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Abstract

There is a growing recognition in the literature on business cycles that production
technologies may give rise to complicated interactions between seasonal and cyclical
movements in economic time series, which can distort business cycle inference based on
seasonally adjusted data. For the most part, however, the empirical research in this area has
relied on standard univariate seasonal adjustment techniques that provide only a partial
description of such interactions. In this paper, we develop an unobserved components
model that explicitly accounts for the effects of business cycles on industry-level
seasonality and for the potential feedback from seasonality to the aggregate business cycle.
In particular, the model extracts an aggregate “common cycle” from industry-level data,
allows formal statistical testing of seasonal differences in the comovement of an industry
with the common cycle, and identifies economy-wide and industry-specific contributions to
the seasonal and non-seasonal variation in the data.  Applying the model to quarterly US
payroll employment data, we frequently find evidence of statistically significant differences
across seasons in the comovement between sectoral employment and the common cycle.
On the other hand, we also find that seasonal fluctuations in employment at the industry
level are largely idiosyncratic and that the proportion of the total variance of the common
cycle accounted for by seasonality is much less than for aggregate employment. This
suggests that seasonal shocks may have less of a business cycle element to them than one
might infer from the seasonal movements in aggregate variables.

                                                     

* Spencer Krane is Chief of the Economic Activity Section at the Board of Governors of the Federal Reserve System.
William Wascher is Chief of the Wages, Prices, and Productivity Section at the Board of Governors of the Federal
Reserve System and Visiting Economist at the Bank for International Settlements. We gratefully acknowledge helpful
comments from Palle Andersen, William Cleveland, Frank Diebold, Jim Hamilton and Paul Ruud. The views expressed
are those of the authors and not necessarily those of the Federal Reserve Board or the Bank for International Settlements.



Contents

1. Introduction  .................................................................................................................. 1

1.1 Overview  ............................................................................................................ 1

1.2 Previous literature on the linkages between seasonality and the business cycle . 2

2. Interactions between seasonality and the business cycle: some examples from

US payroll employment data  ........................................................................................ 4

2.1 Demand-driven interaction  ................................................................................ 5

2.2 Technology-based interaction  ............................................................................ 5

3. Model specification and estimation strategy  ................................................................ 6

3.1 Preliminary data analysis  ................................................................................... 6

3.2 Model specification  ........................................................................................... 7

3.3 State-space form  ................................................................................................ 8

3.4 Estimation  .......................................................................................................... 10

4. Empirical results  .......................................................................................................... 12

4.1 Characteristics of the unobserved common cycle  .............................................. 12

4.2 Comovements between the component series and the common cycle  .............. 14

4.3 Decomposition of the component series  ............................................................ 16

4.4 Comparison of multivariate and X-11 seasonally adjusted series  ..................... 19

5. Comparisons with alternative cyclical indicators  ........................................................ 23

6. Conclusions  .................................................................................................................. 25

Appendix  ..................................................................................................................................... 26

References  ................................................................................................................................... 31



1

1. Introduction

1.1 Overview

A growing segment of the literature on business cycle dynamics is turning to the large and relatively

predictable seasonal movements in data as a means of obtaining insights into factors governing the

more general dynamic properties of economic time series. One branch of this research has argued that

complicated interactions may exist between seasonal and cyclical movements in data (as a result of,

for example, non-linear marginal costs or seasonal shifts in production technologies), and that such

interactions can cloud the distinction between seasonality and cyclicality and can distort business

cycle inference based on seasonally adjusted data.1

For the most part, the empirical work in this area has relied on standard univariate seasonal adjustment

techniques or simple single-equation regression models. These methods, however, can provide only a

partial description of the potential interactions between seasonality and cyclicality. In this paper, we

more fully account for seasonal/cyclical interactions in a model of quarterly US payroll employment

data by parametrically specifying seasonal and non-seasonal components for an aggregate cycle, the

comovement of disaggregated industry-level employment with the cycle, and the idiosyncratic

variation in industry employment. These specifications are embedded in a simultaneous-equation

unobserved components model along the lines of that proposed in Stock and Watson (1989, 1991).

The model extracts an aggregate common cycle in employment, allows formal statistical tests of

seasonal differences in the comovement of an industry with the cycle, and identifies economy-wide

and industry-specific contributions to the seasonal and non-seasonal variation in industry employment.

In a number of the industries we consider, this model detects statistically significant differences across

seasons in the comovement between sectoral employment and the common cycle. Furthermore, in

more than half of the sectors, cyclical/seasonal interactions account for at least 20% of the variance

remaining after the data have been adjusted for idiosyncratic seasonality. These results indicate that

the presence of seasonal/cyclical interactions suggested by simpler models is borne out in a more fully

specified parametric framework.

Nonetheless, the model also estimates that seasonal fluctuations in employment at the industry level

are largely idiosyncratic. As a consequence, the proportion of the total variance of the common cycle

accounted for by seasonality is much less than that for aggregate payroll employment; the quarterly

                                                     

1
Non-linear marginal costs imply that the response of production to a demand shock will depend on whether the shock
occurs during a period of high or low seasonal demand. Seasonal technologies (regular shifts in production costs) can
cause output to be concentrated during a particular season, so that the effects of a non-seasonal productivity shock may
not become evident until that time of year.
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patterns in the two series differ somewhat as well. This suggests that seasonal shocks may contain less

of a business cycle element – in the sense of cohesion across sectors – than one might infer from the

seasonal movements in aggregate variables.

We also find results that are relevant to economic forecasters and business cycle analysts. For

example, the in-sample industry-specific seasonal factors generated by our model are very close to

those produced by a univariate X-11 procedure similar to that used by the US Bureau of Labor

Statistics (BLS) to seasonally adjust the payroll employment data. However, real-time out-of-sample

experiments produce some noticeable differences between our seasonal factors and those produced by

X-11. Furthermore, the non-seasonal component of the common cycle leads total seasonally adjusted

employment growth around several business cycle peaks. These results indicate that the treatment of

the cycle may be important to practitioners involved in the real-time analysis of seasonal time series,

particularly around important periods such as turning-points in the business cycle.

1.2 Previous literature on the linkages between seasonality and the business cycle

Interest in linkages between seasonality and the business cycle was revived by Barsky and Miron

(1989), who pointed out that correlations between the seasonal movements in time series often display

characteristics that are qualitatively similar to their business cycle relationships: for example, at both

seasonal and business cycle frequencies, output in numerous sectors moves together and labour

productivity is positively correlated with output. Such similarities lead Barsky and Miron to conclude

that the relationships between seasonal movements in data can provide useful insights into

understanding business cycle behaviour.

In extending this analysis, other researchers have focused on testing for interactions between

cyclicality and seasonality. Using the NBER business cycle chronology, Ghysels (1990) finds that the

seasonal patterns in a number of US macroeconomic time series differ between recessions and

expansions. The more general tests in Canova and Ghysels (1994) also provide evidence of structural

instability in models that treat seasonality as constant or slow-changing, with the instability often

associated with business cycle fluctuations. Canova and Ghysels (1994) further show how this

instability can adversely affect the forecasts of econometric models that incorrectly assume invariant

seasonal patterns.

Interactions between cycles and seasonals are one implication of earlier work by Plosser (1978, 1979),

Wallis (1978), Ghysels (1988) and others. These papers show how seasonality in exogenous variables

or in structural parameters imposes testable restrictions on seasonality in the transfer function and final

equation time series specifications for endogenous variables. Such restrictions can be used to estimate

underlying structural parameters or induced seasonality in endogenous variables (see Plosser (1978)

and Krane (1993)).
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Building on these more structural frameworks, Beaulieu, MacKie-Mason and Miron (1992) show how

firm-level production functions can transform independent seasonal and non-seasonal variations into

interactions between the business cycle and seasonality in macroeconomic aggregates. They further

point out that the choice of technology implies that seasonal variations in demand can be a determinant

of non-seasonal variations in output – and vice versa. Beaulieu et al. (1992) use these arguments to

explain the strong positive correlations between the seasonal and non-seasonal variations in retail

sales, employment and numerous other time series that they find across a variety of countries and

industries.

