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Abstract

We extract the market’s expectations about the ECB’s negative interest rate policy
from the euro area’s yield curve and study its impact on the yield curve. To capture
the rich dynamics taking place at the short end of the yield curve, we introduce two
policy indicators that summarise the immediate and longer-horizon future monetary
policy stances. The ECB has cut interest rates four times under zero. We find that
the June 2014 and December 2015 cuts were expected one month ahead but that the
September 2014 cut was unanticipated. Most interestingly, the March 2016 cut was
expected four months ahead of the actual cut.
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1 Introduction

The effective lower bound (ELB) of nominal interest rates is one of the most discussed

economic issues of the past decade. The negative interest rate policy (NIRP) is among the

latest additions to unconventional monetary policy toolkits, in the hopes of providing further

stimulus to the economies facing the ELB. For example, in June 2017, the deposit rate of

the Swiss National Bank was set at a record low of -0.75%, while the deposit facility rate of

the European Central Bank’s (ECB) was set at -0.4%.

It is important for policy makers and economists to understand the implications of such

a new policy tool. First, due to the NIRP, the total value of outstanding government bonds

with negative interest rates had reached 10 trillion dollars by the end of 2016 and is still

growing. Bearing this in mind, the question is, what is the NIRP’s impact on the yield

curve? Second, what are economic agents’ perceptions of this policy and how do they form

expectations? Third, because the zero lower bound (ZLB) is no longer binding, the NIRP

creates richer shapes at the short end of the yield curve. How do we accommodate them when

we model the term structure of interest rates? Understanding these questions is important

to euro area countries and Japan, as both areas are currently implementing a NIRP. Such

an understanding is also potentially important for the United States, for which the NIRP

could be an option should large negative shocks occur.

To address these questions, we propose a new shadow rate term structure model (SRTSM)

that we apply to the euro area. At the ELB, the short end of the yield curve displays three

different shapes. The first case is flat as seen in the US data when the ZLB prevails but not

the NIRP. Second, the yield curve could be downward sloping when agents expect future

NIRP-related policy rate cuts. Third, in some days, it is initially flat in the very short

end and then downward sloping, implying market participants expect no immediate action

from the central bank but nonetheless think that future monetary policy is expansionary

overall. To capture these shapes, we introduce two monetary policy indicators: one for the

immediate monetary policy stance and another for the stance over longer horizons. We model
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the discrete movement of the relevant policy rate, the ECB’s deposit facility rate, at the ELB

with a simple and intuitive regime-switching model conditioned on the two policy indicators.

Our model is able to capture the three different shapes of the yield curve observed in the

data. We then build the dynamics of the deposit rate into an SRTSM by using the Black

(1995) framework, where the short term interest rate is the maximum of the non-positive

deposit rate and a shadow interest rate.

We use our model to extract the market’s expectations of the NIRP. Overall, expectations

of financial market participants extracted from our model agree with economists’ expecta-

tions from the Bloomberg survey. Importantly, however, our model has an advantage over

the Bloomberg survey because we can extract the market’s expectations further into the

future, whereas the Bloomberg data are collected only one week before monetary policy

meetings. We find that the June 2014 and December 2015 cuts were expected one month

before but that the September 2014 cut was entirely unanticipated. Most interestingly, the

March 2016 cut was expected four months ahead of the actual cut.

We then evaluate the NIRP’s impact on the yield curve by conducting some counterfac-

tual analyses at the end of our sample (June 2017). First, we ask what would happen to the

yield curve, if the ECB indicated an easing position at its next meeting but promised that

the cut would be the last one in history. In response to such an announcement, the yield

curve would shift down by about 0.03% across all maturities. Second, what would happen if

the central bank announced that it would not make any move at the next meeting but the

overall future policy environment would be expansionary? The one month rate would not

decrease, but yields at other maturities would. The change would grow with the maturity

up to two years, and then flatten out afterwards at about 0.1%. Third, suppose the ECB

communicated with the public about its expansionary plan across all horizons. This action

would create the largest impact. The change at the one month horizon would be 0.03%.

It would also increase with maturity, with the largest change happening at the two year

horizon, amounting to 0.2%. The size of the change would decrease to about 0.16% in the
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long run.

The term structure model allows us to decompose long term yields into an expectations

component and a term premium. Our model-implied 10-year term premium increased be-

tween 2005 and 2008. It has trended down since 2009, and became negative at the ELB,

potentially due to quantitative easing (QE) purchases. The dynamics of the deposit rate

contributes positively to the premium but on a smaller order of magnitude.

We compare our model to various alternatives including several SRTSMs proposed in

the literature and the Gaussian affine term structure model (GATSM). We find that our

new model performs the best in terms of higher likelihood and lower pricing errors. Other

existing models in the literature, on the other hand, do poorly.

After a brief literature review, the rest of the paper proceeds as follows. Section 2

motivates our work and models the dynamics of the deposit rate, and Section 3 sets up the

new SRTSM. Section 4 discusses data, estimation, and estimates. Section 5 turns to model

implications regarding the NIRP, while Section 6 focuses on implications for the yield curve.

Section 7 concludes.

Literature Earlier work has applied the SRTSM mostly to the Japanese and US yield

curves. For example, Kim and Singleton (2012) and Ichiue and Ueno (2013) focus on Japan,

whereas Krippner (2013), Christensen and Rudebusch (2014), Wu and Xia (2016), and Bauer

and Rudebusch (2016) focus on the United States. These papers all keep the lower bound

at a constant level.

A few studies have focused on the new development in Europe, where the policy lower

bound kept moving down to negative numbers after the NIRP. For example, the online

implementation of Wu and Xia (2016) for the euro area, and Lemke and Vladu (2016) and

Kortela (2016). However, none of these papers allow agents to be forward-looking in terms

of the future movements of the policy rate, which is an important feature of our model. And

this feature allows our model to fit the short end of the yield curve much better than other
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approaches.

Our paper relates to the regime-switching literature, including in particular, the seminal

paper by Hamilton (1989). Applications of this class of model in the term structure literature

include Ang and Bekaert (2002), Bansal and Zhou (2002), and Dai et al. (2007). These

papers allow the parameters of the dynamics to take several different values. More closely

related to our paper, Renne (2012) allows the monetary policy rate to take discrete values

and follow a regime-switching process. Our work differs from his work in that we build the

regime-switching model for the policy rate only when the ELB is binding. Otherwise, the

state variables follow a Gaussian vector autoregression (VAR) process, as in the literature.

The advantages of our model are twofold. First, it significantly reduces the state space for

the regime-switching process. Second, when the ELB is not binding, our model is essentially

a GATSM, which is the literatures’ preferred model.

2 NIRP

2.1 Rate cuts and yield curve

Since the deposit rate hit the ELB in July 2012, the ECB has adopted a NIRP and further

cut rates four times. To understand whether these cuts were anticipated by the market,

Figure 1 plots the yield curves in the months before these cuts. June 2014 was a historical

moment during which the ECB cut the deposit rate to a negative value for the first time.

