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Abstract
This paper studies the joint dynamics of real-time U.S. inflation and average inflation
predictions of the Survey of Professional Forecasters (SPF) based on sample ranging
from 1968Q4 to 2017Q2. The joint data generating process (DGP) comprises an un-
observed components (UC) model of inflation and a sticky information (SI) prediction
mechanism for the SPF predictions. We add drifting gap inflation persistence to a UC
model in which stochastic volatility (SV) affects trend and gap inflation. Another innova-
tion puts a time-varying frequency of inflation forecast updating into the SI prediction
mechanism. The joint DGP is a nonlinear state space model (SSM). We estimate the SSM
using Bayesian tools grounded in a Rao-Blackwellized auxiliary particle filter, particle
learning, and a particle smoother. The estimates show that (i) longer horizon average
SPF inflation predictions inform estimates of trend inflation; (ii) gap inflation persis-
tence is procyclical and SI inflation updating is frequent before the Volcker disinflation;
and (iii) subsequently, gap inflation persistence turns countercyclical and SI inflation
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1 Introduction

Central banks pay particular attention to inflation expectations. A good reason for this focus is
that inflation expectations contain information about private agents’ beliefs about the under-
lying factors driving observed inflation dynamics. We label these factors the inflation regime.
For example, Bernanke (2007) argues that well anchored inflation expectations are necessary
for a central bank to be able to stabilize inflation. However, since monetary policy makers lack
direct knowledge of inflation expectations, they must infer such expectations from estimates
of the inflation regime. These estimates often rely on realized inflation and combinations of
financial market data, statistical and economic models, and forecast surveys.

This paper estimates inflation regimes from the joint data generating process (DGP) of
realized inflation and the inflation predictions of professional forecasters grounded in a non-
linear state space model (SSM). We tap a sample of inflation predictions from the Survey of
Professional Forecasters (SPF) to extract the “beliefs” held by the average respondent about
the (in)stability of the persistence, volatility, and stickiness of inflation. Average SPF inflation
predictions are attractive for evaluating the SSM because, as Faust and Wright (2013), and Ang,
Bekaert, and Wei (2007) observe, SPF inflation predictions often dominate model-based out of
sample forecasts. This forecasting performance suggests that average SPF inflation predictions
coupled with realized inflation harbor useful information to measure inflation expectations.

We study the joint DGP of realized inflation, 11, and average SPF inflation predictions
by linking a Stock and Watson (2007) unobserved components (SW-UC) model of inflation to a
version of the Mankiw and Reis (2002) sticky information (SI) model. The SW-UC model is useful
for evaluating the impact of different types of shocks on inflation and inflation expectations.
First, it decomposes 11; into trend inflation, T, and gap inflation, &, which restricts the impact
of permanent and transitory shocks on ;. When permanent shocks dominate movements in
11;, the inference is that inflationary expectations are not well anchored. The SW-UC model also
imposes stochastic volatility (SV) on the innovations of 7; and &;. Trend and gap SV creates

nonlinearities in inflation dynamics, which produce bursts of volatility in 17;. Persistence is not



often imposed on &; when estimating the SW-UC-SV model. We depart from this assumption by
giving &; drifting persistence in the form of a time-varying parameter first-order autoregression,
or a TVP-AR(1). Drifting gap persistence is another source of nonlinearity in a SW-UC model,
which can exhibit pro- or countercyclical changes. We label the extended version of the DGP of
11+ as the SW-UC-SV-TVP-AR(1) model.

Coibion and Gorodnichenko (2015) adapt a SImodel to a setup in which forecasters update
their rational expectations (RE) information set with a fixed probability 1—-A. Averaging across
forecasters defines the h-step ahead SI inflation prediction, Fitti 4, h = 1, ..., H. The result is
that the Sl inflation prediction evolves as a weighted average of the lagged SI forecast, F;_1 1T, 4,
and a RE inflation forecast, E; 11;, j,, where the weights are A and 1—A. The result is the SI law of
motion Fy1typ = AFp_11p + (1 — A)Eg1144 5, Where Fy11y 4, updates at the frequency 1/(1 - A)
on average. In this reading, A reflects the average forecaster’s beliefs about the persistence or
stickiness of the inflation regime/T]

We innovate on the Coibion-Gorodnichenko static coefficient SI-law of motion by investing
A with drift. The result is a nonlinear Sl-law of motion Fy7ty,p, = AiFr— 170 p + (1 — A¢)E¢ Ty,
where the TVP-SI parameter, A, evolves as an exogenous and bounded random walk (RW), A;11
= At + OxKr+1, and its innovation is drawn from a truncated normal distribution (TN), K¢s1 ~
TN (0, 1; A¢+1 € (0, 1)). The SI forecaster’s information set includes the innovation k; when
Fi 111445 is updated to F;1t¢4p, which implies that A; is also part of this information set.

A motivation for placing A; in the SI-law of motion is to uncover evidence about changes in
the beliefs that the average SPF participant holds about the inflation regime. Changes in these

beliefs are embedded in observed movements of the average SPF participant’s h-step ahead

inflation prediction, 7 fF,. We relate ) tF, to Fymy v by adding a classical measurement
SPF _ _ SPF
error, Ci p, to set 1y, = Fiiyn + 0¢, Chyt, where Gy ~ N (0, 1), h = 1, ..., H. The i/},

observation equation, SI-law of motion, and RW of A; form the SI-prediction mechanism.

The joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model maps shocks

1Sims (2003) constructs a dynamic optimizing model on the basis of a primitive form of information
processing in which agents react to shifts in the true DGP of the economy by smoothing their forecasts.



to T¢, &, and SI state variables into movements in 1r; and nf,f fh Estimates of the joint DGP
provide evidence about drift in A; and its co-movement with the SVs of 7; and &; and drifting
persistence in &;. If A; exhibits meaningful statistical and economic time variation and it moves
with the SVs or drifting inflation gap persistence, we find evidence that shifts in SI inflation
updating are attuned to the hidden factors driving the inflation regime.

Another contribution is the sequential Monte Carlo (SMC) methods that we use to estimate
the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model. These methods
consist of the particle learning estimator (PLE) of Storvik (2002) and the particle smoother (PS) of
Lindsten, Bunch, Sarkkéa, Schon, and Godsill (2016). The PLE and PS rely on a Rao-Blackwellized
auxiliary particle filter (RB-APF). Our joint DGP is susceptible to Rao-Blackwellization because
T¢, &, and the SI state variables form a linear SSM for given realizations of the nonlinear state
variables — which are trend and gap inflation SVs, drifting inflation persistence, and A1,
and estimates of the static coefficients of the SI-prediction mechanism and SW-UC-SV-TVP-
AR(1) model. Applying the Kalman filter (KF) produces estimates of the distribution of the
conditionally linear states that are integrated analytically, which increases the efficiency of the
RB-APF. The RB-APF estimates the nonlinear states by simulation.

We estimate the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model
on a quarterly sample from 1968Q4 to 2017Q2. The sample matches 1y with the GNP or GDP

deflator inflation available to the SPF in real time at date ¢t. The average SPF inflation prediction

is denoted Trtsffh, where H =5orh =1, ..., 1- to 5-quarter ahead forecast horizons
: SPF spr 1T - : -
Given only a sample of {Trt, TOE f+1s =os TTh 45 }t: , and our priors, the SSM yields posterior

estimates of the beliefs that the average SPF participant has about the hidden factors underlying

the inflation regime. Our estimates of trend inflation are aligned with average SPF inflation

20ur approach to studying the joint dynamics of 1y and Trf’f fh builds on Kozicki and Tinsley (2012),
Mertens (2016), and Nason and Smith (2016a, b).

3The SPF contains average predictions of the GNP or GDP deflator for a nowcast and forecasts up to

4-quarters ahead. The surveys are collected at the middle of the quarter, which suggests Trff f 18 not

based on full knowledge of 11;. We treat ngf F, as reflecting only information available through the
end of the previous quarter. This identifies the average SPF nowcast, 1-quarter, ..., 4-quarter ahead

predictions with 7fF,, h = 1, 2,..., 5. We discuss these timing issues in section 4.1.



predictions, especially at longer horizons. Gap inflation is more volatile before the Volcker
disinflation than afterwards. There is a spike in gap inflation SV during the 1973-75 recession
while trend inflation SV displays peaks during the 1981-82 and 2007-09 recessions. The drift
in gap inflation persistence is procyclical before the Volcker disinflation, turns countercyclical
afterwards, disappears by the 2007-09 recession, and returns to pre-2000 rates by 2014. The
average SPF participant updates SI inflation forecasts frequently from the late 1960s to 1988.
The frequency of SI inflation updating falls from 1990 to 1995 and then remains steady until
2007. During the 2007-09 recession, SI inflation updating occurs more frequently and drops
slowly afterwards. Thus, movements in the frequency of SI inflation updating displays co-
movement with trend inflation, its SV, and drifting inflation persistence. We conclude that the
beliefs of the average SPF respondent are sensitive to the impact of permanent shocks on the
conditional mean of inflation and that the Volcker disinflation marks the moment at which the
behavior of trend inflation, its SV, and the cyclicality of the drift in inflation gap persistence
changed.

The structure of the paper is as follows. In section 2, we build a SSM of the joint DGP of

SPF

e and T (4 ho h=1,..., H. Section 3 discusses the SMC methods used to estimate the SSM.

Results appear in section 4. Section 5 offers our conclusions.