In a related paper, Cecchetti, Kashyap and Wilcox (1997) look at interactions between cyclical and

seasonal movements in production and inventories to infer the shapes of marginal cost curves. Using

total manufacturing capacity utilisation as a proxy for the business cycle, they find statistically

significant interactions between production seasonality and the cycle in nearly every major

manufacturing industry. In some instances, cyclical strength is associated with muted production

seasonality or inventory-building prior to high-output seasons, factors consistent with upward-sloping

convex marginal costs. In one industry, the production and inventory patterns suggest a marginal cost

curve that flattens at high levels of output. For most industries, however, the evidence regarding the

shape of the marginal cost curve is inconclusive.

This literature indicates that business cycle developments can have important feedback on the seasonal

movements in economic time series. And since business cycle inference is generally based on

seasonally adjusted aggregates, feedback may also flow from sectoral seasonality to standard measures

of business cycle activity. These issues lead Beaulieu et al. (1992) to conclude that “technological

flexibility links seasonal and business cycles so that it is not possible to correctly study the two types

of fluctuations separately” and Canova and Ghysels (1994) to argue that “cataloging business cycle

facts with seasonally adjusted data is improper unless the seasonal adjustment takes into account the

particular form of interaction existing among the components of the series (and this is seldom the

case)”.

Still, this literature generally estimates seasonal patterns using standard univariate methods such as

X-11 or seasonal ARIMA models, or simple single-equation regressions that have seasonal dummies

or dummies interacted with a business cycle proxy as explanatory variables. Univariate techniques

may be adequate for calibrating average seasonal movements in data, but they make no attempt to

structurally identify interactions between seasonals and cycles.2  Regression models that condition

                                                     

2
As such, univariate methods can have difficulty disentangling seasonals from cycles. For example, with respect to X-11,
Pierce and Cleveland (1981) point out that “it is difficult for X-11 to distinguish a run of consecutive unusual
observations from the trend-cycle or seasonal elements of the series”. Pierce and Cleveland (1981) recommend using
intervention analysis to deal with unusual non-seasonal movements in data. Intervention analysis, which is an option in
the new X-12 seasonal adjustment procedure, often amounts to calculating seasonal factors for an entire time series using
observations from only non-recessionary periods. Such intervention would prevent distortion of seasonal factors during



4

seasonality on a business cycle proxy may capture some of the impact of cycles on seasonals, but even

here the specification of the cyclical/seasonal interaction is incomplete, because potential feedback

from seasonality to the cycle is omitted. In contrast, the model developed in this paper structurally

estimates seasonal differences in the cyclical comovements of industry-level data and allows estimates

of the aggregate cycle to be influenced by seasonality in the underlying component data.

2. Interactions between seasonality and the business cycle: some examples

from US payroll employment data

The payroll employment data measure the number of employees on non-agricultural payrolls in the

United States. These data are collected monthly by the BLS from a large sample of establishments

(more than 350,000 in 1992). Aggregate and industry-level figures are generally published on the first

Friday of the month following the survey reference period.

The employment data are particularly well suited for investigating interactions between seasonals and

cycles for several reasons. First, the data span the spectrum of non-agricultural sectors in the US

economy, whereas actual production measures are not generally available on a seasonally unadjusted

basis outside the manufacturing sector.3  Second, total employment can readily be disaggregated into

sectors that exhibit a variety of combinations of cyclical and seasonal characteristics. Third, the

employment data are some of those most closely scrutinised by financial markets, business economists

and policy-makers tracking the course of the economy in real time. Finally, it is not unusual for market

commentary on the high-frequency movements in employment to note that the seasonally adjusted

data may be providing a misleading message because the seasonal factors are not properly accounting

for the state of the business cycle.

Before turning to the specifics of our model, we present two real-world examples of interactions

between seasonals and the business cycle found in the employment data. The first example illustrates

how interactions between seasonality in demand and the business cycle can distort univariate seasonal

factors, while the second considers interactions between production technology and the seasonal

comovement of employment with the cycle.

                                                     

expansions, but would not capture potential changes in seasonal factors during recessions. Furthermore, some current
indicator of recession needs to be available to make real-time intervention analysis operational. Since completion of the
empirical work in this paper, the BLS has begun using X-12 to seasonally adjust payroll employment. However, it uses
X-12 only to adjust for variation in the timing of the monthly employment survey; intervention analysis is not used to
adjust for cyclicality.

3
Sector-specific output measures are provided by the gross product originating data in the National Income and Product
Accounts, but these data are only available on an annual basis.
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2.1 Demand-driven interaction

Employment changes in retail trade are quite large around the turn of the year, with big increases in

November and December in anticipation of the Christmas season and a sharp decline in January as

these seasonal workers are let go. Naturally, the amount of Christmas hiring varies with the strength of

the economy. If the seasonal factors do not adequately reflect the business cycle, weak Christmas

hiring may be accompanied by inordinately sharp declines in preliminary seasonally adjusted retail

employment in November and December, because the seasonal factors expect a gain in jobs based on

the experience of an average year. In contrast, the subsequent decline in employment in January will

be understated because retailers have fewer holiday workers to shed.

A particularly striking example of this problem occurred in early 1991. According to the initial

seasonally adjusted estimates, employment in retail trade increased by 85,000 in January 1991, despite

the fact that the economy was in the middle of a recession. At the time, analysts called the increase

“artificial” and noted that “...stores added relatively few temporary workers over Christmas and thus

the January cutbacks were smaller than assumed by the seasonal adjustment factor” (New York Times,

2 February 1991). Indeed, in her monthly testimony to Congress, BLS commissioner Janet Norwood

cautioned that the retail data “were exaggerated by seasonal adjustment...[the] underlying trend in

retail trade employment continues to be quite weak” (Wall Street Journal, 4 February 1991).

Such comments reflect, in part, the fact that analysts were observing large employment declines in

other industries at the same time as the increase in seasonally adjusted retail employment, and thus had

little doubt that the recession was continuing. A multivariate seasonal adjustment technique is one way

to bring statistical content to such observations.

2.2 Technology-based interaction

An example of a technologically induced interaction between seasonals and cycles occurs in the motor

vehicle sector. The timing of the introduction of new model year cars has been relatively constant over

time, with September as the date for the sales launch of next year’s models. As a result, motor vehicle

assembly plants are typically shut down at some point during the third quarter for retooling, and

employment in the sector drops sharply on a non-seasonally adjusted basis. Because plants are closed

anyway, business cycle developments could be expected to have a relatively smaller effect on motor

vehicle activity during the third quarter than during the fourth and first quarters, when car makers have

a great deal of leeway in setting production schedules for new model year cars. This example

highlights the importance of allowing for seasonal differences in the comovement between the

common cycle and employment in industries for which the production function has an underlying

seasonal component.
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3. Model specification and estimation strategy

3.1 Preliminary data analysis

As will become evident, the computational burden associated with estimating our model grows

quickly with the number of sectors and seasonal periods used in the analysis. To make estimation

manageable, we restrict our empirical analysis to quarterly comovements in employment in nine

sectors of the US economy: construction, motor vehicle manufacturing, durable goods manufacturing

excluding motor vehicles, non-durable goods manufacturing, retail trade, other service-producing

industries, federal government, state and local government, and mining. The combined sum of total

employment in these sectors equals total non-farm payroll employment. The data have not been

seasonally adjusted, but they have been adjusted to exclude the effects on employment of major strikes

and temporary government workers hired as enumerators for the decennial census.

