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Abstract

This appendix contains supplementary results as well as further descriptions of computa-
tional procedures for our paper. Section I, describes the MCMC sampler used in estimating
our model. Section II describes the computation of predictive densities. Section III reports ad-
ditional estimates of trends and stochastic volatilities well as posterior moments of parameter
estimates from our baseline model. Section IV reports estimates from an alternative version
of our model, where the CBO unemployment rate gap is used as business cycle measure in-
stead of the CBO output gap. Section V reports trend estimates derived from different variable
orderings in the gap VAR of our model. Section VI compares the forecasting performance of
our model to the performance of the no-change forecast from the random-walk model over a
period that begins in 1985 and ends in 2017:Q2. Sections VII and VIII describe the particle
filtering methods used for the computation of marginal data densities as well as the impulse
responses.

⇤The views in this paper do not necessarily represent the views of the Bank for International Settlements, the
Federal Reserve Board, any other person in the Federal Reserve System or the Federal Open Market Committee. Any
errors or omissions should be regarded as solely those of the authors.
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I Priors and Posterior Sampling

MCMC estimates of the model are obtained from a Gibbs sampler. The sampler is run multiple

times with different starting values and convergence is assessed with the scale reduction test of

Gelman et al. (2003).1 For each run, 10, 000 draws are stored after a burn-in period of 100, 000

draws; the post-burnin draws from each run are then merged.

Our models features two layers of latent states as well as various parameters; the first layer of

latent states is given by:

⇠t =


X̄

0
t X̃

0
t X̃

0
t�1 . . . X̃

0
t�p+1

�0
(A.1)

X̄ t =


⇡̄t r̄t r̄2t r̄5t r̄10t

�0
(A.2)

X̃ t =


⇡̃t c̃t s̃t ỹ2t ỹ5t ỹ10t

�0
(A.3)

with rit = rt + pi 8 i = 2, 5, 10, and where p is the lag length of the gap VAR in equation (8).

The second layer of latent variables consists of the vector of stochastic log-variances of the

gap shocks, h̃t ⌘ log (�2
t ) in equation (9) together with the stochastic log-variance process of

shocks to the inflation trend, h̄t ⌘ log (�2
⇡̄,t) in equation (4).2 All told, our model consists of

equations (1), (2), (3), (4), (5), (6), (7), (8) and (9); out of these, equations (2), (3), (5), (6), (7), (8)

are represented as a conditionally linear state-space given by equations (13), (12), as well as the

truncated measurement equation (11) for the nominal policy rate.3

In our baseline case — with constant-variance shocks in the trend real rate — details of the

state space system given by equations (13) and (12), which are also reproduced below, are given
1Specifically, for every model, 4 independent runs for the Gibbs sampler were evaluated; each run initialized with

different starting values drawn from the model’s prior distribution. Convergence is deemed satisfactory when the scale
reduction statistics for every parameter and latent variable are below 1.2; (values close to 1 indicate good convergence).

2Stochastic volatility in shocks to the real rate trend — if part of the model specification — can also be wrapped
into h̄t.

3As noted already in the main text, in principle, a separate version of equation (1) applies for nominal interest
rates of different maturities. However, in estimating our model, the distinction between longer-term yields and their
respective shadow rates would be moot because the ELB never binds for the other yields in our data. Nevertheless,
when simulating predictive densities for longer-term yields, the truncation implied by (1) is, of course, applied.
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as follows:

⇠t = A⇠t�1 +B⌃1/2
t "t "t ⇠ N(0, I) (13)

X t = C ⇠t (12)

C =

2

666666666666664

1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 0 1 0 0

1 0 0 0 1 0 0 0 0 0 1 0

3

777777777777775

(A.4)

A =

2

66664

I 0 0

0 A1 A2

0 I 0

3

77775
(A.5)

where A1 and A2 are the lag coefficients matrices of the gap VAR in equation (8) and boldface

symbols denote (sub-)matrices. Furthermore, we have

Bt = B⌃1/2
t (A.6)

B =

2

66666664

1 0 0

0 1 0

0 0 B

0 0 0

3

77777775

(A.7)

where B is a unit-lower-triangular matrix, and the stochastic volatilities — as well as the constant-

variance parameter �r̄ — are stacked into ⌃1/2
t as follows:
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⌃
1/2
t =

2

666666666666666666664

�⇡̄,t 0 0 0 0 0 0 0

0 �r̄ 0 0 0 0 0 0

0 0 �⇡̃,t 0 0 0 0 0

0 0 0 �c̃,t 0 0 0 0

0 0 0 0 �s̃,t 0 0 0

0 0 0 0 0 �ỹ2,t 0 0

0 0 0 0 0 0 �ỹ5,t 0

0 0 0 0 0 0 0 �ỹ10,t

3

777777777777777777775

. (A.8)

The parameter vector of the model comprises the means, persistence and variance-covariances

of shocks to h̄t and h̃t, see equations (4) and (9). as well as the variance of shocks to the trend real

rate, denoted �2
r̄ , the transition coefficients of the gap VAR in equation (8), stacked in a vector a,

and the lower diagonal elements of gap shock loadings B in equation (8) that can be stacked in a

vector denoted b. For ease of reference, all parameters are collected in the vector ✓. Furthermore,

since MCMC estimates of h̄T and h̃
T

will be obtained from the multi-move filter of Kim et al.

(1998), the use of a set of discrete indicator variables, sT , is required to to approximate log ⌘2
⇡̄,t

and log ⌘̃2
t in equations (4) and (9), respectively, with a mixture of normals. For ease of exposition,

we stack the log of the stochastic variances of trend and gap shocks into the vector ht. Combining

equations (4) and (9) yields the following vector system:

ht = (I � ⇢)µ+ ⇢ht�1 +�⌘t ⌘t ⇠ N(0, I) (A.9)

where µ =


µ⇡̄ µ̃0

�
, ⇢ is a diagonal matrix with ⇢⇡̄ and the diagonal values of ⇢̃ on its diagonal

and � is a block-diagonal matrix consisting of �2
⇡̄ and �̃.4

Conditional on draws for the various parameters, (✓), and log-volatilities hT , we can construct
4Since trend stochastic volatilities in equation (4) are independent of the gap stochastic volatilities in equation (9)

— ⇢ is diagonal and� is block-diagonal — both stochastic volatility blocks can be estimated in separate Gibbs steps.
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matrices A, B, C. and {⌃1/2
t }Tt=1 and obtain the linear, Gaussian state space system described by

equation (13) in the main paper.

For the initial values of the latent states, the following priors were used:

⇠0 ⇠ N (E(⇠0),⌦) with E(⇠0) =

2

64
⇠̄

0

3

75 and ⌦ =

2

64
⌦̄ 0

0 ⌦̃

3

75 (A.10)

An uninformative prior for the initial gap levels is obtained by setting ⌦̃ equal to the ergodic

variance-covariance matrix of the gaps implied by the VAR in equation (8), evaluated at the time

zero draws for the stochastic volatilities, encoded in⌃0, for every MCMC draw.5 The prior for the

initial trend levels are set to be consistent with

2

66666666664

⇡̄0

r̄0

r̄20

r̄50

r̄100

3

77777777775

⇠ N

0

BBBBBBBBBB@

2

66666666664

2.0

2.0

2.5

3.0

3.5

3

77777777775

, 100 · I

1

CCCCCCCCCCA

(A.11)

which implies generally vague prior levels for the various trend components.

