the importance of monitoring changes in CCP exposure at high frequencies.25

Identification of the components. As discussed in Section 3.1 the identification of the various compo-

nents could depend on the sequencing of the components and, in the time series, on the co-movements

between components. In terms of the sequencing, in Appendix E we show that our findings are robust to

changing the sequencing of the components. The analysis of co-variation in the component series, how-

ever, is not only a robustness check but also yields some economic insights and is therefore presented in the

remainder of this section.

To study to what extent the components co-vary, we pick the baseline sequencing and simply compute

correlations across components in the time series. Table 4 presents the results. The three strongest corre-

lations appear in bold face: 0.57 between crowding and positions, -0.25 between price level and volatility,

and -0.12 between price level and positions. The high correlation between crowding and positions is simply

due to the fact that both are trade-related components and thus are driven by member position changes.

The negative correlation between price level and volatility is consistent with the well documented leverage

effect in the financial economics literature: Negative price shocks coincide with disproportional volatility

increases.

Table 4: Correlation across ∆ExpCCP components. This table reports correlations between the decomposition
components (using the baseline sequencing). Correlations that are larger in magnitude than 0.10 are in bold. *, **, and
*** indicate 10%, 5%, and 1% significance levels, respectively.

RetVola RetCorr PrLevel TrPosition

RetCorr 0.04***

PrLevel −0.25*** 0.01
TrPosition 0.00 0.05*** −0.12***

TrCrowding 0.08*** 0.06*** −0.06*** 0.57***

25For completeness we also did these robustness analyses for the empirical results on the second and third hypothesis. Again,
the results do not change qualitatively. To conserve space we decided to only provide those robustness results upon request.
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These correlations could be driven by left-tail realizations, by right-tail realizations, or by both. The

most worrying pattern to a CCP is if they are driven by tail realizations that increase its exposure, such

as left-tail realizations of the price component (price crashes) and right-tail realizations of the volatility

component (volatility spikes). To zoom in on adversarial tail events we turn to CoVaR which has been

developed by Tobias and Brunnermeier (2016) to analyze systemic risk in a similar vein.

The extent to which adversarial shocks coincide can be measured by CoVaR which is defined as:

Pr
(
X j ≥ CoVaR j|i

q |X
i = VaRi

q

)
= q with Pr

(
Xi ≥ VaRi

q

)
= q,

with q = 0.01 for a 1% VaR, and CoVaR j|i
q is the 1% VaR of variable j conditional on variable i being at its

1% VaR level. We compare the CoVaR derived directly from our sample (i.e., sample CoVaR) to the CoVaR

that is implied by the two variables being Gaussian (i.e., Gaussian CoVaR). The difference in magnitude

between the two serves to measure the tail-dependence between the variables, benchmarked against the

normal distribution.

Note that contrary to the definition of standard VaR we use ≥ (instead of ≤) as exposures are defined in

terms of losses which are positive numbers. Thus, we focus on the right-tail realizations of the components.

The only exception is PrLevel for which we use ≤ as an adversarial event, as price crashes are left-tail

realizations of the price component. Thus, the tail events are large increases of volatility, return-correlations,

positions, and crowding, and large decreases of the price level.

Table 5 presents the sample CoVaR, Gaussian CoVaR, and the difference in magnitude between the two.

Note that for the price component, the CoVaRs are negative as its left-tail realizations are adversarial to the

CCP. Highlighted in green are the sample CoVaRs with largest absolute value in each column. This focuses

attention on the strongest tail-dependence between the variables. The highlighting shows that, in five out

of six cases, it is the large price drop that, when conditioned on, leads to strongest tail-dependence in the
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Table 5: CoVaR across ExpCCP components. This table reports the CoVaR between the components. CoVaR j|i
q

is reported in row i and column j (i.e., the row variables are conditioned on). It measures the extent to which
components exhibit coupling effects in the sense that tail events co-occur. We report the sample CoVaR along
with a Gaussian CoVaR which is what CoVaR would have been had the distribution been normal (calibrated
to the pair’s mean and covariance). We also report the difference in magnitude between the two, defined as
Sign(Sample CoVaR)(Sample CoVaR − Gaussian CoVaR). Highlighted in green are the largest sample CoVaRs in
absolute value within a column. Highlighted in yellow are the largest differences in magnitudes when comparing the
sample CoVaR with the Gaussian CoVaR (within a column).