We decided to concentrate on comovements in the data at frequencies other than zero – both to

simplify the analysis and because zero – frequency comovements in employment are likely to be

dominated by demographic factors unrelated to the business cycle. With seasonal data, however, the

correct filter is not obvious. Some practitioners, such as Box and Jenkins (1976) and Bell and Hillmer

(1984), advocate taking both the first and seasonal differences of seasonal time series; that is, filtering

quarterly data by (1–L)(1–L4), where L is the lag operator. It turns out, however, that this filter is not

appropriate for our data: (1–L)(1–L4) has two roots at the zero frequency, but augmented Dickey-

Fuller tests indicated that while, essentially, all of our (logged) series were I(1), none were I(2). Tests

proposed by Hasza and Fuller (1982) also reject the joint differencing. Filtering by (1–L4) alone, which

presumes the existence of roots at zero and at each of the seasonal frequencies π, π/2 and 3π/2, also

appears inconsistent with the time series properties of the employment data: although tests developed

by Hylleberg, Engle, Granger and Yoo (1990) almost always fail to reject a zero-frequency root, they

do reject the presence of at least one of the seasonal roots in most sectors. Accordingly, we chose to

model the series as log differences and to use seasonal dummies to capture the average seasonality in

each series.4

Table 1 shows the sample mean and variance of employment growth in each sector, the variance of the

seasonal means and the variance explained by a univariate regression of job growth on a business

cycle proxy (the percentage change in the Conference Board’s coincident index) once the seasonal

                                                     

4
An alternative strategy would have been to filter out those particular seasonal roots that were not rejected by the
Hylleberg et al. (1990) tests on a series-by-series basis. We did not do so for two reasons. First, uniform prefiltering
facilitates specification and interpretation of the common cycle. Second, tests of seasonal roots are problematic: Ghysels,
Lee, and Noh (1994) show that the seasonal root tests of Hylleberg et al. (1990) and others can have low power against
reasonable alternatives and that the existence of certain moving average terms can seriously distort the size of the tests.
That said, our specifications of stochastic seasonality do not preclude the estimated model from containing seasonal roots
(although it is not clear how our statistical inference would be affected by their presence).
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means have been removed from the data. Our choice of sectoral disaggregation is designed to exploit

four possible combinations of the relative intensities in seasonal and cyclical fluctuations. First,

employment growth can exhibit both large seasonal and large cyclical variations; as is evident from

the third and fourth columns, the motor vehicle sector is an example of an industry displaying such

variations. Second, employment growth can be cyclically sensitive but not contain much seasonality;

an example is manufacturing of durable goods other than motor vehicles. The third combination is

found in state and local government, where employment has a large seasonal component caused by

elementary and secondary school calendars but has essentially no cyclical component. Finally, in

relative terms, as in the federal government sector, employment may not exhibit much seasonality or

cyclicality.

Table 1

Growth rates in sectoral employment: summary statistics

Variance accounted for by:
Industry Mean

(1)
Total variance

(2)
Seasonal
dummies

(3)

Coincident
index

(4)

Construction 0.45 109.26 102.70 0.96

Motor vehicles –0.01 44.06 13.70 7.45

Durables except motor vehicles 0.10 3.48 0.42 1.55

Non-durables 0.04 3.35 2.34 0.33

Retail trade 0.64 11.35 10.02 0.13

Other services 0.76 1.29 1.07 0.07

Federal government 0.11 3.87 1.11 0.00

State and local government 0.85 17.50 16.45 0.00

Mining –0.16 8.89 2.74 0.25

Total employment 0.52 2.83 2.24 0.24

Note:  Summary statistics are computed from 1953:Q1 to 1989:Q4 and are based on log differences (multiplied by 100 to be
comparable to percent changes).  Variance accounted for by coincident index is for series with seasonal means removed.

3.2 Model specification

Let { itY } be an n x 1 vector of non-seasonally adjusted log differences in industry-specific

employment. Following Stock and Watson, we assume the business cycle, Ct, can be defined by the

comovement over time among the various sectors in the economy. The basic model is:

(1) itttitiit uCSSY +γ+β=   i = 1,2,...,n

(2) ( )[ ] ititi uLD ε=−1             i = 1,2,...,n

(3) ttt vSC +δ=

(4) ( )[ ] ttvL ω=ϕ−1
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tS is an s x 1 vector of seasonal dummies, and  ii γβ , and δ are 1 x s vectors of coefficients, where s is

the number of seasons in the year. ti Sβ  and tSδ  capture the deterministic seasonal variation in { itY }

and tC , respectively. Sectors’ cyclical movements may be concentrated in different seasons, reflecting

sectoral idiosyncrasies in production or demand. The model incorporates such interactions through

tti CSγ , which measures the comovement between {itY } and the common cycle and varies with the

seasons according to iγ .

The { itu } are idiosyncratic stochastic movements in the {itY }, and tv  is the stochastic variation in

tC . The { itu } and tv  are assumed to follow linear univariate autoregressive processes described by

the lag polynomials { (L)-Di1 } and 1 - ϕ(L). Both the { itu } and tv  may contain stochastic seasonality.

The innovations in { itu } and tv , { itε } and ωt are assumed to be serially uncorrelated Gaussian

processes with variances of {2itσ } and 2
ωσ , respectively. As is usual in such models, the {iγ } and 2σ

are not jointly identified; we follow the common practice of setting the variance of the innovation in

the unobserved component, 2σ , equal to unity.

The other standard assumption needed to identify the single cyclical index is that the ( nttt uuv ,,, 1 K )

are mutually uncorrelated at all leads and lags. This forces tC  to capture all of the stochastic

comovement among the {itY }. Operationally, this is achieved by modelling the {itu } as univariate

processes; that is, we assume E[ τεε jit ] = 0 for all t, τ and i ≠ j, and E[ τωεit ] = 0 for all t, τ and i (see

Watson and Engle (1983) and Stock and Watson (1991)).

3.3 State-space form

Equations (1) - (4) form an unobserved components model. Equations (1) are observation equations

relating the data {itY } to the unobserved state variables, ( nttt uuC ,,, 1 K ). Equations (2), (3) and (4) are

transition equations providing the laws of motion for the state variables. When written in state-space

form, the order of the state vector for this model is rather large,  n+1 plus the sum of the number of

lags in the { )(LDi } and ϕ(L). To ease the computational burden, we reduced the dimensionality of the

state vector by prefiltering the observation equations by the {(L)-Di1 }, transforming (1) to:

(1 � [ ] ( ) ( )[ ] itttiiititiiit +CSLD+YL+DS(L)-D=Y εγ−β 11        i = 1,2,...,n

This reduces the dimension of the state vector to 1 plus the maximum number of lags in the {)(LDi }

and ϕ(L). We call this dimension p. We also removed deterministic seasonal means, iqb , from the itY

(from (1), these means are qiqiqiqb δγ+β= , where   iqiq γβ ,  and qδ  are the qth elements of ii  γβ ,  and
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δ , respectively) and from Ct (this mean is qδ ) before estimation; the mean-adjusted itY  and tC  are

denoted by itY
~

 and tC
~

.5

Let tY
~

 be the nx1 vector ( nttt Y,,Y,Y
~~~

21 K ) �� *
tC

~
 be the (p+1)x1 vector ( t-pt-t C,,C,C

~~~
1 K ) �DQG� tε  be the

n x 1 vector ( nttt ,,, εεε K21 ) ���(TXDWLRQV��� �������DQG�����PD\�WKHQ�EH�ZULWWHQ�LQ�WKH�VWDWH-space form:

(5) ( ) tt-
*
ttt +YL+DC=ZY ε1

~~~

(6) t
*
t-

*
t +C=C ΩΦ 1

~~

where:  (5) is the (vector) observation equation; (6) is the (vector) state transition equation; tZ  is an

n x p matrix of time-varying coefficients

















γγγ

γγγ
=

t-pnpnt-nntn

t-pipt-it

t

Sd-Sd-S

Sd-Sd-S

Z

K

MMM

K

11

11111

where ikd  is the coefficient on kL  in )(LDi ; D(L) is an n x n matrix with the polynomials )(LDi  on

the diagonals and zeros on the off diagonals; Φ is the p x p coefficient matrix



















 ϕϕϕϕ

=Φ

0100

0001
121

K

MMMM

K

K pp-

  

and tΩ  is the p x 1 vector ( 000 ,,,,t K ) �� 1RWH� WKDW� WKH� WLPH� YDULDWLRQ� LQ� Zt is due only to the

seasonality in the { iγ }. In addition, jφ  = 0 and ijd = 0 for any j less than p but greater than the order

of ϕ(L) or )(LDi , respectively.

Let θ be the parameters [{ itγ }, { ijd }, { 2
itσ }] �� *LYHQ� θ, the conditional moments of *

tC
~

can be

estimated by applying the Kalman filter to equations (5) and (6); we denote these moments as

*
t =EC

~
[ *

tC
~

] and ( )( )



 ′

∑ *
t

*
t

*
t

*
tt C-CC-C=E

~~~~
. See the Appendix for details.

