
 

 

  BIS Working Papers 
No 689 

 

 Estimating unknown 

arbitrage costs: evidence 

from a three-regime 

threshold vector error 

correction model 
by Kristyna Ters and Jörg Urban 

Monetary and Economic Department 

January 2018 

   

  JEL classification: G12, G14 and G15 

Keywords: Transaction cost, arbitrage, basis, threshold, 

regime switch, intraday, nonlinear, non-stationary, error 

correction 



 

 

 

 

 

 

 

 

 

 

 

 

BIS Working Papers are written by members of the Monetary and Economic 

Department of the Bank for International Settlements, and from time to time by other 

economists, and are published by the Bank. The papers are on subjects of topical 

interest and are technical in character. The views expressed in them are those of their 

authors and not necessarily the views of the BIS. 

 

 

 

 

 

 

 

 

 

 

This publication is available on the BIS website (www.bis.org). 

 

 

© Bank for International Settlements 2018. All rights reserved. Brief excerpts may be 

reproduced or translated provided the source is stated. 

 

 

 

 

ISSN 1020-0959 (print) 

ISSN 1682-7678 (online) 

http://www.bis.org/


Estimating unknown arbitrage costs: Evidence from a

3-regime threshold vector error correction model∗

Kristyna Ters† Jörg Urban‡

Abstract

We present a methodology for estimating a 3-regime threshold vector error correc-

tion model (TVECM) with an unknown cointegrating vector based on a new dynamic

grid evaluation. This model is particularly suited to estimating deviations from par-

ity conditions such as unknown arbitrage costs in markets with a persistent non-zero

basis between two similar financial market instruments traded in the spot and the

derivative markets. Our proposed 3-regime TVECM can estimate the area where

arbitrageurs have no incentives for trading. Only when the basis exceeds a critical

threshold, where the potential gain from the basis trade exceeds the overall transaction

costs, do we expect arbitrageurs to step in and carry out the respective trade. This

leads to non-linear adjustment dynamics and regimes with different characteristics.

The overall transaction costs for the basis trades can be inferred from the estimated

no-arbitrage regime. Our methodology allows us to quantify overall transaction costs

for an arbitrage trade in markets where trading costs are opaque or unknown, as in

credit risk or index arbitrage trading. The key contributions of this paper are the fur-

ther development of the 2-threshold VECM, together with the numerical evaluation

of the model through numerous simulations to prove its robustness. We present two

short applications of the model in arbitrage trades in the palladium market and index

trading for the S&P 500.
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1 Introduction

We present a methodology for estimating three-regime vector error correction models

with two thresholds and an unknown cointegrating vector. Our proposed methodology

is particularly suited to modelling arbitrage in markets with frictions and allows us to

estimate unknown transaction costs for such trades.

The theoretical no-arbitrage condition between two similar financial market instru-

ments traded in the spot and derivative markets, is a cornerstone for the empirical research

on economic parity relationships. The no-arbitrage condition requires that the pricing in

the spot market must be equal to the derivative market. If not, any pricing discrepancy

would present investors with an arbitrage opportunity which will disappear rapidly, as

arbitrageurs will exploit any mispricing. This mispricing is measured by the so-called

basis. For the arbitrage condition to hold, markets must be perfect and frictionless. In

practice, however, frictions and imperfections often make such arbitrage trades difficult

and costly to varying degrees. These imperfections include, amongst others, limited and

time-varying liquidity across market segments, unavailability of instruments with identi-

cal maturity and payout structures, and the fact that some arbitrage trades require large

amounts of capital to be tied up for extended periods of time.

The basis trading strategy, in which an arbitrageur believes that two similar financial

market instruments are mispriced relative to each other, aims to take opposing long and

short positions in these two securities in order to make a gain on the convergence of their

values. In the case of a positive basis, arbitrageurs will bet on a weakening basis (short

basis position) and in the case of a negative basis, arbitrageurs bet on a strengthening

basis (long basis position). There exists no universal definition of the basis, and different

definitions are more commonly used in different markets. In credit risk markets the basis

is defined as derivatives minus spot price (Gyntelberg et al.; 2013) or more specifically as

the CDS spread minus the spread on a par risky fixed-rate bond over the risk-free rate.

Lien and Yang (2008) define the basis as the difference between spot and future prices in

their application in commodity markets. Fama and French (1987) and McMillan (2005),

on the other hand, define the basis as future minus spot prices. Our proposed methodology

is independent of the chosen specification.

A substantial part of the transaction costs of an arbitrage transaction is unknown when

the trade is initiated, making the arbitrage trade risky. For index trades, for example,

Sutcliffe (2006) states that this risk can occur because the bid-ask spread and brokers’

commission, when unwinding the spot position at delivery, vary with the value of the index

basket and that there may be a transaction tax which varies in proportion to the index

(Sutcliffe; 2006). Adams and van Deventer (1993) suggest, that in the case of unknown

arbitrage costs, traders should depart from the usual one-to-one ratio for the size of the
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spot and futures positions. In order to eliminate the transaction cost risk, while buying

shares and selling futures, the arbitrageur should buy, for every one futures contract sold,

1/(1 − p) index baskets. p is the proportion of the value of the index basket that must

be paid in transaction costs at delivery. When selling shares and buying futures, the

arbitrageurs should sell 1/(1 + p) index baskets for every futures contract bought. Adams

and van Deventer (1993) state that this will remove the transaction cost risk from the

arbitrage trade. However, they do not propose a methodology that can estimate the

unknown transaction costs of such trades.

As a result of existing transaction costs on arbitrage trades, the difference between

the prices in the spot and derivatives market for two similar financial market instruments,

the basis, is typically not zero. Moreover, the basis can become sizeable and persistent

in times of market stress. Finally, when entering into a basis trade, the arbitrageur is

exposed to the risk that the trade will move in the wrong direction.

A persistent non-zero basis is therefore likely to reflect the unwillingness of arbitrageurs

to try to exploit it, unless the pricing mismatch is greater than the cost of undertaking

the arbitrage trade. Empirically, we would therefore expect to see such arbitrage forces

intensifying as the magnitude of the basis exceeds some level that reflects the costs that

traders face in the market. This suggests that the adjustment process towards the long-run

equilibrium is non-linear, in that it differs depending on the level of the basis.

Some research specifically aims to estimate the effect of transaction costs on arbitrage

such as Stevens (2015) in the market for crude oil. Stevens (2015) finds that transaction

costs increase the persistence of the basis in the market for crude oil. He explains the

non-zero basis by the absence of arbitrage. Forbes et al. (1999) investigate index futures

arbitrage for the S&P500 stock index and the nearest-to-delivery futures contract and

find significant transaction costs that prevent arbitrage. Forbes et al. (1999) also find

clear indications for arbitrage trading when the basis breaks out beyond a threshold.

However, both Forbes et al. (1999) and Stevens (2015) employ a univariate structural

change test to the cointegrating residual based on Tsay (1989). This approach would,

however, only be valid when the cointegrating vector is known a priori. Neither of the

above-mentioned papers provide a solution for this problem. Forbes et al. (1999) also state

in their conclusion, that the problem of an unknown cointegrating relationship in multiple

threshold error correction models has not yet been resolved.

Hansen and Seo (2002) provide a methodology for estimating 2-regime threshold vector

error correction (TVECM) models with an unknown cointegrating relationship. However,

they do not provide a solution for the case beyond two regimes. An extension to a 3-regime

TVECM with two thresholds is important from an economic viewpoint, as it allows us

to test for positive and negative deviations from theoretical parity relationships. For

example it allows to test for the existence of transaction costs in positive and negative
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basis trading strategies. Also, the model setup as proposed by Hansen and Seo (2002) is

not ideal for economic and financial market problems, where often a significant deviation

from the theoretical parity relationship exists, because they did not account for a persistent

deviation in their long-term equilibrium condition.

We contribute to the existing literature by developing an estimation procedure for

threshold error correction models with three regimes (two thresholds) and an unknown

cointegrating vector which is especially suited to modelling arbitrage in markets with fric-

tions and unknown transaction costs. The estimation of an unknown cointegrating vector

is particularly important for distorted parity relationships such as in financial markets

and economic applications that exhibit a significant non-zero deviation from the theoret-

ical parity relationship. Our proposed model allows for non-linear adjustment of prices,

in derivative and spot markets, towards the long-run equilibrium. Consequently, we can

estimate the region where arbitrageurs step into the market as the trading opportunity is

‘sufficiently profitable’ for both positive and negative basis trades. The overall transaction

costs can be inferred from the no-arbitrage regime.

The rest of the paper is structured as follows: Section 2 discusses the setup and esti-

mation of the TVECM. Section 3 provides some empirical applications for the illustration

of our methodology and Section 4 concludes.

2 3-regime threshold vector error correction model

Threshold cointegration was introduced by Balke and Fomby (1997) as a feasible mean

to combine regime switches and cointegration. In the case of a persistent non-zero basis

between the spot and the derivative market we expect to see that if the basis is lower

than the cost of undertaking an arbitrage trade, arbitrageurs have no incentives to carry

out the trade. Only when the deviation from the long-term equilibrium exceeds a critical

threshold, such that the expected profit exceeds the costs, will economic agents act to

move the basis back towards its long-term equilibrium. As a result, adjustments to the

long-term equilibrium are likely to be regime-dependent, with a relatively weak adjustment

mechanism in the regime where arbitrageurs have no incentive for trading as the overall

transaction costs exceed the expected profit from the arbitrage trade. By extending the

linear VECM approach to a threshold vector error correction model (TVECM) we can

model these non-linearities in the adjustment dynamics.