RetVola RetCorr PrLevel TrPosition TrCrowding

RetVola
Gaussian CoVaR 4,101 -12,744 22,471 9,323
Sample CoVaR 12,409 -24,062 52,143 12,159
Difference in magnitude 8,308 11,318 29,672 2,835

RetCorr
Gaussian CoVaR 12,856 -12,419 23,463 9,201
Sample CoVaR 9,767 -17,925 48,447 10,390
Difference in magnitude -3,089 5,506 24,984 1,190

PrLevel
Gaussian CoVaR 17,446 5,423 26,254 9,967
Sample CoVaR 47,799 12,806 63,408 22,320
Difference in magnitude 30,353 7,383 37,154 12,353

TrPosition
Gaussian CoVaR 12,454 4,148 -10,629 12,042
Sample CoVaR 11,114 9,003 -21,671 17,128
Difference in magnitude -1,341 4,855 11,042 5,086

TrCrowding
Gaussian CoVaR 13,372 4,210 -10,442 31,161
Sample CoVaR 13,621 10,448 -21,829 52,301
Difference in magnitude 250 6,238 11,387 21,140

other components. Nontheless, for price level itself, it is large volatility increases that lead to its strongest

tail-dependence.

Highlighted in yellow is for each column the largest difference in magnitude between sample CoVaR and

Gaussian CoVaR. Again, in most cases (four out of six), the wedge is largest when a price drop is conditioned

on. Price crashes seem to “trigger” the strongest adversarial co-variation with the other components. This

finding itself is consistent with the fire-sales dynamics which was one of the channels that motivate the first

hypothesis. Although the findings are suggestive of causality, we caution that one cannot make any causal

statements.

To illustrate these general findings, Figure 2 zooms in on the Nokia event. Panel (a) decomposes the

exposure jump of e0.24 million immediately following Nokia’s disappointing announcement. A couple

of features stand out. First, return volatility is by far the largest component: e0.30 million. Its effect is

moderated by the negative price-level component: e-0.06 million. In other words, Nokia volatility spikes

28



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 
m

ln
RetVola RetCorr

PrLevel

TrPosition TrCrowding  ExpCCP

(a) Decomposition of ∆ExpCCP for bin 23 on April 22, 2010, 12:02:18 - 12:05:05

0

1

2 RetVola TrPosition

0

1

2

1 
m

ln

RetCorr TrCrowding

8 16 24 32 40 48 56 64
Volume bin

0

1

2 PrLevel

8 16 24 32 40 48 56 64
Volume bin

 ExpCCP

(b) Decomposition of ∆ExpCCP for all volume bins on April 22, 2010

Figure 2: Decomposition of the largest CCP exposure increase: The Nokia event. At noon on April 22, Nokia
announced disappointing earnings which caused a large price drop of 15% in a few minutes and a sharp increase in
trading volume. CCP exposure rose steeply in the volume bin subsequent to the announcement. Panel (a) decomposes
this exposure increase into five components: security return volatility (RetVola), security return correlation (RetCorr),
price level (PrLevel), position changes (TrPosition), and the extent of crowding in member positions (TrCrowding).
Panel (b) zooms out and cumulates these components for the full day.

due to a large negative return of about -15%, but relative volatility applies at a lower price level because of

the negative return. Finally, the trade components are both positive implying that on average traders expand

their positions in a way that leads to more crowding. These trade components are, however, dwarfed by the

volatility component.

Panel (b) zooms out and shows how exposure built up throughout the day. Its most salient feature is that
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while the volatility spike dominates exposure change in the volume bin right after the event, it is only about

a fifth of that day’s exposure increase. The reason is that volatility is only a major component in the bin just

after the event, trade components dominate subsequent bins. The high volume in the afternoon therefore

turns out to be due to traders expanding their positions, not reducing them. There is also elevated crowding

but its contribution is only about 20% of the total contribution of trade components. Finally, traders do

not seem to take substantial positions ahead of the Nokia announcement as all components only start to

contribute substantially in the afternoon.

Perhaps the most important message of these Nokia results is that firm-specific shocks can have systemic

impact through heightened CCP exposure. News that strikes like lightning causes volatility to spike and,

more importantly, makes traders expand their positions in ways that lead to more concentration in their

portfolios (i.e., crowding).