2 Statistical and Econometric Models

This section describes the statistical and economic models used to estimate the joint dynamics
of mr; and ngffh, h=1,...,H. Stock and Watson (2007) is the source of the statistical model to
which we add drifting persistence to &. The economic model is a SI-prediction mechanism that
has a SI-TVP parameter. Drift in inflation persistence and the frequency of SI inflation updating

create nonlinearities in the state transition dynamics of the SSM. The SI-TVP also interacts with

trend and gap inflation SVs to produce nonlinearites in the impulse structure of the SSME]

4We relegate to an online appendix construction of a SSM in which persistence in &; is a AR(1) with a
static slope coefficient. The online appendix is available at http://www.elmarmertens.com/.


http://www.elmarmertens.com/

2.1 The SW-UC Model

The SW-UC model generates 71;. Stock and Watson (2010), Creal (2012), Shephard (2013), Cogley
and Sargent (2015), and Mertens (2016) have estimated versions of the model in which SV in
innovations to 1; and &; is the source of nonlinearity in 7r;. We add an additional nonlinearity
to the SW-UC-SV model in the form of drift in the persistence of &; created by a TVP-AR(1). We

collect these features into the SW-UC-SV-TVP-AR(1) model

T = Tt + & + 0¢nCmt,  Cmt ~ N(O, 1), (1.1)
Tee1 = Tt + Gnt+1Nt, ne ~ N(0, 1), (1.2)
&+1 = Ory1& + Gut+1Ut, ve ~ N(0, 1), (1.3)

lngg,t+1 = lng,glt + O-gg‘g,t"’l’ Eﬂ,tle ~ N(O’ 1)’ ’e =n0, (14)
Ori1 = 0¢ + O¢pbr+1, bee1 ~ N(O, 1), (1.5)

where measurement error on 11, Crr ¢, is uncorrelated with 74 and &; and the innovations, n; and
v¢, these innovations are afflicted by SV, which evolve as RWs inIn¢; ., and Ingj ,, drifting
persistence in &1 is tied to 0;.1, restricting the RW of 0;,; € (-1, 1) ensures stationarity of
&t+1 at each date £+1, and innovations to the linear state variables, n, and v;, and innovations
to nonlinear state variables, &, ;,1, &, 1,1, and ¢, ;, are uncorrelated.

A special case of the SW-UC-SV-TVP-AR(1) model gives a result about forecasting traced to
Muth (1960). Shut down SV, oy, = ¢t and 0, = Gu,t, and eliminate gap inflation persistence, 0;
= 0, for all dates t. The result is a fixed coefficient SW-UC model with an IMA (1, 1) reduced form,
(1 -L)m¢ = (1 — wL) v, where the MA1 coefficient w € (—1,1), L is the lag operator, 11 =
L1, and the one-step ahead forecast error v; = n; + & + Tt — Tt_ut_lﬂ The IMA(1, 1) implies
a RE inflation updating equation, E {rt;,; | 1Tt 0y, 0y} = (1 — @) + wE {1 |7t 0y, 0},

where 7rt is the date t history of inflation, T, ..., 1.

>Stock and Watson (2007), Grassi and Proietti (2010), and Shephard (2013) tie @ to the autocovariance
functions (ACFs) of the IMA(1, 1) and fixed coefficient SW-UC model. At lags zero and one, the ACFs

set (1 +w?)o? = 07 + 20 and —wo = —0?. Substitute for o to find w? — (2 + 03/03) w + 1

o,
= 0. The solution is @ = [1 + 0.503/052] - ;’7,/1 + 0.2503/052, given @ € (-1,1) and o, 0¢ > 0.

&



Stock and Watson (2007), Grassi and Prioietti (2010) and Shephard (2013) note the SW-UC-
SV model replaces w with the time-varying local weight @; in the reduced form IMA(1,1). The
result is a exponentially weighted moving average (EWMA) updating recursion or smoother
00 J
E{mi1 |7, Gne, Got} = ZO Heo - j (ﬂ) ww) Tt j, (2)
j= -

in which the discount w; adjusts to changes in the latest data, where pg ; = (1 — @;)/@;.

2.2 The SI-Prediction Mechanism

This section begins by reproducing the SPF observation equation, the nonlinear SI-law of motion,

and the random walk law of motion of A;. These elements form the system of equations

Trf,ffh = Fmtyon + 0z nChyt, Che ~ N(O, 1), (3.1)
Frmtion = AFeamean + (1= A)Egmen,  h = 1,..., K, (3.2)
Atr1 = At + OxKti1, Ke+1 ~ N(0O, 1), (3.3)

where E; 11, is conditional on the average SPF participant’s statistical model of inflation and
At € (0, 1) for all dates t. Equations — define the SI-prediction mechanism through

which shocks to A; and movements in other state variables generate fluctuations in ngf f -
The SI-law of motion implies a EWMA smoother. Iterate backwards, substitute

the result into (3.2), and repeat the process many times to produce the SI.-EWMA smoother

00 J
Femtyop = Z HAt—j (H At#) Et jT¢in, 4)
j=0 £=0

where the discount rate is the SI-TVP, A¢, and pp; = (1 — A¢)/A;. The SI-EWMA smoother
nests the RE forecast, limy, o F¢7r+n = EtTt1p, and the pure SI update, limy, .1 F;Tip =
Z;o=1 Hat—j (l_[]ézl )\t_g) E;_ ¢ . The former limit shuts down SI as A; falls to zero because
the discount on E;_ 11, increases with j. In this case, SI inflation forecast updates rely only

on E; 1t period by period. At the other extreme, less weight is placed on E; 71, and more

onE¢ Tt 4p, j > 1, as A¢ rises to one. Thus, F; 171, summarizes the Sl inflation forecast.

6



Between these polar cases, shocks to A; alter the discount applied to the history of E¢ ¢4
in the SI-EWMA smoother . This information aids in identifying movements in ngf f n With
respect to innovations in A;. The EWMA smoother shows a similar relationship exists be-
tween E; 114y, 11¢, and the time-varying discount generated by ¢y, Gu,t, and 0¢. This gives us

several sources of information to identify movements in 71; and rr; ¥, within the joint DGP of

the SI-prediction mechanism and the SW-UC-SV-TVP-AR(1) model [

2.3 The State Space Model of the Joint DGP

Driftin inflation gap persistence complicates building a SSM for the joint DGP of the SI-prediction
mechanism and SW-UC-SV-TVP-AR(1) model. The SSM rests on the RE and SI term structures
of inflation forecasts for which the latent factors are the RE state variables X; = [1; &] and SI
analogues F;X; = [F;Tt Ftet]'. The problem is the law of iterated expectation (LIE) cannot be
employed to create predictions of X, or Ft X, because forecasts of 0; are needed. Instead,
we construct RE and SI term structures of inflation forecasts in the presence of drifting gap
inflation persistence by invoking the anticipated utility model (AUM).

The RE term structure of inflation forecasts is based on the observation and state equations
of the SW-UC-SV-TVP-AR(1) model. The observation equation of the SW-UC-SV-TVP-AR(1)

model links ¢ to T¢, &, and Cr ¢, which can be rewritten as
M = O6xX¢ + 0¢nCryt, (5.1)

where 6y = [1 1]. The state equations of the SW-UC-SV-TVP-AR(1) model are created by placing
the random walk below the TVP-AR(1)

Xts1 = Or 11Xt + Y Wy, (5.2)
1 0 Sn,t+1 0 Nt .
where O+, = , Yeo1 = ,and W = . The transition dy-
0 9t+1 0 Gu,t+1 Ut

6Krane (2011), Coibion and Gorodnichenko (2012), and Jain (2013) use forecast revisions to identify
the responses of professional forecasters to disparate shocks, which is an alternative to our approach.

7



namics of the state equations are nonlinear in ;1. These nonlinearities rule out applying
the LIE to construct the RE term structure of inflation forecasts.

We appeal to two aspects of the AUM to solve the problem. The AUM resurrects the LIE
by (i) assuming agents are ignorant of the true DGP and (ii) treating the TVPs of the joint DGP
as fixed (locally) at each date tE] These assumptions are instructions to hold TVPs at their date
t values within RE and SI forecasts that condition on date ¢ information]

The RE term structure of inflation forecasts is easy to construct under the AUM. First,
generate h-step ahead RE forecasts of X; by iterating the state equations forward, apply
the expectations operator, and invoke the AUM to find E;®, , X, ;, = @?Itxt. Next, push the
observation equation h-steps ahead and take expectations to obtain the RE term structure

of inflation forecasts under the SW-UC-SV-TVP-AR(1) model and AUM

The AUM restricts the impact of drifting inflation gap persistence on these RE forecasts by
conditioning 6; on date t information.

Next, we show the SI term structure of inflation forecasts is built on the SI-EWMA formula
(@), RE term structure of inflation forecasts (6), and a conjecture about the law of motion of the SI
vector F¢11X¢+1. The SIFEWMA formula (4) depends on the RE inflation forecasts E, _ iTein- Since

-under the AUM, other RE forecasts are needed to

these RE forecasts are E, 1, ), = 636@?#9@7]

replace E,_;m, , in the SFEWMA smoother . Our solution assumes the average member of the
SPF fixes drift in inflation gap persistence at its current value when iterating SI recursions back-

wards. Under this assumption, E,_;71,) = 5x®il|:j X,_:in the SI'FEWMA smoother . The result

t—j
is Fymr,,), = 636@)?“ Dm0 Has; (Hézo )\t_g) @){,tfxt_j. Next, we conjecture the law of motion of
the SI state vector is FeXevn = (1 — A)E¢X¢on + AtFr—1X¢1n. An implication is the SI'FEWMA

smoother F; X p = 2;":0 HaAt—j (HLO At,g) E;_;jX¢+n. Condition on the date ¢ drift in inflation

’For example, Cogley and Sbordone (2008) employ the AUM model to study the dynamics of trend and
gap inflation within a TVP-new Keynesian Phillips curve.

8The AUM assumptions result in decision making thatis consistent with Bayesian forecasting, according
to Cogley and Sargent (2008). They also note Kreps (1998) argues agents engaging in AUM-like behavior
are acting rationally when seeing through to the true model is costly.