The TVECM approach extends the VECM by allowing the behaviour of price quotes

for spots St and derivatives Dt for a specific reference entity or underlying to depend on

the state of the system. One can formulate a general TVECM with l regimes, ie with l−1
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thresholds as follows1:

∆yt =

l∑
j=1

[
λj(S − β1D − β0)t−1 + Γj(L)∆yt

]
dt(β0, β1, θ

j−1, θj) + εt, (1)

where yt = (St Dt)
T. All thresholds θj are ordered and

dt(β0, β1, θ
j−1, θj) = I(θj−1 ≤ ect−1(β0, β1) < θj) , (2)

with the error correction term ect−1(β0, β1) = (S − β1D − β0)t−1. The indicator function

I(θj−1 ≤ ect−1(β0, β1) < θj) is 1 if the error correction term ect−1(β0, β1) is in the interval

[θj−1, θj) and otherwise 0. Further, by definition the threshold θ0 is −∞ and θl is ∞ in

Equation (1). We focus on the bi-variate case where ∆yt = (∆St ∆Dt)
T is a 2-dimensional

I(0) time series. The vector of price quotes yt = (St Dt)
T are cointegrated with unknown

β0 and β1. The error correction term ect−1(β0, β1) is stationary. εt = (εSt ε
D
t )T is a vector

of i.i.d. shocks and j ∈ {1, 2, ..., l} is the index denoting the l different regimes.

Equation (1) constitutes a vector autoregressive model in first-order differences with

Γj(L) =
∑m

k=1 α
j,kLk and L as lag operator, m as the number of VAR lags and an

additional error correction term λject−1(β0, β1). λ
j = (λj1 λj2)

T and the lagged VAR terms

are regime-dependent conditioned on the state of the error correction term ect(β0, β1).

The speed of adjustment parameters characterize to what extent the price changes in

∆yt = (∆St ∆Dt)
T react to deviations from the long-term equilibrium.

The Schwarz (Bayesian) information criterion (SIC) is used to determine the VAR

order. Lütkepohl (2006) states that in large samples for multivariate models when T →∞
only the SIC criterion is seen to be strongly consistent for any K-variate system.

The error correction term represents the long-term equilibrium of the two time series

which has to be an AR(1) process by construction (Johansen; 1988). The VAR-term

represents the short-run dynamics coming from market imperfections (Baillie et al.; 2002).

Contrary to the 1-threshold TVECM proposed by Hansen and Seo (2002) we introduce

an intercept β0 in the error correction term which denotes the deviation from the theo-

retical parity relationship (long-term equilibrium). This is motivated by our no-arbitrage

discussion in Section 1 as the local constant β0 represents the persistent non-zero basis.

In frictionless markets (without deviations from the theoretical parity relationship), the

error correction term in Equation (1) is equal to the observed basis (S −D)t, with β0 = 0

and β1 = 1.

The transaction costs for a basis trade prevent a complete adjustment towards a zero

basis. As such, in markets with frictions there may be a neutral band between the deriva-

tive and the spot market in which the error correction term in Equation (1) may fluctuate

1 for a derivation of the TVECM see for example Balke and Fomby (1997)
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without incentives for market participants to switch funds between the spot and deriva-

tives market. Outside of that neutral band there might however be strong incentives for

market participants to switch funds, which results in an adjustment towards the long-term

equilibrium. We expect to find the speed of adjustment parameters to indicate that arbi-

trageurs engaging in St −Dt basis trades as soon as the basis exceeds a threshold. In a

market with a positive basis (St > Dt), arbitrageurs bet on a declining basis and will go

short in the spot market and go long in the derivative market. In case of a negative basis

(St < Dt), arbitrageurs bet on an increasing basis while carrying out the reverse trade.

According to arbitrage theory we would in general expect to find a 3-regime TVECM

with two thresholds when the basis fluctuates between positive and negative figures with

sizeable and persistent deviations from zero. The lower regime is defined as ect−1(β0, β1) <

θ1, the middle regime as θ1 ≤ ect−1(β0, β1) < θ2, and the upper regime is defined as

θ2 ≤ ect−1(β0, β1). The middle regime is the neutral band where no arbitrage trading

occurs while the outer regimes (lower and upper) are the arbitrage regimes. There may

also be certain markets or time periods with only a persistent positive basis. In that

case we expect to find at most two regimes (l = 2) with only one threshold θ1. The

lower regime (neutral regime) is defined as ect−1(β0, β1) < θ1, and the upper regime as

θ1 ≤ ect−1(β0, β1). The regimes are reversed in case of a persistent negative basis market.

Therefore, we will discuss three classes of nested models: model class H1 is a 1-regime

VECM, with no statistical significant threshold, ie where markets are efficient enough to

not allow the basis to deviate too far from zero. In markets described by model class H1

we have no market frictions such as transaction costs, hence arbitrageurs will step in as

soon as the basis deviates from zero. Model class H2 is a 2-regime TVECM and model

class H3 is a 3-regime TVECM.

The threshold θj is computed relative to the estimated basis S−β1D−β0. Therefore,

transaction costs, which are defined relative to the observed/real basis S − D, are the

sum θj + β0. In the case of θj + β0 < 0, we have transaction costs for an arbitrage trade

on basis strengthening and in the case of θj + β0 > 0 we have transaction costs for an

arbitrage trade on basis weakening. In the case of θj + β0 < 0, the transaction costs have

to be interpreted in absolute terms.

We will discuss the three model classes: i) H1: VECM, ii) H2: 2-regime TVECM

with an unknown cointegrating vector and iii) H3: 3-regime TVECM with an unknown

cointegrating vector.
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Figure 1: Model classes Hi

The VECM model class H1 represents markets or periods, where the basis only marginally deviates from

zero. The markets are perfect and frictionless for arbitrageurs to step in immediately to correct the pricing

differential between the spot and the derivatives market. Model classes H2 and H3 are classical multi-

regime models, where outside the neutral regime arbitrageurs engage in basis trades in the outer regimes

(lower and upper regimes). Note that a model belonging to class H2 can also have a negative basis and

consequently a negative threshold.

H1: VECM H2: 2-regime TVECM H3: 3-regime TVECM
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From Equation (1), the VECM (model class H1) can be rewritten as:

∆yt =
[
λ11ect−1(β0, β1) + Γ1

1(L)∆yt
]
dt(β0, β1,−∞,∞) + εt

= λ11ect−1(β0, β1) + Γ1
1(L)∆yt + εt , (3)

where the last line simply takes into account that for model class H1 the function dt is

identical to 1 on the entire t-axis. The subscript k in λik and Γik indicates explicitly to

which model class the parameters belong, whereas the superscript i denotes the regime.

Equation (1) can for 2-regime TVECM (model class H2) be rewritten as:

∆yt =
[
λ12ect−1(β0, β1) + Γ1

2(L)∆yt
]
dt(β0, β1,−∞, θ1)

+
[
λ22ect−1(β0, β1) + Γ2

2(L)∆yt
]
dt(β0, β1, θ

1,∞) + εt . (4)

The 3-regime TVECM (model class H3) takes the following form:

∆yt =
[
λ13ect−1(β0, β1) + Γ1

3(L)∆yt
]
dt(β0, β1,−∞, θ1)

+
[
λ23ect−1(β0, β1) + Γ2

3(L)∆yt
]
dt(β0, β1, θ

1, θ2)

+
[
λ33ect−1(β0, β1) + Γ3

3(L)∆yt
]
dt(β0, β1, θ

2,∞) + εt. (5)
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All parameters are allowed to switch between the regimes except for βi. Following

Hansen and Seo (2002) we estimate the model classes by imposing the following additional

constraint for each regime:

π0 ≤ P (θj−1 ≤ ect−1(β0, β1) < θj) ≤ 1− π0 , (6)

where π0 > 0 is a trimming parameter and P is the share of observations in each regime.

This constraint allows us to identify a threshold effect only if the share of observations in

each regime is large enough, ie is greater than π0. If this condition is not met the model

Hi reduces to Hi−1 for i > 2 (eg from H3 to H2). Andrews (1993) argues that setting π0

between 0.05 and 0.15 are typically good choices. We chose as a baseline setup π0 = 0.1,

but perform robustness tests also for π0 = 0.05 and π0 = 0.15.

2.1 Estimating the model

The most important statistical issue for threshold models is estimating the unknown

threshold(s) and test for their significance. Balke and Fomby (1997) suggest transforming

the TVECM into a univariate arranged autoregression, while Tsay (1989) reformulates the

problem into a univariate structural change test to the cointegrating residual. However,

these approaches are valid only in the univariate case when the cointegrating vector is

known.

We contribute to the existing literature by examining the case of an unknown coin-

tegrating vector for a 3-regime TVECM. We implement, as Hansen and Seo (2002) for

the 2-regime TVECM, a maximum likelihood estimation of a bivariate TVECM with the

assumption of i.i.d. Gaussian error terms. The likelihood function to be maximized for a

l regime model takes the form:2

Ln(λ1l , . . . , λ
l
l, Γ1

l , . . . , Γll, β0, β1, θ
1, . . . , θl−1, Σ) = −n

2
ln |Σ| −

n∑
t=1

1

2
εTt Σ−1εt , (7)

with Σ = E(εt ε
T
t ) and n represents the sample size. εt and Σ are functions of λil, Γil, β0,

β1 and θj , where j = 1 to l − 1 and i = 1 to l.

Hansen and Seo (2002) suggest, that it is computationally convenient to hold β0 and β1

as well as θj fixed and compute the concentrated maximum likelihood estimations for λil,

Γil and Σ. Due to the linearity of the model, this is simply an OLS regression. As shown

in Hansen and Seo (2002) the concentrated likelihood function for β0, β1 and thresholds

θj for a l regime model is:

2 We will focus on l = 1, 2 and 3 in our further analysis.

7



Ln(β0, β1, θ
j) = Ln(λ̂il(β0, β1, θ

j), Γ̂il(β0, β1, θ
j), Σ̂(β0, β1, θ

j), β0, β1, θ
j)

= −n
2

ln |Σ̂(β0, β1, θ
j)| − n · p

2
, (8)

where again j = 1 to l−1, i = 1 to l in a l regime case and all variables with a hat are OLS

estimators. We consider the bi-variate case with p = 2. The remaining task of finding

the maximum likelihood estimation of β0, β1 and the thresholds is therefore to minimize

ln |Σ̂(β0, β1, θ
j)|, subject to the constraint in Equation (6).