5.2 H2: The structure of CCP exposure levels is different in the (right) tail

The second hypothesis focuses on the highest exposure levels as opposed to the largest changes. Does

one see evidence of elevated exposure concentration (i.e., crowding) either across members, across (a com-

bination of) stocks, or across both? Such finding would raise concerns about market conditions that are

potentially prone to fire-sale dynamics.

To verify whether the structure of CCP exposure is different in the tail, we decompose exposure for the

full sample and for the subsamples of the top 10% and the top 1% CCP exposure levels. The reason for

picking the top 10% here instead of the top 100 used in the previous subsection is that CCP exposure levels

are very persistent as compared to exposure changes. The top 100 subsample is smaller than the top 10%

sample and, therefore, when used in the level analysis, it would essentially point to the same period of time.

The same argument applies to picking the top 1% instead of the top 10. The decomposition is done both

across members and across stocks. We then compute the Herfindahl-Hirschman Index (HHI) along with
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Table 6: Decomposition of CCP exposure across members and across stocks. This table presents the results of
decomposing CCP exposure levels across members and across stocks for the full sample and for the top 10% and
top 1% subsamples. Various concentration measures are reported: the share of the member/stock with the largest
contribution, the five largest contributors, and the 10 largest contributors. The table further reports the Herfindahl-
Hirschman Index (HHI).

Full sample Top 10% ExpCCP Top 1% ExpCCP

Panel A: Decomposition of CCP exposure across traders
Top 1 member 9.3% 14.4% 25.5%
Top 5 members 27.8% 34.9% 46.8%
Top 10 members 41.7% 48.2% 57.3%
Herfindahl-Hirschman Index (HHI) 0.030 0.046 0.085

Panel B: Decomposition of CCP exposure across stocks
Top 1 stock 18.7% 28.0% 16.1%
Top 5 stocks 43.3% 48.9% 41.1%
Top 10 stocks 59.3% 62.6% 57.3%
Herfindahl-Hirschman Index (HHI) 0.080 0.176 0.053

Table 7: Principal component analysis of member portfolio returns. This table uses principal component analysis
to characterize the commonality in member portfolio returns for the full sample and for subsamples where CCP
exposure levels are large. It reports the explained variation of the first, the second, and the third principal component
along with the sum of these three.

Full sample Top 10% ExpCCP Top 1% ExpCCP

PC1 7.8% 20.8% 37.6%
PC2 5.2% 8.9% 10.8%
PC3 2.7% 6.4% 6.2%
PC1+PC2+PC3 15.7% 36.0% 54.7%

shares of the largest 1, 5, and 10 contributors to measure the concentration level.

Table 6 reveals that concentration is elevated in the tail for members, but not for individual stocks. The

shares of the top 1, 5, and 10 members increase substantially from the full sample to the top 1% subsample.

For example, the share of the top 5 members increases from 27.8% in the full sample to 34.9% in the top 10%

subsample, and to 46.8% in the top 1%. The HHI shows a similar trend and increases from 0.030 to 0.046

and 0.085, respectively. There is no such trend for the decomposition across stocks. The share of the top

five stocks, for example, stays rather flat. It changes from 43.3% in the full sample to 48.9% and 41.1% in

the top 10% and the top 1%, respectively.

The unchanged concentration for the decomposition across stocks does not preclude crowding in a par-

ticular portfolio of stocks. To study whether this is the case, we apply principal component analysis (PCA)

on member portfolio returns for the full sample and for both subsamples. Table 7 shows that there does
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(b) Herfindahl-Hirschman Index (HHI) of decomposition across stocks

Figure 3: CCP exposure concentration across members and across stocks. This figure plots the Herfindahl-
Hirschman Index (HHI) of CCP exposure decomposed across members in Panel (a), and across stocks in Panel (b) in
solid lines (left y-axis). The plots also show the level of CCP exposure in dashed lines (right y-axis).

appear to be elevated crowding in the subsamples. It is strongest for the first principal component (PC1)

whose share in total variance increases from 7.8% in the full sample to 20.8% in the top 10% subsample and

to 37.6% in the top 1% subsample. As the largest CCP exposures occur mostly in the Greek crisis period, it

is likely that this component captures a market effect. To verify, we compute the correlation of PC1 with the

local market index and indeed find the expected pattern: it is 0.43 for the full sample, 0.86 for the top 10%

subsample, and 0.98 for the top 1% subsample.

