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Abstract

Banks allocate capital across business units while facing multiple constraints that may bind
contemporaneously or only in future states. When risks rise or risk management strengthens,
a bank reallocates capital to the more efficient unit. This unit would have generated higher
constraint- and risk-adjusted returns while satisfying a tightened constraint at the old cap-
ital allocation. Calibrated to US data, our model reveals that, when credit or market risk
increases, market-making attracts capital and lending shrinks. Leverage constraints affect
banks only when measured risks are low. At low credit risk, tighter leverage constraints may
reduce market-making but support lending.
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1 Introduction
Banks – as complex firms – optimise the size and composition of their balance sheets while facing
internal and regulatory constraints. Some constraints restrict the riskiness of each business unit
for a given amount of equity capital. Other constraints limit banks’ size, irrespective of measured
risks. While existing research has typically focused on one type of constraint at a time, we study
the two types within a single model. This allows us to study how different constraints affect banks’
value-optimisation problem. We derive a general rule for reallocating capital from one business
unit to another when risk increases or internal risk management tightens. We also calibrate the
model to study the relative relevance of different constraints, and illustrate cross-unit spillovers
stemming from optimal capital re-allocation.

The banking industry develops risk-based constraints that regulators elevate to national and
international capital standards. Seeking to ensure that a bank can withstand adverse shocks
with a high probability, the risk-based constraints rely on statistical concepts such as value-at-
risk and expected shortfall. They underpin well-established and broadly monitored metrics, such
as risk-adjusted return on capital and economic value added, which have been guiding banks’
risk management and capital planning over the past three to four decades.1 To ensure that such
constraints contribute to levelling the playing field globally and are calibrated in light of the
externalities of bank distress, the Basel Committee on Banking Supervision (BCBS) has embedded
risk metrics in the minimum standards for internationally active banks (BCBS [2005, 2009, 2011]).

Size-based constraints limit leverage. Such constraints are also rooted in the private sector’s
risk management practices. In reports to shareholders in the 1970s, banks referred to low lever-
age as indicating financial robustness.2 More recently, haircuts on collateral values – which are
insensitive to small changes in market risk (Gorton and Metrick [2012]) – have restrained the
leverage of counterparties in collateralised lending transactions. National and international regu-
latory standards have emulated this market practice by adopting leverage ratio requirements as a
backstop to risk-based capital requirements (BCBS [2014]).3 The need for such a backstop stems
from inherent deficiencies in risk measurement (Tarashev [2010]) as well as from banks’ incentives
to under-report their risks (Behn et al. [2016], Begley et al. [2017]).

To study the interaction of risk- and sized-based constraints, we incorporate them in a model
of a bank that runs two business units. One of them is a “lending” (or loan) unit. The other unit
holds a securities inventory to make markets: the “market-making” unit. The uncertainty of the
two units’ cash flows stems from credit and market risk, respectively. A separate value-at-risk
(VaR) constraint applies to each unit, in line with current regulation. And even though regulation
imposes a leverage ratio (LR) constraint at the bank level (BCBS [2014]), we apply it to each
business unit separately, in line with reported industry practice (Bank of England [2016]). These
constraints could be (i) binding; or (ii) non-binding contemporaneously but nonetheless influencing
the bank’s decisions because of the likelihood to bind in the future.

In choosing its optimal balance sheet, the bank ensures that the last increment of its capital
1As discussed in Guill [2016], the origin of many risk management practices can be traced back to approaches

pioneered by Bankers Trust starting from the mid-1970s. Practical applications of these concepts are discussed in,
for example, James [1996], Zaik et al. [1996], Nishiguchi et al. [1998] or Ita [2016].

2According to company annual reports, at least some banks have been actively managing their leverage ratios
as far back as the early 1970s (e.g. Wells Fargo [1974]), i.e. around the time major banks started to implement
risk-sensitive measures (Guill [2016]).

3US authorities introduced a leverage limit in the early 1980s (Wall and Peterson [1987]). The leverage ratio is
expected to be fully integrated in international standards by 2018 (BCBS [2014]). For a discussion of the Basel III
leverage ratio see, for example, Fender and Lewrick [2015].
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generates the same profits, irrespective of which business unit it is deployed in.4 The bank’s choices
are steered by two sets of drivers. First, there are the “production technologies,” which map the
size of each unit into profits. They feature the standard property whereby successive expansions
add less and less to a unit’s expected profits, i.e. there are diminishing marginal returns. The
second set of drivers comprises the constraints. A binding constraint limits the extent to which
a unit can expand, thus affecting the profits that the last increment of capital generates. An
influencing constraint, by comparison, does not bind contemporaneously. Yet there is a risk that
it binds in the future if adverse shocks materialise. The bank’s optimal choices anticipate the
straitjacket that such shocks would place on it. Putting it all together, we derive that the bank
equalises constraint- and risk-adjusted marginal returns (CRAR) across business units.

Our main interest is in the bank’s response to an increase in risk, stricter supervision or more
conservative internal risk management, any of which would tighten a constraint. A passive response
would be to downsize the business units so that the new constraint is satisfied at the old capital
allocation. Given diminishing marginal returns, this downsizing would raise marginal profitability.
But the increase would typically differ across units, thus driving a wedge between the respective
CRARs and calling for a re-allocation of capital.