Unfortunately, the function in Equation (8) is not smooth (see for example the left-

hand panel of Figure 2), hence conventional hill-climbing algorithms cannot be used to

find the minimum. Therefore, Hansen and Seo (2002) suggest a joint grid search. We

present evidence of the good performance of the proposed grid search in Section 2.3.

Two issues remain to be discussed with respect to the parameter estimation. The 2-

regime model used by Hansen and Seo (2002) requires a two-dimensional grid search over

(β1, θ
1). Our proposed model requires a search over a three dimensional grid (β0, β1, θ

1) in

the 2-regime case and a four-dimensional grid search (β0, β1, θ
1, θ2) in the 3-regime case.

The 3-regime model requires the evaluation of Equation (8) at 100 million grid points, if

we evaluate each variable at 100 grid points. In order to keep the computation feasible,

we suggest a sequential threshold search as it was proven to be consistent by Bai (1997)

and Bai and Perron (1998).

A standard sequential search would require 2 × 1003 grid point evaluations for the

two thresholds, ie 1003 for β0, β1 and θ1 during the first grid search with 100 grid points

each and then another 1003 grid point evaluations for β0, β1 and θ2 during the second

search with 100 grid points each. We will however show that it is efficient to fix β1 in the

second threshold search to the value found in the first threshold search and hence reduce

the second search to a two-dimensional space. This reduces the computational burden

dramatically to 1003 grid points for the first search and 1002 grid points for the second

search. We will discuss and justify this proposal in a comprehensive simulation exercise in

Section 2.3. In the same section we will also show that we cannot fix β0 in the threshold

search for θ2, unlike β1, as the β0 estimate suffers from a large uncertainty.

The second remaining issue to be addressed is the setup of the “correct” search area

for each parameter. The search region [θL, θU ] for the thresholds is straightforward as

it must be identical to the interval [min(ect(β0, β1)), max(ect(β0, β1))] given by the error

correction term for β0 and β1. The region for the β0 and β1 parameters can be calibrated

based on the estimates of the linear VECM model and the theoretical values β1 = 1 and

β0 = 0, which would constitute the observed basis (S − β1D − β0)t = (S − D)t. It is

important to keep the search area for β0 and β1 large enough to include the minimum,
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but not too large to reduce the precision of the grid search. The grid search for θ2 will be

reduced by the constraint θ2 + β0 > 0 if the first search resulted in θ1 + β0 < 0 and vice

versa if θ1 + β0 > 0. This is purely based on our previous arbitrage discussion, where we

expect to find at most two transaction costs, one for a positive basis trade and one for a

negative basis trade.

Obviously, the precision of the estimated parameters will depend on the distance be-

tween two neighbouring grid points. We will test in Section 2.3 various grid sizes, such

as 10, 50 or 100 grid points for each search dimension as well as a dynamic grid setting.

The dynamic grid setting has no fixed number of grid points, but a precision parameter

fixes the distance between two neighbouring grid points. For our simulation exercise we

have chosen ∆β0 = 0.5, ∆β1 = 0.01 and ∆θj = 0.5. This choice is motivated by the appli-

cations in Section 3 and the data generating process used in Section 2.3, which restrains

our time series to become larger in absolute terms than 500. That means, our basis can

become as large as ± 1,000 in extreme cases, leading to approximately 4,000 grid points

for β0 and θj . β1 is in a range of around 0 and 10, leading to maximal 1,000 grid points

based on ∆β1 = 0.01.3 The dynamic grid setting is computationally more expensive but

we will show that, as expected, it yields the best results.

2.2 Testing for a threshold

The next step is to determine whether the estimated thresholds θ̂j are statistically signif-

icant. As the model class H1 is nested in H2 and H2 is nested in class H3, we start with

the discussion of a 1-threshold model H2. In that case, under the null hypothesis, there is

no threshold, so the model reduces to a conventional linear VECM model class H1 where

λ12 = λ22 = λ11 and Γ1
2(L) = Γ2

2(L) = Γ1
1(L). The 1-threshold TVECM model class H2 is

detected under the alternative hypothesis with λ12 6= λ22 under the constraint in Equation

(6). As the models are linear, a regular LM test with an asymptotic χ2(N)-distribution

can be calculated from a linear regression on the model in Equation (4). However, the

LM test statistic can only be applied if βi and the threshold variable θ1 are known a

priori (Hansen and Seo; 2002). While the point estimates of β0 and β1 under the null

hypothesis are β̃0 and β̃1 from the linear model, there is no estimate of θ1 under the null

hypothesis. This implies that there is no distribution theory for the parameter estimates

and no conventionally defined LM-like statistic.

We follow Hansen and Seo (2002) who derive the LM-like statistic for the one threshold

case. We test for a linear VECM H1 under the null and a 1-threshold model H2 under

the alternative hypothesis. Our models H1 and H2 are defined in Equations (3) and (4).

3 The β1 grid is gauged around the estimate of the VECM and the theoretical value of the observed basis,
which is equal to 1.
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The subscripts k in λik, Γik and in the below defined functionals denote explicitly to

which model class Hk they belong.

We can derive the LM-like statistic for the first threshold search as:

LM(β0, β1, θ
1) = vec(Â1

2 − Â2
2)

T(V̂ 1
2 + V̂ 2

2 )−1vec(Â1
2 − Â2

2), (9)

with the OLS estimator Âi2

Âi2(β0, β1, θ
1) =

(
n∑
t=1

Yt−1(β0, β1)Yt−1(β0, β1)
Tdt(β0, β1, θ

i−1, θi)

)−1

×

(
n∑
t=1

Yt−1(β0, β1)∆y
T
t dt(β0, β1, θ

i−1, θi)

)
, (10)

where i ∈ {1, 2}. n is the length of the time series. Âi2 are (1 + pm) × p matrices, with

m denoting the number of VAR lags in the model and p = 2 for the bi-variate case. V̂ i
2 is

defined via the moment functionals M i
2 and Ωi

2:

V̂ i
2 (β0, β1, θ

1) = M i
2(β0, β1, θ

1)−1Ωi
2(β0, β1, θ

1)M i
2(β0, β1, θ

1)−1 . (11)

The moment functionals are defined as:

M i
2(β0, β1, θ

1) = 1p ⊗ Y i(β0, β1, θ
1)TY i(β0, β1, θ

1), (12)

Ωi
2(β0, β1, θ

1) = ξi(β0, β1, θ
1)Tξi(β0, β1, θ

1), (13)

which are both p · (1 + p ·m)× p · (1 + p ·m) matrices. Y i is a short form of the matrices

of the stacked rows Yt−1(β0, β1) ◦ dt(β0, β1, θi−1, θi), with

Yt−1(β0, β1) =


ect−1(β0, β1)

∆yt−1
...

∆yt−m

 . (14)

Hence, Y i is a t× (1 + p ·m) matrix of the following form:

Y i(β0, β1, θ
1) =


...

ect−1(β0, β1) ∆yTt−1 . . . ∆yTt−m
...

 ◦ dt(β0, β1, θi−1, θi) , (15)
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where ◦ denotes elementwise multiplication. Y i contains only non-zero entries if θi−1 ≤
ect−1 < θi. For the here considered 2-regime or 1-threshold TVECM model class H2 we

have i ∈ {1, 2} with θ0 = −∞ and θ2 =∞.

ξi is defined as ε̃t ⊗ Yt−1(β0, β1) ◦ dt(β0, β1, θi−1, θi), with ε̃t is the OLS estimate of

the residual vector from the linear model and ⊗ is the Kronecker product.

Equation (9) can be evaluated at the point estimates of the null, which is the model

H1, if the parameters β0, β1 and θ1 would be known. However, there is no estimate of θ1

for model class H1. Based on the union-intersection principle, Davies (1987) proposes:

SupLM = sup
θ1L≤θ1≤θ

1
U

LM(β̃0, β̃1, θ
1) (16)

with β̃i being the point estimates obtained under the null hypothesis (linear VECM, model

class H1).

According to the constraint in Equation (6) we set the search region [θL, θU ] such that

θL is the π0 percentile of the error correction term, and θU is the (1 − π0) percentile.

This grid evaluation over [θL, θU ] is necessary to implement the maximisation defined

in Equation (16) as the function LM(β̃0, β̃1, θ
1) is non-differentiable in θ1 and hence

conventional hill-climbing algorithm cannot be used to find the extremum.

The value of θ1 which maximizes Equation (16) is different from the MLE θ̂1 in Section

2.1, as Equation (16) are LM tests that are based on parameter estimates obtained under

the null hypothesis, ie H1. Also, the test statistic is calculated with HAC-consistent

covariance matrix estimates which leads to differing estimates compared to the estimate

in Section 2.1 (see also the discussion in Hansen and Seo (2002)).

For three sample simulations we present the maximum likelihood function and the

supremum LM estimator in Figure 2, as well as the corresponding estimators of β0 and

β1 used to compute the functions presented there. The left-hand side of Figure 2 shows

the βi estimates under the alternative hypothesis, ie in this case the TVECM (class H2),

and therefore the minimum is very close to the theoretical threshold. The right-hand side

shows the βi estimates obtained from the linear VECM (H1) estimation, which are far off

from the values used in the simulation (β0 = 10, β1 = 1.1), and therefore the maxima of

the LM estimator are also far from the theoretical threshold, which is 3.

This issue was also discussed by Hansen and Seo (2002). The displayed difference in the

estimated thresholds is generic and not special to threshold cointegration. It is important

to stress that the supremum LM test is performed to compute the critical value, which is

later used to decide if the computed threshold is statistically significant. The supremum

LM test is not used to estimated the model parameters.