8



gap persistence on date ¢ information, 6y ¢, to find FrX¢ 4 = Z;lo Hat—j (Hézo At,g) @ﬁjfxt_j.
When h = 0, we have F;X; = Z;’-":O Hat—j (]_[LO At_g> ®{|tfxt_j. By combining the SI-EWMA

smoothers of F, 1, ;, and F;X;, the SI term structure of inflation forecasts is the result
h
Femty, = 6405, F X, (7)

The online appendix has details about the SI term structure of inflation forecasts (7).
The online appendix also develops state equations for F;.1X¢+1. Remember the SI-FEWMA

smoother of FX; is 37 Hat—j (]‘[LO /\t_g> @){“DC which by induction gives a law of motion,

t—j
FrXr = (1 — Ap) X + Ap®ytFr—1X¢—1. We create state equations for F;41X;+1 by pushing this
law of motion forward a period and substituting for X;,; with the state equations of the
SW-UC-SV-TVP-AR(1) model. Stack the latter equations on top of the former to obtain the state
equations of the SSM of the joint DGP

St+1 = At+18t + B 1 Wy, (8.1)

x,t ®t+1 02><2 Yt+1
, A1 = y Bii1 =

(1 - At+1>@t+1 2\t+1®t+1 (1 - At+l)Yt+1

the conditioning time subscript on @;,; is dropped. The state equations (8.1) show shocks to

where §; = , and

FX,

A; alter the transition and impulse dynamics only of F;1; and F;&;. Changes in 0; shift the
transition dynamics of all elements of §; while its impulse dynamics react to gy, and Gy,;.
We complete the SSM by constructing its observation equations. First, replace Fy1s p in
the SPF measurement equation with the SI term structure of inflation forecasts (7) for h
=1, ..., H. Place the results below the observation equation of the SW-UC-SV-TVP-AR(1)

model to form the SSM’s observation equations

Ye = Cr8t + DUy, (8.2)
T Sx 01x2 om0 0
‘ITfI;F 01x2 OOy 0 ¢, 0
where Ht = ’ , Ct = D = y ut =
0 0 0
| TTQ‘?&F | 01><2 595@?{ i i 0 0 0,




[Cn,t Cit --- C}f,t] , and Qy = DD’. The SSM integrates F;1ry, ), out of the observation
equations (8.2) using the SI term structure of inflation forecasts (7). As a result, F;&; produces

mean reversion in ntsf fh while permanent movements are tied directly to F;71; and @; and

indirectly to ¢nt, Gut, Ar, and ©;. The direct response of m;tf, to @, is produced by the
observation equations (8.2). Drift in ®; also alters transition dynamics in the state equations

1i which generates movements in F;7; and Fi&;, and hence, 7} 1T, .

3 Econometric Methods

We combine a RB-APF algorithm adapted from Lopes and Tsay (2011) with the PLE of Storvik
(2002) to estimate the SSM and (8.2); also see Carvalho, Johannes, Lopes, and Polson (2010),
Creal (2012), and Herbst and Schorfheide (2016). The RB-APF and PLE produce filtered estimates
of t¢, &, FtTt, Ft&t, Snt, Gut, At, and O¢. Lindsten, Bunch, Sarkkd, Schon, and Godsill (2016)

give instructions for a PS that generates smoothed estimates of these state variables.

3.1 Rao-Blackwellization of a Nonlinear State Space Model

Lopes and Tsay (2011, p. 173) and Creal (2012, section 2.5.7) outline APF algorithms that rely on
the Rao-Blackwellization procedure of Chen and Liu (2000). The first step in Rao-Blackwellizing
the SSM and li gathers the nonlinear state variables in V; = [ln grzl,t IngZ, 0 /\t],. We

generate updates of the nonlinear states by simulating the multivariate RW process

Ver1 = Ve + QP840 9)

2
where D¢ = [0’,? o5 0y OF

] is the vector of non-zero elements of the diagonal covariance
matrix Q¢ and €41 = [E,,,Hl Eut+1 Pr+1 KHl] ﬂ The RB-APF uses the KF to create an analytic
distribution of 8; using the SSM (8.1) and (8.2), given simulated values of V;. Analytic integration

endows the RB-APF estimator of the linear state variables with greater numerical efficiency.

9The innovations vector &1 ~ N(04x1, I4) conditions on 0;; € (-1, 1) and A¢;; € (0, 1).

10



3.2 Priors and Initial Conditions

We posit priors for the static volatility parameters and initial conditions to generate synthetic
samples of linear and nonlinear states using the SSM (8.1) and (8.2) and multivariate RW (9).

The static scale volatility parameters are collected in ¥ = [0',:? o5 o4 O}

Ofn OFp ... 02’5],.
Priors on ¥ are grounded in restrictions of the joint DGP of the SI-prediction mechanism and
SW-UC-SV-TVP-AR(1) model while remaining consistent with the PLE of Storvik (2002). The PLE
requires priors for ¥ to have analytic posterior distributions. The posterior distributions serve
as transition equations to update or “learn” about the joint distribution of 8; and Y.

Table 1 lists our priors for the static volatility parameters found in ¥. We endow these
parameters with inverse gamma (J9) priors. Columns labeled oy and B, denote the scale and
shape parameters of the J§ priors of the elements of ¥, the mean is 0.58,/(0.5xy — 1), and the

two right most columns display the associated 2.5 and 97.5 percent quantiles, where £ = n, v,

¢! K, CTT! Ch,andhz 1,..., 5

Table 1. Inverse Gamma Priors on the Static Coefficients

4
— 2 g2 52 g2 52 2 2
Y = [0‘,7 05 04 Ox Ofp Ofp ... O'C’S]

Quantiles

Scale Volatility on Innovation to oy Be Mean 2.5% 97.5%

Trend Inflation SV, Ing,;1: 07 3.0 0.04 0.04 [0.004, 0.186]
Gap Inflation SV, IngG,¢11: 07 3.0 0.04 0.04 [0.004, 0.186]
TVP-AR1 Coefficient, 0;41: o3 3.0 0.01 0.01 [0.001, 0.046]

SI Coefficient, A¢y1: 072 3.0 0.01 0.01 [0.001, 0.046]
Measurement Error on 7r;: 0’5’7.[ 20.0 2.88 0.16 [0.084, 0.300]

Measurement Error on 1} /,: 0¢, 20.0 2.88 0.16 [0.084, 0.300]

B

Priors on the static volatility coefficients are aﬁz ~J9G <% %) where oy and B, are scale and
5

shape parameters, £ = n, v, ¢, Kk, Cx, Cp,and h =1, ...,

11



Two features are worth discussing about our priors on the scale volatility coefficients of
De. First, we give (r,% and o2 prior means equal to 0.04. These prior means are larger than the
prior mean of 0.01 placed on 0'(% and ¢?2. Second, our priors on o7, 07, Uq%, and o2 deliver 2.5
and 97.5 percent quantiles that exhibit greater variation in innovations to In g%,t 41 andIn gggt 41
compared with variation in innovations to 6;,1 and A;;1. Nonetheless, the 2.5 and 97.5 percent
quantiles of O'é,n, 02,1, s 0515 reveal our belief that volatility in the measurement errors of
m, and 1ty ;F;, dominate shock volatility in the joint DGP of the SI-prediction mechanism and
SW-UC-SV-TVP-AR(1) model.

Priors on initial conditions of the linear state variables appear in the left two columns of
table 2. We draw T1g and FyTo from normal priors with a mean of two percent, which is about
the mean of GNP deflator inflation on a 1958Q1 to 1967 Q4 training sample. A variance of 1002
indicates a flat prior over a wide range of values for 19 and FyTg. The joint prior of &y and Fy&g
is drawn from N (02«1, X0), which equates the prior means to zero (i.e., unconditional means).
Prior variances are produced by the ergodic bivariate normal distribution of particle draws of
Gu,0, 00, and Ap; see the notes to table 2. We also restrict priors on 1o, €, FoTo, and Fogo by
splitting the training sample variance of the first difference of GNP deflator inflation between
trend (one-third) and gap (two-thirds) shocks.

The last two columns of table 2 lists priors on initial conditions of the nonlinear state
variables. We endow priors of In g5,0 and In Qs,o with normal distributions. Prior means are
calibrated to pre-1968 inflation data similar to Stock and Watson (2007). Uncertainty about
In gg’o and In Grz,,o is reflected in prior variances of ten. Table 2 shows that 0y is drawn from
a standard normal, subject to truncation at (-1, 1), and another truncated normal bounds

Ao € (0, 1) with (untruncated) mean of 0.5 and a unit variance. These priors are in essence

uninformative about values inside the bounds.
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Table 2. Priors on Initial Conditions of the Linear and Nonlinear States

8o = [To g FoTo Fogo], and Vg = [lngg’o Ings, 6o Ao],

Initial State Prior Distribution Initial State Prior Distribution
To: N(2.0,100.0?) Ing2y: InN(In0.2 - 5.0, 10.0)
Foto: N(2.0,100.0%) Ing2p: InN(In0.4 - 5.0, 10.0)
g N (0.0, 62) 0p: TN(0.0, 1.0, -1.0, 1.0)
Fogy: N (0.0, o) Ao: TN(0.5, 1.0, 0.0, 1.0)

The truncated normal distribution is denoted TN, where the first two entries are the mean and

variance of the prior and the last two entries restrict the range of the prior. The priors on ¢
and Fp¢&, are drawn jointly from N (ngl, 6”), where 0'30 and O'EO ¢, are diagonal elements of

) J . . ) ) ) N
. - 9(()1) 0 Qg:él) ?\61)(;5,'3” 9(()1) (1 _ /\E)l))g(()l)
(i) _ Z
o i [ i) (i 1) 2, (i 2,(1) .2,(i) (1) (1) ’
=01 (1-2616y" A6)” | | AP ee” AT Ve 0 A0

and A(()i), Oéi), and gg,'(;i) are the ith particle draws from priors on the associated initial condi-
tions. If 9(()1) = 0, the formula computing 5;(()1) remains valid.