                                                     

5
Results from a model estimated without removing deterministic means were similar to those reported below.
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3.4 Estimation

Because of the large number of parameters in θ, the usual derivative-based methods for maximising

the likelihood function associated with (5) and (6) would be computationally quite burdensome.

Instead, we maximise the likelihood using the expectations maximisation, or EM, algorithm. The EM

algorithm consists of (1) an expectations step to compute the expected value of the likelihood function

conditional on the observed data and a set of parameter values, followed by (2) maximisation of this

conditional expected likelihood with respect to θ. In state-space models, for a given set of parameters

the expectations step first uses the Kalman filter to construct expectations of the state vector and

prediction error variances conditional on the data up to time t (the *
ttC

~
 and tt∑  defined above with

τ=t) and then uses a Kalman smoother to construct expectations of these items based on the entire data

set (denoted as *
TtC

~
 and TtΣ ).

In our model, the conditional expected likelihood constructed from *
TtC

~
 and Tt∑  is a simple

multi-equation system, which, because the ( nttt εεω ,...,, 1 ) are mutually uncorrelated, can be estimated

on an equation-by-equation basis. In particular, θ and associated standard errors can be computed from

single-equation regression models augmented by functions of Tt∑  to account for the uncertainty in

*
TtC

~
. These estimated parameter values become inputs into the next iteration of the algorithm, which

proceeds until the likelihood function converges. The appendix provides further details on the

application of the EM algorithm to our problem. Shumway and Stoffer (1982), Watson and Engle

(1983), and Ruud (1991) provide more general treatments of the EM algorithm.

In specifying { )(LDi } and ϕ(L), we assume that the basic form of these lag polynomials is:

(7) ( ) ( )( )sm
sm

s
s

r
ri L -d- L-dL -dL-  -dL-D KK 111 1=

where r < s. The polynomial in sL  is meant to capture any stochastic seasonality in the data. Applying

standard model selection criteria to estimates of (1 �� EDVHG� RQ� DQ� LQLWLDO� JXHVV� IRU� tC
~

 (we used the

deviation in total employment growth from seasonal means and a time trend) provides us with a basis

for deciding upon initial guesses for the orders r and m. The resulting specifications were used to

estimate the complete model. We then respecified (7) if correlograms or Q-statistics revealed residual

serial correlation in the { 1-titu } or in 1-ttC
~

, if Wald tests indicated we could exclude terms, or if

Lagrange multiplier tests suggested the presence of additional autoregressive terms or rejected the
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restrictions jksjks ddd =+ .6  The models we eventually chose are listed in the Appendix. Note that, in

many cases, the model failed some specification test unless an unrestricted autoregressive term j
j Ld

~

was added to (7).

Our modelling of ( nttt uuC ,,,
~

1 K ) as autoregressive processes differs from the canonical univariate

specification for seasonal time series described in Hillmer and Tiao (1982) and Bell and Hillmer

(1984). The canonical model assumes that the observed series is the sum of unobserved seasonal and

non-seasonal components and imposes restrictions on these which imply that, at a minimum, the time

series specification for the observed data contains a moving average (MA) term of order s. In our

model, allowing the { itu } to follow MA processes greatly limits the extent to which we can reduce the

dimensionality of the state-space model by prefiltering equations (1). Furthermore, as discussed in

Ruud (1991), the usual state-space representations of moving average models cannot be estimated by

the EM algorithm because the support of the expected likelihood is a function of the unknown

parameters in the model.7  For these reasons, we chose the AR representations for the { itu }.

Although AR representation eases estimation, it does not lend itself to a parametric decomposition of

itu  into a seasonal factor S
itu  and a seasonally adjusted piece N

itu , as is possible in the canonical set-

up. Instead, we run the { Titu } through the X-11 program to separate them into seasonal and non-

seasonal components.8  X-11 should be adequate for this task:  because the { itu } contain only

idiosyncratic variations, there is no information in other series that would affect the decomposition

performed by X-11. The stochastic seasonality in tC  is also identified by applying X-11 to TtC
~

. Here

again, because all of the common cycle in the employment data is contained in tC , X-11 should do an

adequate job of identifying its seasonal and non-seasonal components.

                                                     

6
Note that standard Q-tests or correlograms using the Kalman smoother equation residuals Titε̂  are invalid, since even in

a model with serially uncorrelated itε , Titε̂  and Tiτε̂  will be correlated owing to conditioning on T.

7
Ruud (1988) offers an alternative state-space representation of MA processes that can be theoretically estimated using the
EM algorithm. We were unable to successfully estimate such a formulation, however, possibly reflecting invertibility
problems in the MA portions of the models.

8
Because it is a two-sided moving average filter, X-11 needs forecasts beyond the end of the sample to construct seasonal
factors for data near the end of the sample. We generate forecasts using the AR models (7) for the {uit} and vt. Ordinary
X-11 forecasts by using previous averages, while X-11 ARIMA forecasts by building an ARIMA model.
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4. Empirical results

4.1 Characteristics of the unobserved common cycle

Our estimate of the common cycle is TtC , which is constructed by adding the unconditional seasonal

means tSδ  to the TtC
~

 generated by the Kalman filter and smoother.9  The estimation period runs

from the first quarter of 1953 to the fourth quarter of 1989 inclusive.

The top panel of Figure 1 shows the non-seasonal component of the common cycle, N
TtC  (the solid

line), and compares it with quarterly log differences in total non-farm payroll employment as

seasonally adjusted by X-11 (the broken line).10   Although N
TtC  exhibits wider fluctuations, it picks

up the same cyclical movements evident in the seasonally adjusted employment data. In particular,

N
TtC  drops sharply during recessions. In addition, it turned down slightly earlier than payroll

employment in the 1957, 1974 and 1982 recessions and began to decline in 1989 before the onset of

the 1990 recession.

The bottom panel plots the seasonal factors in the common cycle (the dark line) and in payroll

employment growth (the light line). The variability in S
TtC  is less pronounced than that in total

employment. Moreover, the timing of seasonality in the common cycle differs from that in

employment. For total employment, growth is lowest during the first and third quarters and highest

during the second and fourth quarters. S
TtC  also declines during the first quarter and rises strongly in

the second quarter. However, in contrast to total employment, growth in S
TtC  is well above average in

the third quarter and below average in the fourth quarter.

Summary statistics for the common cycle and total employment shown in Table 2 confirm the

impressions gained from Figure 1. The overall variance in TtC  is somewhat larger than that of total

employment growth. However, the amount of the total variance accounted for by seasonality is much

                                                     

9
The tSδ  were calculated from the unconditional means of the Yit and the Kalman filter restrictions (see the Appendix,

equation (A.3)). The seasonal component of TtC  is t
S
Tt

S
Tt

SCC )(
~ δ−δ+= , where S

TtC
~

 is the seasonal factor calculated

by applying X-11 to 
Tt

C
~

 and δ  is the average of the { qδ }. The seasonally adjusted common cycle is then

δ+−= )
~~

( S
TtTt

N
Tt CCC .

10
The seasonally adjusted total employment series is not identical to the published BLS data, which are the sum of
seasonally adjusted industry (two-digit SIC) series.
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Figure 1

The common cycle and total employment
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smaller for the common cycle – about 30% for TtC  as compared to nearly 85% for employment. This

difference implies that a large portion of the seasonality in total payroll employment growth derives

from sector-specific sources that do not have significant spillovers to the rest of the economy. More

generally, it suggests caution when gauging the extent to which the simple seasonal variation in

aggregate variables represents business cycle-like coherence in seasonal comovements across

component sectors.

Table 2

The common cycle and total employment growth: summary statistics

Common cycle Total employment

Means:

Total 0.64 0.52

Q1 –0.77 –1.90

Q2 1.53 2.09

Q3 1.49 0.63

Q4 0.36 1.28

Variances:

Total 3.36 2.83

Seasonal dummies 0.90 2.24

Stochastic seasonal 0.08 0.16

Prediction error variances:

1-ttΣ 1.18

ttΣ 0.21

TtΣ 0.17

Note:  τΣt  denotes the average value of τΣ t  over the 1953:Q1 to 1989:Q4 estimation period.