11



Figure 2: Maximum likelihood estimator versus supremum LM estimator

The graphs show the maximum likelihood estimation and the supremum LM estimation for three sample

simulations. Each graph contains also the corresponding estimators of β0 and β1 for each simulation. The

left-hand side of Figure 2 shows the βi values estimated under the alternative hypothesis, ie in this case

the TVECM (class H2), and where the minimum is very close to the theoretically expected threshold. The

right-hand side shows βi obtained from the VECM estimation, which are far off from the values used in

the simulation (β0 = 10, β1 = 1.1), and so are the maxima of the supremum LM estimator far from the

theoretical threshold, which was chosen to be 3.
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Just like in the one threshold case (H2), the next step is to determine whether the

estimated 2-threshold TVECM (H3) is statistically significant. Under the null hypothesis,

there is one threshold θ1, so the model reduces to a TVECM with two regimes (H2)

described in Section 2.1 with λ13 6= λ23 = λ33. The 2-threshold TVECM is detected under

the alternative hypothesis H3 with λ13 6= λ23 6= λ33. The constraint in Equation (6) is again

applied. To be explicit, now the null hypothesis is the model H2:

∆yt =
[
λ12ect−1(β0, β1) + Γ1

2(L)∆yt
]
dt(β0, β1,−∞, θ1)

+
[
λ22ect−1(β0, β1) + Γ2

2(L)∆yt
]
dt(β0, β1, θ

1,∞) + εt (17)

and the alternative hypothesis is model H3:

∆yt =
[
λ13ect−1(β0, β1) + Γ1

3(L)∆yt
]
dt(β0, β1,−∞, θ1)

+
[
λ23ect−1(β0, β1) + Γ2

3(L)∆yt
]
dt(β0, β1, θ

1, θ2)

+
[
λ33ect−1(β0, β1) + Γ3

3(L)∆yt
]
dt(β0, β1, θ

2,∞) + εt. (18)
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Following the same steps and arguments discussed before we can define the following

LM-like statistics:

LM(β0, β1, θ
1, θ2) = vec(Â2

3 − Â3
3)

T(V̂ 2
3 + V̂ 3

3 )−1vec(Â2
3 − Â3

3). (19)

Following the proposition by Davies (1987) on the union-intersection principle we get:

SupLM = sup
θ2L≤θ2≤θ

2
U

LM(β̃0, β̃1, θ̃
1, θ2) (20)

with the point estimates β̃i and θ̃1 obtained under the null (1-threshold TVECM). There

is no point estimate of θ2 under the null hypothesis. We perform again a grid search with

the search region for θ2 subject to the constraint in Equation (6). Furthermore, based

on our arbitrage discussion in Section 1 and the assumption, that we have at most one

positive (basis weakening trade) and one negative (basis strengthening trade) transaction

cost, we further impose for the grid search of θ2 and β0 the constraints that θ2 +β0 > 0 if

the first search resulted in transaction costs θ1 + β0 < 0 and θ2 + β0 < 0 if the first search

resulted in transaction costs θ1 + β0 > 0.

As there is no formal distribution theory in the case under discussion we follow the

proposition by Hansen and Seo (2002) and perform two different bootstrap methodologies

in order to estimate the asymptotic distribution for our model specification in Equation

(1).

2.2.1 Fixed regressor bootstrap

We implement a non-parametric bootstrap of the residuals, called the ”fixed regressor

bootstrap”, which resamples (Monte-Carlo) the residuals from the estimated linear VECM

or 1-threshold TVECM, in the case of the threshold search for θ1 or θ2, respectively.

We follow the discussion of Hansen and Seo (2002), Hansen (2000) and Hansen (1996).

We take estimates under the null hypothesis of βi, denoted as β̃i, and define ẽct−1 ≡
ect−1(β̃i) and Ỹt−1 ≡ Yt−1(β̃i), whereby ect−1 denotes the error correction term (see def-

inition below Equation (2)) and Yt−1 is defined in Equation (14). Further, ε̃t are the

residuals of the null. The name ”fixed regressor bootstrap” conveys the message that β̃i,

ε̃t, ẽct−1 and Ỹt−1 are kept fixed at their sample values.

Next, we compute a large number of times (eg 1,000) ybt = ε̃tebt, whereby ebt is i.i.d.

N(0,1) and in each draw ebt is independently chosen. For each draw (identified by the

index b), we perform an LM test. ε̃bt is computed by regressing ybt on Ỹt−1. Â
j
2(β̃i, θ

1)b

(see Equation (10) for the 1-threshold case)4 and ε̂bt(β̃i, θ
1) are computed by regressing

4 For the 2-threshold TVECM we need to compute Âj
3(β̃i, θ̃

1, θ2)b, whereby the values of the null β̃i and
θ̃1 are kept fixed.
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ybt on Ỹt−1d1t(β̃i, θ
1) and Ỹt−1d2t(β̃i, θ

1), whereby β̃i is kept fixed. Further, for each draw

b we compute V̂ j
2 (β̃i, θ

1)b (see Equation (11) for the 1-threshold TVECM)5, whereby β̃i is

kept fixed again. Similar to Equations (9) and (16)6 we compute for each draw b:

SupLM∗ = sup
θ1L≤θ1<θ

1
U

vec(Â1
2b − Â2

2b)
T(V̂ 1

2b + V̂ 2
2b)
−1vec(Â1

2b − Â2
2b), (21)

where Âi2b and V̂ i
2b are functions of the fixed β̃i and θ1.

Hansen (1996) has shown that SupLM∗ is a valid first-order approximation to the

asymptotic null distribution of SupLM. Despite having the computational cost of a boot-

strap, it only approximates the asymptotic distribution.

The p-value is calculated as the percentage of SupLM∗ values which exceed the actual

SupLM value of the original time series.

2.2.2 Residual bootstrap

This method is fully parametric with respect to the data generating process, that means for

the one threshold case we use the complete specification for the null as given by H1 (single

regime VECM versus 1-threshold TVECM as alternative) and for the 2-threshold TVECM

we use the complete specification for the null as given by H2 (1-threshold TVECM versus

2-threshold TVECM as alternative). We further assume εt to be i.i.d. from an unknown

distribution and fixed initial conditions. To be specific, random draws are made from ε̃t,

which are the residuals under the null. Using the given initial conditions from the data,

and the parameters estimated under the null (λ̃i, β̃0, β̃1 and Γ̃i) we recursively generate

the bivariate vector series xbt for the given model (H1 or H2). For each draw the SupLM∗

value is computed and then again the percentage of the SupLM∗ values which exceed the

actual SupLM value (computed from the original time series) gives the p-value.

Hansen and Seo (2002) conjecture that this bootstrap method gives better finite sample

performance at the computational cost of being fully parametric with respect to the data

generating process.

2.3 Simulation

We perform numerous simulations in order to test the power of the proposed LM tests

using different data generating processes for the VECM and TVECM model specifications

from Equation (1), using ect−1(β0, β1) = (S − β1D − β0)t−1. In particular, we aim to

test the power of the two different bootstrap methodologies, the fixed regressor bootstrap

5 For the 2-threshold TVECM we need to compute V̂ j
3 (β̃i, θ̃

1, θ2)b , whereby the values of the null β̃i and
θ̃1 are kept fixed.

6 In the 2-threshold TVECM we need to compute Equation (20).
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and the residual bootstrap as discussed in Section 2.2. Figure 3 represents graphically the

sequential search for the two thresholds.

Figure 3: Null versus alternative hypothesis in the sequential search for θ1 and θ2

The fixed regressor bootstrap and the residual bootstrap test assume that there is no threshold in the

threshold search for θ1, ie for the first threshold search the null hypothesis is a VECM (H1). For the

threshold search for θ2, the null is a 2-regime TVECM (H2), with the 3-regime TVECM (H3) as the

alternative hypothesis.
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In this subsection we use the following notation: βi and θi are the parameters fixed in

the data generating process, while β̂i and θ̂i are the estimates from our simulations. For

each simulation we generate 1,000 estimators β̂i and θ̂i and compute the mean as well as

the standard deviation. The mean is compared to βi and θi and the standard deviation is

used as a measure of the precision of the estimations.

The aim of the simulation is to understand how precise we can estimate βi and θi, as

well as to understand the power of the fixed regressor and the residual bootstrap.

2.3.1 Model class H2: 2-regime TVECM

We begin our simulation to test the proposed methodology for the 2-regime TVECM H2

as specified in Equation (4). The aim of the simulations is to understand how precise we

can estimate β0, β1 and θ1, and measure the power of the fixed regressor and the residual

bootstrap test. We choose as an exemplification β1 = 1.10, β0 = 10 and θ1 = 3 for

our data generating process. We introduce additional restrictions regarding the generated

time series: firstly, we expect that the data generating process in Equation (4) produces

time series that are I(1) and a basis ect−1(β0, β1) that is I(0) at 90% confidence level

(CL) using the augmented Dickey-Fuller test. We do also not allow for the time series

to become large in absolute terms, ie we set the maximal allowed absolute value of each

generated data point to 500. For cross checking purposes we also test a simulation where
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we do not enforce these restrictions. We label this simulation in the following tables as

”unrestricted” as opposed to the ”restricted” cases. We investigate different time series

lengths, however our baseline sample size is 1,000 periods. The grid search is performed

using an equidistant grid size of 10, 50 and 100 as well as a dynamic grid setting. The

dynamic grid setting is determined by a minimum distance, between two individual grid

points. The dynamic setting is of course potentially very expensive, as it may lead to

a large number of grid points. In our simulation exercise, we have chosen 0.01 as the

distance between two grid points for the β1 grid and 0.5 for the β0 and θ1 grid. In the

restricted case, where we have the spot and derivative times series confined in absolute

terms to 500, the basis can vary between -1,000 and 1,000 in extreme situations.7 In this

case we can expect a grid size in the order of 2,000/0.5=4,000 for the β0 grid as well as for

the θ1 grid. The grid size for the β1 grid does usually not reach such extreme values. From

an economic viewpoint, the value of β1 in our data generating process is chosen to be close

to 1. Then, the grid is build around the theoretical value β = 1 (observed basis) and the

value found in the initial VECM estimation. Assuming that the VECM estimation is 4,

then the grid is gauged from around 0.8 and 4.2, to include the VECM estimate and the

theoretical value of 1. This leads to a grid size of (4.2-0.8)/0.01=340. The advantage of

the dynamic grid setting is that the precision of the estimation process is predefined and

not the number of grid points.