The prior for the average levels of the log-variances is normal, with a mean value of log (0.1)2

and variance corresponding to the ergodic distribution implied by draws for the shock variance and

AR(1) lag coefficients associated with the corresponding log-variance process. For each AR(1)

lag coefficient, the prior is N(0.8, 0.22), as in Clark and Ravazzolo (2015). For the variance of

shocks to the volatility of the inflation trend, the prior is a univariate inverse-Wishart distribution

with 6 degrees of freedom and centered around a mean of 0.22, which coincides with the fixed

coefficient-value of 0.2 used by Stock and Watson (2007) in their univariate model for inflation.6

5In the case of a VAR(1), the ergodic variance-covariance matrix solves ⌦̃ = A⌦̃A0 +B⌃0 B
0 for given values

of A, B, and ⌃0.
6The univariate inverse-Wishart distribution corresponds to an inverse-gamma distribution, whose shape parameter

is typically expressed in units that correspond to half the degrees of freedom of the inverse-Wishart.
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For the vector of shocks to the gap volatilities vector, ⌘t in equation (9), the prior is inverse Wishart,

centered around a mean of 0.22 · I and N + 11 degrees of freedom where N is the number of gap

variables (N = 6 in our baseline model).

The parameter governing the variability of real-rate trend shocks, �2
r̄ , has a univariate inverse-

Wishart distribution with 3 degrees of freedom and is centered around a prior mean of 0.22. The

prior mean for �2
r̄ is thus similar to the estimated value for the corresponding parameter reported

by Holston et al. (2017) in the context of their model; see the value of �r⇤ = 0.194 in their Table 1.

With three degrees of freedom, our prior is only vaguely informative while also embedding some

belief that trend shocks explain only a small share of variations in real rates. In addition, this prior

also helps to avoid the pile-up problem — known, for example, from Stock and Watson (1998) and

considered in the context of estimating �2
r̄ also by Laubach and Williams (2003) as well as Clark

and Kozicki (2005) and Holston et al. (2017) — by keeping posterior parameter draws from zero;

see our estimates shown in Figure A.4 further below.

A Minnesota-style prior (centered around a mean of zero) is used for the VAR coefficients a,

with hyperparameters �1 = 0.5 (own lags) and �2 = 0.2 (cross lags). The prior b is multivariate

normal, b ⇠ N (0, I).

The Gibbs sampler is initialized with values drawn from the prior for hT , and ✓ and then

generates draws from the joint posterior distribution

p
�
⇠T ,hT ,a, b,⇢,µ,�, �2

r̄ , s
T
�� ZT

�

by iterating over draws from the following conditional distributions:7

1. Draw from p
�
⇠T
�� hT ,a, b,⇢,µ,�, �2

r̄ , s
T ,ZT

�
with the disturbance smoothing sampler of

Durbin and Koopman (2002) and rejection sampling for the shadow rate when the observed

nominal short-term rate is at the ELB as described in Appendix A.

2. Draw from p
�
a
�� ⇠T ,hT , b,⇢,µ,�, �2

r̄ , s
T ,ZT

�
= p

�
a
�� ⇠T ,hT , b

�
, a normal conjugate

7For ease of notation, h̄T and h̃
T

are stacked into hT unless when the distinction becomes material.
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posterior for a VAR with known heteroscedasticity, with rejection sampling to ensure a sta-

tionary VAR (Cogley and Sargent, 2005; Clark, 2011)

3. Draw from p
�
b
�� ⇠T ,hT ,a,⇢,µ,�, �2

r̄ , s
T ,ZT

�
via recursive Bayesian regressions with

known heteroscedasticity to orthogonalize the gap shocks of the VAR in (8).

4. Draw from the univariate inverse-Wishart conjugate posteriors for �2
r̄ :

p
�
�2
r̄

�� ⇠T ,hT ,a, b,⇢,�, sT ,ZT
�
= p

�
�2
r̄

�� ⇠T
�

5. Draw from the normal conjugate posterior for ⇢:

p
�
⇢
�� ⇠T ,hT ,a, b,µ,�, , �2

r̄s
T ,ZT

�

= p
�
⇢
�� hT ,µ,�

�
= p

�
⇢⇡̄
�� hT

⇡̄ , µ⇡̄,�
2
⇡̄

�
· p
⇣
⇢̃
�� h̃T

, µ̃, �̃
⌘

Due to the assumed independence between the stochastic volatilities affecting shocks to trend

inflation the residuals of the gap VAR, which are specified in equation (9), this step can be

broken out into two separate Bayesian regression steps. The presence of correlated shocks

in equation (9) necessitates a SUR regression to construct the posterior for ⇢̃. Rejection

sampling is applied to ensure that all elements of ⇢ are inside the unit circle.

6. Draw from the inverse-Wishart conjugate posterior for �, which can again be broken out

into two independent steps:

p
�
�
�� ⇠T ,hT ,a, b,⇢,µ, �2

r̄ ,�
2
⇡̄, s

T ,ZT
�

= p
�
�
�� hT ,µ,⇢

�
= p

�
�2
⇡̄

�� hT
⇡̄ , µ⇡̄, ⇢⇡̄,�

2
⇡̄

�
· p
⇣
�̃
�� h̃T

, µ̃, ⇢̃
⌘

7. Draw the mixture indicators sT from p
�
sT
�� ⇠T ,hT ,a, b,⇢,µ,�,ZT

�
.

8. Draw from p
�
hT ,µ

�� sT , ⇠T ,a, b,⇢,�, �2
r̄ , s

T ,ZT
�

by applying the disturbance smoothing
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sampler of Durbin and Koopman (2002) to a linear state space for
�
hT ,µ

�
as in Kim et al.

(1998).8

Strictly speaking, this is not a simple Gibbs sampler consisting of steps 1 – 8 , but rather a Gibbs-

within-Gibbs sampler with the outer Gibbs sampler iterating between

p
�
sT , ⇠T ,✓

�� hT ,µ,ZT
�

(thus, a block consisting of steps 1 through 7)

and p
�
hT ,µ

�� sT , ⇠T ,✓,ZT
�

(step 8),

similar to the discussion in Del Negro and Primiceri (2015).

II Computation of Predictive Densities

In order to derive interest-rate forecasts that conform to the ELB (and other data in Zt), we first

proceed by characterizing the predictive density for the shadow rate. Forecasts for actual rates

can then be computed by integrating over the censored shadow-rate density. The shadow rate is

included in the non-censored vector of variables X t described in Appendix A. Apart from handling

the truncation issues related to the ELB, our approach is fairly standard, building, for example, on

the work by Geweke and Amisano (2010), Christoffel et al. (2010), and Warne et al. (2015). Given

the truncation issues for interest rates and the fat tails introduced into the predictive density by the

stochastic volatility specification, we have chosen to compute the predictive density based on the

mixture of normals that is implied by the draws from our MCMC sampler, instead of approximating

the predictive density solely based on its first two moments, treating the predictive density as

a normal distribution, as has been done, for example, by Adolfson et al. (2007) in the case of

linearized, constant-parameter DSGE models.

In order to compute the predictive density for Zt+h jumping off data at time t, we first employ

the MCMC sampler described in Appendix I to re-estimate all model parameters and latent vari-
8The constant µ is embedded in the state space as a unit root without shocks, which improves the efficiency of the

Gibbs sampler by jointly sampling hT and µ.
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ables (✓, ⇠t and ht) conditional on data available through time t. Draws from this MCMC sampler

will henceforth be indexed by k.