4.2 Comovements between the component series and the common cycle

The first four columns of Table 3 show the comovement between tC
~

 and the log difference in industry

employment during each quarter of the year, iqγ , q = 1, 2, 3, 4. Column 5 presents the test that this

comovement is always zero ( 04321 =γ=γ=γ=γ iiii ), and Column 6 the test that the comovement

does not differ across seasons ( 4321 iiii γ=γ=γ=γ ). Both hypotheses are tested using Wald tests

based on the covariance matrix estimates described in the Appendix; the statistics are distributed 2χ

with four and three degrees of freedom, respectively.

Not surprisingly, the iqγ coefficients are largest in construction and in the manufacturing industries,

reflecting the significant degree of cyclicality in these sectors. In addition, the coefficients are larger in
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durables manufacturing than in non-durables manufacturing. Within the service-producing sector,

retail trade exhibits the most cyclicality, while the iqγ coefficients for the government sectors are close

to zero. The { iγ } are estimated fairly precisely, and in every industry except federal government and

state and local government, we easily reject the null hypothesis of no cyclicality.

Table 3

Industry cyclicality

Cyclical response by season1Industry

Q1
(1)

Q2
(2)

Q3
(3)

Q4
(4)

Comovement
with cycle2

χ2(4)
(5)

Seasonality in
comovement3

χ2(3)
(6)

Construction 0.84

(0.12)

1.01

(0.14)

0.70

(0.15)

0.50

(0.12)

108.18 8.67

Motor vehicles 2.31

(0.32)

1.29

(0.39)

1.00

(0.42)

1.47

(0.35)

105.56 6.91

Durables except motor
vehicles

0.93

(0.05)

0.93

(0.06)

0.71

(0.06)

0.87

(0.05)

498.03 15.86

Non-durables 0.58

(0.03)

0.49

(0.04)

0.34

(0.04)

0.47

(0.04)

388.33 22.13

Retail trade 0.35

(0.04)

0.32

(0.04)

0.30

(0.05)

0.26

(0.04)

240.37 2.92

Other services 0.22

(0.02)

0.23

(0.03)

0.21

(0.03)

0.15

(0.02)

154.10 8.88

Federal government 0.06

(0.06)

0.00

(0.08)

0.11

(0.08)

0.10

(0.07)

3.96 1.66

State and local
government

–0.06

(0.04)

0.00

(0.05)

–0.04

(0.05)

–0.09

(0.04)

6.26 2.58

Mining 0.60

(0.19)

0.79

(0.21)

0.26

(0.23)

–0.16

(0.20)

24.34 16.85

1Standard errors are in parentheses.   27KH�WHVW�LV� 1� � 2� � 3� � 4 = 0.  Critical values are 9.49 at the 5% significance level
and 7.78 at the 10% level.   37KH�WHVW�LV� 1� � 2� � 3� � 4.  Critical values are 7.81 at the 5% significance level and 6.25 at the
10% level.

In some industries, the iqγ coefficients are quite different across quarters, with the patterns potentially

explainable by seasonal variations in the production technologies. For example, the correlation

between motor vehicle employment and the cycle is smallest during the third quarter, when model

year changeovers occur regardless of economic conditions. Carmakers have more leeway over how

quickly they bring production of the new model year up to speed, and they often vary the Christmas

and New Year holiday shutdowns according to economic conditions; this flexibility is reflected in the

larger values for 4iγ  and 1iγ . Note, however, that 3iγ  is still large in comparison with the

iqγ coefficients in other industries, indicating that there remains substantial cyclicality in third-quarter

motor vehicle employment relative to other sectors. Other manufacturing industries also exhibit a
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smaller correlation with the cycle in the third quarter, consistent with the traditional timing of

vacations. The differences in iqγ coefficients in construction and mining appear to be associated with

seasonal weather patterns. In both industries, the correlations with the cycle are largest in the second

quarter, when improvements in the weather bring down the entire production cost schedule. In each of

these goods-producing sectors, the hypothesis that the comovement between employment growth and

the cycle does not vary across seasons is rejected at the 10% level, and in all but motor vehicle

manufacturing, the hypothesis is rejected at the 5% level.

In contrast, there is little evidence of variation across seasons in the comovement between

employment growth and the cycle in service-producing industries. (Although we easily reject the null

hypothesis of equal iqγ coefficients in other services, the small numerical differences between the

iqγ coefficients suggest that this rejection has little economic content.) Given anecdotal evidence

concerning Christmas hiring, this lack of seasonal variation seems surprising in retail trade. We

suspect that seasonal comovements might be present in monthly data, but that this variation is not

important at the quarterly frequency.11

4.3 Decomposition of the component series

Our specification allows itY  to be partitioned into seasonal factors and seasonally adjusted pieces that,

in turn, are determined by either the idiosyncratic or the common movement in the data. Let

( ) qiq
q

i  / δ=δ ∑
=

4

1
41 ; ( ) iq

q
i  β=β ∑

=

4

1
4/1 ; and ( ) iq

q
i γ=γ ∑

=

4

1

4/1 . itY  can then be written as the sum of

the following eight components:

Seasonal factor Seasonally adjusted component

Deterministic:

Cyclical δγδγ iqiq  - δγ i

Idiosyncratic iiq β−β iβ

Stochastic:

Cyclical N
ttiiq

S
ttiq CS - (  CS

~
)

~ γγ+γ N
tiC

~γ

Idiosyncratic S
itu N

itu

                                                     

11 As an informal test of this hypothesis, we regressed the monthly percentage change in retail employment on a set of
monthly dummies and the dummies interacted with the percentage change in the Conference Board’s index of coincident
indicators. In both economic and statistical terms, the coefficient on the interaction term in December was significantly
larger than the average of the 12 interaction coefficients. The interaction coefficient in January was much smaller than
average, but we could not statistically reject equality with the mean. In contrast, when we ran the analogous regression
using quarterly data, the coefficients on the interaction terms were quite similar in all four quarters.
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Table 4

Decompositions of the variation in industry employment

4.1 Variation in seasonal means

Industry Cycle
(1)

Idiosyncratic
(2)

2*Covariance
(3)

Total
(4)

Construction 0.84 84.63 16.53 102.00

Motor vehicles 3.24 15.51 –5.14 13.61

Durables except motor vehicles 0.87 0.13 –0.58 0.41

Non–durables 0.27 1.20 0.85 2.32

Retail trade 0.13 8.47 1.36 9.95

Other services 0.06 0.66 0.32 1.04

Federal government 0.01 1.01 0.09 1.10

State and local government 0.00 16.26 0.08 16.34

Mining 0.41 1.07 1.24 2.72

4.2 One-step-ahead forecast error variance decompositions

Common cycle model Time series models

Cycle

Industry

Seasonal
(1)

Nonseasonal
(2)

Idiosyn.
(3)

Total
(4)

AR
(5)

ARIMA
(6)

Construction 0.03 0.69 2.04 2.76 3.32 4.10

Motor vehicles 0.30 2.73 16.03 19.06 26.09 35.96

Durables except motor
vehicles

0.01 0.87 0.29 1.17 1.32 2.24

Non–durables 0.01 0.26 0.15 0.42 0.50 0.69

Retail trade 0.00 0.11 0.20 0.31 0.53 0.50

Other services 0.00 0.05 0.06 0.11 0.12 0.14

Federal government 0.00 0.01 0.64 0.65 0.66 0.87

State and local
government

0.00 0.00 0.26 0.27 0.27 0.29

Mining 0.15 0.17 3.88 4.20 4.56 5.44

Note:  Forecast error variances for the seasonal and non–seasonal cycles are estimated by the sample averages of

1
2

1
2

t-tt-ttis -S ∑γ∑γ  and 1
2

t-t∑γ , respectively; the idiosyncratic error variance is set to 2ˆ iσ .  AR models are )()(
~

)( tetYLD ii = ,

with D(L) from (A.10).  The ARIMA models are those chosen automatically by the X–11 ARIMA program.