The ECB made efforts to communicate with the public prior to the event. By May 2014, the

market did expect a rate cut going forward, but it did not fully digest the cut of 0.1% in the

following month. Instead, it expected a cut of 0.1% within three months. The second cut was

entirely unexpected, and the yield curve was basically flat in August 2014. The December

2015 cut was fully anticipated. Moreover, in November 2015, the market expected further

cuts beyond the next meeting, anticipating a total cut of a 0.2% over the next year. In

February 2016, the market anticipated further cuts, with the total amounting to over 0.2%.
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Figure 1: Yield curves before rate cuts
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Notes: Yield curves on May 2014, August 2014, November 2015, and February 2016. Red dots: observations.
Black dashed lines mark the short rate, short rate - 0.1%, and short rate - 0.2%. X-axis: maturity. Y-axis:
interest rates in percentage points.

2.2 Modeling the short end of the yield curve

The NIRP introduces richer dynamics at the short end of the yield curve. See the red solid

dots in Figure 2. In July 2013, the front end of the yield curve was flat. This flatness was

the basic pattern seen in the data when the US experienced the ZLB. Most of the term

structure literature on the ZLB has focused on this feature; see, Christensen and Rudebusch

(2014), Wu and Xia (2016) and Bauer and Rudebusch (2016). However, the NIRP introduced

additional patterns: in both February 2016 and July 2016, the yield curves were downward

sloping, implying future decreases in the policy rate. Interestingly, the very short ends for

the two months were different: in February 2016, an easing of the monetary policy stance

was expected at all horizons, whereas in July 2016 the very short ends of the curve was flat,
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Figure 2: Yield Curves
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Notes: Yield curves in July 2013, February 2016, and July 2016. X-axis: maturity. Y-axis: yield in
percentage points. Red solid dots correspond to ELB.

suggesting that no cut would happen over the next month.

We build a simple and intuitive model to capture these shapes at the front end of the

yield curve when the ELB is binding. We then will use the model to extract the market’s

expectations of the future monetary policy stance. For now, we ignore the difference between

the deposit rate and the short end of the yield curve, and we will discuss how this difference

is treated in Section 4. We model the risk-neutral Q dynamics of the deposit rate, and use

it to capture the three shapes of the yield curve in Figure 2.

First, we summarise some basic data features in Figure 3: (1) the deposit rate is discrete

and rdt∈{0,−0.1,−0.2,−0.3,−0.4, ...} percentage point, and (2) the policy rate either stays

where it is or moves down by 0.1%, which we formalise as follows1:


Qt(r

d
t+1 = rdt − 0.1) = αQ1,t

Qt(r
d
t+1 = rdt ) = 1− αQ1,t

. (2.1)

The simplest model with αQ1,t = αQ1 implies one shape for the yield curve. See the left

panel of Figure 9. This model is a slightly more flexible version of the existing model (see

Wu and Xia (2016)), which imposes the restriction αQ1 = 0. However, it cannot capture the

1We do not observe an upward movement of the deposit rate in our data. For a possible way of incorpo-
rating future upward movements, see Wu and Xia (2017).
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Figure 3: Deposit rate
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rich dynamics of the data shown in Figure 2. In particular, it cannot capture both a flat

curve (left panel) and a downward sloping curve (middle and right panels).

To separate these two shapes, we introduce a binary variable ∆t, which captures agents’

forecast of the ECB’s next move. ∆t = 1 indicates a high probability of a cut next period,

whereas ∆t = 0 implies that monetary policy is more likely to stay put. We augment (2.1)

with ∆t:

Qt(r
d
t+1 = rdt − 0.1) = Q(rdt+1 = rdt − 0.1|rdt ,∆t) = αQ1,∆t

, (2.2)

and αQ1,∆t=1 > αQ1,∆t=0 grants the interpretation of ∆t.

We model the dynamics of ∆t as a two-state Markov chain process:


Qt(∆t+1 = 0|∆t = 0) = αQ00,t

Qt(∆t+1 = 1|∆t = 1) = αQ11,t

. (2.3)

If these probabilities are time-invariant, that is, αQ00,t = αQ00, αQ11,t = αQ11, this model

implies two different shapes for the yield curve: one for ∆t = 1 and one for ∆t = 0. The

middle panel of Figure 9 provides an example of the two shapes. The blue line captures that
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Figure 4: Expected paths of the deposit rate
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case in which the transition probability for rdt depends on ∆t: α
Q
1,∆t=0 = 0, αQ1,∆t=1 = 0.1, and the constant

transition probabilities for ∆t are αQ00 = 1;αQ11 = 0.95. The right panel corresponds to the case in which the

dynamics of rdt depends on both ∆t and ∆l
t. The parameters taken from the estimates in Table 1: αQ1,∆t=0 =

0;αQ1,∆t=1 = 0.75;αQ
00,∆l

t=0
= 1;αQ

00,∆l
t=1

= 0.82;αQ
11,∆l

t=0
= 0.0012;αQ
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= 0.75;αl,Q
00 = 1;αl,Q

11 = 0.88.

the yield curve in the state ∆t = 0 is flat, which corresponds to a long period of time in the

data during which the short end of the yield curve is flat, such as the left panel of Figure 2.

The red dashed line is for the state ∆t = 1, which indicates a non-negligible probability of

the deposit rate moving down. This can explain the shape in the middle panel of Figure 2.

However, this model cannot capture the shape in the bottom panel of Figure 2. In this

plot, the market expects no immediate cut but expects a higher probability of cuts at future

meetings.

To accommodate this feature, we devise a separation between the immediate monetary

policy stance ∆t and the longer-term monetary policy stance ∆l
t. ∆l

t = 1 implies an easier

monetary policy at longer horizons, whereas ∆l
t = 0 implies a lower possibility of future cuts.

We introduce this channel by allowing the dynamics of the state variable ∆t to depend on
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∆l
t, and (2.3) becomes


Qt(∆t+1 = 0|∆t = 0) = Q(∆t+1 = 0|∆t = 0,∆l

t) = αQ
00,∆l

t

Qt(∆t+1 = 1|∆t = 1) = Q(∆t+1 = 1|∆t = 1,∆l
t) = αQ

11,∆l
t

. (2.4)

We impose the identification restriction that αQ
00,∆l

t=0
> αQ

00,∆l
t=1

. The basic intuition is that

if the economy is currently at the ∆t = 0 state meaning no immediate cut, the probability

of a future cut for ∆l
t = 0 is less than for ∆l

t = 1. We further assume


Q(∆l

t+1 = 0|∆l
t = 0) = αl,Q

00

Q(∆l
t+1 = 1|∆l

t = 1) = αl,Q
11

. (2.5)

Our final model, comprising (2.2), (2.4), and (2.5), can capture various shapes of the yield

curve; see the right panel of Figure 9. ∆t = 1 corresponds to the case in which the market

highly expects a cut in the next period (see the red dashed line and purple dash-dotted line),

whereas ∆t = 0 corresponds to no immediate cut in the coming month (see the blue solid

line and yellow dotted line). ∆l
t = 1 implies that the market expects cuts not necessarily

immediately but in the future (see the yellow dotted and purple dash-dotted lines). When

∆l
t = 0, agents do not anticipate much further cuts past the next month (see blue solid and

red dashed lines). The combination of ∆t = 0 and ∆l
t = 1 mimics the shape in the right

panel of Figure 2.