All parameters in the data generating process given in Equation (4) are generated with

a random number generator, except for β0, β1 and the threshold θ1 (in case of a threshold

model). The means of the estimates β̂0, β̂1 and θ̂1 from the 1,000 simulations are then

compared to the values β0, β1 and θ1 chosen in the data generating process. We have fixed

the VAR lag in the data generating process to one. Relaxing this restriction to more VAR

lags is straight forward and yields the same results, however with lower precision due to

the larger number of parameters to be estimated.

The detailed results of the 1-threshold TVECM model specification are presented

in Table 1. Table 1 yields two immediate observations, the mean of β̂1 is practically

independent of the grid setup and the outcomes of the bootstrap methodologies are also

independent. The fixed regressor and residual bootstrap have very small β-errors, below

2%. As expected the standard deviation of β̂1 is getting larger for coarser grid settings. In

other words, we find a clear dependence of the quality of the estimation precision on the

grid size. The dynamic grid setting shows the best performance. Independent of the grid

size, the mean values of β̂0 and θ̂1 from our 1,000 simulations are imprecise, ie far-off from

their theoretical values, fixed in the data generating process. No relationship between the

grid setup and the precision can be inferred.

7 This is strictly correct only if β1 is around 1.
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Table 1: 2-regime TVECM H2 - estimation precision

The 2-regime TVECM model with one threshold θ1 belongs to model class H2. The data generating

process contains one threshold with the theoretical value 3. “Restricted” means that the underlying time

series are restricted to the maximum value of 500 in absolute terms and must be I(1) while their basis must

be I(0). The table shows the means and the standard deviations (figures in brackets) of 1,000 estimates

β̂0, β̂1 and θ̂1 for different grid settings. We also report how often the null hypothesis of a linear VECM

model class H1 is incorrectly not rejected at different confidence levels (CL) by the fixed regressor and the

residual bootstrap. “dyn” stands for the dynamic grid setting based on a minimum distance, while the

rest are fixed, equidistant grid settings.

β̂1 β̂0 θ̂1 fixed regressor residual

grid (stdev) (stdev) (stdev) β-error, CL β-error, CL

theor. value 1.10 10 3 90% 95% 99% 90% 95% 99%

restricted 10 1.10 7.49 4.79 0.002 0.004 0.007 0.004 0.005 0.005

(0.29) (50.56) (47.48)

restricted 50 1.09 5.42 7.4 0.002 0.002 0.004 0.003 0.006 0.007

(0.10) (14.74) (14.92)

restricted 100 1.10 5.42 7.49 0.003 0.005 0.007 0.004 0.005 0.012

(0.04) (16.63) (16.00)

restricted dyn 1.10 8.39 4.46 0.002 0.002 0.007 0.004 0.005 0.012

(0.02) (32.99) (33.00)

unrestricted 50 1.05 -1.67 14.28 0.002 0.005 0.008 0.002 0.004 0.010

(0.84) (111.16) (121.17)

However and most importantly, if we compute the sum of β̂0 and θ̂1 for each simulation

and compute the average and standard deviation, we find that the results of the point

estimate of the sum β̂0 + θ̂1, which are the estimated transaction costs, have a much

higher estimation precision compared to the point estimates of the individual parameter

estimates. The results are displayed in Table 2.

The best performance is again found for the dynamic grid setting for the important

restricted case. This result is also graphically shown in Figure 4. This is a very posi-

tive result, which we have tested for arbitrary parameters, because for arbitrageurs the

sum β̂0 + θ̂1, which represents the transaction costs, is important and not the individual

parameter estimates β̂0 and θ̂1.
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Table 2: 2-regime TVECM H2 - β̂0 + θ̂1 estimation precision

The table shows for the same simulations as in Table 1 the sum β̂0+θ̂1, which corresponds to the transaction

costs based on our no-arbitrage argument. The sum β̂0 + θ̂1 is very close to the theoretical value and the

standard deviation is small, with a clear dependence on the grid setup. We find the highest precision for

the dynamic grid setup.

grid β̂0 + θ̂1 stdev

theor. value 13

restricted 10 12.28 4.37

restricted 50 12.82 3.14

restricted 100 12.91 1.33

restricted dyn 12.85 1.17

unrestricted 50 12.25 7.75

Figure 4: 2-regime TVECM H2 - distribution of parameter estimates

The first three graphs show the distribution of the three estimates based on 1,000 MC simulations for the

model in Equation (4) for the dynamic grid setup. The graph on the very right-hand side shows the sum

β̂0 + θ̂1, which represents the estimator of the transaction costs. The distribution of β̂1 is very narrow,

whereas we find large outliers for the individual parameter estimates of β̂0 and θ̂1. The distribution of

β̂0 + θ̂1 is again very narrow, with a similar relative error as for β̂1.
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The graphs in Figure 4 contain, despite their similarity, several interesting features.

As already shown in the Table 1, the means generated from our 1,000 simulations are close

to the theoretically expected value. The range of the distribution is partly determined

by the chosen grid. That is why the plot for the estimator of β1 is shifted to the right,

because we have calibrated the grid to include the value β̂1 = 1 (observed basis). For
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the β̂0 and θ̂1 estimators we find that the weight of the distribution is heavily centred

around the values of the data generating process. However, we find several outliers far

away from that theoretical value fixed in the data generating process. The most important

and interesting finding is, that if we look at the very right graph in Figure 4, namely the

sum of β̂0 + θ̂1, we see that the dispersion is dramatically lower compared to its individual

parameter estimates (two graphs in the middle). The individual parameter estimates of

β̂0 and θ̂1 have large outliers ranging from around -200 to +200.

The negative log-likelihood functions in Figure 5, which need to be minimized, show

a non-smooth behaviour, hence the proposed grid search is necessary. The graphs give

also an immediate explanation why the estimation of β1 has a high degree of precision

(assuming a sufficiently fine grid is chosen) and why the precision of the estimators of β0

and θ1 are poor.

Figure 5: 2-regime TVECM H2 - negative log-likelihood functions

The figures show the negative log-likelihood function for three out of our 1,000 simulations. It is obvious

that the functions are non-differentiable. It also shows why we find a very high degree of precision for β1

and a poor precision for β0 and θ1.
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2.3.2 Testing for a second threshold in model class H2

As a next and important step we generalize the simulation to search and test for two

thresholds. We are making one assumption, based on a purely economic viewpoint, namely

that, we have at most one positive and/or one negative threshold, which correspond to

the two transaction costs for a positive basis trade and a negative basis trade. This

assumption relates to our no-arbitrage discussion in Section 1 which in turn links straight

to the three classes of models Hi (see Figure 1). We want to test for the performance of

the methodology when searching for a second threshold in a data generating process that

only contains one threshold.
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The previous analysis has shown that the dynamic grid point setting is the most precise

methodology to estimate the transaction costs (see Table 1 for β̂1 and Table 2 for β̂0 +θ1),

even though computationally more costly. Therefore, we will from now on use this grid

setting only.

We use the same model parameters and the same model, a 1-threshold TVECM (model

class H2), as in the previous subsection, however, test if our two bootstrap methodologies

reject the existence of a second threshold. The data generating process has no second

threshold, ie θ2 does not exist and the estimate θ̂2 should be distributed around zero.

Our previous simulation has shown that β1 is estimated with a high degree of precision

if we use a dynamic grid setup. In order to save computational time we fix β1 during the

second threshold search to the parameter value found in the first threshold search and

hence reduce the search for the second threshold to a 2-dimensional grid search for β0 and

θ2.

In order to improve the understanding of the reliability of the methodology for the

second threshold search, we test different time series lengths as well as the restricted

versus the unrestricted case. However, we always use the dynamic grid point setting. The

results are presented in Table 3.

Table 3: 2-regime TVECM H2 - estimation precision (fixed β1)

This table shows the parameter estimates for the threshold search for θ1 and θ2 as well as the theoretically

expected values. All results are generated with a dynamic grid setup and β1 is fixed in the threshold search

for θ2. The theoretical value for θ2 is denoted with a “n/a” as the data generating process only contains

one threshold.

β̂1 β̂0 θ̂1 β̂0 + θ̂1 β̂0 θ̂2

theor. value 1.10 10 3 13 10 n/a

type periods (stdev) (stdev) (stdev) (stdev) (stdev) (stdev)

restricted 1,000 1.10 8.39 4.46 12.85 8.64 -10.38

(0.02) (32.99) (33.00) (1.17) (19.90) (19.82)

restricted 2,000 1.10 9.35 3.57 12.93 8.09 -9.51

(0.01) (7.93) (7.91) (0.72) (13.83) (13.72)

unrestricted 1,000 1.10 11.05 2.00 13.05 16.29 -17.83

(0.01) (26.29) (26.33) (1.86) (49.91) (49.78)

As in the previous simulations, the estimators β̂1 as well as θ̂1+β̂0 are very precise, with

the highest precision achieved in the restricted case and especially in the case where the

tested time series has a length of 2,000. We use a dynamic grid setup, which is the reason

20



why we find similar standard deviations for the estimators β̂0 and θ̂1 in the unrestricted

case compared to the restricted case for a time series length 1,000. In contrast, we have

tested fixed and dynamic grid points in Table 1 which results in much wider standard

deviations of the unrestricted case compared to the figures of the restricted case. The

estimator θ̂2 is distributed around zero, as expected, because we do not have a second

threshold in our data generating process.