Finally, to illustrate these results graphically Figure 3 plots the HHI for both the across-member and

across-stock decompositions (See Table 6). Panel (a) plots the across-member HHI in solid red and overlays

the CCP exposure level in dashed blue (using the second y-axis). It illustrates that high concentration occurs
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Table 8: Decomposition of CCP exposure into house and client accounts. Panel A decomposes CCP exposure into
house and client accounts. Panel B shows the concentration of CCP exposure within each account type by means of
the Herfindahl-Hirschman Index (HHI). Both panels consider the full sample and subsamples of the top 10% and the
top 1% CCP exposure levels.

Full sample Top 10% ExpCCP Top 1% ExpCCP

Panel A: Contribution to CCP exposure by account type
Contribution by house accounts (%) 66.8% 66.0% 69.7%
Contribution by client accounts (%) 33.2% 34.0% 30.3%

Panel B: Hirsch-Herfindahl Index (HHI) within account type
Herfindahl-Hirschman Index (HHI) within house accounts 0.051 0.083 0.160
Herfindahl-Hirschman Index (HHI) within client accounts 0.068 0.071 0.081

mostly in the Greek crisis period. Panel (b) plots the across-stock HHI and, as expected, shows that it stays

rather flat at times where CCP exposure peaks. This does not mean that concentration remains at the same

level throughout. It does show a large peak around the Nokia event when exposure increase is the largest as

analyzed in the previous subsection. Upon further inspection we unsurprisingly find that the concentration

occurs in the stock of Nokia.

5.3 H3: The relative contribution of house accounts increases in the (right) tail

The third hypothesis states that the relative contribution of house accounts is higher for extreme CCP expo-

sure levels. This is potentially worrisome as clearing members are highly leveraged financial institutions.

Table 8 presents evidence largely rejecting the third hypothesis. The decomposition across house and

client accounts in Panel A shows that house accounts contribute 66.8% to CCP exposure in the full sample.

This contribution, however, hardly changes when measured for top 10% subsample (66.0%) and increases

only mildly to 69.7% in the top 1% subsample.

Panel B shows that in spite of the relative contribution of all house accounts combined being rather

flat across subsamples, there is concentration within house accounts. The HHI computed based on each

member’s contribution to the total of house-account contributions increases from 0.051 for the full sample

to 0.083 for the top 10% and to 0.160 for the top 1%. The results suggest that in stressed markets the

positions in the books of some clearing members expand while the positions of others shrink. This causes
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their total contribution to CCP exposure to remain unchanged, yet there is more concentration within house

accounts.

There appears to be no such pattern for client accounts whose collective contribution remains flat across

the three samples but also the within-client concentration remains largely unchanged. The HHI is 0.068 for

the full sample, 0.071 for the top 10% subsample, and 0.081 for the top 1% subsample.

In sum, the significantly higher concentration within house accounts is potentially worrisome. Most

clearing members are highly leveraged sell-side banks, which, if trading for speculative reasons, might

default on their position if they turn out to be on the wrong side of the bet. Given that they seem to crowd

into the same (set of) risk factors, there might be multiple members that are heavily under water on their bets

at the same time. Admittedly, it is unlikely that they would default on their equity trades, but if the pattern

were to carry over to CCPs that clear interest rate derivatives or credit default swaps, then such pattern would

become a systemic worry.

6 Conclusion

In summary, we test three hypotheses about the exposure a CCP has vis-à-vis its clearing members. All three

hypotheses focus on tail events and whether or not the nature of CCP exposure changes in such cases. The

academic literature has emphasized elevated concentration (i.e., crowding) in such stressed markets with a

risk of fire-sale price dynamics.

We develop an approach for monitoring CCP exposure whereby both exposure levels and exposure

changes can be decomposed to identify the relative contribution of various factors. The empirical results

support the hypothesis that the nature of exposure levels or exposure changes is different in the tail: There

is indeed more crowding in stressed markets. The hypothesized larger contribution of house accounts to

total exposure in such conditions is not supported by the data. However, within house accounts there is

more concentration with a small number of clearing members contributing a disproportionate amount to
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total house-account exposure.