3 A new shadow rate term structure model

This section incorporates the deposit rate dynamics introduced in Subsection 2.2 to an

SRTSM. Following Black (1995), the short-term interest rate rt is the maximum function of

the shadow rate st and a lower bound. The innovation of our paper is that the lower bound
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is time varying:

rt = max(st, rt). (3.1)

Next, we describe how to model the lower bound and shadow rate, and then discuss bond

prices.

3.1 Deposit rate and lower bound

The deposit rate is by definition the lower bound of the Euro OverNight Index Average

(EONIA), and hence serves naturally as the lower bound of the Overnight Index Swap (OIS)

curve based on EONIA. We use a discrete-time model with month-end observations as in

much of the term structure literature.2 However, central banks do not meet at the end of

a given month. For our ELB sample, the ECB meets 8 to 12 times a year, at most once a

month, and the meeting dates range from the 1st to the 27th day of the month.

We incorporate this calendar effect when we model the lower bound. Suppose that the

number of days between the end of the current month t and the next meeting date is a

fraction γt of the month from t to t+1. When the ELB is binding, the monthly lower bound

rt is the average of the overnight deposit rate for the month:

rt ≈ γtr
d
t + (1− γt)EQt (rdt+1)

= rdt − (1− γt)α1,∆t × 0.1. (3.2)

Note that we only align the ECB’s meeting schedule with our monthly data for the current

month, that is, as of time t,

rt+n = rdt+n, ∀n ≥ 1. (3.3)

2For example, see Hamilton and Wu (2012b), Bauer et al. (2012) and Wright (2011).
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We assume rt = 0 if the economy is not at the ELB.

3.2 Shadow rate and factors

The shadow rate is an affine function of the latent yield factors, often labeled as “level,”

“slope,” and “curvature”:

st = δ0 + δ′1Xt,

whose physical dynamics follow a first-order vector autoregression:

Xt = µ+ ρXt−1 + Σεt, εt ∼ N(0, I). (3.4)

Similarly, the risk-neutral Q dynamics are

Xt = µQ + ρQXt−1 + ΣεQt , ε
Q
t ∼ N(0, I).

3.3 Bond prices

The no-arbitrage condition specifies that the prices of zero-coupon bonds with different

maturities are related by

Pnt = E
Q
t [exp(−rt)Pn−1,t+1] .

The n-period yield relates to the price of the same asset as follows:

ynt = − 1

n
log(Pnt).

Following Wu and Xia (2016), we model forward rates rather than yields because of the

simplicity of the pricing formula. Define the one-period forward rate fnt with maturity n as

the return of carrying a government bond from t+ n to t+ n+ 1 quoted at time t, which is
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a simple linear function of yields:

fnt = (n+ 1)yn+1,t − nynt.

Therefore, modeling forward rates is equivalent to modeling yields. Note that f0t = y1t = rt.

3.3.1 Forward rates with a constant lower bound

If the lower bound were a constant r, Wu and Xia (2016) show the forward rate could be

approximated by

fnt ≈ r + σQn g

(
an + b′nXt − r

σQn

)
, (3.5)

where the function

g(z) = zΦ(z) + φ(z). (3.6)

Inside the g function, an+b′nXt is the n-period forward rate from the GATSM. The coefficients

an and bn follow a set of difference equations whose solutions are

an = δ0 + δ′1

(
n−1∑
j=0

(
ρQ
)j)

µQ − 1

2
δ′1

(
n−1∑
j=0

(
ρQ
)j)

ΣΣ′

(
n−1∑
j=0

(
ρQ
)j)′

δ1

b′n = δ′1
(
ρQ
)n
.

In addition, (σQn )2 ≡ VQt (st+n) is the conditional variance of the future shadow rate, and

(σQn )2 =
n−1∑
j=0

δ′1(ρQ)jΣΣ′(ρQ′)jδ1.
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3.4 Forward rates in the new model

Next, we derive the pricing formula of our new model. We begin by describing the distribu-

tion of the lower bound.

3.4.1 Marginal distribution of the lower bound

The probability distribution of interest for pricing purposes is the risk-neutral probability

distribution of the lower bound n periods into the future Qt(rt+n). It can be written as the

sum of the joint distributions of the lower bound and ∆, ∆l states:

Qt(rt+n) =
∑

∆t+n,∆l
t+n

Qt(rt+n,∆t+n,∆
l
t+n), (3.7)

and the right-hand side has the following dynamics:

Qt(rt+n,∆t+n,∆
l
t+n) =

∑
rdt+n−1,∆t+n−1,∆l

t+n−1

Qt(rt+n−1,∆t+n−1,∆
l
t+n−1)

×Qt(rt+n,∆t+n,∆
l
t+n|rt+n−1,∆t+n−1,∆

l
t+n−1), (3.8)

where the transition probability can be decomposed as follows

Qt(rt+n,∆t+n,∆
l
t+n|rt+n−1,∆t+n−1,∆

l
t+n−1)

= Qt(rt+n|∆t+n,∆
l
t+n, rt+n−1,∆t+n−1,∆

l
t+n−1)

×Qt(∆t+n|∆l
t+n, rt+n−1,∆t+n−1,∆

l
t+n−1)

×Qt(∆
l
t+n|rt+n−1,∆t+n−1,∆

l
t+n−1)

= Q(rt+n|rt+n−1,∆t+n−1)Q(∆t+n|∆t+n−1,∆
l
t+n−1)Q(∆l

t+n|∆l
t+n−1). (3.9)

The last equal sign is based on the assumptions in (2.2), (2.4) and (2.5), and the assumption

that no covariances exist between the three variables. The three terms in (3.9) are specified

in (2.2), (2.4) and (2.5).
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3.4.2 Pricing formula

With the results in Section 3.4.1, the pricing formula in (3.5) becomes

fnt ≈
∑
rt+n

(
rt+n + σQn g

(
an + b′nXt − rt+n

σQn

))
Qt(rt+n), (3.10)

where Q(rt+n) is specified in (3.7). Derivations are in Appendix A.1.

The forward rate in (3.10) differs from (3.5) due to the time-varying lower bound. The

new pricing formula (3.10) prices in the uncertainty associated with the future dynamics of

the lower bound. The forward rate is calculated as an average of forward rates with known

rt+n, weighted by the risk-neutral probability distribution of rt+n. If rt+n were a constant,

(3.10) would become (3.5).