The results of the reliability of the bootstrap algorithms for both threshold searches

are given in Table 4. Again, we find that both tests, the fixed regressor and the residual

bootstrap, produce consistent and precise estimates in terms of α- and β-errors.

The β-errors are very small, as expected from the results in Section 2.3.1. The α-errors

of the second threshold search are higher, however still acceptable.

Table 4: 2-regime TVECM H2 - bootstrap precision

This table shows the β-errors for the threshold search for θ1 and the α-errors of the threshold search for

θ2. We use the same ordering of model setups as in the previous Table 3.

first threshold bootstrap second threshold bootstrap

fixed regressor residual fixed regressor residual

90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.002 0.002 0.007 0.004 0.005 0.012 0.21 0.15 0.07 0.25 0.15 0.06

0.003 0.003 0.006 0.004 0.004 0.014 0.35 0.30 0.23 0.36 0.30 0.18

0.000 0.000 0.000 0.001 0.001 0.001 0.23 0.16 0.09 0.27 0.16 0.09

In order to test the robustness of the method, where we keep β1 fixed in the threshold

search for θ2, we repeat the simulation and search now also for an optimal β1 in the

threshold search for θ2 using the log-likelihood method. The threshold search for θ1 is

performed in the usual manner, hence we only need to present the figures for the threshold

search for θ2. As an illustration, we focus on the restricted case and a time series length

of 1,000 in our data generating process. The results presented in Table 5 lead to two

immediate observations: firstly, the estimator β̂1 is dramatically less precise compared to

the results with a fixed β1 (Table 3) and the α-errors are very similar to the ones presented

in the first row and the last six columns of Table 4.

We can conclude that the performance of the tests is higher for the second threshold

search if β1 is kept fixed to the value found in search for θ1. This also reduces the

computational burden.
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Table 5: 2-regime TVECM H2 - estimation precision (β1 variable)

This table shows the parameter estimates for the threshold search for θ2 as well as the theoretically

expected values. All results are generated with a dynamic grid setup and this time β1 is kept variable, ie a

grid search is applied also to β1 while searching for θ2. The theoretical value for θ2 is denoted with “n/a”

as the data generating process only contains one threshold.

β̂1 β̂0 θ̂2 fixed regressor residual

(stdev) (stdev) (stdev) α-error, CL α-error, CL

theor. value 1.10 10 n/a 90% 95% 99% 90% 95% 99%

restricted 1.02 8.74 -9.94 0.28 0.19 0.09 0.28 0.19 0.09

(0.13) (17.25) (17.22)

2.4 Model class H3: 3-regime TVECM

Finally, we present the results for a data generating process with two thresholds. Without

loss of generality we present results for the following choice of parameters: β1 = 1.1,

β0 = 1 as well as two thresholds θ1 = −4 and θ2 = 6. We use again the dynamic grid

point method and a time series of length 1,000 as the baseline setup. Further, as part of

our baseline case, we keep β1 for the threshold search for θ2 fixed, as we have shown in

Section 2.3.1 that this produces best results. However, we perform a variety of further

robustness checks, such as we extend the time series length to 5,000, compute a case with

a very short time series length of 100, analyse the unrestricted case, as well as test results

where we keep β1 variable in the threshold search for θ2. In addition, we vary the precision

parameter settings in the dynamic grid search. As previously, we use the standard setting

∆β0 = 0.5, ∆β1 = 0.01 and ∆θj = 0.5, but also consider cases where ∆β0 = 1 or 0.1,

∆β1 = 0.1 or 0.005 and ∆θj = 1 or 0.1. We will start with the presentation of the results

for the threshold search for θ1 and proceed with the threshold search for θ2. Depending

on the generated time series either of the two thresholds may be found in the first round.

Table 6 shows that the estimation of β1 is again very precise, whereas the estimate of β0

is poor. For the estimation of β1, we find a clear improvement of quality with increasing

time series length and smaller grid spacing. The estimate of β0 shows a large standard

deviation, which is not dependent on the time series length and the grid spacing. The

threshold estimate is poor, for two reasons, firstly, we know from the one threshold case

that the estimation of the threshold is imprecise and secondly, in the two threshold case

the estimation procedure may find either the negative or the positive threshold. Again,

the most important finding is, that the sum of β̂1 and the threshold is for the negative

values very close to β̂0 + θ̂1 = −3 and for the positive values very close to β̂0 + θ̂2 = 7. We
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find a clear dependence of the quality of the estimator on the time series length and the

grid spacing.

Table 6: 3-regime TVECM H3 - first threshold search estimation precision

This table shows the results of the first threshold search for our 2-threshold respective 3-regime TVECM.

The point estimates of θi are imprecise, simply because it is possible to find either of the two thresholds

in the first search, -4 or 6. The estimates of the two transactions costs (positive basis trade and negative

basis trade) show again a high estimation precision.

β̂1 β̂0 θ̂ β̂0 + θ̂1 β̂0 + θ̂2

theor. value 1.10 1 -4 or 6 -3 7

type periods precision (stdev) (stdev) (stdev) (stdev) (stdev)

restricted 100 0.01/0.5 1.09 0.53 1.85 -2.98 6.44

(0.08) (16.09) (17.00) (0.95) (1.78)

restricted 1,000 0.1/1 1.10 -0.89 3.00 -3.35 6.89

(0.04) (16.84) (18.14) (2.16) (2.54)

restricted 1,000 0.01/0.5 1.10 0.08 2.43 -2.98 6.94

(0.02) (6.15) (8.69) (0.65) (1.59)

restricted 1,000 0.005/0.1 1.10 -0.24 2.69 -2.94 6.86

(0.01) (5.89) (8.43) (0.34) (0.89)

restricted 5,000 0.01/0.5 1.10 -0.10 2.65 -3.00 6.75

(0.01) (21.03) (21.90) (0.89) (1.33)

unrestricted 1,000 0.01/0.5 1.10 -1.02 4.00 -3.16 6.82

(0.01) (17.47) (18.38) (1.51) (1.83)

The power of the two bootstrap tests is very high, as expected from the previous

simulation results (see Table 7), except for the case where the tested series have a length

of 100 data points. Even though the tests have still an acceptable power in this case, it is

visibly worse compared to the test statistics where we consider time series with a length

of 1,000 and more observations.

The figures for the second threshold search, presented in Table 8, are extremely promis-

ing, because the two transaction costs are well estimated. In addition to the simulations

presented in Tables 6 and 7, we add for the second threshold search also the simulation,

where β1 is kept variable in the search for the second threshold. In this simulation we do

not fix β1 to the value found in the threshold search for θ1, but perform a grid search to

find the ”optimal” value based on the maximum likelihood method.
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We find in Table 8 a similar picture as in the first threshold search, however as expected

with slightly bigger standard deviations. The threshold parameter estimate is poor. How-

ever, the sum of β̂0 and the threshold is for the negative values very close to β̂0 + θ̂1 = −3

and for the positive values very close to β̂0 + θ̂2 = 7. In general, we find higher precisions

for longer time series length and for smaller grid spacing.

The β1 estimation in the variable case has a low degree of precision (last simulation in

Table 8). This result is in line with previous simulation findings from model class H2.

The bootstrap precisions are displayed in Table 9. We find that the test performance

of our proposed methodology is generally satisfying, however as expected not as high as

in the search for the first threshold (see Table 7). The power of the tests increases with

the time series length.

Table 7: 3-regime TVECM H3 - bootstrap precision for first threshold search

This table shows the β-errors of the two bootstrap methods. The parameter estimates can be found in the

previous Table 6.

fixed regressor residual

β-error, CL β-error, CL

type periods precision 90% 95% 99% 90% 95% 99%

restricted 100 0.01/0.5 0.018 0.028 0.069 0.017 0.036 0.099

restricted 1000 0.1/1 0.000 0.001 0.001 0.001 0.001 0.002

restricted 1000 0.01/0.5 0.000 0.001 0.001 0.000 0.000 0.002

restricted 1000 0.005/0.1 0.000 0.000 0.000 0.001 0.001 0.002

restricted 5000 0.01/05 0.000 0.000 0.000 0.000 0.000 0.000

unrestricted 1000 0.01/0.5 0.000 0.001 0.002 0.001 0.001 0.004

The negative log-likelihood function for 3 different sample simulations is shown in

Figure 6. The negative log-likelihood function for the threshold estimation is now more

complex, reflecting the fact that we have two thresholds. The functional form shows im-

mediately the non-differentiable structure. Further, it is again evident, why the individual

parameter estimates of the threshold and β0 are imprecise. The estimation of β1 is as in

the previous cases very accurate.
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Table 8: 3-regime TVECM H3 - second threshold search estimation precision

This table shows the results of the second threshold search for our 2-threshold TVECM, respective 3-

regime TVECM. The point estimate of θ is imprecise, simply because we have a chance to find either of

the two thresholds (-4 or 6). In addition to the first threshold search presented in Table 6 we also include

a simulation where we keep β1 variable (last two rows), ie where we have not fixed β1 to the estimate

found in the first threshold search. This simulation is denoted by the appreciation ”var” for variable. The

precision of the estimates of the two transactions costs is again very high. β1 is not reestimated, except

for the simulations in the last two rows, hence we filled in “n/a”.