Conditional on draws (⇠kt ,h
k
t ,✓

k), it is straightforward to compute the predictive mean for

uncensored variables:

E
�
X t+h

�� ⇠kt ,hk
t ,✓

k
�
= Ck

�
Ak
�h

⇠kt (A.12)

and the predictive mean, conditional solely on data through t, can then be approximated by aver-

aging over the means derived from each MCMC draw:

E
�
X t+h|Zt

�
⇡
X

k

E
�
X t+h

�� ⇠kt ,hk
t ,✓

k
�

(A.13)

However, in order to characterize the entire predictive density for uncensored variables or even

the predictive density for interest rates, which are subject to censoring due to the ELB constraint,

we need to account for non-linearities in the distribution for future ⇠t:t+h arising from the stochastic

volatility shocks in our model. We simulate J = 100 trajectories, each indexed by j, of hk,j
t:t+h as

well as shocks to ⇠t:t+h for each draw k from the MCMC sampler. From each draw ⇠k,jt:t+h we

construct Xj,k
t+h; the ensemble of these draws across k and j approximates the predictive density

for X t+h.

III Additional Estimates

III.1 Latent Variables

This section reports estimates of additional latent variables, not shown in the main paper. Specif-

ically, Figure A.1 displays estimates of the level of trend inflation as well as stochastic volatility

affecting shocks to trend inflation. Figure A.2 reports the stochastic volatilities affecting residuals

of the gap VAR in equation (8).
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Figure A.2: Stochastic Volatilities for Gap Variables
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Note: Stochastic volatilities affecting the residuals in the gap VAR in equation (8). Specifically, these volatilities affect
the Choleski residuals of the VAR and thus correspond to the diagonal elements of ⌃̃

1/2

t in equation (8). Smoothed
estimates using all available observations from 1960:Q1 through 2017:Q2. Thick dashed lines are posterior medians,
shaded areas depict 90% and 50% uncertainty bands that reflect the joint uncertainty about model parameters and
states.
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III.2 Parameter Estimates

This appendix reports prior and posterior moments of various model parameters. Figure A.3 re-

ports estimates of the persistence in the gap VAR (8) as measured by the largest, absolute eigen-

value of the associated companion-form transition matrix. Figure A.4 reports prior and posterior

densities for �2
r̄ , the variance of shocks to the trend real rate. Figure A.5 depicts prior and poste-

rior densities for average term premia between longer-term yields and the short-term shadow rate

implied by the model estimates.

Tables A.1, A.2 and A.3 report prior and posterior moments of the various SV processes as

well as the Choleski factorization of shocks to the gap VAR in equation (8).
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Figure A.3: Persistence of Gap VAR
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Note: Prior and posterior distribution of maximum, absolute eigenvalue of the companion-form transition matrix
associated with the gap VAR in equation (8); prior and posterior means are depicted with horizontal lines. Full-sample
estimates using all available observations from 1960:Q1 through 2017:Q2. A Minnesota-style prior (centered around
a mean of zero) has been used for the VAR coefficients a, with hyperparameters �1 = 0.5 (own lags) and �2 = 0.2

(cross lags).
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Figure A.4: Variance of Shocks to the Trend Real Rate
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Note: Prior and posterior distribution of �2
r̄ , the variance of shocks to the trend real rate, see equation (6); prior

and posterior means are depicted with horizontal lines. Full-sample estimates using all available observations from
1960:Q1 through 2017:Q2. The prior for �2

r̄ is a univariate inverse Wishart distribution with mean of 0.22 = 0.04

and three degrees of freedom. Our prior mean is thus similar to the estimated value for the corresponding parameter
reported by Holston et al. (2017) in the context of their model; see the value of �r⇤ = 0.194 in their Table 1.
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Figure A.5: Average Term Premia
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(a) 2-year rate
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(b) 5-year rate
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(c) 10-year rate

Note: Reflecting the assumed cointegration between interest rates of different maturities, average term premia, pi =
r̄it� r̄t, are the constant offsets between real rate trends of longer-term yields, r̄it, relative to the trend of the short-term
(shadow) real rate, r̄t. The prior, implied by equation (A.11), is essentially flat. Posterior means are depicted with
horizontal lines. Full-sample estimates using all available observations from 1960:Q1 through 2017:Q2.
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ỹ1
0

y
0
.0

6
4

0
.0

6
8

0
.4

0
1

0
.8

9
5

1
.2

2
8

1
.0

[0
.0

30
—

0.
09

7
]

[0
.0

13
—

0.
12

3
]

[0
.3

06
—

0.
49

2
]

[0
.8

13
—

0.
97

6
]

[1
.1

11
—

1.
34

4
]

N
ot

e:
Po

st
er

io
r

m
om

en
ts

fo
r

co
ef

fic
ie

nt
s

of
th

e
un

it-
lo

w
er

-tr
ia

ng
ul

ar
m

at
rix

B
th

at
m

ap
s

sh
oc

ks
to

th
e

ga
p

va
ria

bl
es

in
th

e
VA

R
of

eq
ua

tio
n

(8
)

to
its

C
ho

le
sk

i
re

si
du

al
s

(s
ca

le
d

by
st

oc
ha

st
ic

vo
la

til
ity

):
A
(L

)X̃
t
=

B
⌃̃

1 /
2

t
"̃ t

,w
he

re
⌃̃

1 /
2

t
is

a
di

ag
on

al
m

at
rix

of
st

oc
ha

st
ic

vo
la

til
iti

es
.

B
y

de
fin

iti
on

,d
ia

go
na

le
le

m
en

ts
of

B

ha
ve

un
it

va
lu

e,
an

d
up

pe
r-

di
ag

on
al

el
em

en
ts

ar
e

ze
ro

(in
di

ca
te

d
by

bl
an

k
en

tri
es

ab
ov

e)
.

B
ol

d,
lo

w
er

-d
ia

go
na

le
nt

rie
s

re
po

rt
po

st
er

io
rm

ea
ns

;b
el

ow
th

e
m

ea
ns

,
nu

m
be

rs
in

sq
ua

re
br

ac
ke

ts
re

po
rt

5%
an

d
95

%
qu

an
til

es
.E

ac
h

co
ef

fic
ie

nt
ha

s
a

st
an

da
rd

no
rm

al
pr

io
rd

is
tri

bu
tio

n;
th

is
w

ith
m

ea
n

ze
ro

,5
%

(9
5%

)q
ua

nt
ile

eq
ua

l
to

�
1.
65

(1
.6
5)

.F
ul

l-s
am

pl
e

es
tim

at
es

us
in

g
al

la
va

ila
bl

e
ob

se
rv

at
io

ns
fr

om
19

60
:Q

1
th

ro
ug

h
20

17
:Q

2.
Es

tim
at

ed
tra

je
ct

or
ie

s
of

th
e

st
oc

ha
st

ic
vo

la
til

iti
es

on
th

e
di

ag
on

al
of
⌃̃

1 /
2

t
ar

e
de

pi
ct

ed
in

Fi
gu

re
A

.2
.