The regime-switching dynamics of (rdt ,∆t,∆
l
t) preserve the analytical approximation of

the pricing formula. Having an analytical approximation is crucial for the model’s tractability

and numerical behaviour. Dynamic term structure models are often criticized for being

difficult to estimate. For example, in the class of GATSM, which is a special case of our

model when rt → −∞ and has analytical bond prices, the literature has been dedicated

to improving the model’s performance: See Joslin et al. (2011), Christensen et al. (2011),

Hamilton and Wu (2012b), Adrian et al. (2012), Creal and Wu (2015), and de Los Rios

(2015). If we had to compute bond prices numerically, the model would not behave as well.

4 Estimation

4.1 Data and estimation details

Data We model OIS rates on EONIA with data obtained from Bloomberg. Our sample

is monthly from July 2005 to June 2017. We date the ELB period when the deposit rate is

zero and below starting from July 2012.
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Spread The deposit rate is the floor of the EONIA rate. In our model, they are the same for

the ELB sample. However, in the data the former is always lower than the latter. To capture

this difference, we introduce a spread. The deposit rate is measured overnight. However, the

overnight EONIA rate is very volatile due to some month-end effects. Therefore, we define

the spread as the difference between the one-week EONIA rate and the overnight deposit

rate: spt = rweek
t − rdt . Figure 5 plots the time-series dynamics of the one-week EONIA

rate and the overnight deposit rate in the top panel and their difference at the bottom to

demonstrate a non-zero and time-varying spread.

Figure 5: Spread

2013 2014 2015 2016 2017
-0.5

0

0.5
one-week OIS
deposit rate

2013 2014 2015 2016 2017
0

0.1

0.2

0.3
spread

Notes: Top panel: time-series dynamics of the one-week OIS rate in blue solid line and deposit rate in
red dashed line; bottom panel: the spread defined as the difference between the two lines in the top panel.
X-axis: time. Y-axis: interest rates in percentage points. Sample spans from July 2012 to June 2017.
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We assume that the spread spt follows an AR(1) process under the risk-neutral measure:

spt = µQsp + ρQspspt−1 + eQt , e
Q
t ∼ N(0, σ2

sp). (4.1)

This modifies the pricing formula in (3.10) to

fnt ≈
∑
rt+n

Qt(rt+n)

(
rt+n + cn + dnspt + σ̃Qn g

(
an + b′nXt − rt+n − cn − dnspt

σ̃Qn

))
,(4.2)

where cn = (
∑n−1

j=0 (ρQsp)
j)µQsp, dn = (ρQsp)

n, (σ̃Qn )2 = (σQn )2 + (
∑n−1

j=0 (ρQsp)
2j)σ2

sp. See Appendix

A.2 for the derivation.

Combine (3.1) and (3.2), and add a spread. For ELB, the short rate follows:

rt = rdt − (1− γt)αQ1,∆t
× 0.1 + spt. (4.3)

Forward rates We take OIS yields with the following maturities: three and six months,

and one, two, three, five, six, seven, eight, nine, and ten years, and transform them into

forward rates. A forward contract carrying a government bond from t+ n to t+ n+m pays

an average interest rate

fnmt =
1

m
(fnt + fn+1,t + ...+ fn+m−1,t), (4.4)

where fnt is in (4.2). The forward rates we model include f3,3,t, f6,6,t, f12,12,t, f24,12,t, f60,12,t,

f84,12,t, and f108,12,t.

There are a couple of advantages of modeling forwards rates rather than yields. First,

forward rates require summing over fewer terms, as per (4.4). Second, forward rates do not

involve the “max” operator, which will be included in yields of any maturity. Having the

“max” operator is problematic for any gradient-based numerical optimiser.
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State space form The state variables Xt, ∆t, and ∆l
t are latent, whereas rdt and spt are

observed. Our SRTSM is a nonlinear state-space model. The transition equations include

(3.4), and the P version of (2.2), (2.4), (2.5) and (4.1), for which we assume the same process

under the physics dynamics P and risk-neutral dynamics Q but with different parameters.

The difference between them captures the risk premium.

Adding measurement errors to (4.3) and (4.4), the measurement equations are

rot = rt + ηt (4.5)

f o
nmt = fnmt + ηnmt, (4.6)

where “o” superscript stands for observation, and the measurement errors are i.i.d. normal:

ηt, ηnmt ∼ N(0, ω2).

Normalisation The collection of parameters we estimate consists of four subsets: (1)

parameters related to rdt ,∆t, ssand ∆l
t, including α1,∆t=0, α1,∆t=1, α00,∆l

t=0, α11,∆l
t=0, α00,∆l

t=1,

α11,∆l
t=1, αl

00, αl
11 and αQ1,∆t=0, αQ1,∆t=1, αQ

00,∆l
t=0

, αQ
11,∆l

t=0
, αQ

00,∆l
t=1

, αQ
11,∆l

t=1
, αl,Q

00 , αl,Q
11 . (2)

parameters describing the dynamics of spt, including (µsp, µ
Q
sp, ρsp, ρ

Q
sp, σsp); (3) parameters

related to Xt, including (µ, µQ, ρ, ρQ,Σ, δ0, δ1); and (4) the parameter for pricing error: ω.

For identification, we impose αQ1,∆t=1 > αQ1,∆t=0 and αQ
00,∆l

t=0
> αQ

00,∆l
t=1

. The identifying

restrictions on the group (3) are similar to Hamilton and Wu (2014): (i) δ1 = [1, 1, 1]′,

(ii)µQ = 0, (iii) ρQ is diagonal with eigenvalues in descending order, and (iv) Σ is lower

triangular.

Estimation We estimate the model by maximum likelihood with the algorithm for regime-

switching state space models of Kim (1994) and the extended Kalman filter. In practice,

we impose rdt∈{0,−0.1, −0.2, −0.3, −0.4,..., −1}, and therefore Q(rdt+1 = rdt − 0.1|rdt =

−1,∆t) = 0. The details are in Appendix B.