3.3 The Auxiliary Particle Filter

Section 3.1 applies the RB process to the SSM and (8.2). This process increases the numer-
ical efficiency of the estimator of the linear states, S, by shrinking Monte Carlo error. Another
method to improve the efficiency of this estimator is the APF of Pitt and Shephard (1999, 2001).
In this section, we sketch a RB-APF to estimate the linear and nonlinear states that begins from
algorithm 2 of Lopes and Tsay (2011, p.173); also see Creal (2012, section 2.5.7)11;6] The online

appendix provides a complete exposition of our implementation of the RB-APF.

10we sketch a RB-APF separate from the PLE for clarity, but recognize the RB-APF is integral to the PLE.
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A RB-APF obtains estimates of the likelihood by running the prediction step of the KF on
the SSM (8.1) and (8.2) particle by particle. At date ¢, the KF predictive step produces the log
likelihood, Qt , and particle weights, @\ = exp{Qt } / Z ex p{ ‘ } i=1,..., M. Stratified
resampling of { W }L yields indexes that are used to regroup St 1]¢—1» its mean square error
(MSE), Ztl_m_l, and Vi ); see steps 3(a) and 3(b) of section A3.1 of the online appendix and
Hol, Schon, and Gustafsson (2006). This step aims to prevent a particle from receiving all the
probability mass as M becomes large. The ensemble of weights { (l)}i are also resampled
generating { (l)}iz |> see step 3(d) of section A3.1 of the online appendix. The resampled
particles 8, ,_;, =i, ,_;, and V}" are employed in the entire KF to update { I S 0 }i
and produce new weights w(” = exp{ il)}/Ziw exp{Q ii)}, i=1,..., M;see step 3(e) of sectlc;n
A3.1 of the online appendix. By simulating the multivariate RW (9), the nonlinear states are
updated to Vt+1 across the M particles. Estimates of S;|t, ¢, and V¢ |; rely on the weights w(l)
= w!? / @'"; see step 4 of section A3.1 of the online appendix.

As already noted, a useful product of the RB-APF is the likelihood of the conditionally
linear SSM and (8.2). Since the M particles have been reweighted at every step using

information contained in the likelihood of the KF, the estimate of the date t data density is
(1)
CP(Ht‘Hl:t—l;‘I/) oc *ZeXp{ l}, t=1,...,T. (10)
i=1

Sum the data density over thet =1, ..., T observations to compute the log likelihood of
the SSM

£(\Y‘H1:T) = tilln(? <Ht"él:t—1; Y)) (11)

Section 4 reports estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV-
TVP-AR(1) model. Its estimated log likelihood is compared with the log likelihood of a joint
DGP estimated conditional on setting 6; = 0 or estimating a constant SI parameter, A; = A.
Thus, we use log likelihood to evaluate competing joint DGPs, but only after marginalizing

Y. The next section discusses the PLE used to estimate V.
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3.4 The Particle Learning Estimator

We estimate the joint posterior distribution of 8;, X, Vi, and ¥ by embedding the RB-APF in
the PLE of Storvik (2002), given priors on the joint DGP of the SI-prediction mechanism and SW-
UC-SV-TVP-AR(1) modelErl The PLE rests on two insights. First, choosing conjugate priors for ¥
yields an analytic solution of its posterior distributions. The posterior distribution is recovered
conditional on the states and sample data. The idea is to draw ¥ from particle streams of a
vector of sufficient statistics, l"t(i) that depend on V;i), given Y;.;. Since the sufficient statistics
are grounded in the JG priors of ¥, the mapping to the analytic posterior distributions is a
system of transition equations that simulate M particles to learn about or update from l"t(f)l to
l"t(i). The transition equations are appended to the process that draws Vii) to sample ¥V ~
P (‘I"Ft(i)), which in essence equates P (‘I"Hl:t, vﬁ“) to P (‘I"Fé”). We denote the system of
transition equations Tt(i) = @(Ft(f)l, Y1i:t, Vii), Vii,)l), i=1,..., M.

Second, the PLE marginalizes ¥ out of the posterior of the states produced by the RB-APF.
The idea is to update l"t(i) at the same time the RB-APF generates S;i), = and Vii). Thus, ¥ is
estimated by the PLE jointly with 8¢, Z¢ ¢, and V¢ ;.

As noted, we place JG priors on ¥ to expedite Storvik’s PLE. The priors, which are reviewed
in section 3.2 and table 1, are 0'5 ~ JG (% %) where £ indexes the elements of ¥. The
JG priors are useful because the associated posterior distributions are solved analytically. For

example, the posterior distribution of the static volatility coefficient of the RW of 0;,1 is O'i(i) ~

(i)
- - L2
G (Oét, Bg“t),where & = &¢—1 + t—1 and Bg’)t = 2321[9;” - 9{()‘31] . The process generating

(1)
Bg,)t suggests conditioning the posterior Uq%(l) )\7(1)’ fo_)l ~ J9G (oét, B‘ZM), where the shape

parameter Bgft is a sufficient statistic for 03) We extend the idea of identifying B,}i)t as

sufficient statistics to the entire collection of static volatility parameters in V.

1 Another method to estimate ¥ is to wrap a Metropolis-Hasting Markov chain Monte Carlo (MCMC)
simulator around a PF. Andrieu, Doucet, and Holenstein (2010) prove the distribution of a MCMC
simulator is independent of the error created by a particle in a SMC algorithm. Hence, a PF gives an
unbiased estimator of the likelihood .

12The shape parameter is the numerator of the standard deviation of a random variable distributed JS.

15



The online appendix gives procedures to simulate and update Bn b Bf)i)t, Bg)t, and BE};

in steps 2 and 3.(a) of the RB-APF algorithm. The algorithm samples o, 20 2 (tl), (ri(;), and

2“) from particle streams of sufficient statistics. The law of motion of sufficient statistic B 0t
matches the transition equation B(‘) g(B{)t 1 91t Vt , Vt_l), for £ = n, v, ¢, and k.

This leaves us to describe the routines that sample the measurement error scale volatil-

ity parameters, 0'5’1.( and (Té,h, h =1, ...,5. Since these variances lack laws of motion that

can be employed to build transition equations, the relevant shape parameters are updated on

information obtained from KF operations of the RB-APF. For example, we sample 02“) Yy ~

JS (at Bgzh t), where updates of Bg,)h’t are calculated using information from step 3.(b) of

the RB-APF; see the online appendix. Thus, updates of the shape parameters of the posterior
distributions of Uém and O'é,h, which are the sufficient statistics B(Ci,)n,t and Bg,)h,t’ are driven
by the KF prediction error of Y; weighted by the “gain” of these innovations.

We summarize the PLE and the way it interacts with RB-APF with the following algorithm.
1. Before initializing the RB-APF at date 0, draw ¥V = T(l"éi)).

2. Next, carry out steps 1, 2, and 3.(a)-3.(c) of the RB-APF algorithm (that appear in the online
appendix) to obtain the KF predictive likelihood Qii) o fP(%Jt ‘ Si(fi—)llt—l’ Z,(fi_)llt_l, Vii), ‘I’(i)>

and calculate the particle weights, @ii).

3. Update the particles ¥, i = 1, ..., M, using the system of transition equations I}’ =

@(Ft(i)l, Y165 V(i), V§Q1>, which guide the evolution of this vector of sufficient statistics.

~nM (M
4. Engage {wt }izl to resample {Tt }izl and perform steps 3.(d)-3.(f), 4, and 5 of the

RB-APF (that are listed in the online appendix).

5. Resample Ay ;» which are changes to Be ” { =n, v, ¢, and k, as described in step 3.(d) of
the RB-APF discussed in the online appendix, but “innovations” to B(gl,)n,t—l and B;;l,)h,t—li

A€ e and A§ n,t» are not resampled.
6. Repeat steps 1 to 5 of the PLE starting at date t = 1 and stopping at date T.
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7. Full sample estimates of the static volatility parameters are computed according to ¥ =

M N M . .
2i=1 (Ug.rl)‘y}l) =21 w(Tl)T(r}l)>-

By repeating step 5 at dates t = 1, ..., T—1, the PLE produces information about the content

of Y; for the way the RB-APF “learns” about V.

3.5 A Rao-Blackwellized Particle Smoother

Lindsten, Bunch, Sarkka, Schon, and Godsill (2016) develop an algorithm to compute smoothed
estimates of 8; and V¢, given Y;.7 and V. The algorithm is a forward filter-backward smoother
(FFBS) for SSMs amenable to Rao-Blackwellization. The forward filter is the RB-APF described in
section 3.3 and online appendix. The FFBS applies Rao-Blackwellization methods moving from
date T to date 1 to generate smoothed estimates of V; conditional on forward filtered particles.
Forward filtering operations are conducted using the SSM and to produce smoothed
estimates of §;, given smoothed estimates of thE] Lindsten, Bunch, Sarkka, Schon, and Godsill
(LBSSG) refer to the entire process as a forward-backward-forward smoother.

The RB-PS operates only on the nonlinear states of the joint DGP of the SI-prediction
mechanism and SW-UC-SV-TVP-AR(1) model. The problem is, when moving backwards from
date t to date t—1, smoothing V; can cause its Markov structure to be lost. A reason is that
marginalizing the linear states produces a likelihood that depends on V;.; rather than V;.

LBSSG solve this sampling problem by decomposing the target density P (Vl;T ’ Yi1s ‘f’)
into P (Vl;t ‘Vl;tﬂ, Y1:1; ‘f’) P (Vt+1:T ‘ Y113 ‘T’). Drawing from P (Vt+1:T ‘ Yi:1; ‘f’) yields an in-
complete path of the approximate smoothed nonlinear states from date t+1 to date T, which is
denoted \N7t+1;T. Since these draws are initialized at date T by sampling from the date T filtered
(i) }M

nonlinear states, {VT (-1’ backward extension to \N7T,1;T is drawn probabilistically from the

cloud {Vﬁf)T_l }M

(i)-1" The Rao-Blackwellized particle smoother is repeated fort = T-2, ..., 1.