SUPPLEMENTARY APPENDIX (online only) 19

Table A.2: Coefficients of AR(1)-SV Processes

PANEL A: Trend Inflation

SV in . . . exp (µ⇡̄/2) ⇢⇡̄ �⇡̄

⇡̄t 0.143 0.815 0.199

[ 0.096 — 0.201 ] [ 0.499 — 0.992 ] [ 0.140 — 0.279 ]

PANEL B: Gap Variables

SV in . . . exp (µ̃i/2) ⇢̃i
p

�̃ii

⇡̃t 1.038 0.932 0.291

[ 0.708 — 1.365 ] [ 0.859 — 0.984 ] [ 0.199 — 0.405 ]
c̃t 0.598 0.903 0.334

[ 0.469 — 0.735 ] [ 0.829 — 0.960 ] [ 0.229 — 0.455 ]
s̃t 0.272 0.943 0.452

[ 0.152 — 0.409 ] [ 0.901 — 0.979 ] [ 0.322 — 0.604 ]
ỹ2y 0.203 0.977 0.253

[ 0.063 — 0.361 ] [ 0.946 — 0.997 ] [ 0.183 — 0.339 ]
ỹ5t 0.102 0.929 0.214

[ 0.075 — 0.131 ] [ 0.829 — 0.988 ] [ 0.153 — 0.296 ]
ỹ10y 0.078 0.909 0.242

[ 0.062 — 0.095 ] [ 0.804 — 0.975 ] [ 0.172 — 0.330 ]

Note: Posterior moments of coefficients of the AR(1) stochastic volatility (SV) processes affecting different variables.
Bold numbers are posterior means with 5% and 95% quantiles reported in square brackets underneath. All estimates
reflect data on all available observations from 1960:Q1 through 2017:Q2; estimated trajectories of the stochastic
volatilities on the diagonal of ⌃̃

1/2

t are depicted in Figure A.2. Panel A reports the coefficients of the SV process
affecting shocks to trend inflation, see equation (4):

log
�
�2
⇡̄,t

�
= (1� ⇢⇡̄)µ⇡̄ + ⇢⇡̄ log

�
�2
⇡̄,t�1

�
+ �⇡̄⌘⇡̄,t ⌘⇡̄,t ⇠ N(0, 1) (4)

Prior distributions are ⇢⇡̄ ⇠ N(0.8, 0.22), �⇡̄ is univariate inverse Wishart with mean 0.22 and 12 degrees of freedom.
The (conditional) prior distribution of µ⇡̄ is normal with mean equal to log (0.12) and variance corresponding to the
ergodic mean of the SV process implied by given values of ⇢⇡̄ and �⇡̄ .
Panel B reports coefficients of the SV processes affecting the orthogonalized shocks in the gap VAR of equation (8)
given by the SUR system (9):

log
�
�̃2

t

�
= (I � ⇢̃) µ̃+ ⇢̃ log

�
�̃2

t�1

�
+ �̃⌘̃t ⌘̃t ⇠ N(0, I) (9)

In Panel B, µ̃i and ⇢̃i refer to the ith (diagonal) element of µ̃ and ⇢̃, respectively. �̃ is the variance-covariance matrix of
shocks to the gap SV processes, and

p
�̃ii is the volatility of shocks to the ith gap SV process. Correlation coefficients

implied by the off-diagonal elements of �̃ are reported in Table A.3. Prior distributions are ⇢̃i ⇠ N(0.8, 0.22),
µ̃i ⇠ N(log (0.12), 52), and �̃ is inverse Wishart with mean 0.22 · I and Ny + 11 = 17 degrees of freedom.
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ỹ5 t
0
.3

2
6

0
.3

3
2

0
.3

1
5

0
.2

0
4

1
.0

0.
00

0
[-

0.
18

4
—

0.
70

1
]

[-
0.

18
7

—
0.

69
5

]
[-

0.
23

8
—

0.
70

6
]

[-
0.

29
9

—
0.

61
1

]
[-

0.
45

7
—

0.
45

7
]

ỹ1
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IV Results using the Unemployment Rate Gap

This section reports estimates generated from an alternative specification where data for the CBO

output gap is replaced by data measuring the CBO unemployment rate gap. As can be seen on

Figure A.6, both measures convey a broadly similar picture of the business cycle in the U.S.;

correspondingly, results from our model obtained using either measure are very similar. The un-

employment rate gap is computed as the difference between the CBO’s measure of the natural

long-term rate of unemployment for a given quarter and the quarterly average rate of unemploy-

ment.9 All other data series are identical to those used in the main paper.

9Data for the unemployment rate and the CBO’s estimate of the natural rate of unemployment in the long run
are obtained from the FRED database, available at https://fred.stlouisfed.org, where they are labeled
UNRATE and NROU, respectively.
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Figure A.6: CBO Measures for Output Gap and Unemployment Rate Gap

1960 1970 1980 1990 2000 2010 2017
-8

-6

-4

-2

0

2

4

6

Output gap

Inverse unemployment rate gap

Note: Shaded areas indicate NBER recessions. The unemployment rate gap is computed as the log-difference between
the CBO’s measure of the natural long-term rate of unemployment for a given quarter and the quarterly average rate of
unemployment; shown in the figure is the inverse of the unemployment rate gap (corresponding to the log-difference
between the natural and the actual rate of unemployment). The output gap is computed as the log difference between
real GDP and the CBO’s measure of potential real GDP for a given quarter. (In order to be comparable to annualized
growth rates, for our computations the log difference between actual and potential GDP is been scaled by a factor of
400 when computing the output gap.) All computations are based on the vintage of FRED data available that has been
available at the end of October 2017.
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Figure A.7: Shadow Rate Estimates (w/Unemployment Rate Gap)

(a) Full-Sample Estimates and Other Estimates (b) Full-Sample and Quasi Real-Time Estimate

Note: Shaded areas indicate 50 and 90 percent uncertainty bands, dashed lines are posterior means. Results shown
in Panel (a) reflect “smoothed” estimates using all available observations from 1960:Q1 through 2017:Q2. The red
line in Panel (b) reflects mean of the endpoints of sequentially re-estimating the entire model over growing samples
of quarterly observations starting in 1960:Q1, thus reflecting “filtered” estimates of the model’s latent variables.
Uncertainty bands reflect the joint uncertainty about model parameters and states.

Figure A.8: The Real Rate in the Long Run (w/Unemployment Rate Gap)

(a) Smoothed Estimates (b) Quasi Real-Time Estimate

Note: Shaded areas indicate 50 and 90 percent uncertainty bands, dashed lines are posterior means. Results shown
in Panel (a) reflect “smoothed” estimates using all available observations from 1960:Q1 through 2017:Q2. Results
shown in Panel (b) reflect the endpoints of sequentially re-estimating the entire model over growing samples of
quarterly observations starting in 1960:Q1, thus reflecting “filtered” estimates of the model’s latent variables.
Uncertainty bands reflect the joint uncertainty about model parameters and states.
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Figure A.9: Real-Rate Estimates: Trend Level and Gap Volatility (w/Unemployment Rate Gap)
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Note: Panel (a) depicts posterior means as well as 50% and 90% uncertainty bands for the trend real rate as well as
for model estimates of the actual real rate, r⇤t = it � Et⇡t+1. Panel (b) reports estimates of the conditional volatility
of shocks to the (shadow) real-rate gap, Volt�1 (r̃t) where r̃t = s̃t � Et⇡̃t+1. Both panels reflect smoothed estimates
computed using all available observations from 1960:Q1 through 2017:Q2.
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Figure A.11: Stochastic Volatilities for Gap Variables (w/Unemployment Rate Gap)
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Note: Stochastic volatilities affecting the residuals in the gap VAR (8). Specifically, these volatilities affect the
Choleski residuals of the VAR and thus correspond to the diagonal elements of ⌃̃