Panel 4.1 in Table 4 presents the variability in the deterministic seasonal components of the { itY }. As

shown in Columns 1 and 2, in most industries the cyclical variability due to the qiqδγ  components is

relatively small, and the movement in deterministic seasonal means largely reflects idiosyncratic

variation in iqβ coefficients. Because the seasonal means in TtC  are constructed from the seasonal

means in the { itY }, the covariance between the idiosyncratic and cyclical means in itY  – shown in the

third column – provides a rough idea of the contribution of a sector to the seasonal mean in TtC . The
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most interesting result here pertains to our earlier finding that TtC  is above average in the third

quarter, while growth in total payroll employment is about average at that time of year. Aggregate

payroll employment growth in the third quarter is held down by job cuts in the state and local

government sector. But because the iqγ coefficients in this sector are all near zero, the covariance

between the deterministic seasonal in TtC  and that in state and local government employment is quite

low, so that this sector contributes little to seasonal movements in TtC . Total employment growth

during the third quarter is also held down by declines in motor vehicle and other durable goods

manufacturing. However, the patterns of the iqγ coefficients in these industries produce negative

covariances between the cyclical and idiosyncratic deterministic seasonal means, so that declines in

the sectors’ employment do not lower the third-quarter mean in the common cycle.

With regard to the stochastic variation in the {itY }, our identifying restrictions imply that the

one-period-ahead forecast error variance in itY
~

 is the simple sum of the forecast error variances in the

stochastic seasonal and seasonally adjusted components related to the common cycle and in the (total)

idiosyncratic error, 1-ttu .12  As seen in Columns 1 - 4 of Panel 4.2, despite the comovements with the

common cycle evident in Table 3, in most cases the forecast error variance can largely be attributed to

the idiosyncratic component of the series. Moreover, even in sectors where the common cycle makes a

noticeable contribution, this reflects variations in the non-seasonal cyclical component rather than

seasonal variations in the comovement with the common cycle. Nonetheless, identifying the common

cycle is important. In sectors with a sizable non-seasonal cyclical component, the total one-step-ahead

forecast variances of the common cycle model are smaller than those from two obvious univariate

alternatives: an AR model for itY
~

 with the same lag structure as specified in equations (A.10),

Column 5, and the ARIMA model chosen by the X-11 ARIMA program, Column 6.

Finally, Panel 4.3 considers the reduction in the variance of the industry-level data obtained by

seasonal adjustment. As can be seen by comparing Columns 1 and 2, with the exception of durables

excluding motor vehicles, most of the reduction in variability is accounted for by the idiosyncratic

seasonals. Nonetheless, a comparison of Columns 2 and 3 indicates that accounting for the cyclical

sensitivity of the seasonal factors reduces the variability by an additional 20% (relative to the

idiosyncratically seasonally adjusted data) in construction, durables manufacturing (excluding motor

vehicles), non-durables manufacturing, retailing and other services.

                                                     

12
Because the stochastic seasonal factors are calculated using the smoothed unobserved variables { Titu } and TtC

~
 – which

are correlated over time – we can not construct a simple decomposition of the stochastic variation in itY
~

 into its cyclical

and idiosyncratic components.



19

4.3 Variance reduction due to seasonal adjustment

Variance in:

Seasonally adjusted by:

Additional reduction in variance from
cycle during:

Industry

NSA data
(1)

Idiosyn.
only
(2)

Idiosyn.
and cycle

(3)

Full
sample

(4)

Expan–
sions
(5)

Reces–
sions
(6)

Construction 109.26 3.75 2.96 0.79 0.80 0.67

Motor vehicles 44.06 25.98 22.20 3.78 0.03 15.32

Durables except motor
vehicles

3.48 3.68 2.85 0.82 0.52 1.61

Non–durables 3.35 0.92 0.64 0.28 0.16 0.61

Retail trade 11.35 0.47 0.36 0.10 0.05 0.26

Other services 1.29 0.26 0.20 0.06 0.04 0.09

Federal government 3.87 0.65 0.64 0.01 0.01 0.00

State and local
government

17.50 0.33 0.33 0.00 0.00 0.01

Mining 8.89 5.98 5.37 0.60 0.45 1.19

Note:  Recessions refer to the period from the quarter of the cyclical peak to the quarter of the cyclical trough, inclusive.

The last three columns compare the reduction in variance associated with cyclical/seasonal

interactions obtained over the entire sample period with those obtained during expansions and

recessions separately. In a number of cases, most notably the three manufacturing industries, retailing

and mining, the reductions are much more pronounced during recessions. As recessions are

characterised by relatively sharp movements in N
TtC

~
, the large effects during downturns probably

reflect the tendency of comovements of these industries with the common cycle to be concentrated in

certain seasons, a property captured by the term N
Tttiiq CS - (

~
)γγ  in our seasonal decomposition.

4.4 Comparison of multivariate and X-11 seasonally adjusted series

Table 5 shows R2 values from the regressions

(8) it
X

it
N

it  e  bYa Y ++= 11

where N
itY  is the seasonally adjusted series from our model, N

it
N
Ttiii

N
it uCY +γ+δγ+β= ~

, and 11X
itY

is the average of the deterministic means plus the seasonally adjusted series constructed by applying

X-11 to itY
~

. The table also compares N
TtC  with seasonally adjusted total employment growth. The

first column presents results of (8) estimated over the 1953:Q1 to 1989:Q4 sample period used to

identify and estimate our model. Most of these R2 values are quite close to one, indicating that there is

little within-sample difference between seasonal factors from our model and those from X-11. There

is, however, a non-trivial difference between the seasonally adjusted common cycle and seasonally
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adjusted total payroll employment; this difference is also evident in the cyclical behaviour of the series

depicted in Figure 1.

We also estimated equation (8) using data only from recessions. The R2 values from these regressions

(not shown) were quite similar to those obtained using the entire sample period, with most just 0.01 or

0.02 lower than those reported in Table 5. The one exception – also evident from Figure 1 – was the

correlation between the common cycle and total employment, which fell from 0.90 over the entire

sample to 0.76 during recessions.

It is perhaps not surprising that the R2 values for the industry-level series are close to one, as most of

the seasonal variation in the {itY } is generally captured by the deterministic seasonal means.

However, given the comparisons in Table 4.3 (Columns 5 and 6), the similarity of the R2 values during

recessions and expansions is somewhat surprising. One possible explanation might be related to the

fact that both our multivariate model and X-11 are two-sided filters, so that seasonals for period τ use

information not available until time t > τ. Thus, the behaviour of employment after the beginning of a

recession may help both filters identify total seasonality during the cyclical downturn.

Table 5

R2 values from regressions of model-based seasonally adjusted series
on X–11 seasonally adjusted series

Log difference Log level

In sample Out of sample In sample Out of sample

Construction 0.96 0.93 0.96 0.90

Motor vehicles 0.96 0.76 0.96 0.79

Durables except motor vehicles 0.99 0.93 0.99 0.94

Non–durables 0.97 0.59 0.97 0.61

Retail trade 0.98 0.93 0.98 0.93

Other services 0.99 0.91 0.99 0.94

Federal government 0.99 0.79 0.99 0.87

State and local government 0.99 0.79 0.99 0.85

Mining 0.94 0.93 0.94 0.85

Common cycle and:

Total employment 0.90 0.86 0.90 0.90

Constructed total – – 0.90 0.89

Note:  The constructed total is seasonally adjusted total payroll employment growth calculated as the weighted sum of
seasonally adjusted industry employment growth.

Because data are not available beyond time T, out-of-sample forecasts are needed to seasonally adjust

variables near the end of the sample period. Differences in these forecasts could have a significant

influence on seasonal factors towards the end of the sample. Indeed, given the differences in

one-step-ahead forecast error variances shown in Table 4.2, we might expect some distinction between

the seasonally adjusted series from our model and those from X-11 to emerge out of sample.
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To examine this possibility, we conducted an out-of-sample experiment in which we constructed

real-time seasonal factors from our model and compared them with the factors generated by an X-11

procedure similar to that used by the BLS. The BLS constructs seasonal factors for the subsequent six

months each June and December. To mimic this procedure in our model, we first estimated { ib }, δ

and θ using data up to and including period T. Seasonal factors S
TjTC +

~
 and S

TjiTu +  were then

estimated for quarters j = 1, 2 using the model’s forecasts of TjtC +
~

 and Tjtu + . Once the { itY } are

known, N
jTjTC ++  and the { N

jiTY + } were calculated using:

N
jTjT

N
jTjT CC ++++ +δ= ~

N
jTjiTi

N
jTjiT YbY ++++ += ~

where

S
TjTjTjT

N
jTjT C-CC +++++ = ~~~

S
TjiTjiT

N
jTjiT Y-YY ++++ = ~~~

  and

S
TjiTtiiq

N
TjTtiiq

S
TjTtiq

S
TjiT

uSb-bCS-CSY ++++ ++γγ+γ= )(
~

)(
~~

for j = 1, 2. At the same time, we estimated 11~ X
TjiTY +  using X-11 seasonal factors calculated from data

on itY
~

for t = 1,2,...,T. We repeated this experiment, re-estimating {ib }, δ, θ and seasonal factors every

two quarters between 1990:Q1 and 1994:Q4.