We report maximum likelihood estimates and robust standard errors (see Hamilton
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Table 1: Maximum likelihood estimates
α1,∆t=0 0.0000 αQ1,∆t=0 0.0000

(0.0000) (0.0000)

α1,∆t=1 1.0000 αQ1,∆t=1 0.7510
(0.0000) (0.1777)

α00,∆l
t=0 0.9464 αQ

00,∆l
t=0

1.0000

(0.0344) (0.0000)

α11,∆l
t=0 0.0002 αQ

11,∆l
t=0

0.0012

(0.0005) (0.0023)

α00,∆l
t=1 0.8857 αQ

00,∆l
t=1

0.8232

(0.0770) (0.0587)

α11,∆l
t=1 0.0000 αQ

11,∆l
t=1

0.7516

(0.0001) (0.1726)

αl
00 0.9735 αl,Q

00 1.0000
(0.0265) (0.0000)

αl
11 0.9013 αl,Q

11 0.8815
(0.0331) (0.0429)

1200µsp 0.0114 1200µQsp 0.0084
(0.0000) (0.0049)

ρsp 0.8674 ρQsp 0.9361
(0.0000) (0.0407)

1200σsp 0.0786
(0.0045)

1200µ -0.0272 -1.2246 0.9167 1200µQ 0 0 0
(0.1385) (1.2907) (1.2592)

ρ 0.9932 0.0265 0.0228 ρQ 0.9964 0 0
(0.0250) (0.0177) (0.0181) (0.0005)
-0.1136 0.4675 -0.4494 0 0.9293 0
(0.2628) (1.3064) (1.3295) (0.0032)
0.0581 0.3983 1.3133 0 0 0.9257

(0.2547) (1.2818) (1.3047) (0.0034)
|eig(ρ)| 0.9875 0.8939 0.8939
δ0 7.6098

(0.5368)
1200Σ 0.5961 0 0

(0.0511)
-12.5099 10.4538 0
(0.8773) (0.2589)
11.8193 -10.3705 0.1715
(0.8712) (0.2415) (0.0264)

1200ω 0.0235
(0.0000)

Notes: Maximum likelihood estimates with quasi-maximum likelihood standard errors in parentheses. Sam-
ple: July 2005 to June 2017.
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Figure 6: Filtered probabilities for different states
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Notes: Areas with different colors correspond to the filtered probabilities of different states. From the bottom
to top are: blue for ∆t = 0,∆l

t = 0, red for ∆t = 1,∆l
t = 0, yellow for ∆t = 0,∆l

t = 1, and purple for
∆t = 1,∆l

t = 1.

(1994)) in Table 1. The eigenvalues of ρ, ρQ indicate the factors Xt are highly persistent

under both measures. This finding is consistent with the term structure literature. Both

α1,∆t=0 and αQ1,∆t=0 are zero, which means that when ∆t = 0, agents do not expect the

deposit rate to change in the next period. When ∆t = 1, the probability of the ECB cutting

the deposit rate is much higher: α1,∆t=1 = 1 under the physical measure, and αQ1,∆t=1 = 0.75

under the risk-neutral measure. The difference between the two measures reflects the risk

premium. The ∆t = 0 state is very persistent, with the probability of staying in this state

(α00,∆l
t
, αQ

00,∆l
t
) being 95% or 100% for ∆l

t = 0, and 89% or 82% for ∆l
t = 1. By contrast,

the ∆t = 1 state is much less persistent. The spread spt follows a persistent autoregressive

process under both measures. Other parameters controlling level and scale are comparable

to what we see in the literature.

4.2 Filtered probabilities

Figure 6 plots the filtered probabilities for each state. Blue is the dominant state: it covers
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most of the space from December 2012 to September 2015 and from December 2016 to the

end of the sample, which constitutes 70% of the ELB period. In this state, the yield curve

is basically flat (see the blue line in the right panel of Figure 9). The remaining sample are

mainly in yellow and purple. The probability of the purple state peaked twice in November

2015 and February 2016, which are the months before the ECB lowered the deposit rate to

-0.3% and -0.4%, respectively. The purple area corresponds to the purple line in the right

panel of Figure 9, and the yield curve is downward sloping. The yellow state corresponds to

the yellow line in Figure 9, where the yield curve is initially flat, and then trend downwards.

This means agents do not expect the central bank to cut rates in the next month. However,

they do expect future actions. The yellow area dominates between July and November in

2012 and from March to November in 2016. The least prominent state is in red, which

implies that agents expect the central bank to make an immediate cut but also that they

think that this will be the last cut in history. This scenario appears less plausible.

5 NIRP and the yield curve

5.1 Extracting the market’s expectations on the NIRP from the

yield curve

In this section, we extract market expectations of the NIRP from our SRTSM. Figure 7 plots

the four actual cuts in blue vertical bars together with our model predictions in red crosses

and Bloomberg’s survey expectations in black dots. On June 5 2014, the ECB cuts the rate

from 0 to -0.1% for the first time. In May, our model predicts this event with more than

a 50% probability. As a comparison, over 90% of the respondents to the Blomberg survey

expected the cut. The second cut in September 2014 was a surprise to both economists

and the market. The next two cuts from -0.2% to -0.3%, and then subsequently to -0.4%,

were largely anticipated. For the rest of the meetings, market participants did not price in

much of a probability of an immediate cut. This exercise confirms that market participants’
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Figure 7: Probability of rate cut
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Notes: Red crosses: time t− 1 probability of rate cut for month t from our model: Pt−1(rdt = rdt−1 − 0.1) =
α1,∆t−1=0 × Pt−1(∆t−1 = 0) + α1,∆t−1=1 × Pt−1(∆t−1 = 1). Black circles: Bloomberg survey expectation,
measured as the fraction of respondents that expect a cut. Blue bars: the four rate cuts in June 2014,
September 2014, December 2015, and March 2016. X-axis: time. Y-axis: probability.

expectations are consistent with economists’ view.

The Bloomberg survey is conducted one week before the meeting. The yield curve,

however, contains richer information, which also looks further into the future. In Figure 8,

we further inspect for how long the market has anticipated some of the developments. It

plots the market’s expectations h months before the four event dates for h = 0, 1, 2, ..., 6. The

blue lines with crosses are the physical expectations Et−h(rdt ), the red lines with dots are the

risk-neutral expectations EQt−h(rdt ), and the then deposit rates rdt−h are in yellow dashed lines.

The difference between the yellow lines and the other coloured lines captures an expected

future cut. The difference between the blue and red lines captures the risk premium.

Consistent with Figure 7, the June 2014 and December 2015 cuts were anticipated one

month ahead, whereas the September 2014 cut was completely unanticipated. The most

interesting case is March 2016. A cut to -0.4% was expected four months before, when

the actual rate was -0.2% under the risk-neutral expectation. Then agents revised up their
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Figure 8: Expected deposit facility rate
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Notes: Blue lines with crosses are Et−h(rdt ); red lines with dots are EQt−h(rdt ); yellow dashed lines are rdt−h.
t = June 2014 (top left), September 2014 (top right), December 2015 (bottom left), and March 2016 (bottom
right). X-axis: −h, Y-axis: annualized interest rates in percentage points.

expectations for the next two months. Eventually, when h = 1, agents fully priced in -0.4%

for the next month.

5.2 Policy counterfactual analyses

Much of the existing literature has focused on whether and how much the negative interest

rate policy has affected banks’ profitability; see, for example, Borio et al. (2015), Jobst and

Lin (2016) and Cœuré (2016). Our paper evaluates this policy’s impact on the yield curve,

which links financial markets to the macroeconomy.