β̂1 β̂0 θ̂ β̂0 + θ̂1 β̂0 + θ̂2

theor. value 1.10 1 -4 or 6 -3 7

type periods precision (stdev) (stdev) (stdev) (stdev) (stdev)

restricted 100 0.01/0.5 n/a 0.62 0.13 -3.32 6.10

(8.18) (10.44) (2.46) (3.00)

restricted 1,000 0.1/1 n/a 0.53 0.55 -2.99 5.60

(15.53) (16.85) (3.00) (2.90)

restricted 1,000 0.01/0.5 n/a 0.84 0.43 -2.91 6.28

(4.28) (7.56) (1.80) (2.22)

restricted 1,000 0.005/0.1 n/a 0.99 0.25 -2.96 6.42

(6.43) (9.25) (2.48) (2.04)

restricted 5,000 0.01/0.5 n/a 2.36 -1.07 -2.63 6.34

(19.75) (20.90) (1.84) (2.10)

unrestricted 1,000 0.01/0.5 n/a 1.65 -1.48 -3.44 5.94

(18.51) (19.97) (4.15) (2.82)

restricted 1,000/var 0.01/0.5 1.10 1.06 -0.21 -2.95 5.55

(0.05) (8.37) (10.52) (2.09) (2.63)

The distribution of the estimators β̂0, β̂1, θ̂
i and the transaction costs for the first

and second threshold search are presented in Figure 7. The distribution of β̂0 and the

thresholds is wide in line with the form of the negative likelihood function in Figure 6.

In each search we can either find θ1 or θ2, which cannot be distinguished due to the

imprecise estimation. However, looking at the transaction costs (right-hand panel), which

are estimated at a good precision, we can clearly unravel the two different transaction

costs.
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Table 9: 3-regime TVECM H3 - bootstrap precision for the second threshold search

This table shows the β-errors of the two bootstrap methods. The parameter estimates can be found in the

previous Table 8.

fixed regressor residual

β-error, CL β-error, CL

type periods precision 90% 95% 99% 90% 95% 99%

restricted 100 0.01/0.5 0.053 0.070 0.102 0.052 0.073 0.113

restricted 1,000 0.1/1 0.015 0.016 0.021 0.021 0.021 0.027

restricted 1,000 0.01/0.5 0.007 0.008 0.009 0.006 0.007 0.009

restricted 1,000 0.005/0.1 0.015 0.017 0.020 0.015 0.016 0.017

restricted 5,000 0.01/0.5 0.008 0.009 0.010 0.008 0.009 0.012

unrestricted 1,000 0.01/0.5 0.015 0.016 0.018 0.014 0.019 0.021

restricted 1,000/var 0.01/0.5 0.011 0.011 0.013 0.009 0.010 0.014

Figure 6: 3-regime TVECM H3 - negative log-likelihood function for the second threshold

The figures show the negative log-likelihood functions for three sample simulations out of our 1,000 sim-

ulations for the second threshold search. The functions are non-differentiable. A high degree of precision

can only be expected for β1. We find evidence for a low individual precision of β0 and θi. The two vertical

lines in the left-hand graph represent the two thresholds θ1 and θ2.
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Figure 7: 3-regime TVECM H3 - distribution of TVECM estimates

The first three graphs in the upper and lower panel show the distribution of the three estimates based on

1,000 MC simulations for our model in Equation (18). The graph on the very right shows the estimation

of the transaction costs β̂0 + θ̂i. The distribution of β̂1 is very narrow, whereas we find large outliers for

β̂0 and θ̂i. The distribution of β̂0 + θ̂i is also very narrow, with a similar relative error as for β̂1.
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2.4.1 Conclusion from the simulation exercise

The comprehensive simulation exercise has revealed the following outcomes: The method

discussed in Sections 2.1 and 2.2 leads to stable and robust results for the 1- and 2-

threshold TVECM. The transaction costs θi+β0 as well as β1 can be estimated with high

accuracy, whereas the distribution of θ̂i and β̂0 is very wide. The dynamic grid search

strategy, where the grid size is determined with an accuracy parameter (distance between

two grid points of the equidistant grid), has turned out to be superior. The β1 can be

fixed in the second threshold search to the value found in the first search. This yields best

results and reduces the computational burden dramatically.
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3 Application: Index trading and Commodity arbitrage

We apply our proposed 3-regime TVECM methodology to different markets that exhibit

a non-zero basis (either in contango or backwardation) for two similar financial market

instruments traded in the spot and the derivatives market.

We empirically estimate unknown transaction costs for the S&P 500 and for palladium

by analysing the basis defined as the spot price minus the price of the future on the same

underlying.

In our application we present results for our dynamic grid setup, for different periods

and we run the model for 1 lag up to 5 lags in the VAR term. We have used the Schwarz

information criterion (SIC) to determine the model with the best fit. We furthermore

have also performed unit root, stationarity and cointegration tests. We find cointegration

for the spot and futures prices of the S&P 500 and palladium, while the individual time

series are I(1).

Further as an additional illustration of the usage of (T)VECM models we introduce

briefly two measures of price finding and the terminology of half-life of shock absorption.

From the speed of adjustments in Equation (1) we can compute the HAS and GG measures

of price discovery. The two relevant and independent Hasbrouck (HAS) measures (Man

et al.; 2013) are defined for one individual regime as follows:

HAS1 =
λ22

(
σ21 −

σ2
12

σ2
2

)
λ22σ

2
1 − 2λ1λ2σ12 + λ21σ

2
2

and HAS2 =

(
λ2σ1 − λ1 σ12σ1

)2
λ22σ

2
1 − 2λ1λ2σ12 + λ21σ

2
2

. (22)

To estimate the Equations (22) we rely on the estimated covariance matrix from the

VECM to capture the terms σ21, σ12 and σ22. In the following we define HAS as the average

of HAS1 and HAS2. For simplicity, we have skipped the superscripts indicating the regime.

The second indicator for price discovery, the GG measure (Gonzalo and Granger; 1995)

decomposes the common factor itself, but ignores the correlation of the innovations in the

two markets. The following two measures exist

GGspot =
−λ2

λ1 − λ2
and GGfutures =

λ1
λ1 − λ2

, (23)

whereby it is obvious that GGspot + GGfutures = 1.8 Therefore, we will use GGspot only

and skip the superscript.

8 Unlike the HAS measure, the GG measure is not mathematically confined to the closed interval [0,1]
which seems to make an interpretation similar to the Hasbrouck measure difficult. GG measures below
0 and above 1 should be interpreted as 0 and 1, respectively (see Gyntelberg et al. (2013) for more
discussion).
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HAS and GG measures greater than 0.5 imply that more than 50% of the price discov-

ery occurs in the spot market. When the measures are close to 0.5 both markets contribute

to price discovery without evidence on which market is dominant. GG and HAS below

0.5 suggest price leadership of the futures market.

Finally, we are interested in examining the speed of adjustment towards the long-

term equilibrium. As the spot and futures time series in the bivariate VECM share a

common stochastic trend, the impulse response function for the cointegrating residual can

be used to determine the speed of adjustment to the long-run equilibrium (Zivot and Wang

(2006)). The vector error correction mechanism directly links the speed of adjustments to

the cointegration residual ut which follows an implied AR(1) process:

ut = (1 + λ1 − β1λ2)ut−1 + εspott − β1εfuturest ≡ φut−1 + εspott − β1εfuturest . (24)

The half-life of a shock, n, can now be calculated from the AR(1) coefficient φ as:

n =
ln(0.5)

ln(φ)
. (25)

Regulators can use the model in a variety of different ways. They can study which

market moves first, how large are transactions costs and how long does it take for the

markets to return to the long-run equilibrium after an exogenous shock. Changes in the

speed of adjustment or half-life might be especially interesting, after regulatory changes

have been introduced, in order to study the impact of the implemented changes on market

participants behaviour and also on relative or absolute liquidity of both markets. In

markets, where high frequency data is available (eg. index-trading), a pre and post-event

analysis could be performed to evaluate the effectiveness of policy actions.

3.0.1 S&P 500

As an illustration we present the analysis of the Standard & Poor’s 500, abbreviated as the

S&P 500 index, and its futures index for the period starting in 2000. The S&P 500 is an

American stock market index based on the market capitalizations of 500 large companies

having common stock listed on the New York stock exchange or NASDAQ. The index and

the future prices, as well as the basis are presented in Figure 8.
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Figure 8: S&P 500 spot, futures price and spot-future basis

The left-hand graph shows the S&P 500 index and its futures for the period starting in 2000. The prices

are given in index points. The right-hand graph shows the observed basis (spot-future), as well as the two

transaction costs for a positive and a negative basis trade. Source: Bloomberg, authors’ calculations.
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We find evidence for two thresholds within the considered period. Detailed results can

be found in Tables 10 (threshold search for θ1) and 11 (threshold search for θ2).

Table 10: Threshold search for θ1 - S&P 500

The table shows the results for the threshold search for θ1 for the period April 2000 until end February

2017. The estimated transaction costs are significant at lag=3, for which the SIC also has a local minimum.

The transaction costs are around -10 index points. The superscript *, ** and *** denotes the 90%, the

95% and 99% CL respectively. λj
i are the regime dependent speed of adjustments from Equation (1) with

the subscript L as the lower regime and U as the upper regime.

Bootstrap %

lag SIC fixed residual β̂1 β̂0 + θ̂1 λ11L λ12L λ11U λ12U lower

regime

1 7.47 0.00 0.00 1.007 -8.18 0.02 0.06∗ 0.37∗∗ 0.68∗∗∗ 44

2 7.43 0.00 0.01 0.998 -1.78 0.02 0.09 0.12∗ 0.17∗∗∗ 21

3 7.38 0.04 0.07 1.001 -10.16 -0.01 0.04 0.17∗∗∗ 0.23∗∗∗ 10

4 7.39 0.05 0.11 1.003 -12.40 -0.04 0.01 0.21∗∗∗ 0.27∗∗∗ 11

5 7.37 0.02 0.06 1.003 -12.21 -0.01 0.04 0.19∗∗∗ 0.26∗∗∗ 11

The threshold search for θ1 estimates transaction costs for a negative basis trade of

around β̂0 + θ̂1 = −10 index points. The transaction costs for a negative basis trade have

to be interpreted in absolute terms. The local minimum of the SIC is at lag=3, for which
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the threshold is also significant. The estimated transaction costs are very stable, except

for lag 2.