Our findings suggest that CCP executives and regulators should monitor at high frequencies with a

particular focus on tail events. Whether or not contingency planning is needed and, if so, what form it should

take, is a topic for future research. We do, however, believe that the approach we have developed could be

useful for monitoring CCP exposure at high frequencies. The proposed decomposition of exposure changes

could help CCPs and regulators diagnose sudden large jumps in exposure. As all results are analytical (thus

avoiding heavy-duty simulations), the approach can be implemented in real time. This we believe is an asset

in today’s extremely fast markets.
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Appendix

A Results needed to compute ExpCCP

Let Lt be the J × 1 vector that stacks all L j,t. Since At =
∑

j L j,t, one needs to compute E(Lt) and var(Lt) to

evaluate (4). Following Menkveld (2017, Proposition 1) yields the following two results:

E(Lt) = µt, µ j,t =

√
1

2π
σ j,t,

var(Lt) = Ψt, ψi j,t =
π − 1

2π
σi,tσ j,t M

(
ρi j,t

)
,

(14)

where σi j,t is the (i, j)-th element of the covariance matrix of member portfolio returns Σt, σi,t is short for

σ
1
2
ii,t, and ρi j,t = σi j,t/σi,tσ j,t. The function

M(ρ) =

[(
1
2
π + arcsin (ρ)

)
ρ +

√
1 − ρ2 − 1

]
/ (π − 1) (15)

maps portfolio return correlations into portfolio loss correlations. Detailed proofs are in Menkveld (2017).

ExpCCP can now be written explicitly as:

ExpCCPt =
∑

j

√
1

2π
σ j,t + α

∑
i

∑
j

π − 1
2π

σi,tσ j,t M
(
ρi j,t

)
1
2

. (16)

B Decomposition of CCP exposure change

This section presents the various components that add up to CCP exposure change:

∆ExpCCPt = RetVolat + RetCorrt + PrLevelt︸                                   ︷︷                                   ︸
Price components

+ TrPositiont + TrCrowdingt︸                            ︷︷                            ︸
Trade components

. (17)
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Price components. The three price components are:

RetVolat = f
(
D

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

))
− f

(
D

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

)
,R

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

))
,

(18)

RetCorrt = f
(
D

(
DΩt ,RΩt , Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt , Pt−1, Ñt−1

))
− f

(
D

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

))
, and

(19)

PrLevelt = f
(
D

(
DΩt ,RΩt ,Pt, Ñt−1

)
,R

(
DΩt ,RΩt ,Pt, Ñt−1

))
− f

(
D

(
DΩt ,RΩt , Pt−1, Ñt−1

)
,R

(
DΩt ,RΩt , Pt−1, Ñt−1

))
.

(20)

Trade components. The two trade components are:

TrPositiont = f
(
D

(
DΩt ,RΩt , Pt, Ñt

)
,R

(
DΩt ,RΩt , Pt, Ñt−1

))
− f

(
D

(
DΩt ,RΩt , Pt, Ñt−1

)
,R

(
DΩt ,RΩt , Pt, Ñt−1

))
and

(21)

TrCrowdingt = f
(
D

(
DΩt ,RΩt , Pt, Ñt

)
,R

(
DΩt ,RΩt , Pt, Ñt

))
− f

(
D

(
DΩt ,RΩt , Pt, Ñt

)
,R

(
DΩt ,RΩt , Pt, Ñt−1

))
.

(22)

C Example of CCP exposure change analysis

Table 9 presents a simple example to illustrate the insights that one can get from a decomposition of CCP

exposure changes. Suppose there are four agents (A1, A2, A3, A4) and two securities (S1 and S2) that cost

e1 and have returns that are standard normal and mutually independent at least at the beginning of time.

All agents start with a zero position in the securities. To illustrate real-time CCP exposure monitoring we

consider a particular sequence of events. We compute CCP exposure change after each event and present

its decomposition. This controlled setting serves to familiarize with the approach before implementing it on
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Table 9: Simple example to illustrate the decomposition of CCP exposure changes. This example illustrates how
the one-factor-at-a-time decomposition approach identifies the different components in CCP exposure changes. There
are four agents (A1, A2, A3, A4) and two securities (S1, S2). Arrows denote positions in these securities. Arrows right
and left illustrate long and short positions in S1, respectively, arrows up and down illustrate long and short positions
in S2, respectively. Red dashed arrows correspond to new trades. CCP exposures are computed with α = 2.5, which is
the calibrated value based on our real-world sample (see Section 4.2).

t Trades/changes ExpCCPt ∆ExpCCPt =RetVolat+RetCorrt+PrLevelt+TrPositiont+TrCrowdingt

0
σ1 = σ2 = 1,

ρ = 0, p1 = p2 = 1.
0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 A2 A1 2.3 2.3 0.0 0.0 0.0 2.9 -0.6

2

A3

A4

A2 A1

3.7 1.4 0.0 0.0 0.0 1.8 -0.4

3
Volatility changes
from σ1 = σ2 = 1
to σ1 = 2, σ2 = 1.

5.7 2.0 2.0 0.0 0.0 0.0 0.0

4
Return correlation

changes from ρ = 0
to ρ = 0.5.