We perform the following experiment in Figure 9: suppose that the central bank could

make commitments to change ∆t, and/or ∆l
t, what would happen to the yield curve? We

conduct this exercise at the end of our sample in June 2017, which, according to Figure 6,
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Figure 9: Counterfactual analysis
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dashed-dotted line.

has a probability of 99% in the blue state ∆t = 0,∆l
t = 0, where agents expect the central

bank to stay put for both the short and long run. In our exercise, we assume that agents

fully internalise the ECB’s announcement and deem it fully credible.

First, suppose that the ECB indicated an easing position at the next meeting, but

promised that this cut would be the last one in history. Then the one month rate would de-

crease by 0.03% (see the red dashed line): ∆t would move from 0 to 1, making the expected

deposit rate one month from now 0.075% lower. In addition, the next meeting happens on

20 July, which is 0.6 of the month from the end of June to the end of July. The current level

of the deposit rate would prevail for 60% of the month, and the lower deposit rate would

happen for the next 40%. Therefore, 0.075%× 0.6 = 0.03%. The red curve is almost flat.

Second, if the central bank announced it would not make any move at the next meeting

but the future environment would be expansionary overall, the change in the yield curve

would be as in the yellow dotted line. The one month rate would not move, but yields at

other maturities would decrease. The change would grow with the maturity up to two years,
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and then flatten out afterwards at about 0.1%.

Third, suppose the ECB communicated with the public about its expansionary plan

across all horizons. Then the change in the yield curve would be as in the purple dashed-

dotted line, which would be the largest among the three lines. The initial change would be

the same as in the red line. But after one month, the change would be much larger, and the

largest change would happen in about 2 years at 0.2%. Then, it would decrease to about

0.16% in the long run. The NIRP announcement would have less of an impact in the long

run because the chance for the ELB to be binding is smaller.

6 Yield curve implications

6.1 Model comparison

Table 2 compares our model with several alternatives in terms of log likelihood values, infor-

mation criteria, and measurement errors. The first column is our main model specification.

The second columns is our model without ∆l
t. Columns 3 to 5 are benchmark shadow rate

models commonly found in the literature, and the corresponding lower bounds are specified

as the current deposit rate, 0, and -0.4%, respectively. The last column is the GATSM. See

details in Appendix C.

Our main model has the highest likelihood value. It also provides the best overall fit to

the forward curve with smaller measurement errors. All the evidence points to the conclusion

that the data favor our main model over these alternative model specifications.

Figure 10 provides some visual evidence by comparing the observed data in red dots

with various model-implied yield curves. When the ELB was not binding, all models fit the

data similarly well (see the top left panel). When the yield curve has a flat short end at

the beginning of the ELB, our main model and M∆t provide a better fit than other models

(see the top right panel). In theory, the benchmark shadow rate models MS−TV , MS−0, and

MS−.4 should have exhibited a similar performance. But in practice, because they ignore
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Table 2: Model comparison

Mmain M∆t MS−TV MS−0 MS−.4 MG

full sample log likelihood 935.48 911.94 709.55 279.12 577.97 603.32

(n,m) Measurement errors of fnmt

(0,1) 3.62 4.11 8.01 14.32 4.08 5.50
(3,3) 6.20 6.51 6.39 16.04 9.66 7.38
(6,6) 5.83 6.66 6.72 16.70 9.92 9.06
(12,12) 6.24 6.48 6.81 16.21 10.22 5.91
(24,12) 8.75 8.92 9.33 15.14 10.75 11.10
(60,12) 8.25 8.47 8.24 9.34 8.38 8.44
(84,12) 5.05 4.94 4.96 6.18 5.36 5.79
(108,12) 8.17 8.20 8.13 9.01 8.67 8.77

ELB (n,m) Measurement errors of fnmt

(0,1) 1.42 1.35 10.67 20.89 3.39 3.98
(3,3) 3.64 3.93 3.97 22.44 11.81 4.41
(6,6) 3.87 4.83 5.08 23.52 12.91 6.56
(12,12) 3.40 4.38 5.52 22.66 12.52 1.91
(24,12) 4.59 4.89 6.67 18.71 10.64 9.69
(60,12) 8.92 9.17 8.97 11.24 8.90 9.16
(84,12) 4.32 4.74 4.81 6.55 4.86 6.82
(108,12) 6.92 7.10 7.39 8.36 7.47 9.29

Notes: Top panel: full sample from July 2005 to June 2017; bottom panel: ELB sample from July 2012
to June 2017. First column: our main model Mmain; second column: M∆t

without ∆l
t; third column:

benchmark shadow rate model MS−TV with myopic agents and time-varying lower bound equal to the
deposit rate; fourth column: benchmark shadow rate model MS−0 with a constant lower bound at zero;
fifth column: benchmark shadow rate model MS−.4 with a constant lower bound at -0.4%; sixth column:
benchmark GATSM. Measurement errors are in basis points, and computed as the root-mean-square errors
between observed and model-implied short rates and forward rates. Forward rate fnmt is the forward contract
from t+n to t+n+m. We highlight the smallest measurement errors, and the highest log likelihood value.
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Figure 10: Fitted yield curves
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∆l
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model MBM−0 with a constant lower bound at zero; green dashed line: benchmark model MBM−.4 with a
constant lower bound at -0.4%; light blue dotted line: GATSM MG. X-axis: maturity; Y-axis: interest rates
in percentage points. Top left panel: February 2006; top right panel: July 2013; bottom left: February 2016;
bottom right: July 2016.

the spread between the deposit rate and EONIA, there are discrepancies at the very short

end. The GATSM is expected to perform poorly in this case, which is what motivates the

entire literature on the SRTSM. Not able to fit the flat short end of the yield curve makes

the GATSM one of the worst models; see Table 2.

In the bottom panels, none of the existing shadow rate models are able to generate a

downward sloping short end mimicking the data when the ELB is binding. Intuitively, agents

in these models are myopic, and do not expect further development of the policy rate. Both

our main model and M∆t are able to generate a downward slope through agents’ expectations

that the future deposit rate might decrease further. However, M∆t is not flexible enough to

match the data for either February or July 2016. Our main model, which is motivated by
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Figure 11: 10-year term premium
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Notes: Blue solid line: 10-year term premium from our main model; red dashed line: the regime-switching
portion of term premium. X-axis: time; Y-axis: interest rates in percentage points. Sample spans from July
2005 to June 2017.

various shapes of the yield curve in Figure 2, fits the data well. Although the GATSM is

able to fit the downward sloping short end, it does not provide an intuitive interpretation of

the market’s expectation on the NIRP.

6.2 Term premium

The term premium is one of the focal points for the term structure literature; see, for

example, Duffee (2002), Wright (2011), Bauer et al. (2012, 2014) and Creal and Wu (2016).

We compute the 10-year yield term premium for the euro area from our main model, and

plot it in the blue solid line in Figure 11.

The term premia have trended down since 2009. At the ELB, we observe some negative

term premia. This observation can mainly be attributed to the QE programmes, under

which purchases of longer-term government bonds led to a reduction of yields through the

term premium channel. For empirical evidence, see Gagnon et al. (2011), Krishnamurthy

and Vissing-Jorgensen (2011) and Hamilton and Wu (2012a).