The results for the threshold search for θ2 are shown in Table 10. No results are

presented for lag=1 as the 1-threshold TVECM is a better model fit compared to the

2-threshold TVECM model.

Table 11: Threshold search for θ2 - S&P 500

The table shows the results for the threshold search for θ2 for the period April 2000 until end February

2017. We do not show the result for one lag, as a 1-threshold TVECM is the best model fit. The local

minimum value of the SIC is found at three VAR lags, for which the threshold is also significant. The

transaction costs for a positive basis trade are around 5 index points. The superscript * and ** denotes

the 90% and 95% CL respectively. λj
i are the regime dependent speed of adjustments from Equation (1)

with the subscript L as the lower regime and U as the upper regime.

Bootstrap %

lag SIC fixed residual β̂1 β̂0 + θ̂2 λ21L λ22L λ21U λ22U upper

regime

2 7.44 0.09 0.11 0.998 9.24 0.05 0.09∗∗ 0.07 0.15 14

3 7.40 0.08 0.11 1.001 5.38 0.04 0.08∗ 0.08 0.18 11

4 7.41 0.68 0.70 1.003 2.30 0.03 0.07 0.28 0.40 11

5 7.39 0.90 0.93 1.003 2.24 0.04 0.09∗ 0.20 0.29 11

Similar to the threshold search for θ1, we find a local minimum of the SIC at 3 lags,

for which the threshold is significant. This leads to transaction costs of a positive basis

trade of around 5 index points.

Further, we show price discovery measures for the different regimes at three lags in

Table 12.

Table 12: Measures of price discovery - S&P 500

The table shows price discovery measures for lag=3. The GG measures with the superscript + should be

interpreted as 1. The price discovery measures of the neutral regime are means of the estimation from the

first and second threshold search.

regime HAS GG leading market half-life (in days)

upper 0.53 1.72+ spot 6.6

neutral 0.56 2.90+ spot 14.05

lower 0.51 0.82 spot 13.50
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The spot market is leading in the two arbitrage regimes and as expected, the half-life

in the neutral regime is the longest. The HAS, GG and half-lives for the upper and lower

regime in Table 12 are based on the point estimates of insignificant speed of adjustments.

This seems to be contradicting to the general notion, that speed of adjustments must

be unequal to zero in the extreme regimes (arbitrage regimes). However, the upper and

lower regimes contain only around 10% of the data points and therefore it is challenging

to achieve statistical significance. This issue could be avoided by using intraday data (see

for example Gyntelberg et al. (2013) and Gyntelberg et al. (2017)).

3.1 Palladium

Palladium is a precious metal, which has similar properties like Platinum and belongs to

the same chemical group. It is used as an investment and industrial commodity. Its main

industrial use is in catalytic converters.

We have analysed several periods and present the period starting in 2000 for which

we have found evidence for two thresholds, resulting in the two transaction costs, for a

negative basis trade β̂0 + θ̂1 = −5.7USD per contract size of 100troy oz and a positive

basis trade β̂0 + θ̂2 = 1.1USD per contract size of 100troy oz for a model with one VAR

lag. The transaction costs for the negative basis trade have to be interpreted in absolute

terms. The time series of the spot, futures as well as the basis are graphically presented

in Figure 9. The two transactions costs are shown as horizontal lines in the right-hand

panel of that figure.

The estimation procedure shows the model fit based on SIC is not straight forward as

the value of the SIC is declining with a weak slope, reaching a plateaux at around 7 lags

before it declines further with increasing number of lags. The most parsimonious model

suggests the existences of two thresholds with high significance (see Tables 13 and 14) for

the period starting in 2000. Apart from lag=2 the transaction costs for a negative basis

trade are stable and around β̂0 + θ̂1 = −5.7USD for a contract size of 100troy oz which

have to be interpreted in absolute terms. The lower regime is an arbitrage regime, which

as expected contains only 11% of all observations.
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Figure 9: Palladium spot, future prices and spot-future basis

The figure on the left-hand side shows the palladium spot and the future prices. The prices are given in

USD for a contract size of 100troy oz. The figure on the right-hand side shows the basis as well as the two

transaction costs for a positive and a negative basis trade. Source: Bloomberg, author’s calculations
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Table 13: Threshold search for θ1 - Palladium

The table shows the results for the threshold search for θ1 for the period April 2000 until end December

2016. It is difficult to determine the best model fit as the SIC is declining until it reaches a local minimum

at lag =7 before it declines even further. The most parsimonious model has a significant threshold. The

transaction costs β0 +θ1 for a negative basis trade is -5.7USD. The superscript ** and *** denote the 95%

and the 99% CL respectively. λj
i are the regime dependent speed of adjustments from Equation (1) with

the subscript L as the lower regime and U as the upper regime.

Bootstrap %

lag SIC fixed residual β̂1 β̂0 + θ̂1 λ11L λ12L λ11U λ12U lower

regime

1 7.22 0.06 0.08 1.002 -5.75 -0.14 0.60∗∗∗ -0.37∗∗∗ 0.28∗∗∗ 11

2 7.19 0.44 0.52 1.003 0.67 -0.18 0.39∗∗∗ -0.29∗∗∗ 0.39∗∗∗ 88

3 7.16 0.67 0.74 1.003 -6.36 0.12 0.50∗∗ -0.19∗∗∗ 0.31∗∗∗ 10

4 7.08 0.28 0.34 1.002 -5.66 0.20 0.51∗∗ -0.17 0.25∗∗ 10

5 7.07 0.62 0.69 1.002 -5.77 0.15 0.54∗∗ -0.19 0.16∗∗ 11

The threshold search for θ2 finds a significant threshold at lag 1 for a positive basis

trade. The estimated transaction costs are β̂0 + θ̂2 = 1.1USD for a contract size of 100troy

oz. We also find that the upper regime appears to be an arbitrage regime as it contains
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12% of the overall observations. All other VAR specifications beyond lag 1 lead to a 1-

threshold TVECM as a better model choice over the 2-threshold TVECM. However, as

the lag=1 setup is the most parsimonious model and the threshold is highly significant we

have strong evidence for a 2-threshold TVECM. The results are presented in Table 14.

Table 14: Threshold search for θ2 - Palladium

The table shows the results for the threshold search for θ2 for the period April 2000 until end December

2016. It turns out that for lag>1 the threshold search for θ2 is not successful, because the 1-threshold

TVECM is a better model fit. The superscript ** and *** denotes the 95% and the 99% CL, respectively.

λj
i are the regime dependent speed of adjustments from Equation (1) with the subscript L as the lower

regime and U as the upper regime.

Bootstrap %

lag SIC fixed residual β̂1 β̂0 + θ̂2 λ21L λ22L λ21U λ22U upper

regime

1 7.23 0.02 0.03 1.002 1.14 -0.28∗∗∗ 0.44∗∗∗ -0.49∗∗∗ 0.30∗∗ 12

In addition to the estimated transaction cost we have computed measures of price

discovery for the relevant lag=1, which are presented in Table 15.

Table 15: Measures of price discovery - Palladium

The table shows price discovery measures for lag=1. The price discovery measures of the neutral regime

are means of the estimation from the first and second threshold search.

regime HAS GG leading market half life (in days)

upper 0.48 0.38 futures 0.44

neutral 0.46 0.56 - 0.60

lower 0.56 0.81 spot 0.51

In the upper regime we find some indication that the futures market leads the price

discovery process, whereas in the lower regime there is leadership of the spot market.

Both markets seem to absorb one unit shocks rather quickly. The neutral regime has

as expected a longer half life, however the difference is not very large. Furthermore, as

expected we have no clear indication as to which market leads the price finding in the

neutral regime.
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4 Conclusion

The identification of thresholds in non-linear vector correction models is of rather com-

plex origin with several unresolved problems. In this paper, we present the solution for

one unresolved issue which is the estimation of a 3-regime TVECM with an unknown

cointegrating vector. Our proposed methodology extends the 2-regime TVECM model

as proposed by Hansen and Seo (2002). In contrast to Hansen and Seo (2002) we also

introduce an intercept β0 in the cointegrating relation (S − β1D − β0)t to account for a

distorted parity relationship, eg the non-zero basis. Using a sequential grid search for the

first and the second threshold search, we estimate the cointegration relationship as well as

the two thresholds (θ1 and θ2) by employing a maximum likelihood approach. As there

are practically no empirical studies for TVECMs even for the 1-threshold case we present

a comprehensive simulation study to investigate the reliability of our proposed method.

Hansen and Seo (2002) have suggested a grid point search to estimate the variables βi

and θi with a fixed number of grid points. We show that a dynamic grid point setting,

where the distance between two grid points is set via a precision parameter, instead of

defining a fixed number of grid points, yields the best results, albeit at potentially high

computational costs. The slope β1 in the cointegrating relationship is estimated at a very

high degree of precision. We show that the value β̂1 found in the first threshold search

can be fixed in the second search. This lowers the dimension of the grid space and hence

reduces the computing time in the second grid search. The thresholds θi and the shift in

the cointegration relation β0 are estimated poorly, but the sum θi + β0 is estimated with

a very high degree of precision.

Our proposed methodology is particularly appealing for the analysis of distorted parity

relationships in economics, such as no-arbitrage relationships with a non-zero basis. A

persistent non-zero basis between two similar financial market instruments traded in the

spot and in the derivative markets points towards the presence of transaction costs on

arbitrage trades that prevent a complete adjustment of market prices to the theoretical

no-arbitrage condition of a zero basis. In our applications, we show that our proposed 3-

regime TVECM methodology can estimate unknown transaction costs on arbitrage trades

(sum of θi+β0) with a very high degree of precision. Further, we have computed measures

of price discovery as well as half-lives of shocks. These measures could help regulators

evaluate which markets are more dynamic, and hence provide them with a better picture

of market activity.
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