13 Alternative PS are found in Lopes and Tsay (2011) and Carvalho, Johannes, Lopes, and Polson (2010).
These approaches to smoothing, which build on the PS of Godsill, Doucet, and West (2004), are
applicable to APFs, but not to the RB-APF we employ.
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The aforesaid factorization of 93 \71 T ‘ Yy.1: ) is also useful because there is information
in ? (\71 -t ‘\71 441 Y1:Ts ) about the probabilities (i.e., normalized weights) needed to draw
smoothed nonlinear states. Gaining access to this information is difficult because the condi-
tional density of V;.¢ is not easy to evaluateEf] LBSSG’s propose simulation methods to perform

the backward filtering implicit in P (\71 -+ ‘ Vit+1, 91:73 ) This density can be decomposed into
P (Vlzt ‘Vl:t+l, 9115 ‘i’) oS fP(%tﬂ:T, Vt+1:T‘Vl:t, 91:t; ‘f’) P (Vl:t }Hl:t; ‘f’),

where the object of interest is the predictive density P (%HI;T, VHI;T‘VM, Y1t ‘f’). LBSSG
show this density equals JiP (9t+1-T, Vt+1-T)St, Vi, ‘f’ T St “jl-t, Vi:t; ‘f’) dS¢. Hence, run the
KF forward to obtain estimates of §; and X; by drawing from P (St )91 -ty V1t ) The mean
and MSE of §; are employed in simulations to generate sufficient statistics that approximate
the density of the SSM (8.1) and (8.2), which when normalized are the probabilities of drawing a
path of \71 .. Theupshotis, although 8§; does not enter P <\71 -+ ‘\71 a1y 1T ) the conditionally
linear states are relevant for estimating the probability of sampling \71;7. In a final step that is
conditional on the path of \N71;,g, the linear states are smoothed by iterating the KF forward.

Our implementation of LBSSG’s RB-PS is described in the next algorithm.

, , 1T M
1. Retrieve a stored ensemble of M particles, {{Sm, Zill;, Vil)’ wgl)}t 1} , created by
=1)i=1

running the RB-APF on the SSM lb and l) given the PLE of V¥, .

2. Initialize the PS at date T

(a) by drawing VT) for each i from the filtered particle draws {V(l) }i that have been

resampled using the weights w(T‘ , and

(b) compute @ = (C(Ti)),ﬁﬂle(f), S = (C(Ti)),ﬁil%, and 0} =1 + (BY ) o) B

across M resampled particles, which are used to build sufficient statistics of St.

14The KF creates an exact predictive density (up to a normalizing constant). However, computing the
density involves iterating the filter forward from dates t = 1, ..., T—1 to date T across M particle
streams. These calculations are computationally costly, which motivate LBSSG to approximate the
predictive density with simulated sufficient statistics.
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3. For each particlei = 1, ..., M, iterate from date t = T—1 to date t = 1 to calculate the
. . @A) @) (@) |4 |70 140 .
unnormalized weights, 1%, " = w;" 5, |Ut ) exp { 5% }, which generate smoothed

normalized weights, E)’ﬁ)T = CU%L) / M Clﬁﬁm), where

(a) Pr(éi = i) wi‘)T counts the number of instances u > >, @), w~U(0, 1), and

£1T
m=1,..., M,
(b) s ~P (Vt+1 ‘th), ‘I’) which is implemented by s = exp {wf;)t + uf,l)t} Xy X,
~2 (i) 2(1)
i _ Ingy,, - Ingy, 0
U#,t - 2 O-y ] - r]l U’
L Mg N
ot Na,o,t POTAR Naat ’
1 — 9(1) -1 - 9(1) 1-— A(l) _)\(i)
Naor = ‘I’( —[ —— |, Napy = & — | -0 =,
0 O¢ Ok O«

®(-) is the CDF of the normal distribution,

(0) U(l) =1+ (Z §”) ﬁ»i‘)z §”, which depends on the backwards transition equations

D) [r- s (i) (=) | 6ial,

Voo 4 (e) Oy le,

and
L\ L . ;. o ) 2
d 99 = <§(1)> (fbil))Z(ﬁil)) S _ 2<§£1>> st _ [Z(”(§(” Oil Sil)) (Oil)) ] ’
where the backwards laws of motion consist of §§i) = §ii) + (Gﬁi)),ﬁﬂl‘ét and

= () [r- 81t (o) (1) J3

4. Given the drawé in step 3.(a), add Vtg to \N7t +1.7 to produce the approximate (partially)

smoothed trajectory V,.; = {V?l \N7t+1:T}.

I5LBSSG propose a square root KF to ensure numerical stability of the backward filtering operations.
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5. Subsequent to iterating backwards from date T to date 1 for each of the M particle paths,
calculate the distribution of $; by running the KF on the SSM and to produce
P (51:T|%1:T;‘1’) = J'ﬁ P <51:T‘\7§f)r, 1él:T;‘I’> dF (V1:T> ~ Z P (&:T‘V%)T,HLT;‘I’) , (12)
1.T

i=1
which is conditional on the backward filtered smoothed approximate paths of \N71:T.

The density P (81;7‘\7%, Yi:1; ‘T’) is the multivariate normal distribution that results from
running the Kalman smoother (KS) on the SSM and (8.2), where the approximation on the
right side of conditions on the M trajectories of \7% We use the disturbance smoothing
algorithm of Durbin and Koopman (2002) to draw §1;T from the distribution created by the KS,

given a \Nﬁi) generated by the PS.

4 The Data and Estimates

We present estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1)
model in this section. These estimates are compared with ones gleaned from joint DGPs that
lack inflation gap persistence, 8; = 0 or drift in ST updating A; = P\EGI The goal is to evaluate the
impact of inflation gap persistence or SI on the dynamics of 71; and ng fh, h=1,...,5. The
joint DGPs are estimated using a RB-APF, PLE, and PS that engage M = 100,000 particles. These
estimates are used to study (i) comovement of T; and F;T; with 7, and nf,f F,, (ii) fluctuations
in & and Fy&, (ifi) the history of ¢, and ¢y ¢ since the start of the sample, (iv) movements in
0; and A; over the business cycle, and (v) the contributions of Y;, ¢, and Trgf F, to variation in

T and F;T¢.

4.1 The Data

Our estimates rest on a sample of real-time realized inflation, 17y, and h-step ahead average

SPF inflation prediction, Trf_f f n- We obtain the data from the Real-Time Data Set for Macroe-

16When 6; =0 (A; = A), cré (0?) is deleted from V. Fixing the frequency of SI updating also adds A to
¥ with the prior A ~ Beta(1, 1).
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conomists (RTDSM), which is compiled by the Federal Reserve Bank (FRB) of PhiladelphiaE] The
data consist of observations from 1968Q4 through 2017Q?2 for real-time realized inflation and
average SPF inflation predictions.

Realized inflation is the RTDSM’s quarterly real-time vintages of the GNP and GDP de-
ﬂator[g] These vintages reflect data releases that were publicly available around the middle
of quarter t and most often the publicly available information contains observations through
quarter t—1. We employ these vintages to compute the quarterly difference in the log levels
of real-time observations on the GNP or GDP deflator, P;. The quarterly price level data are
transformed into inflation measured at an annualized rate using 1y = 400[InP; — InP;_1].

Average SPF inflation predictions include a nowcast of the GNP or GDP deflator’s level
and forecasts of these price levels 1-, 2-, 3-, and 4-quarters ahead. These surveys are collected

at quarter t without full knowledge of ;. We comply with this timing protocol by assuming

the average nowcast, 1-quarter, ..., and 4-quarter ahead predictions, which are denoted thjf f 1
TP 11, ..., and 1 ¢ {5, are conditional on data available at the end of quarter ¢t —1. These inflation

predictions are the annualized log differences of the average SPF prediction of the deflator’s
level and one lag of the real-time realized price level supplied by the RTDSM.

Figure 1 plots 1r; and four different average SPF inflation predictions. Plots of 1r; and the

average SPF inflation nowcast, 171, appear in figure 1(a). Realized inflation is also found

in figure 1(b), but the 1-quarter ahead average SPF inflation prediction, 7t} ¢, replaces ;{1 .

Figure 1(c) displays 11 and the 3-quarter ahead average SPF inflation prediction, Trff f4, and

figure 1(d) has 1r; and the 4-quarter ahead average SPF inflation prediction, nf:f fs. The panels
depict 1r; with a dot-dash (red) line and average SPF inflation predictions with a solid (blue) line.

Vertical gray shaded bars denote NBER recession dates.

17The data are available at http://www.philadelphiafed.org/research-and-data/
real-time-center/survey-of-professional-forecasters/.

18The SPF measured the output price level with the implicit GNP deflator before 1992Q1. From 1992Q1
to 1996Q4, the implicit GDP deflator played this role. It was replaced by the chain weighted GDP
deflator from 1997Q1 to the end of the sample.
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FIGURE 1: REALIZED INFLATION AND SPF INFLATION PREDICTIONS, 1968Q4 TO 2017Q2
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The plots reveal several features of 1r; and the average SPF inflation predictions. First,
average SPF inflation predictions exhibit less variation than 7r; throughout the sample. Next,
as h increases, average SPF inflation predictions become smoother and are centered on 7r;. All
this suggests the average SPF surveys provide useful forecasts of inflation, which is a point
made by Ang, Bekaert, and Wei (2007), Faust and Wright (2013), Mertens (2016), and Nason and
Smith (2016a), among others.