A new question in our context is whether the time variation of the deposit rate incurs

an additional term premium on the longer-term yield. To address this question, we plot the
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portion of the term premium that is due to the dynamics of the deposit rate with the red

dotted line in Figure 11. It is positive and in the order of magnitude of 0.1%. This result

attributes most of the term premium to the uncertainty relating to the underlying latent

factors, because (1) the parameters governing the deposit rate do not differ much between

the physical and risk-neutral dynamics, and (2) at longer horizons, agents expect the ELB

will be lifted which means that the long rates do not depend much on how the dynamics of

the deposit rate are modeled.

7 Conclusion

We have proposed a new shadow rate term structure model that captures the NIRP in the

euro area. We model the discrete movement of the deposit rate with a simple and intuitive

regime-switching model. To capture the rich dynamics at the short end of the yield curve, we

introduce two latent state variables: one captures the immediate monetary policy stance, and

the other captures the future monetary policy stance over longer horizons. We illustrate that

the two do not always coincide, and that it is therefore useful to have both of the indicators.

Compared with alternative models, including the various shadow rate term structure models

proposed in the literature and the Gaussian affine term structure model, our new model best

fits the data.

We use our model to extract the market’s expectations of the NIRP. Overall, such expec-

tations agree with those of economists surveyed by Bloomberg. Importantly, the expectations

extracted from our model are superior to those of the Bloomberg survey because they are

available further into the future, whereas the Bloomberg surveys are only collected one week

before monetary policy meetings. We find the that June 2014 and December 2015 cuts were

expected one month before but that the September 2014 cut was entirely unanticipated.

Most interestingly, the March 2016 cut was expected four months before the actual cut.

We then evaluate the NIRP’s impact on the yield curve with some counterfactual analyses.
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We find that an immediate monetary policy expansionary in June 2017 would have decreased

the one month rate by 0.03%. Taking no immediate action but promising an expansionary

environment in the future would lower the yield curve by 0.1% at the two- to ten-year horizon.

If the central bank could commit to an expansionary policy in both the short and long run,

the impact would be the largest with the two-year yield decreasing by 0.2% and the long

term one decreasing by 0.16%.

The 10-year term premium increased between 2005 and 2008. It has since trended down

with negative numbers at the ELB, potentially due to QE purchases. The dynamics of the

deposit rate contributes positively to the premium, but on a smaller order of magnitude.
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Appendix A Deriving pricing formula

As shown in Wu and Xia (2016), the forward rate is

fnt ≈ E
Q
t [rt+n]− 1

2

(
VarQt

[ n∑
j=1

rt+j

]
−VarQt

[ n−1∑
j=1

rt+j

])
. (A.1)

Appendix A.1 Model with rt+n
Wu and Xia (2016) show (A.1) can be further approximated:

fnt ≈ E
Q
t [max(st+n, rt+n)]−Qt(st+n ≥ rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])
.

The right-hand side equals

∫ −Qt(st+n ≥ rt+n|rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])

+EQt [max(st+n, rt+n|rt+n)]
]
Qt(rt+n)drt+n.

According to Wu and Xia (2016), the expression inside the integral conditioning on the lower bound
equals

rt+n + σQn g

(
an + b′nXt − rt+n

σQn

)
.

Hence, we obtain (3.10).

Appendix A.2 Model with rt+n and spt+n

First,

Qt(st+n − spt+n) ∼ N
(
ān + b′nXt − cn − dnspt, (σ̃Qn )2

)
,

where ān ≡ δ0 + δ′1

(∑n−1
j=0

(
ρQ
)j)

µQ. The first term on the right-hand side of (A.1) is

E
Q
t [rt+n] = E

Q
t [max(rt+n + spt+n, st+n)]

= E
Q
t [max(rt+n, st+n − spt+n) + spt+n]

=
∑
rt+n

Qt(rt+n)EQt [max(rt+n, st+n − spt+n)|rt+n] + EQt (spt+n)

=
∑
rt+n

Qt(rt+n)

(
rt+n + σ̃Qn g

(
ān + b′nXt − cn − dnspt − rt+n

σ̃Qn

))
+ cn + dnspt,
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where the derivation for the last equal sign follows Wu and Xia (2016).
The second term of (A.1) is

1

2

(
VarQt

[ n∑
j=1

rt+j

]
−VarQt

[ n−1∑
j=1

rt+j

])

≈ Qt(st+n − spt+n ≥ rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])

=
∑
rt+n

Qt(rt+n)Qt(st+n − spt+n ≥ rt+n|rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])

=
∑
rt+n

Qt(rt+n)Φ

(
ān + b′nXt − cn − dnspt − rt+n

σ̃Qn

)
× (ān − an),

where the first approximation sign and last equal sign follow Wu and Xia (2016).
Adding them together yields (4.2):

fnt ≈
∑
rt+n

Qt(rt+n)

(
rt+n + σ̃Qn g

(
an + b′nXt − cn − dnspt − rt+n

σ̃Qn

))
+ cn + dnspt

=
∑
rt+n

Qt(rt+n)

(
rt+n + cn + dnspt + σ̃Qn g

(
an + b′nXt − cn − dnspt − rt+n

σ̃Qn

))
,

where the approximation follows Wu and Xia (2016).

Appendix B Estimation

We adapt the algorithm of Kim (1994) to our model by incorporating the extended Kalman filter.
Stack the observation equation in (4.6) for all maturities together with (4.5):

F o
t = F (Xt, spt, r

d
t ,Ξt) + η̃t, where η̃t ∼ N(0, ω2I8).

Define Yt ≡ {F o
1:t, r

d
1:t, sp1:t}, and Ξt ≡ {∆t,∆

l
t}.

Step 1: Approximate the conditional distribution of Xt with Xt|Ξt,Yt ∼ N(X̂Ξt

t|t , P
Ξt

t|t ). We

initialize X̂s0

0|0 = (I3 − ρ)−1µ, vec(P s0

0|0) = (I9 − (ρ ⊗ ρ))−1vec(ΣΣ′), and P(s0) follows a discrete
uniform distribution.
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We apply the extended Kalman filter as follows:

X̂
Ξt+1,Ξt

t+1|t = µ+ ρX̂Ξt

t|t , (B.1)

P
Ξt+1,Ξt

t+1|t = ρPΞt

t|t ρ
′ + ΣΣ′, (B.2)

η̃
Ξt+1,Ξt

t+1|t = F o
t+1 − F (X̂

Ξt+1,Ξt

t+1|t , spt+1, r
d
t+1,Ξt+1), (B.3)

H
Ξt+1,Ξt

t+1|t =

 ∂F (Xt+1, spt+1, r
d
t+1,Ξt+1)

∂X ′t+1

∣∣∣∣∣
Xt+1=X̂

Ξt+1,Ξt
t+1|t

′ , (B.4)