As can be seen from the second column of Table 5, the R2 values generally fall when equation (8) is

estimated using data from this real-time experiment.13  There are quite noticeable differences in the

seasonally adjusted series in motor vehicle and nondurables manufacturing, two sectors where the

common cycle accounts for a significant portion of the one-step-ahead forecast variance. Curiously,

the R2 values between the seasonally adjusted government sectors also exhibit a marked decline, even

though these series had little correlation with the common cycle. The correlation between the common

cycle and total employment growth is about the same in this forecasting experiment as in the

in-sample regression. But, as shown in Figure 2, N
jTjTC ++  leads total employment just prior to the

                                                     

13
In all but two cases, mining and the common cycle, the out-of-sample experiment produces higher regression standard
errors.
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1990 recession: N
jTjTC ++  turns negative in the second quarter of 1990, two quarters before the decline

in total payroll employment.

Despite the lower R2 values, there does not appear to be a significant difference in the stability of the

two sets of industry-level seasonal factors: the average absolute revisions between the seasonal factors

as first computed in our real-time experiment and those based on data up to end-1994 were not

systematically different for the two methods of seasonal adjustment. The revisions in the seasonal

factors for the common cycle tended to be somewhat larger than the revisions in the seasonals for total

employment.

Figure 2

The common cycle and total employment: real time experiment
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In practice, the BLS applies X-11 ARIMA to the log levels of employment rather than to the log

differences. As shown in the two right-hand columns of Table 5, constructing 11X
itY  from the

difference in seasonally adjusted log levels produces qualitatively the same results both in sample and

in our real-time experiment. In addition, the BLS constructs seasonally adjusted total employment as

the sum of the seasonally adjusted components. As can be seen from the last line in Table 5,

constructing seasonally adjusted total employment growth in a similar manner does not change the

relationship between the common cycle and total employment.

5. Comparisons with alternative cyclical indicators

An alternative strategy to the unobserved components model we employ would be to measure cyclical

movements using an existing alternative time series. There are a host of possibilities to choose from,

and Table 6 presents test statistics for the null hypotheses 04321 =γ=γ=γ=γ iiii  and

4321 iiii γ=γ=γ=γ  for four alternatives:  (1) the Conference Board’s index of coincident indicators,

which is a weighted average of seasonally adjusted percentage changes in total non-farm payroll

employment, constant-dollar personal income less transfers, industrial production, and constant-dollar

manufacturing and trade sales; (2) a dummy variable set to one during NBER recessions; (3) the

Conference Board’s index of leading indicators, which is a weighted average of 11 series (nine of

which are seasonally adjusted);14  and (4) the coincident index developed by Stock and Watson for the

NBER, using the same variables as in the Conference Board’s coincident index, but derived from an

unobserved components model similar to the one in equations (1) - (4) above.

In general, the hypothesis of no comovement between these alternative indicators and the sectoral

employment series is still rejected for those sectors for which our model indicates comovement with

the cycle. With respect to the tests for seasonality in the comovement, however, the alternative

indicators produce a wide range of results. For example, using the NBER indicator, there appears to be

statistically significant seasonality in the comovement between the cycle and employment growth in

motor vehicles, other durables and retail trade, but little evidence of this interaction elsewhere. In

contrast, using the Stock-Watson coincident index, significant effects show up in construction, other

services and mining, but not in any other series. In general, the models using these alternative

                                                     

14
We used the leading indicator index as it was constructed prior to the revisions incorporated in December 1996. That
index was comprised of seasonally adjusted percentage changes in manufacturing hours, initial claims for unemployment
insurance, constant-dollar new orders for consumer goods and materials, vendor performance (diffusion index), constant-
dollar orders for new plant and equipment, smoothed change in constant-dollar unfilled orders for durable goods,
smoothed change in sensitive materials prices, and constant-dollar M2 (level), and non-seasonally adjusted stock prices
and the index of consumer expectations.
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indicators reject the hypothesis that there is no seasonality in the comovement less often than our

model based on tC , but the diversity of results makes them difficult to interpret.

Table 6

Industry cyclicality: alternative indicators

Chi–squared values

Coincident index NBER indicatorIndustry

Comovement
with cycle

Seasonality in
comovement

Comovement
with cycle

Seasonality in
comovement

Construction 64.6 9.5 22.5 0.9

Motor vehicles 141.4 8.9 59.1 15.4

Durables except motor vehicles 134.8 6.8 55.5 11.8

Non–durables 233.7 4.9 37.7 6.2

Retail trade 184.7 4.8 69.2 8.6

Other services 73.1 8.3 16.6 3.9

Federal government 8.0 6.1 6.5 5.9

State and local government 3.8 3.6 2.1 1.9

Mining 26.9 15.5 8.5 5.5

Leading index S–W coincident index

Comovement
with cycle

Seasonality in
comovement

Comovement
with cycle

Seasonality in
comovement

Construction 14.4 0.4 72.3 14.3

Motor vehicles 30.7 5.8 108.7 4.5

Durables except motor vehicles 13.4 3.7 106.4 0.9

Non–durables 24.6 3.1 151.6 0.8

Retail trade 18.1 7.6 97.9 5.8

Other services 0.9 0.5 45.1 12.4

Federal government 7.6 3.9 2.9 1.1

State and local government 3.6 2.2 5.1 4.2

Mining 10.4 7.3 15.9 15.1

Note:  Tests of the comovement with the cycle are distributed χ2(4), with critical values of 9.49 at the 5% significance level
and 7.78 at the 10% level.  Tests of seasonality in the comovement are distributed χ2(3), with critical values of 7.81 and 6.25,
respectively.

In any event, the use of such alternative time series as exogenous proxies for the business cycle strikes

us as less desirable than our approach. As discussed in the introduction, most of these alternative

indicators are based on seasonally adjusted data. Even if an alternative non-seasonally adjusted time

series were an appropriate measure of the cycle, it would still be necessary to extract the comovement

of that series with all of the data being seasonally adjusted in order to identify idiosyncratic seasonals.

This would necessitate estimating an expanded version of the model presented in Section 3.
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6. Conclusions

One strand of the recent literature on business cycle dynamics emphasises the potential interactions

between seasonal and cyclical fluctuations in economic data. In this paper, we model such interactions

using a multivariate unobserved components framework. Our model can be used to extract seasonal

and cyclical components from a set of related time series, generate an index measuring a common

cycle in these data and test for seasonal variations in the comovement between industry-level activity

and the aggregate cycle. We apply this technique to a nine-sector disaggregation of quarterly total US

payroll employment.

Overall, our results suggest that a sizable amount of the seasonal movements in industry-level

employment is idiosyncratic. This finding helps explain why seasonality accounts for a smaller

proportion of the variation in our model’s common cycle than it does in total employment and why,

within sample, the seasonal factors generated by our model are very close to those produced by a

univariate X-11 filter.

However, our results also indicate that seasonal movements in the data can be considerably influenced

by business cycle developments. In a number of sectors, the comovement of employment with the

common cycle shows statistically significant variations over the year, and in some cases the estimates

appear consistent with seasonality in the production technology affecting the responsiveness of

employment to cyclical changes in demand. Furthermore, seasonal/cyclical interactions may influence

the tracking of business cycle developments; our estimated common cycle leads movements in

seasonally adjusted total employment around some business cycle peaks – a pattern that is also

exhibited in a real-time, out-of-sample experiment run from 1990 to end-1994. This real-time

simulation also produces some noticeable differences between the seasonal factors from our model and

those from X-11, although our model’s seasonals do not appear to be more stable than those produced

by X-11.