6,0 0.3 0.0 0.3 0.0 0.0 0.0

5
Price level changes
from p1 = p2 = 1

to p1 = 0.5, p2 = 1.
3.9 -2.1 0.0 0.0 -2.1 0.0 0.0

6

A3

A4

A4 A3

A2 A1

6.7 2.8 0.0 0.0 0.0 1.5 1.3

7

A3

A4

A4 A3

A2 A1

A4

A3

4.6 -2.1 0.0 0.0 0.0 -2.0 -0.1
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real-world data.

The first two columns of Table 9 describe the sequence of events. CCP exposure is computed after each

event based on the loss distribution for the oncoming period. In some cases, events are illustrated by hori-

zontal arrows that correspond to positions in the first security. Arrows that point right denote long positions.

Left arrows denote short positions. Vertical arrows correspond to positions in the second security. Up arrows

denote long positions. Down arrows denote short positions. The remaining columns show CCP exposure,

its change, and the decomposition of this change into the five factors. These changes and decompositions

are discussed below.

• t = 0. CCP exposure is 0 for the simple reason that none of agents has a position.

• t = 1. A1 entered a long position of one unit on S1 and A2 is on the opposite side of that trade. CCP

exposure becomes e2.3. The decomposition shows that e2.9 is due to expanded positions (TrPo-

sition) and the crowding component is e-0.6 (TrCrowding). The reason for this negative crowding

term is simply that in this case the members have taken the opposite side of the same trade and their

portfolio returns are therefore perfectly negatively correlated.

• t = 2. A3 entered a long position of one unit in S2 with A4 taking the short side. CCP exposure

increases by e1.4 to e3.7. The decomposition shows a positive TrPosition of e1.8 and a negative

TrCrowding of e-0.4. The positive position risk is due to the new trade leading to larger positions.

Furthermore, the new trade between A3 and A4 is in S2 and therefore orthogonal to the positions

between A1 and A2. In other words, the new trade between A3 and A4 lowers the correlations between

member portfolio returns. Hence, there is less crowding now than before.

• t = 3. The return volatility of S1 increased from 1 to 2. CCP exposure increases by e2.0 to e5.7. The

decomposition indeed attributes it to the volatility component (RetVola).

• t = 4. The correlation between the returns of S1 and S2 increased from 0 to 0.5. CCP exposure
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increases by e0.3 to e6.0. The decomposition assigns it to the correlations component (RetCorr).

• t = 5. The price of S1 drops from e1 to e0.5. CCP exposure drops by e2.1 which is completely

assigned to the price level (PrLevel). This is simply the result of volatility being defined in relative

terms. If it does not change, but the price level drops then the VaR which is expressed in euro drops.

• t = 6. A3 traded again with A4 but this time he entered a one-unit long position in S1 where A4 takes

the short side. CCP exposure increases by e2.8 to e6.7. Positions now crowd on the risk factor S1.

The decomposition assigns e1.3 of the increase to TrCrowding and the remaining e1.5 to TrPosition.

• t = 7. A3 and A4 effectively undid their first trade by entering a reverse trade. In this reverse trade

A3 is long one unit of S2 and A4 is short one unit. CCP exposure declines by e2.1 to e4.6. The

decomposition shows that most of the decrease is due to a reduction in outstanding (net) positions

(i.e., the drop is largely assigned to TrPosition). This event shows that trade does not necessarily

imply more exposure, it could reduce exposure when, after the trade, positions shrink. Note that

combining t = 6 and t = 7 the size of trade positions have not changed — members are long or short

the same amount of risk — but CCP exposure has increased due crowding.

In summary, the decompositions of CCP exposure changes generate insight into the drivers of these changes.