Differences between the average SPF nowcast are 4-quarter ahead prediction contain infor-
mation to identify t¢, &, F;T:, and F;&;. For example, the average SPF inflation nowcast peaks
close to 10 percent during the 1973-75 recession and around the double dip recessions of the
early 1980s as Figure 1(a) shows. The former peak in inflation falls moving from TrEf Tt to Trf:f Fe
in figures 1(b), 1(c), and 1(d). At a 4-quarter ahead horizon, the average SPF inflation prediction
rises steadily from about three percent in the early 1970s to a peak greater than eight percent
around the 1980 recessionEg] Our estimates rely on this information, which is a function of the
SPF inflation prediction horizon, to identify persistence, stickiness, and volatility in RE and SI

trend and gap inflation.

4.2 Posterior Estimates of ¥ and Fit of the Joint DGPs

Table 3 lists full sample estimates of ¥, ‘f’, for three joint DGPs. The DGPs combine the SI-
prediction mechanism and SW-UC-SV-TVP-AR(1) model, SI-prediction mechanism and a SW-UC
model in which no persistence, 8; = 0, only SV drives gap inflation, and a fixed parameter, A;
= A, SI-prediction mechanism and the SW-UC-SV-TVP-AR(1) model.

The restrictions on inflation gap persistence and the frequency of SI inflation updating
affect ¥ in several ways. First, innovations to the RW of trend inflation SV are more volatile
than innovations to the RW of gap inflation SV in the DGPs with drifting gap persistence because

0 > 0. However, 05 is larger while G is smaller in the DGP that estimates 0; and A;. In

19Fjgure 1(d) shows Trgf fs is missing observations in 1969, 1970, and 1974. The KF is modified to

accommodate the missing observations.
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contrast, 6,% and 63 are about equal in the DGP with 6; = 0 and close to the calibrated values
Stock and Watson (2007) and Creal (2012) use to estimate the state of the SW-UC-SV model.
Next, there is little variation in estimates of the scale volatility on innovations to the RWs of 6;
and A, 6'(% and G2, across the DGPs in which these parameters appear. The DGPs with drifting
gap persistence produce estimates of the scale volatility on the measurement errors of SPF
inflation predictions, (Arg’h, h =1, ...,5, that are quantitatively similar. The converse is true
for estimates of the scale volatility on the measurement errors of 7, cArén, because it is nearly
twice as large in the DGP that estimates 0; and A; compared with the other two DGPs.

Estimates of log marginal data densities (MDDs) appear at the bottom of table 3 for the
three joint DGPs. Equation 1l is used to calculate £(‘I’ ’ Hl;T), which is the log MDD for a joint
DGP tied to Y. Standard errors of the log MDDs are beneath estimates of £<‘I’ ‘ yl;T) The
estimates of £<‘I’ | 91;T>, indicate the data have, at a minimum, a very strong preference for the
joint DGP of the SI prediction mechanism and SW-UC-SV-TVP-AR(1) model. Hence, the rest of
the paper reports evidence this joint DGP has for the stickiness, persistence, and volatility of
Tt, F;tTt, &, and Fyj&t.

Figure 2 plots the PLE paths of 62, 03, &i, and 62 consistent with the joint DGP favored
by the data. The scale volatility parameters are plotted with solid (navy blue) lines and 68

and 90 percent uncertainty bands appear as dark and light shading in figures 2(a)-2(d). These

2

figures show o7

more than doubles, 63 falls by about a third, O'i rises by about a quarter, and
o2 changes little from the start to the end of sample. The PLE path of &,"73 drifts up for much of
the sample as seen in figure 2(a). However, the PLE paths of these parameters are smooth from
the 2001 recession to the end of the sample. Also, the 68 percent uncertainty bands are tight

for the most part in figure 2, but the 90 percent uncertainty bands are wider and on occasion

display substantial variation.

20The standard errors are standard deviations of estimates of the log MDDs obtained from rerunning
the PF using different random seeds across the three DGPs. Hence, the approximation error of the PF

is measured by the standard errors of £<‘I’ ‘ ym) and not the sampling uncertainty of a joint DGP.
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Table 3: Posterior Estimates of the Joint DGPs
of the SI Prediction Mechanism and SW-UC-SV Models

TVP-SL: A TVP-SL: A Fixed SI: A; = A
Parameter TVP-AR(1): 0, Gap-SV: 6, =0 TVP-AR(1): 0;
op 0.423 0.194 0.336
[0.372, 0.481]  [0.167, 0.226]  [0.294, 0.385]
o 0.103 0.193 0.191
[0.090, 0.118]  [0.163, 0.302]  [0.168, 0.218]
o 0.101 - 0.107
[0.089, 0.114] [0.095, 0.121]
o 0.081 0.084 -
[0.071, 0.093]  [0.038, 0.099]
O 0.213 0.115 0.115
[0.171, 0.263]  [0.085, 0.148]  [0.090, 0.146]
0¢, 0.148 0.314 0.148
[0.126, 0.173]  [0.266, 0.371]  [0.126, 0.175]
0Z, 0.070 0.093 0.068
[0.059, 0.082]  [0.079, 0.110]  [0.057, 0.080]
03 0.052 0.053 0.052
[0.044, 0.061]  [0.044, 0.062]  [0.044, 0.061]
04 0.046 0.068 0.047
[0.039, 0.055]  [0.058, 0.080]  [0.040, 0.55]
0Zs 0.048 0.098 0.048
[0.040, 0.056]  [0.083, 0.116]  [0.041, 0.056]
L(¥[vr) 473132 ~669.150 —483.996
(7.068) (5.823) (6.691)

The table presents posterior means of the elements of ¥, which are calculated using the full
sample at date T = 2017Q2. The values in brackets below the posterior means are 5 and 95
percent quantiles. The model in which the SI parameter is fixed yields the posterior mean
A = 0.304 with 5 and 95 percent quantiles of 0.250 and 0.360 conditional on the data and
priors. The log MDDs are computed using the formula for é@(‘l’ ) ’zh;T) described by equation
in section 3.3. Volatility over the log MDDs are measured by standard errors that appear
in parentheses. The estimates of the static scale volatility parameters and log marginal data
densities are created using M = 100,000 particles.
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FIGURE 2: ESTIMATES OF STATIC VOLATILITY PARAMETERS, 1968Q4 TO 2017Q2
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4.3 Trend and Gap Inflation

Figure 3 contains 11, the average SPF inflation nowcast and 4-quarter ahead inflation prediction,
TPt and 7 {15, filtered RE trend inflation, Ty, filtered SI trend inflation, Fy|¢T¢, filtered RE
gap inflation, &, and filtered SI gap inflation, F|:&, on the 196804 to 2017Q2 sample. Plots
of 1711, Fr¢T¢, and its 68 percent uncertainty bands are in figure 3(a). Figure 3(b) is similar,
but replaces nts,f F, with ntsf f.. In these figures, solid (blue) lines are average SPF inflation
predictions and Fy|; Tt is the dotted (black) lines. Figure 3(c) displays 7 with a dash (green)
line, F;|; 7+ with a dotted (black) line, and 1; with a dot-dash (red) line. Estimates of RE and SI
gap inflation appear in figure 3(d) as a dashed (green) line, &, and dotted (black) line, Fy;&;.
Estimates of SI trend inflation are informed by the 1973-75 recession, inflation surge of
the late 1970s and early 1980s, and Volcker disinﬂation In 1974Q4, figure 3(a) displays a

spike in 1 {1, of nearly 10 percent, but Fy;T; is only 3.8 percent. At the same time, 117 +5 is

6.1 percent. The peaks in nts,f fs and F¢T¢, which occur a year and a half later, are close to

6.5 percent. The next peaks in 171, and 1;{15 are 9.5 in 1979Q4 and 8.3 percent in 1980Q1.

However, only in 1981 Q2 does F;|; T peak at 7.5 percent. After 1983, ntsffl, Trtsffs, and Fy: Tt
fall steadily before leveling off in the late 1990s as figures 3(a) and 3(b) show. However, F;|; Tt

often deviates from nff F, between 1983 and 2000. As a result, TrEf F| often is outside the 68

percent uncertainty bands of F|; ¢ during this period while 1r7{%; falls within the 68 percent
uncertainty bands of F;|;T; after the Volcker disinflation in figure 3(b).

Figure 3(c) has several interesting features. First, 71; is volatile compared with T;; and
Fi: 7. Another striking aspect of figure 3(c) is T+ and Fy; T+ are nearly identical for much of
the sample. This is not true for mr; and F;; 7¢ (or T¢7) from 1968Q4 to 2000. For example, T¢|¢
and F ;T are less than a third of m; during the first oil price shock. However, F; ;T explains
much of the increases in 11; and ngffl by the late 1970s and early 1980s. Hence, T¢|; and Fy; T+

respond slowly to the first oil price shock, but the inflation shock of the late 1970s and early

1980s produces quicker responses in T¢; and F;; T¢. Subsequently, 1; is often less than Ty

2IMeltzer (2014, p. 1209) argues that 1986 marks the end of the Volcker disinflation.
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and Fy ;¢ from 1983 to 2000. Beginning in 2003, ¢ and F;|; T; are often centered on 1t;.

The estimates RE and SI trend inflation are a counterpoint to studies in which gap inflation
dominates movements in inflation; see Cogley and Sbordone (2008) among others. One reason
is T4t and F;;T; condition on ngffh, h =1, ..., 5. This differs from studies that rely on
univariate SW-UC-SV models; for example see Grassi and Prioietti (2010), Creal (2012), and
Shephard (2013).

We plot & and Fy & in figure 3(d). These plots show & and F|r & are nearly identical
for the 1968Q4-2017Q2 sample. These estimates of gap inflation rise from less than one
percent in 1968Q4 to about 3.5 percent in 1970. Thereafter, &|; and Fy|¢&: turn negative before
the 1973-75 recession, which coincides with the largest spikes in & and F;|;&; of nearly nine
percent. These spikes are followed by &; and Ft& falling to about —2.5 percent by 1976.
From the late 1970s to 1981, & and F;|;& range from about zero to 3.7 percent.