1/2

t in (8). Smoothed estimates
using all available observations from 1960:Q1 through 2017:Q2. Thick dashed lines are posterior means, shaded
areas depict 90% and 50% uncertainty bands that reflect the joint uncertainty about model parameters and states. The
business cycle measure c̃t is given by the inverse unemployment rate gap.
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Figure A.12: Short-Term Interest Rate Responses to Monetary Policy Shock (w/Unemployment
Rate Gap)
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Note: Responses to monetary policy shocks estimated for 2007:Q4, 2009:Q4, 2011:Q4 as well as 2016:Q4; dashed
lines indicate responses at times when the ELB was binding for actual data. Shocks are scaled to generate a 1
percentage point drop in the shadow rate on impact. Vertical axis units are in percentage points. Horizontal axis units
are quarters after impact of the monetary policy shock, which occurs at quarter zero.
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Figure A.13: Responses to Monetary Policy Shock (w/Unemployment Rate Gap)

0 4 8 12 16 20 24
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(a) 2-year Yield

0 4 8 12 16 20 24
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

2007

2009

2011

2016

(b) 10-year Yield

0 4 8 12 16 20 24
-0.3

-0.2

-0.1

0

0.1

(c) Inflation

0 4 8 12 16 20 24
-0.1

0

0.1

0.2

0.3

(d) Inflation Gap

0 4 8 12 16 20 24
-0.1

-0.05

0

0.05

0.1

0.15

0.2

(e) Inverse Unemployment Rate Gap

0 4 8 12 16 20 24
-0.3

-0.2

-0.1

0

(f) Spread: 10- over 2-year Yield

Note: Responses to monetary policy shocks estimated for 2007:Q4, 2009:Q4, 2011:Q4 as well as 2016:Q4; dashed
lines indicate responses at times when the ELB was binding for actual data. Shocks are scaled to generate a 1
percentage point drop in the shadow rate on impact. Vertical axis units are in percentage points. Horizontal axis units
are quarters after impact of the monetary policy shock, which occurs at quarter zero.
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V Results with Alternative Orderings of Gap Variables

Our model embeds a VAR for the gap components with stochastic-volatility in its orthogonalized

shocks, see equation (8). In a constant-variance case, estimation of the VAR would be invariant of

the ordering of shocks in the Choleski decomposition implied by the unit-lower-triangular structure

of B in equation (8) However, due to the stochastic volatilities, estimation of the VAR coefficients

is not invariant to the ordering of variables in the stochastic-volatility case (Primiceri, 2005). This

appendix documents the robustness of trend and gap estimates to different variable orderings.
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Figure A.14: Inflation Trend Estimates with re-ordered Gap VAR
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Note: Estimates generated from alternative orderings of gap variables in the VAR described in equation (8). Panel
A.14a depicts baseline estimates; alternative orderings are as indicated above where “y” indicates the block of yield
gaps y2, y5, y10. Filtered estimates in red, smoothed estimates in black; both surrounded by 90% uncertainty bands
(Filtered estimates reflect the endpoints of sequentially re-estimating the entire model over growing samples starting
in 1960:Q1. Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure A.15: Real Rate Trend Estimates with re-ordered Gap VAR
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Note: Estimates generated from alternative orderings of gap variables in the VAR described in equation (8). Panel
A.15a depicts baseline estimates; alternative orderings are as indicated above where “y” indicates the block of yield
gaps y2, y5, y10. Filtered estimates in red, smoothed estimates in black; both surrounded by 90% uncertainty bands
(Filtered estimates reflect the endpoints of sequentially re-estimating the entire model over growing samples starting
in 1960:Q1. Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure A.16: Shadow Rate Estimates with re-ordered Gap VAR
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Note: Estimates generated from alternative orderings of gap variables in the VAR described in equation (8). Panel
A.16a depicts baseline estimates; alternative orderings are as indicated above where “y” indicates the block of yield
gaps y2, y5, y10. Filtered estimates in red, smoothed estimates in black; both surrounded by 90% uncertainty bands
(Filtered estimates reflect the endpoints of sequentially re-estimating the entire model over growing samples starting
in 1960:Q1. Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure A.17: Inflation Trend Estimates with re-ordered Gap VAR (w/Unemployment Rate Gap)

1985 1990 1995 2000 2005 2010 2015
-2

-1

0

1

2

3

4

5

6

7

8

9

10

(a) ⇡,c,s,y (baseline)

1985 1990 1995 2000 2005 2010 2015
-2

-1

0

1

2

3

4

5

6

7

8

9

10

(b) ⇡,s,c,y

1985 1990 1995 2000 2005 2010 2015
-2

-1

0

1

2

3

4

5

6

7

8

9

10

(c) c,⇡,s,y

1985 1990 1995 2000 2005 2010 2015
-2

-1

0

1

2

3

4

5

6

7

8

9

10

(d) s,c,⇡,y

1985 1990 1995 2000 2005 2010 2015
-2

-1

0

1

2

3

4

5

6

7

8

9

10

(e) y,s,c,⇡

Note: Estimates generated from alternative orderings of gap variables in the VAR described in equation (8). Panel
A.17a depicts baseline estimates; alternative orderings are as indicated above where “y” indicates the block of yield
gaps y2, y5, y10. Filtered estimates in red, smoothed estimates in black; both surrounded by 90% uncertainty bands
(Filtered estimates reflect the endpoints of sequentially re-estimating the entire model over growing samples starting
in 1960:Q1. Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure A.18: Real Rate Trend Estimates with re-ordered Gap VAR (w/Unemployment Rate Gap)
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Note: Estimates generated from alternative orderings of gap variables in the VAR described in equation (8). Panel
A.18a depicts baseline estimates; alternative orderings are as indicated above where “y” indicates the block of yield
gaps y2, y5, y10. Filtered estimates in red, smoothed estimates in black; both surrounded by 90% uncertainty bands
(Filtered estimates reflect the endpoints of sequentially re-estimating the entire model over growing samples starting
in 1960:Q1. Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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Figure A.19: Shadow Rate Estimates with re-ordered Gap VAR (w/Unemployment Rate Gap)
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Note: Estimates generated from alternative orderings of gap variables in the VAR described in equation (8). Panel
A.19a depicts baseline estimates; alternative orderings are as indicated above where “y” indicates the block of yield
gaps y2, y5, y10. Filtered estimates in red, smoothed estimates in black; both surrounded by 90% uncertainty bands
(Filtered estimates reflect the endpoints of sequentially re-estimating the entire model over growing samples starting
in 1960:Q1. Smoothed estimates use all available observations from 1960:Q1 through 2017:Q2.
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VI Forecasting Performance vs. a Random Walk since 1985

Table A.4 compares the forecasts from our model with the no-change forecasts from a random-

walk model for the period after 1985. We start in 1985 so that our model has several periods to

use a training sample before producing out-of-sample forecasts. The statistics for our model are

shown as calculated and the statistics for the random-walk model are shown on a relative basis to

our model. We include results from versions of our model where the CBO’s measure of the output

gap is used as our business cycle measure and where the CBO’s measure of the unemployment

rate gap is used as our business cycle measure. For both the short- and long-term rate, our model

performs about as well, on balance, as the random-walk model.
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Table A.4: Comparison of Interest Rate Forecasts against Random Walk (starting 1985:Q1)