A number of extensions of our model would make interesting topics for future research. Additional

structural specifications of (1) might provide insights into the economic factors generating correlations

between seasonality and cyclicality at the industry level, or one could specify a multi-index model

where cyclical dynamics are also generated by sector-specific shocks that are directly correlated with

shocks to the common cycle. However, these extensions come at the cost of additional (and potentially

significant) computational complexity as long as one maintains a model with endogenous

determination of the common cycle.
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Appendix

A.1 The Kalman filter and the likelihood function

Our model is:

(5) ttttt YLDCZY ε++= −1
* ~

)(
~~

(6) t-tt CC Ω+Φ= *
1

* ~~

where E[ ttε′ε ] = H and E[ ttΩ′Ω ] = M. Given the independence of each itε  and τε j , H is a diagonal

matrix with the terms 2
iσ  on the diagonals. M is a matrix with 2σ  (1 in our model) in the (1,1)

position and zeros elsewhere. Recall that θ is the vector of parameters [{ itγ }, { ijd }, { 2
itσ }] �

]
~

[
~ **

tt CEC ττ =  and τΣt = E [ )
~~

)(
~~

( ** ′ττ
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tt C-CC-C ]. The Kalman filter consists of the recursions
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where tV  = [ ( ) )
~~

(
~

1
*

1 t-t-ttt YLDCZY +− ], the one-period-ahead prediction error in tY
~

, and

HZZF t1-tttt +′∑= . The joint log likelihood function can be written as

(A.2) [ ] ( ) ( )( )[ ]t
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ttt
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t
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1
detlog2/1
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=

where K is the usual constant.

As noted in footnote 9, the unconditional seasonal means of TtC , tSδ , are calculated by solving the

Kalman filter restrictions given by the third equation in (A.1),

(A.3) 1
111 )()( -

ttt-tt-
*

t-tt
*

tt FZS-CS-C ′∑+δ=δ [ ( ) ))()(()( 1111 t-t-t-
*

t-tttit -bSYLDS-CZS-bY +δ− ]

where the { ib } are the unconditional means of the { itY }.
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A.2 EM algorithm estimation of the model

Assuming that *
0

~
C  is fixed, the unconditional log likelihood may be rewritten (with constant K ��DV
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t
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2/1log2/2/1log2

~

Given that H is a diagonal and the elements of M are all zero except for a 1 in the (1,1) slot, (A.4)

simplifies to
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The EM algorithm first takes the expectation of (A.5) conditioned on all available information.

Replacing itε  by )( TititTit - εε+ε  and itω  by )( TititTit - ωω+ω  in (A.5) and taking expectations

conditioned on the data in periods 1,2,...,T yields
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the Kalman smoother.15  We use a fixed-interval Kalman smoother. For notational convenience, let
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The second step of the EM algorithm maximises (A.6) with respect to θ. Note that because there are no

restrictions between the itZ  and jtZ , { ikd } and { jkd }, itZ  and Φ, or )(LDi  and Φ, maximisation

may be done on an equation-by-equation basis. That is, iγ  and ikd  are estimated by minimising each

[ ]iitTit

T

t
;YL θ∑
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1
 with respect to those parameters and 2
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. (Note that iγ  and ikd  enter this minimisation problem non-linearly.)

                                                     

15
As discussed in Watson and Engle, T,tt-1∑  can be estimated by running the Kalman filter and smoother with *~

tC

augmented by an additional lag of tC
~

.
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Minimising 




 Φ′∑Φ+Φ′∑−∑Φ−∑+ω∑

=
TtT,tt-T,tt-TtTt

T

t
11

2

1
 produces estimates of Φ . The

resulting updated estimates of tZ , D(L) and M are then used in the next iteration of the EM algorithm.

A.3 Starting values

Starting values must be chosen for *
00

~
C  and 00∑ , both for the initial iteration in the EM algorithm

and for the first pass through the Kalman filter at each iteration. After experimenting with some of the

alternatives proposed in the literature, we decided to treat *
00

~
C  as fixed at its unconditional mean of 0

at each iteration. Treating *
00

~
C  as fixed implies  00∑ = 0 at each iteration.

The estimates of θ and TtC
~

 are not very sensitive to the starting values for *
00

~
C  and 00∑ .

Nonetheless, the results obtained from fixed starting values had a few advantages over those from

other possibilities, such as those proposed by Shumway, Olsen and Levy (1981) or Hamilton (1994),

in terms of convergence speed, stability of model estimates (e.g. whether or not we removed

unconditional seasonal means from the data prior to estimation) and time variation in Tt∑ .

A.4 Testing

Because the EM algorithm is a maximum likelihood technique, the covariance matrix of θ̂  is given by

the inverse information matrix. As discussed in Ruud (1991), the information matrix can be estimated

by the expectation of ∑
=

T

t
T

1
)/1( (∂ ]ˆ;

~
[ θtTt YL /∂ •θ) (∂ ]ˆ;

~
[ θtTt YL /∂ )′θ . Furthermore, because our

problem reduces to equation-by-equation optimisation, the information matrix is block diagonal. Thus,

the covariance matrix of the },{
~

ikii dγ=θ  can be estimated by

(A.7)
1

1

2ˆ
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
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




λ′λσ= ∑

T

t
ititiiTV

where itλ  is the vector ∂ Titε /∂ iθ~  + (∂ itZ /∂ itTti Z ′∑θ )
~

. We use the appropriate submatrices of the

iTV  as the weighting matrices in the 2χ  statistics reported in Table 3.

In addition, we use Lagrange Multiplier (LM) tests to determine if the restrictions in )(LDi  were

satisfied and to test if terms kd  in )(LDi  were insignificantly different from zero. In general, if jd

was insignificantly different from zero but kd , k > j, was not, both terms were left in )(LDi . The
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exceptions were cases where eliminating the insignificant jd  helped other specification problems,

such as rejection of restrictions between seasonal and non-seasonal AR terms in (7).

The general form of the LM statistic for restrictions on equation (1 ��LV�

(A.8) ( Σ
=
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t 1
∂ ]ˆ;

~
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where jθ  is the parameter(s) being tested, iTΣ  is a consistent estimate of
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=
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~
[ itTit YL θ /∂ )jθ (∂ ]ˆ;

~
[ itTit YL θ /∂ )′θ j ] -1  and θ is set equal to the θ̂  estimated under

the hypothesised restrictions. For example, suppose the maximum power of L in )(LDi  is k and we

wish to test for the inclusion of additional AR terms in )(LDi . The LM test for the restriction that the

coefficient on the k+1 lag, 1+kd , is zero is:
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test the restrictions jskjsk ddd =+  implied by (7). (A.9) is distributed 2χ  with one degree of freedom.

(See Breusch and Pagan (1980).)

A.5 Autoregressive models

The basic general form of the autoregressive specifications used to model the { itu } is:

(A.10) ( ) sr
sr
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The specific models chosen were:

Construction: 2
2

12
12

4
4

3
31

~
)1()1( LdL-dL-dLL-d-d +

Motor vehicles: )1()1( 8
8

4
4

2
21 L-dL-dLL-d-d

Durables ex. motor
vehicles:

4
4

8
8

4
41

~
)1()1( LdL-dL-dL-d +

Non-durables: LdL-dL-dL-dLL-d-d 1
12

12
8

8
4

4
2

21
~

)1()1( +

Retail: )1()1( 12
12

8
8

4
4

3
3 L-dL-dL-dL-d

Other services16: LdL-dL-dL-dL-d 8 1
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84

41
~

)1()1( +

Federal: 4
4

8
8

43
3

2
21

~
)1()1( LdL-dL-dL-dLL-d-d 4 +

                                                     

16
A deterministic linear time trend was also removed from this industry.
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State and local: 4
4

8
8

4
41

~
)1()1( LdL-dL-dL-d +

Mining: )1()1( 12
12

4
41 L-dL-dL-d

Common cycle: 4
4

8
8

4
4

2
21

~
)1()1( LdL-dL-dLL-d-d +

Admittedly, some of these specification are somewhat ad hoc, and some may be overparameterised.

However, we felt these models were preferable to simpler specifications that violated parameter

restrictions or contained residual serial correlation that might confuse identification of cyclical and

seasonal components.
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