There are two more aspects of figure 3(d) worth discussing. First, &; and F;|s& are less
volatile subsequent to the Volcker disinflation compared with the 1970s. After 1983, (the
absolute values of) &;|; and F; ;& are never larger than three percent. Second, & and F; ;& are
often negative from 1983 to 2000, which leads the average SPF participant to expect an increase
in future growth in realized inflation. Nelson (2008) explains this prediction is an implication
of the Beveridge and Nelson (1981) decomposition, which is built into the SW-UC-SV-TVP-AR(1)
model of the joint DGP. Hence, the average SPF participant believes the Volcker disinflation
produced only a transitory drop in realized inflation.

Movements in F ;& have parallels in monetary policy. Remember the average SPF partic-
ipant expects mean reversion in 7t; during the 1973-75 recession. However, in the late 1970s
the average SPF participant believe unit root dynamics dominates 71;. An explanation for this
shift in the average SPF participant’s beliefs about the inflation regime is discussed by Meltzer
(2014, pp. 1006-1007). He notes that in the 1970s U.S. monetary policy makers did not dis-
tinguish permanent from transitory shocks. As a result, their responses to the first oil price

shock contributed to unanchored inflation expectations by the late 1970s.
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FIGURE 3: REALIZED INFLATION, SPF INFLATION PREDICTIONS,
AND ESTIMATES OF TREND AND GAP INFLATION, 1968Q4 TO 2017Q2
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The Volcker disinflation is another example. After 1983, 1y and F;|; T; began to fall, but
the drop in 71; is steeper as figure 3(c) shows. These plots are consistent with mostly negative
realizations for Fy;&; from 1983 to 2000 as in figure 3(d). As discussed previously, we assign
these movements in Fy; T and Fy¢&: to the average SPF participant expecting a temporary fall
in 11 during and after the Volcker disinflation. The assessment agrees with Goodfriend and
King (2005) and Meltzer (2014, p. 1131). They argue households, firms, and investors expected

only a transitory drop in inflation after 1983.

4.4 Trend and Gap Inflation Volatilities

Estimates of filtered and smoothed trend and gap inflation SVs appear in figure 4. Figures 4(a)
and 4(c) contain dotted lines, which are gy ¢+ (purple) and ¢, |+ (teal). Dot-dashed (purple and
teal) lines are ¢y 7 and Gy ,¢7 in figures 4(b) and 4(d). These figures also include 90 percent
uncertainty bands, which are thinner solid (black) lines.

Figure 4 makes several points about ¢y ¢|t, Su,tit, Gn,t|T, and Gy ¢ 7. Figures 4(a) shows the
largest peaks in ¢y ¢+ occur in 1977, 1983, and 2009 while ¢, ¢+ is dominated by a spike in
1975 in figure 4(c). Figures 4(b) and 4(d) display peaks in ¢, ¢/t and Gy ¢ during the 1981-82
recession and in 1975, respectively. Hence, these plots are more evidence shocks to gap infla-
tion dominate movements in 1, and 7t ;,, during the 1973-75 recession, but in the inflation
surge of the late 1970s and early 1980s permanent shocks are more important.

Another revealing feature of figures 4(a) and 4(c) is the behavior of SV around NBER dated
recessions. The filtered SVs, ¢p¢;r and Gy ¢|¢, often rise during or after a NBER recessions as
depicted in figures 4(a) and 4(c). There are peaks Gy ¢/ (Gu,t|7) during the 1990-91 and 2007-09
(1981-82, 1990-91, 2001, and 2007-09) recessions.

Figure 4(b) and 4(d) are also informative about the long run behavior of ¢, 7 and Gy t|7.
These SVs display steady declines for extended periods during the sample. The descent starts

in 1983 for ¢, ¢/ while this process starts in 1975 for Gy ¢|r.
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FIGURE 4: ESTIMATES OF THE STOCHASTIC VOLATILITY OF TREND AND GAP INFLATION,
196804 TO 2017Q2

(a) Filtered Trend SV, Sl and 90% Uncertainty Bands (b) Smoothed Trend SV, ST and 90% Uncertainty Bands
1.2 T T T T : T T T T T 1.2 T
1.0 b 1.0 b
b 0.8 b

H FACN
. 3 R

02k . . N Yo o ey,
. S N g

.
v D
Seaa .”"

O L L L L L L L L O L L L L L L L L L
1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018 1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018

(c) Filtered Gap SV, Solt and 90% Uncertainty Bands (d) Smoothed Gap SV, SoniT’ and 90% Uncertainty Bands
4.0 T 4.0 ‘

O L L L L L L L L L O L L L L L L L L L
1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018 1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018

Note: The solid thin (black) lines around estimates of filtered and smoothed trend and gap inflation SV are lower and upper
bounds on 90 percent uncertainty bands. The four plots contain vertical gray bands that denote NBER dated recessions.



Finally, our estimates show ¢, ¢t is smaller than ¢, 1 for the entire sample. These es-
timates differ from Grassi and Prioietti (2010), Stock and Watson (2010), Creal (2012), and
Shephard (2013). These authors report trend SV dominates inflation gap SV from the 1970s
well into the late 1990s. However, Creal and Shephard find that gap inflation SV is greater than

trend SV after 2000.

4.5 Drifting Inflation Gap Persistence

Figures 5(a) and 5(b) display filtered and smoothed estimates of drifting inflation gap persis-
tence, 0¢; and 6;r. Dotted and dot-dash (orange) lines denote 6;; and 6; 7. Surrounding
O+ and Oy are 68 and 90 percent uncertainty bands in the dark and light gray shaded areas.
Figures 5(c) and 5(d) plot the absolute value of smoothed inflation gap persistence, | 6;r |, and
accumulated changes of this absolute value, |0; 7| — |01)7|. These plots depict |01 | and
| Ot | — | 017 | with dot-dashed (orange) lines, where the dark and light gray shaded areas are
68 and 90 percent uncertainty bands.

There is co-movement between 6;; and 0;t with NBER dated cycles in figures 5(a) and
5(b). The co-movement is procyclical during the 1969-70, 1973-75, and 1980 recessions. These
recessions see peaks in 0+ and 0; 7 while there are troughs between these recession. Post-
1981, 6¢|; and 67 turn countercyclical. Filtered and smoothed estimates of drifting inflation
gap persistence peak between the recessions of 1981-82, 1990-91, 2001, and 2007-09 while
these recessions see troughs in 0;; and 0yt.

Uncertainty bands of 0;; and 07 also appear in figures 5(a) and 5(b). The 90 percent
quantiles of 0;7 (6¢):) cover zero in 1971-72, 1990-91, and 2006-14 (1968-69, 1972-73, 1975,
1976-78, 1983, 1990-93, and 2003-14). Hence, we infer there are episodes in which inflation
gap persistence is zero. These results are similar to evidence presented by Cogley, Primiceri,
and Sargent (2010). They find inflation gap persistence drops after 1983. However, our evidence
is tied to procyclical troughs in 61 before 1983 and to the 2007-09 recession and its aftermath,

which occurs more than 20 years after the Volcker disinflation.
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FIGURE 5: ESTIMATES OF TIME-VARYING INFLATION GAP PERSISTENCE, 1968Q4 TO 2017Q2

(a) Filtered Gap TVP-AR1, em, and 68% and 90% Uncertainty Bands

(b) Smoothed Gap TVP-AR1, etIT’ and 68% and 90% Uncertainty Bands
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Another take on the statistical and economic significance of drifting gap inflation persis-
tence appears in figure 5(c). This figure displays the absolute value of 07, | 0y |. The plot
of | 01| gives evidence similar to that found in figure 5(b). There is evidence of a shift in
business cycle behavior of |0y | around the Volcker disinflation. Drift in the absolute value
of inflation gap persistence also declines steadily from the late 1990s to 2013.

There remains the inference problem that 0;¢, 0¢ 1, and |07 | are not necessarily infor-
mative about the statistical and economic content of changes in drifting inflation gap persis-
tence during the sample. We address this problem by plotting accumulating changes in | 01|,
|Oy7| — | 017 |, in figure 5(d). Figure 5(d) shows these changes have tighter uncertainty bands
compared with the plots in figures 5(a), 5(b), and 5(c). Nonetheless, the path of |0y 1| — | 017 |
continues to show peaks that coincide with pre-1981 recessions and troughs occurs between
these recessions. The opposite is observed post-1981.

Hence, figure 5 gives evidence that dates a switch from procyclical to countercyclical drift
in inflation gap persistence to 1981. This break is consistent with an argument made by Meltzer
(2014, p.1006 and p.1207). He contends there was a shift in the pattern of U.S. inflation
persistence because of changes to the way the Fed operated monetary policy in the 1980s and

1990s compared with the 1970s.

4.6 Time Variation in the Frequency of SI Updating

Figure 6 presents filtered and smoothed estimates of the time variation in the frequency of SI
updating, A¢; and A¢ 7. These panels plot A¢; and A7 as dotted (light green) and dot-dashed
(brick) lines. The thin solid (brick) lines denote 90 percent uncertainty bands of A;r and 90
percent uncertainty bands of A;; are depicted with light gray areas. Figures 6(b) and 6(d) plot
accumulated changes in Ay, Ay — A1j7. In these panels, dark and light gray areas are 68
and 90 percent uncertainty bands of Ay — Ajjr. The top row of figure 6 has A, A¢1, and
Ay — Aqjr estimated using the joint DGP of the Sl-prediction mechanism and the SW-UC-SV-

TVP-AR(1) model. Figures 6(c) and 6(d) report similar estimates, but the SW-UC-SV model lacks
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persistence in gap inflation, or 6; = 0 for all dates t.