Forecast horizon h

1 2 3 4 5 8

Panel A: Short-term interest rate it+h

Model (output gap)

MAD 0.22 0.45 0.67 0.88 1.09 1.59
RMSE 0.12 0.45 0.92 1.55 2.24 2.04

RW rel. to model (output gap)

rel. MAD 1.14⇤ 1.06 1.01 0.99 0.96 0.93
rel. RMSE 1.12⇤ 1.05 1.02 1.00 0.98 0.98

Model (unemployment rate gap)

MAD 0.23 0.46 0.68 0.88 1.08 1.58
RMSE 0.13 0.47 0.95 1.58 2.25 2.04

RW rel. to model (unemployment rate gap)

rel. MAD 1.10 1.03 0.98 0.98 0.97 0.94
rel. RMSE 1.10⇤ 1.03 1.01 0.99 0.98 0.98

Panel B: 10-year interest rate y10t+h

Model (output gap)

MAD 0.31 0.49 0.62 0.73 0.80 0.87
RMSE 0.15 0.38 0.59 0.82 0.98 1.11

RW rel. to model (output gap)

rel. MAD 1.00 1.02 1.00 0.99 0.98 0.97
rel. RMSE 1.01 1.01 1.02 1.01 1.01 0.94

Model (unemployment rate gap)

MAD 0.31 0.50 0.62 0.74 0.81 0.90
RMSE 0.15 0.38 0.60 0.83 1.00 1.13

RW rel. to model (unemployment rate gap)

rel. MAD 0.99 1.01 0.99 0.97 0.96 0.93
rel. RMSE 1.00 1.01 1.01 1.01 1.00 0.92

Note: RMSE are root-mean-squared errors computed from using the medians of our model’s and the no-change fore-
casts from a random-walk model; MAD are mean absolute deviations obtained from using the same forecasts. Relative
RMSE and MAD are expressed as ratios relative to the corresponding statistics from the baseline model (values below
unity denoting better performance than our model). Predictive densities are re-estimated over growing samples that
start in 1985:Q1 for our model. Stars indicate significant differences, relative to baseline, in squared losses, absolute
losses and density scores, respectively, as assessed by the test of Diebold and Mariano (1995); ⇤⇤⇤, ⇤⇤ and ⇤ denote
significance at the 1%, 5% respectively 10% level.
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VII Particle Filtering the Likelihood for MDD Computations

Computation of the marginal data densities (MDD) in Section 3.3 relies on particle filter estimates

of our model’s likelihood. We estimate the MDD using the harmonic mean estimator of Geweke

(1999), as presented by Herbst and Schorfheide (2014), given by:

p(Z) ⇡
"
1

N

NX

n=1

f(✓n)

p(Z|✓n)p(✓n)

#�1

, (15)

where N is the number of draws from the posterior distribution, ✓ is a vector that collects all of

the estimated parameters and ✓n is a particular draw from the posterior distribution, f is a function

of the parameter vector that integrates to one, p(✓n) is the prior density of ✓n, and p(Z|✓n) is

the likelihood of the data, stacked into the vector Z. As in Geweke (1999), we use the following

choice of f :

f(✓) = ⌧�1(2⇡)�d/2|V ✓|�1/2 exp
⇥
�0.5 (✓ � ✓̄)0V �1

✓ (✓ � ✓̄)
⇤

⇥ I
n
(✓ � ✓̄)0V �1

✓ (✓ � ✓̄)  F�1
�2
d
(⌧)
o

where ✓̄ and V ✓ be the mean and variance of the posterior distribution of ✓, d the length of ✓, and

F�2
d

is the cumulative distribution function of the �2 distribution with d degrees of freedom, and I

is the indicator function. We set ⌧ = 0.9, and our results are robust to other choices of ⌧ .

Since our model has two layers of latent variables, the likelihood p(Z|✓n) in equation (15)

cannot be computed analytically.10

Using notation introduced in Appendix I, the two layers of latent state variables are the trends

and gaps stacked in ⇠t as well as the stochastic volatilities captured by ht. Effectively, our model
10The prior, described in Section I, can be broken down into products of normal and inverse-Wishart density func-

tions. For some parameters, like the coefficients of the gap VAR, denoted a in Section I, or the AR(1) lag coefficients
⇢) in equation (A.9), the priors are truncated normals and the necessary rejection probabilities are straightforward to
sample.
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is a non-linear state-space model with the following composite state vector:11

St =

2

64
ht

⇠t

3

75 (A.14)

For the likelihood computation, this composite state vector needs to be integrated out, which is not

provided by the MCMC sampler.12

However, a particle filter can be used to approximate the likelihood of such a non-linear model.

In fact, apart from the ELB constraint, estimation of an unobserved component model with stochas-

tic volatility (UC-SV) like our is fairly straightforward with a Rao-Blackwellized particle filter

(RB-PF) that exploits the conditionally linear structure of the model. RB-PFs are surveyed, for

example by Creal (2012) and Lopes and Tsay (2011); see also the applications by Carvalho et al.

(2017), Mertens and Nason (2017) and Mertens (2016). After describing a standard RB-PF that

neglects any ELB issues, this section turns to our handling of the ELB constraint within a RB-PF.

VII.1 Rao-Blackwellized Particle Filter

For ease of exposition, let us first describe the RB-PF without considering issues arising from the

ELB. For now, we thus treat shadow rates, and thus X t as observable. The particle filter approxi-

mates the likelihood p(X t|✓) and filtered posterior density of the latent state vector St

�� �X t,✓
�

for given X t and parameter values ✓. The priors for the initial values S0 are as described in

Appendix I.13

At each point in time, indexed by t, the filter tracks a swarm of M “particles”, indexed by i,

that consist of the stochastic volatilities h(i)
t and Kalman filtered estimates of the linear state that

11Conditional on the stochastic volatilities, the dynamics of ⇠t are linear, and we will refer to ⇠t also as “linear state
variables.”

12Recall that the MCMC sampler iterates only between generating smoothed conditional draws of ⇠T
����
⇣
hT ;✓

⌘
and

hT

����
⇣
⇠T ;✓

⌘
— as well as generating appropriate draws of ✓ — but does not jointly filter ⇠t and ht.

13As before, the initial variance of the gaps components in ⇠0, depends on the parameter vector ✓ as well as
stochastic volatilities for the gap shocks, ⌃̃t; the gap variance is recomputed for each particle draw of ⌃̃0 and based
on the specific parameter vector ✓n used when evaluating the particle filter.
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condition on the particles history of h(i)
t ; the particle’s Kalman filtering distribution of the linear

states and conditional on data X t is characterized by the mean vector ⇠(i)t|t and variance-covariance

matrix (i)
t|t .

We utilize an auxiliary particle filter (APF) as described by Lopes and Tsay (2011). First

introduced by Pitt and Shephard (1999), the APF is a refinement of the bootstrap filter. While the

bootstrap filter propagates particles from one period to the next based on their prior distribution, the

APF seeks to adapt new particles based on the likelihood they imply for the data. Before turning

to the unique steps of the auxiliary particle filtering steps, we describe the standard bootstrap

algorithm.