K
Ξt+1,Ξt

t+1|t = P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t

(
(H

Ξt+1,Ξt

t+1|t )′P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t + ωI8

)−1
, (B.5)

X̂
Ξt+1,Ξt

t+1|t+1 = X̂
Ξt+1,Ξt

t+1|t +K
Ξt+1,Ξt

t+1|t η̃
Ξt+1,Ξt

t+1|t , (B.6)

P
Ξt+1,Ξt

t+1|t+1 =
(
I3 −KΞt+1,Ξt

t+1|t (H
Ξt+1,Ξt

t+1|t )′
)
P

Ξt+1,Ξt

t+1|t . (B.7)

Note we will write out X
Ξt+1

t+1|t+1 and P
Ξt+1

t+1|t+1 in terms of X
Ξt+1,Ξt

t+1|t+1 and P
Ξt+1,Ξt

t+1|t+1 in Step 3 to complete
the iteration. The likelihood for bond prices at t+ 1 is

P(F o
t+1|rdt+1, spt+1,Yt,Ξt+1,Ξt)

=
(

2π
∣∣∣(HΞt+1,Ξt

t+1|t )′P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t + ωI8

∣∣∣)−1/2

exp

(
−1

2
(η̃

Ξt+1,Ξt

t+1|t )′
∣∣∣(HΞt+1,Ξt

t+1|t )′P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t + ωI8

∣∣∣−1
η̃

Ξt+1,Ξt

t+1|t

)
. (B.8)

Step 2: We compute the distribution P(Ξt+1, |Yt+1) as follows:

P(Ξt+1|Yt+1) =
∑
Ξt

P(Ξt+1,Ξt|Yt+1), (B.9)

where

P(Ξt+1,Ξt|Yt+1) =
P(F o

t+1, r
d
t+1, spt+1,Ξt+1,Ξt|Yt)

P(F o
t+1, r

d
t+1, spt+1|Yt)

=
P(F o

t+1, r
d
t+1, spt+1|Ξt+1,Ξt,Yt)P(Ξt+1,Ξt|Yt)
P(F o

t+1, r
d
t+1, spt+1|Yt)

=
P(F o

t+1, r
d
t+1, spt+1|Ξt+1,Ξt,Yt)P(Ξt+1,Ξt|Yt)∑

Ξt+1,Ξt
P(F o

t+1, r
d
t+1, spt+1|Ξt+1,Ξt,Yt)P(Ξt+1,Ξt|Yt)

. (B.10)

We compute P(Ξt+1,Ξt|Yt) as follows:

P(Ξt+1,Ξt|Yt) = P(Ξt+1|Ξt)P(Ξt|Yt)
= P(∆t|∆t−1,∆

l
t−1)P(∆l

t|∆l
t−1)P(Ξt|Yt), (B.11)
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where the first two terms are given by the P version of (2.4) and (2.5), respectively.
We compute P(F o

t+1, r
d
t+1, spt+1|Yt,Ξt+1,Ξt) in (B.10) as follows:

P(F o
t+1, r

d
t+1, spt+1|Yt,Ξt+1,Ξt) = P(F o

t+1|rdt+1, spt+1,Yt,Ξt+1,Ξt)

P(rdt+1|spt+1,Yt,Ξt+1,Ξt)P(spt+1|Yt,Ξt+1,Ξt). (B.12)

The first term in (B.12) is calculated in (B.8). Using (2.2), the second term is

P(rdt+1|spt+1,Yt,Ξt+1,Ξt) = P(rdt+1|rdt ,∆t) = 1{rdt+1=rdt }
× (1− α1,∆t) + 1{rdt+1=rdt−0.1%} × α1,∆t .

Using the P version of (4.1), the third term in (B.12) is

P(spt+1|Yt,Ξt+1,Ξt) = P(spt+1|spt) = (2πσ2
sp)
−1/2 exp

(
−(spt+1 − µsp − ρspspt)2

2σ2
sp

)
.

With (B.11) and (B.12), we can also calculate the log likelihood for period t+ 1

P(F o
t+1, r

d
t+1, spt+1|Yt) =

∑
Ξt+1,Ξt

P(F o
t+1, r

d
t+1, spt+1|Yt,Ξt+1,Ξt)P(Ξt+1,Ξt|Yt). (B.13)

Step 3: Finally, we can complete the recursion in (B.1) - (B.7) with

X̂
Ξt+1

t+1|t+1 =

∑
Ξt
P(Ξt+1,Ξt|Yt+1)X̂

Ξt+1,Ξt

t+1|t+1

P(Ξt+1|Yt+1)
,

P
Ξt+1

t+1|t+1 =

∑
Ξt
P(Ξt+1,Ξt|Yt+1)

(
P

Ξt+1,Ξt

t+1|t+1 + (X̂
Ξt+1

t+1|t+1 − X̂
Ξt+1,Ξt

t+1|t+1)(X̂
Ξt+1

t+1|t+1 − X̂
Ξt+1,Ξt

t+1|t+1)′
)

P(Ξt+1|Yt+1)
,

where X̂
Ξt+1,Ξt

t+1|t+1 and P
Ξt+1,Ξt

t+1|t+1 are calculated in (B.6) and (B.7), and P(Ξt+1|Yt+1) is from (B.9).

Log likelihood The log likelihood is
∑T−1

t=0 log
(
P(F o

t+1, r
d
t+1, spt+1|Yt)

)
. At the ELB, P(F o

t+1, r
d
t+1, spt+1|Yt)

is calculated in (B.13). Before the ELB, spt, r
d
t ,Ξt are all irrelevant, and P(F o

t+1, r
d
t+1, spt+1|Yt) =

P(F o
t+1|F o

t ), which is computed by (B.8) through the extended Kalman filter in (B.1) - (B.7) by
ignoring Ξt,Ξt+1.
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Appendix C Alternative models

Table C.1: Model specifications

short description full description

Mmain main model The main model specified in Sections 2-3.

M∆t model with only ∆t Impose α00,∆l
t

= α00, α11,∆l
t

= α11, α
Q

00,∆l
t

=

αQ00, α
Q

11,∆l
t

= αQ11 on our main model.

MS−TV benchmark shadow rate
model with time-varying
lower bound and myopic
agents

rt = rdt for ELB. But agents are not forward look-
ing, and think the future lower bound would stay
where it is today. Also, spt = 0. This specification
is similar to Lemke and Vladu (2016), and Kortela
(2016).

MS−0 benchmark shadow rate
model with a constant
lower bound at 0

This model has a constant lower bound at 0, and
spt = 0. This is similar to Christensen and Rude-
busch (2014), Wu and Xia (2016), and Bauer and
Rudebusch (2016).

MS−.4 benchmark shadow rate
model with a constant
lower bound at -0.4%

This model is the same as the previous one, except
the lower bound is changed to -0.4%.

MG benchmark Gaussian affine
term structure model

In this model, rt = Ξt.
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