TrPosition picks up whether new trades extend or reverse legacy positions. TrCrowding captures the corre-

lation of member portfolio returns. RetVola, RetCorr, and PrLevel identify exposure changes due to changes

in the volatility of returns, their correlations, and price levels, respectively.
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D Decomposition of CCP exposure across securities

ExpCCP being homogeneous of degree one in ωk yields:26

ExpCCP =
∑

i

ωk

(
∂

∂ωk
ExpCCP

)
. (23)

The contribution of security k therefore is:

ExpCCPk =
∑
i, j

ωk

(
∂

∂ωk
ExpCCP

)

=
∑

j

√
1

2π
B j j

2σ j
+

+
α

2σA

∑
i, j

(
π − 1

2π

) M′
(
ρi j

)
Bi j +

√
1 − ρ2

i j − 1

π − 1

(
σ j

2σi
Bii +

σi

2σ j
B j j

) ,
(24)

where

Bi j = n′i
∂Ω

∂ωk
n j, M′

(
ρi j

)
=

1
2π + arcsin

(
ρi j

)
π − 1

. (25)

E Robustness checks

E.1 Moving-window return covariance estimate

The exposure change decomposition analysis presented in Table 3 relies on a EWMA estimate of the covari-

ance matrix of returns. To verify whether the results are robust we redo the analysis with a rolling-window

estimate of return covariance. For the length of the window we picked the burn-in period used for EWMA

(i.e., 50 days). We have considered other alternatives such as parametric estimation of the time-varying co-

variance matrix. One natural approach is to estimate a multivariate GARCH but implementation is infeasible

given the large dimensions of the covariance matrix that needs to be estimated: 242 × 242. We therefore

26Note that each element ωi j of the covariance matrix Ω can be written as ρi jωiω j where ρi j denotes the elements of the accom-
panying correlation matrix. This should clarify what homogeneity or a partial derivative with respect to ωk is.
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Table 10: Decomposition of exposure change for a rolling-window estimate of return covariance. This table
repeats the exposure-change decompositions reported in Table 3 and adds decompositions based a 50-day rolling-
window estimate of return covariance instead of the EWMA estimate used in the baseline decompositions.

EWMA estimate of Cov(R) Rolling-window estimate of Cov(R)

Full sample Top 100 Top 10 Full sample Top 100 Top 10

Panel A : CCP exposure change decomposition in euro
RetVola 272 10,949 69,311 -414 5,156 24,953
RetCorr 113 3,555 -89 -22 553 -1,225
PrLevel -133 3,195 -5,324 -168 4,964 -525
TrPosition 14,255 38,002 39,445 18,956 59,148 80,765
TrCrowding 443 8,186 15,571 624 11,388 20,255
∆ExpCCP 14,949 63,887 118,914 18,976 81,208 124,223

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 17.1% 58.3% -2.2% 6.3% 20.1%
RetCorr 0.8% 5.6% -0.1% -0.1% 0.7% -1.0%
PrLevel -0.9% 5.0% -4.5% -0.9% 6.1% -0.4%
TrPosition 95.4% 59.5% 33.2% 99.9% 72.8% 65.0%
TrCrowding 3.0% 12.8% 13.1% 3.3% 14.0% 16.3%
∆ExpCCP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

stick to a parameter-free estimate but this time based it on a rolling window.

Table 10 shows that decomposition results when using a rolling-window estimate are similar to the ones

using an EWMA estimate. Importantly, the key observations in the main text all hold up: The position

component dominates all other components for the full sample, but volatility and crowding become much

more important when considering only the top 100 and the top 10 exposure changes.

E.2 Alternative sampling frequencies

Is high-frequency analysis important for the decomposition results presented in Table 3? Note that the

volume bins were chosen such that, on average, they span fifteen minutes. A higher frequency is compu-

tationally feasible but economically impossible as “microstructure noise” starts to bias return covariance

estimates (Andersen et al. 2003). Lower frequency, however, is possible and in this section we redo the

decomposition based on volume bins that, on average, span 30 minutes or a full hour.

Table 11 presents the results but only reports full-sample and top 10 decompositions to save space. The

table shows that the main results are unaffected: the position component dominates in the full sample, but

volatility and crowding become important in top 10 subsample. These results, however, become attenuated
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Table 11: Decomposition of exposure change for different frequencies. This table repeats the exposure-change
decompositions of Table 3 and adds decompositions based on lower frequencies. The baseline result is based on
having, on average, 34 volume bins per day which corresponds to 15-minute intervals. The added frequencies are 17
and 8 and therefore correspond to 30-minute and 1-hour intervals, respectively.