The filter begins by generating M initial particles h(i)
0 , ⇠(i)t|t and  (i)

t|t from the their respective

priors described in Appendix I. For t = 1, . . . , T , the filter repeats the following steps:

1. For i = 1, . . . ,M draw new particles h(i)
t based on its prior conditional on h(i)

t�1 implied

by (A.9) and construct the corresponding diagonal matrix of log-volatilities ⌃1/2,(i)
t and

B(i)
t = B⌃1/2,(i)

t .

2. For each particle i, engage the Kalman filter for equation (13) to compute:

 (i)
t|t�1 = At  

(i)
t�1|t�1 A0

t +B
(i)
t B

(i)
t

0
(A.15)

⌦(i)
t|t�1 = Ct  

(i)
t|t�1 Ct

0 (A.16)

e(i)
t = Xt � Ct At ⇠

(i)
t�1|t�1 (A.17)

l(i)t = �1

2

⇢
log (2 · ⇡) ·N⇤

x + log

����⌦
(i)
t|t�1

����
+

+ e(i)
t

0 ⇣
⌦(i)

t|t�1

⌘+
e(i)
t|t�1

�
(A.18)

K(i)
t =  (i)

t|t�1 Ct
0
⇣
⌦(i)

t|t�1

⌘+
(A.19)

⇠(i)t|t = ⇠(i)t|t�1 +K(i)
t e(i)

t (A.20)

 (i)
t|t =  (i)

t|t�1 � 
(i)
t|t�1 Ct

0
⇣
⌦(i)

t|t�1

⌘+
Ct  

(i)
t|t�1

0
(A.21)

In light of the possibility of missing data — encoded as elements of Xt fixed at zero and a

rank deficient Ct — note that N⇤
x is the number of actual observations in Xt, corresponding
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to the number of non-zero rows of Ct, and | · |+ and ·+ denote the pseudo-determinant and

pseudo-inverse operators, respectively.

3. Compute the particle weights

w(i)
t =

exp
⇣
l(i)t

⌘

PM
i exp

⇣
l(i)t

⌘ .

The filtered distribution of ht is approximated by the discrete distribution of particle draws

h(i)
t using the pdf described by w(i)

t . The associated filtered distribution of ⇠t is approximated

by a mixture of normals N
⇣
⇠(i)t|t , 

(i)
t|t

⌘
with weights w(i)

t . (For this purpose, the values for

h(i)
t , ⇠(i)t|t and (i)

t|t are stored before the resampling described in the next step.)

4. For t < T prepare the next iteration by applying systematic resampling to the particles h(i)
t ,

⇠(i)t|t and (i)
t|t based on the particle weights w(i)

t =
exp

⇣
l
(i)
t

⌘

PM
i exp

⇣
l
(i)
t

⌘ .

The likelihood of the date t observation, conditional on parameters and the previous history of

observations is estimated by averaging over the likelihoods of each particle:14

p
�
Xt|Xt�1,✓⇤� / 1

M

MX

i=1

exp
⇣
l(i)t

⌘
(A.22)

The log-likelihood, which corresponds also to the log-predictive score for given parameter values

✓⇤ (Geweke and Amisano, 2010; Creal et al., 2010), is then given by

L
�
XT |✓⇤� =

TX

t=1

log
�
p
�
Xt|Xt�1,✓⇤� . (A.23)

The bootstrap filter described above generates new particles for item t merely by propagating

stochastic volatilities based on their prior values, h(i)
t�1 and the law of motion (A.9) but without

regard for the likelihood they will attract at t. The APF seeks to adapt new particle draws h(i)
t

14Since particles get reweighed at every step, the simple average is appropriate, see, for example, Creal (2012).
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to data at t. To do so, we employ an algorithm described by Lopes and Tsay (2011) for Rao-

Blackwellized particle filters that performs two resampling steps. First, before simulating new

particles h(i)
t�1 from equation (A.9), time t�1 particles are resampled based on the particle weights

implied at t when using the auxiliary particles h(i),⇤
t = µ+⇢

⇣
h(i)

t�1 � µ
⌘

.15 Denoting the weights

implied by the auxiliary particles w⇤,(i)
t , weights are then given by w(i)

t = w̃(i)
t /
⇣P

i w̃
(i)
t

⌘
where

w̃(i)
t = l(i)t /w⇤,(i)

t and, as in equation (A.18), l(i)t are the likelihood contributions but now generated

by the particles obtained from propagating h(i)
t�1 after the auxiliary reweighting. Further details are

provided by Lopes and Tsay (2011).

VII.2 Adjusting the Particle Filter to account for the ELB

Neglecting the ELB, the Rao-Blackwellized particle filter described above relies on the condition-

ally linear structure of the UC-SV model so that, for each particle, posterior distributions of the

linear states ⇠t are normal and can be tracked by following the evolution of their first two moments,

 (i)
t|t and  (i)

t|t . Indeed, for data histories where the ELB has not been binding, we have X t = Zt

and can directly employ the RB-PF described above. However, once the ELB binds, the shadow

rate becomes a latent variable, and thus X t 6= Zt. The shadow rate is a linear combination of

⇠t. Thus, to ensure that shadow rates are below the ELB when the actual rate is at the ELB, the

posterior for ⇠t must be characterized by a truncated distribution.

To account for the ELB, we adapt the RB-PF as follows: Since a conjugate prior-posterior

characterization for ⇠t is not available at the ELB, we abandon the Rao-Blackwellization once the

ELB binds in the data and proceed as follows. Instead, we add draws for ⇠(i)t to the particle vector

that satisfy the truncation constraint st = cs ⇠
(i)
t  ELB.

Consider the case where the ELB has not been binding for Zt�1 but binds for Zt. In this case,

for every particle, we inherit normal priors for the linear states characterized by ⇠(i)t|t�1 and  (i)
t|t�1.

Analogously to the MCMC algorithm described in Appendix A, these priors for ⇠t can be updated

to ⇠NC,(i)
t|t and NC,(i)

t|t by conditioning only on the elements of Zt for which the ELB did not bind.

15The auxiliary particles are thus generated at the means implied by the prior particles.
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To account for the ELB binding at t, we then sample particles ⇠(i)t from N
⇣
⇠NC,(i)
t|t , NC,(i)

t|t

⌘
that

are consistent with s(i)t = cs ⇠
(i)
t  ELB.

The RB-PF algorithm described in the previous section above can then simply be amended

by replacing the priors for every particle at t + 1, originally denoted
⇣
⇠(i)t+1|t, 

(i)
t+1|t

⌘
by the draw

⇠(i))t as well as a matrix of zeros before evaluating the time t + 1 Kalman filtering steps described

above. Effectively, the algorithm proceeds by using a degenerate normal posterior at t for ⇠t that

has all point mass at ⇠(i)t . While the Rao-Blackwellized particle filter tracks at least part of the

uncertainty about ⇠t via particle-specific conditional distributions, uncertainty about ⇠t becomes

entirely captured by the range of values for ⇠(i)t generated across particles when the ELB binds.