Plots of At and At display a decade long swing from more frequent to less frequent
updating beginning in the late 1980s in figure 6(a). From the late 1960s to the 1988, the
average SPF inflation respondent is estimated to update almost every quarter to changes in
E: ¢ because Ay 1 varies between 0.01 and 0.35. However, there is uncertainty about these
estimates because the 90 percent confidence bands of A¢|7 range from 0.01 to 0.60.

Figures 6(a) also shows A¢; and A¢7 reach a plateau from 1994 to 2007 before falling
during the 2007-09 recession. From 1995 to 2008, A¢; and At range between 0.50 and 0.70.
The recession of 2007-2009 sees A¢ 1 (A¢)r) dropping to 0.25 (0.35). Subsequently, A¢1 (Agr)
recovers to 0.47 (0.60) before 2017Q2. The filtered and smoothed estimates of A; are also
associated with substantial uncertainty. For example, when A7 plateaus in the late 1990s,
the five percent quantile is as low as 0.20 and the 95 percent quantile is as high as 0.95. Fur-
thermore, the 90 percent uncertainty bands of A¢; and A7 remain wide in figure 6(a) as the
sample moves past the recession of 2001, the “considerable” and “extended” period policy
regimes of the Greenspan and Bernanke Feds of the early 2000s, the 2007-09 recession, and
unconventional policy regimes of the Bernanke and Yellen Feds.

There are useful inferences to draw from A and A7, even with the uncertainty sur-
rounding these estimates. For example, infrequent Sl inflation updating by the average member
of the SPF lets the Fed engage in a policy of “opportunistic disinflation” during the 1990s as
described by Meyer (1996) and Orphanides and Wilcox (2002). Orphanides and Wilcox argue
that in the mid 1990s Fed policy makers advocated to wait for a state of the world in which
there is little cost to monetary policy lowering inflationary expectations rather than to take
actions during periods when the potential for a costly disinflation are large. However, since
the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model is the source of
At and Ag 1, we only have estimates of the average SPF respondent’s beliefs about changes in

the inflation regime and not evidence about shifts in the monetary policy regimeF_ZI

22Information about monetary policy interventions is needed to conduct a monetary policy evaluation
of this kind as studied, for example, by Leeper and Zha (2003).
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FIGURE 6: ESTIMATES OF THE TIME-VARYING SI PARAMETER, 1968Q4 TO 2017Q2

(a) Filtered and Smoothed SI Updating, xtl . and qu, and (b) Accumulated Changes in Smoothed SI Updating, xtlT - xllT, and
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bounds on 90 percent uncertainty bands. The four plots contain vertical gray bands that denote NBER dated recessions.



There is greater support for statistically and economically important time variation in the
frequency of SI inflation updating in figure 6(b). This figure plots A¢j7 — Ayjr for the joint DGP
in which there is drift in inflation gap persistence. In this case, the path of A;j7 — Aj|7 in figure
6(b) is similar to A¢|7 displayed in figure 6(a) with respect to level and slope. Another interesting
feature of figure 6(b) is the uncertainty bands surrounding A¢j7 — A1jr. Figure 6(b) displays 90
percent uncertainty bands of Ay — Aq;7 that are narrower for the entire sample compared
with the analogous confidence bands of A1 in figure 6(a). These estimates strengthen the case
that changes in the frequency of SI inflation updating by the average member of the SPF are
statistical and economic important.

This message is reinforced by figure 6(d). This figure presents estimates of A;7 — AT
conditional on a joint DGP in which there is no persistence in the inflation gap. Given 0; is
zero, Sl inflation updating is less frequent quarter by quarter, as depicted by A;; and A1 in
figure 6(c) compared with the estimates found in figure 6(a). Although figure 6(c) suggests that
there is useful information about the frequency of SI inflation updating conditional on 9; =
0, the plot of A7 — Aqj7 in figure 6(d) indicates otherwise. Figure 6(d) depicts A¢j7 — AjT as
fluctuating around zero with 90 percent uncertainty bands that often contain zero under the
joint DGP in which inflation gap has no persistence.

This section reports estimates of A¢j¢, Atj7, and A7 — A1) shows that Slinflation updating
by the average SPF respondent is statistically and economically significant for the last 48 years.
These results agree with Coibion and Gorodnichenko (2015). Nonetheless, our estimates also
reveal shifts in SI inflation updating during the sample. From the 1969 to 1988, the frequency of
Slinflation updating occurred almost every quarter. The frequency declines to about once every
two to three quarter until 2007, followed by a sharp increase during the 2007-09 recession.
Afterwards, the frequency drops by 2017Q2. These shifts in estimates of SI inflation updating
indicate the average SPF participant’s beliefs about the inflation regime changed within a few
years of the end of the Volcker disinflation. The average SPF participant’s beliefs about the

inflation regime also appear to have been altered by the recession of 2007-09.
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4.7 SPF Inflation Predictions and Trend Inflation Uncertainty

Figure 7 displays conditional volatilities of RE trend inflation, 7;, and SI trend inflation, F;T;.
The plots quantify uncertainty over time in 7; and F;7; conditional on the history of Y;, or
histories of subsets of its elements, smoothed estimates of the nonlinear states, \N7t|T, and
estimates of the static scale volatility coefficients, ¥. The measure of the volatility of T; is
Var(t¢ | Y1, \N7t T ‘i’), where the entire information set runs from the first observation to quarter
t, the smoothed nonlinear states begin at quarter t and end with quarter T, and estimates of the
static scale volatility parameters are full sample. Similar computations are used to produce the
conditional volatility of F; ;. Thus, the paths of the nonlinear states and parameter estimates
are held fixed across changes in the sample data fed into the KF to produce estimates of the
conditional volatilities of T and F;T¢.

Figure 7(a) plots the conditional volatilities of ;. The conditional volatilities of F;T; are
found in figure 7(b). In these figures, the solid (black) line, dashed (blue) line, dotted (red) line,
and dot-dashed (green) line are Var (x | Y1.¢, V7, ¥), Var(x | 1, Vo7, ¥), Var(x | b F, Vyr, 9),
and Var(x | 1y, Trls:lt)F, \N7t|T, ‘i’), respectively, where x = ¢, FiT¢.

Figures 7(a) and 7(b) reveal 1; and 717 ;15 jointly contribute the bulk of the informa-
tion pertinent to estimate T; and F;7;. The reason is the dot-dashed (green) lines of fig-
ures 7(a) and 7(b) are always near the solid (black) lines. Hence, given only m; and 1f%s,
Var (¢ | e, T4, Vi1, ¥) and Var(F, ¢ | 7y, T 45, Vi1, ¥) are close to the estimates con-
ditioned on the entire information set, Var (Tt | Y, \N7t|T, ¥) and Var(F; ¢ | Ye, \N7t|T, ¥). In con-
trast, the dotted (blue) lines are far from the solid (black) and large dot-dashed (green) lines
in the first half of the sample. Hence, prior to the Volcker disinflation, there is insufficient
information in 7r; alone to estimate T; and F;T; without also generating more variation in

these estimates compared with estimates conditioning on either Y; or 1, and m; f.. How-

ever, conditioning only on Tr,ff f s produces substantial variation around F; T that is manifested
as large differences between plots of Var(F; T | 1Tf£§+5, \N7t|T, ‘f’) and Var(F;t¢ | Y, \N7t|T, ‘f’) or

Var (Fyt¢ | 118, nf:ffﬂ, \N7t|T, ¥) in figure 7(b).
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FIGURE 7: UNCERTAINTY MEASURE OF TREND INFLATION CONDITIONAL
ON DIFFERENT INFORMATION SETS, 1968Q4 TO 2017Q2
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In summary, figure 7 shows realized inflation and the 4-quarter ahead average SPF inflation
prediction contain much of the information useful for reducing uncertainty surrounding t; and

F; 7 and, hence, efficiently estimating these measures of trend inflation.

5 Conclusions

This paper studies the joint dynamics of realized inflation and inflation predictions of the Sur-
vey of Professional Forecasters (SPF). The joint data generating process (DGP) mixes a Stock and
Watson (2007) unobserved components (SW-UC) model with the Coibion and Gorodnichenko
(2015) version of the Mankiw and Reis (2002) sticky information (SI) model. The SW-UC model
with stochastic volatility (SV) in trend and gap inflation is extended to include drift in inflation
gap persistence. The SI law of motion is endowed with drift in the SI inflation updating pa-
rameter. We estimate the joint DGP on a sample of real-time realized inflation and averages of
SPF inflation predictions from 1968Q4 to 2017Q?2. The estimator embeds a Rao-Blackwellized
auxiliary particle filter into the particle learning estimator of Storvik (2002). Smoothed esti-
mates of the state variables are constructed using an algorithm developed by Lindsten, Bunch,
Sarkka, Schon, and Godsill (2016).

There are five key results to draw from our estimates. First, longer horizon average SPF
inflation predictions provide useful information for estimating rational expectations (RE) and
SI trend inflation and reducing uncertainty around these estimates. Second, RE and SI inflation
gaps dominate inflation fluctuations during the first oil price shock. This is reversed during
the late 1970s and early 1980s. Third, trend (gap) inflation SV falls steadily after 1983 (1975).
We also find that inflation gap persistence is procyclical before 1981 and turns countercycli-
cal afterwards. Fifth, changes in the frequency of SI inflation updating are statistically and
economically important. The average SPF participant is updating SI inflation predictions often
from the late 1960s through the late 1980s. Subsequently, the frequency of SI inflation updat-

ing falls to levels associated with estimates reported by Coibion and Gorodnichenko (2015),

40



among others, and remains low until the 2007-09 recession.

Our results fit into a literature represented by, among others, Krane (2011), and Nason
and Smith (2016a, b). These authors find that the responses of professional forecasters to per-
manent shocks are greater than for those to transitory shocks when revising their predictions.
In the same way that this research inspired us, we hope that this paper stimulates further work
on the ways in which professional forecasters and other economic agents process information

to form beliefs and predictions about future economic outcomes and events.
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