Baseline: 34 bins per day 17 bins per day 8 days per day
(15-minute intervals) (30-minute intervals) (1-hour intervals)

Full sample Top 10 Full sample Top 10 Full sample Top 10

Panel A : CCP exposure change decomposition in euro
RetVola 272 69,311 984 89,104 3,881 276,342
RetCorr 113 -89 316 14,133 683 26,155
PrLevel -133 -5,324 -351 -20,163 -1,603 -24,318
TrPosition 14,255 39,445 38,730 101,854 123,654 327,711
TrCrowding 443 15,571 1,279 22,431 5,052 77,654
∆ExpCCP 14,949 118,914 40,959 207,359 131,667 683,545

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 58.3% 2.4% 43.0% 2.9% 40.4%
RetCorr 0.8% -0.1% 0.8% 6.8% 0.5% 3.8%
PrLevel -0.9% -4.5% -0.9% -9.7% -1.2% -3.6%
TrPosition 95.4% 33.2% 94.6% 49.1% 93.9% 47.9%
TrCrowding 3.0% 13.1% 3.1% 10.8% 3.8% 11.4%
∆ExpCCP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

when the analysis is done at the lower frequency. That is, the contribution of volatility and crowding drops

in the top 10 subsample. This result testifies to the importance of high-frequency analysis of CCP exposure

changes to diagnose the nature of trading during brief spells of volatility spikes and extreme volume.

E.3 Alternative sequencing in exposure change decomposition

The decomposition of CCP exposure change presented in Table 3 and discussed in Section 5.1 critically

depends on the sequencing of the various components. To verify how robust the decomposition results

are to alternative sequences, we redo the analysis across all possible alternatives inspired by Hasbrouck

(1995). As the components belong to two groups (that are preserved in the sequencing) we end up with

2 × 3! × 2! = 24 possible sequences.

The results in Table 12 show that the decomposition results appear robust. The table reports the mean,

the lower and the upper bound of each component’s contribution across all 24 sequences. The distance

between the lower and upper bounds seems small as it is only a few percentage points for the relative shares

reported in Panel B, never exceeding 6%. The key observations in the main text all hold up: The position
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Table 12: Decomposition of exposure change for alternative component sequences. This table presents the mean
and, in brackets, the lower and the upper bound of the (relative) share of components across alternative sequences
of the various components. It serves as a robustness check for Table 3 which is based on a particular economically
motivated sequence. The price and trade variables are kept together as a group so the number of sequences considered
is 2 × 3! × 2! = 24.

Full sample Top 100 ∆ExpCCP Top 10 ∆ExpCCP

Panel A : CCP exposure change decomposition in euro
RetVola 275 11,003 69,022

(263, 288) (10,581, 11,427) (65,622, 72,392)
RetCorr 115 3,612 215

(112, 118) (3,555, 3,669) (-93, 534)
PrLevel -132 3,363 -3,619

(-136, -128) (3,171, 3,555) (-5,390, -1,881)
TrPosition 14,598 38,656 39,875

(14,245, 14,951) (37,609, 39,723) (37,246, 42,661)
TrCrowding 93 7,253 13,421

(-253, 439) (6,347, 8,180) (11,435, 15,565)
∆ExpCCP 14,949 63,887 118,914

Panel B: CCP exposure change decomposition in percentage
RetVola 1.8% 17.2% 58.0%

(1.8%, 1.9%) (16.6%, 17.9%) (55.2%, 60.9%)
RetCorr 0.8% 5.7% 0.2%

(0.8%, 0.8%) (5.6%, 5.7%) (-0.1%, 0.4%)
PrLevel -0.9% 5.3% -3.0%

(-0.9%, -0.9%) (5%, 5.6%) (-4.5%, -1.6%)
TrPosition 97.7% 60.5% 33.5%

(95.3%, 100%) (58.9%, 62.2%) (31.3%, 35.9%)
TrCrowding 0.6% 11.4% 11.3%

(-1.7%, 2.9%) (9.9%, 12.8%) (9.6%, 13.1%)
∆ExpCCP 100.0% 100.0% 100.0%
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component dominates all other components for the full sample, but volatility and crowding become much

more important when considering only the top 100 and the top 10 exposure changes.
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