In addition to abandoning the Rao-Blackwellization, the likelihood contributions l(i)t in (A.18)

need to be augmented by adding the probability of the shadow rate being below the ELB condi-

tional on all other elements of Zt, which is straightforward to compute based on the normal CDF

for st implied by ⇠NC,(i)
t|t , and  NC,(i)

t|t . This add factor accounts for the information contained in

observing it = ELB by tilting particle weights towards particles that place higher likelihood on

the ELB binding. Specifically, (A.18) is replaced by

l(i)t = �1

2

⇢
log (2 · ⇡) ·N⇤

x + log

����⌦
(i)
t|t�1

����
+

+ e(i)
t

0 ⇣
⌦(i)

t|t�1

⌘+
e(i)
t|t�1

�

+ log

✓
Prob

✓
st  ELB

����⇠
NC,(i)
t|t , NC,(i)

t|t

◆◆
. (A.24)
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VIII Constructing IRF with a Particle Filter

Neglecting issues related to the ELB, the impulse responses described in Section 5 of the main pa-

per, are straightforward to compute from the Rao-Blackwellized particle filter (RB-PF) described

in Section VII.1 above. In particular, computing responses to one-standard deviation shocks, sim-

plifies the computation of particle weights for the impulse responses as described below. To ac-

count for the ELB, we employ a mean-variance approximation to the UC-SV model’s innovations

representation described in the remainder of this section.

VIII.1 Particle Weights used for Impulse Responses

Impulse responses reflect the difference between a baseline forecast and a revised forecast prompted

by the hypothetical observation of an identified shock. In the context of the RB-PF, the arrival of

new information generally prompts also a reweighting of particles reflecting changes in each par-

ticles’ likelihood given the new data. To simplify the IRF computation, we compute responses to

one-standard deviation shocks. As such, these shocks provide information about the direction of

the impulse in the space of innovations et but do not lead to a reassessment of the likelihood of

different values for the stochastic volatilities that are tracked by the different particles. As such,

the arrival of such a standardized shock does not affect a change in particle weights relative to the

baseline forecast. Particle weights for the baseline forecast made at time t � 1, denoted w(i)
t�1, are

computed as described in Section VII above. When computing the revised forecast, these weight

are simply propagated as w(i)
t|t�1 = w(i)

t�1 and we can compute impulse responses as:

IRFk
t =

X

i

w(i)
t|t�1 ·

�
dm
k,t

�(i) with
�
dm
k,t

�(i)
= CAk K(i)

t qm,(i)
t . (21)

Of course, the analysis could be extended to consider also the effects from reweighting the different

particles prompted by observing shocks of a particular absolute size. In this case, the impulse

responses would reflect an additional term,
⇣
w(i)

t�1 � w(i)
t

⌘
· E(X t|X t�1), that captures the re-

evaluation of the weight attached to each particle’s baseline forecast in light of the incoming shock.
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VIII.2 Accounting for the ELB

The impulse responses are based on innovations in the shadow rate and rely on the innovations

representation of the UC-SV model with linear measurements and Gaussian shocks. As indicated

in Section 5.1.4 of the main paper, when the ELB binds, we use a mean-variance approximation

of the innovations representation. This approximation differs from our handling of the ELB for

the purpose of computing the model’s likelihood as described in Section VII.2 for the MDD com-

putation. There, we could simply abandon the Rao-Blackwellization at the ELB, albeit at the cost

of removing any uncertainty about trend and gap levels per particle, since each particle conditions

on a specific draw ⇠(i)t before propagating when at the ELB. But, time-varying uncertainty about

trend and gap levels is a key driver for time-variation in the VMA resulting from the model’s in-

novations representation. Instead of replacing the Rao-Blackwellization with draws of ⇠(i)t that

obey s(i)t = cs ⇠
(i)
t  ELB when the ELB binds, we have thus chosen to resort to the following

mean-variance approximation for the construction of IRFs:

When the ELB binds at t, we generate N
⇣
⇠NC,(i)
t|t , NC,(i)

t|t

⌘
as described in Section VII.2. We

then approximate the truncated normal

⇠(i)t

����
⇣
cs ⇠

(i)
t  ELB

⌘
⇠ TN

✓
⇠NC,(i)
t|t , NC,(i)

t|t

����cs ⇠
(i)
t  ELB

◆
(A.25)

⇠⇤,(i)t|t ⌘ E

✓
⇠(i)t

����cs ⇠
(i)
t  ELB

◆
(A.26)

 ⇤,(i)
t|t ⌘ Var

✓
⇠(i)t

����cs ⇠
(i)
t  ELB

◆
(A.27)

with a normal distribution N
⇣
⇠⇤,(i)t|t , ⇤,(i)

t|t

⌘
that matches first and second moments of the true

truncated distribution. Estimates of the model’s latent variables obtained with this approximation

are close to this obtained from the particle filter described in Section VII where the ELB is enforced

exactly.

Mean and variance coefficients in (A.26) and (A.27) can be computed analytically as follows:

First, we derive the conditional distribution of ⇠ for given values of the shadow rate. Second, we
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spell out the mean and variance of the shadow rate conditional on the shadow rate being below

the ELB. Third, combining results from the previous two steps yields the desired moments of ⇠

conditional on the shadow rate being below the ELB. The details are described in the remainder of

this section.

For ease of notation, we drop time and particles indices t and i and let µ = ⇠NC,(i)
t|t and  =

 NC,(i)
t|t as well as µs = csµ and  s = cs c0s and obtain the following setup:

⇠ ⇠ N(µ, ) s = cs⇠ ⇠ N(µs, s) (A.28)

For a given realization of the shadow rate s, the conditional distribution of ⇠ is given by stan-

dard signal extraction formulas:

⇠
��s ⇠ N

⇣
µ̂(s),  ̂

⌘
(A.29)

with µ̂(s) ⌘ (I � �cs)µ+ � s, � =  c0s 
�1
s , and  ̂ ⌘  � c0s 

�1
s cs . (A.30)

Importantly for what follows, we obtain the following, observationally equivalent, orthogonal

decomposition for the linear states:

⇠ = �s+ " E(s ") = 0 (A.31)

where Var (") = Var (⇠|s) =  ̂ does not depend on s.16 Since s and " are jointly normal,

the orthogonality condition E(s ") = 0 establishes also that both components are independently

distributed from each other.17

16Note that the setup in equation (A.28) implies | ̂| = 0, which does, however, not impede any of the subsequent
calculations.

17Of course, for a given realization of ⇠, the distributions of s|⇠ and "|⇠ are interdependent. However, in order to
derive the moments of ⇠ conditional on s < ELB, it is sufficient to consider equation (A.31), which is observationally
equivalent to equation (A.28), as primitive representation.
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Conditional on s  ELB, the shadow rate has the following mean and variance:

µ⇤
s ⌘ E(s|s < ELB) = µs �

p
 s ·

�(b)

�(b)
(A.32)

 ⇤
s ⌘ Var (s|s < ELB) =  s

 
1� b · �(b)

�(b)
�
✓
�(b)

�(b)

◆2
!

(A.33)

given b ⌘ ELB � µsp
 s

(A.34)

where �(·) and �(·) are pdf and cdf of the standard normal distribution, respectively.

Finally, putting everything together, we obtain:

E(⇠|s < ELB) = E
�
E(⇠|s)

�� s < ELB
�
= µ̂(µ⇤

s) (A.35)

Var (⇠|s < ELB) = � Var (s|s < ELB)�0 +Var ("|s < ELB) = �  ⇤
s �

0 +  ̂ (A.36)

In (A.35), notice that µ̂(µ⇤
s) is linear in µ⇤

s. Furthermore, in (A.36), note that the independence

between s and " leads to the the absence of covariance terms as well as Var ("|s < ELB) =

Var (") =  ̂.
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