Capital re-allocation would depend on the relative efficiency with which the two units raise
their profitability on the back of the passive response. If both business units were downsized to
levels that satisfy the new constraint at the old capital allocation, the more efficient unit would
generate higher profits with the last increment of its capital. An actively optimising bank would
then re-allocate capital to the more efficient unit. We refer to this as the capital re-allocation rule.

Two business-unit characteristics are key determinants of efficiency. The first one is the sensi-
tivity of the unit’s marginal return to changes in the unit’s size. All else equal, a higher sensitivity
implies that less downsizing is needed to generate a given return with the last increment of allo-
cated capital. The second key determinant is the unit’s size itself. For a given tightening of either
a size-based or a risk-based constraint, a larger unit needs to downsize more in order to continue
satisfying the constraint. And given diminishing marginal returns, more downsizing results in
higher profits for the last increment of capital. Thus, the more efficient unit would tend to be
larger or have a marginal return that is more sensitive to downsizing, or both.

The capital re-allocation rule applies generally. When the bank has a short decision horizon,
we derive analytically that the rule applies to the tightening of either a risk-based or a size-based
constraint. And we verify numerically that this continues to be the case for longer, multi-period
decision horizons. Namely, the bank reallocates capital towards the more efficient unit when the
tightened constraint does not bind contemporaneously but influences the bank’s decisions as it
may bind in the future. What matters here is the units’ relative efficiency in those future states
in which the influencing constraint does bind.

We calibrate the model to data on large US banks. The benchmark calibration is consistent with
common perceptions about a key feature of the two business units: in comparison to the lending
unit, the market-making unit generates lower expected return on the back of higher leverage.
Assuming that each business unit faces a contemporaneously binding VaR constraint and risks
decline from their benchmark values, we obtain that the LR binds with a material probability in
the future and is thus an influencing constraint. The impact of the LR constraint diminishes if
the bank applies it to its overall balance sheet – as allowed by international regulatory standards
– instead of separately to each business unit.

4In this sense, the bank resembles a discriminating monopolist who equalises marginal revenues across segmented
markets. Armstrong and Vickers [1991] and Schmalensee [1981], for example, study a discriminating monopolist.
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The benchmark calibration also implies that market-making attracts capital when either of
the two VaR constraints tightens. This reflects the higher sensitivity of the unit’s marginal return
to downsizing and occurs despite the unit’s smaller size. The re-allocation of capital generates
spillovers across the business units. For example, an increase in market risk tightens the VaR
constraint on the market-making unit and results in less market-making. But, because the bank
reallocates capital from the loan to the market-making unit, lending declines as well. And if credit
risk increases, a similar re-allocation of capital surfaces as less lending and more market-making.

That said, the units’ relative efficiency changes away from the benchmark calibration. At
sufficiently low credit risk, the lending unit is sufficiently large to be more efficient than the market-
making unit. Thus, if a constraint tightens in such an environment, the bank’s optimal response is
to reallocate capital to lending. Symmetrically, capital is re-allocated away from market-making
when a constraint tightens at a high level of market risk.

In line with its role as a backstop, the LR constraint influences the bank’s decisions only when
risks are below their calibration benchmarks. For low credit risk, the LR is an influencing constraint
and the lending unit is more efficient. Tightening the LR constraint in this environment results in
more lending and less market-making.

To streamline the capital allocation problem, we make a number of modelling choices. For
instance, we allow the bank to satisfy a tightened constraint only through capital re-allocation,
without having the option to raise capital externally. In addition, we do not consider market
frictions that generate losses for the bank if it needs to downsize. Such frictions would strengthen
the constraints’ bite – as they would make it costlier to shed assets if a constraint binds down the
road – but would not affect our qualitative results. That said, as done also in Erel et al. [2015]
for instance, we neglect a potential relationship between risk-taking and the cost of funding. If
this relationship is positive, it would ease the effect of constraints on the bank’s balance sheet.
Importantly, we do not derive optimal capital requirements, as this would require a model that
accounts for the social implications of the bank’s decisions. Instead, we take capital constraints as
given and study the bank’s responses to their tightening.

The rest of the paper is organised as follows. We provide an overview of the related literature
in Section 2 and present the setup of the model in Section 3. In Section 4, we study the bank’s
capital allocation problem, and derive analytical conditions that characterise the implications of
changes in risk or risk management. Numerical examples, which we present in Section 5, serve to
complement our analytical results. Section 6 concludes. Analytical proofs and additional results
are in the Appendix.

2 Related literature
Our paper draws on two strands of the literature. It relates to studies on the optimal allocation
of capital within complex financial institutions. In addition, it contributes to a growing literature
on the impact of recent global regulatory reforms on the functioning of financial markets, most
notably on market liquidity.

An early theoretical contribution on internal capital allocation is Stein [1997]. This paper pro-
vides a rationale for the establishment of internal capital markets, which enable a firm’s headquar-
ters to shift resources across business units according to their profitability. In a related paper, Froot
and Stein [1998] assess the optimal capital allocation when a bank is exposed to non-hedgeable risks
and faces increasing costs of raising new capital. The benefits of centralised decision-making arise
from interdependencies across investment decisions on the back of correlated investment returns
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and risk aversion that depends on new exposures. In turn, Perold [2005] studies a US investment
bank and shows that accounting for diversification benefits can significantly reduce the bank’s
capital needs. His analysis suggests that banks should evaluate business activities based on their
marginal contribution to expected operating profits and to the bank’s required risk capital.

Against this analytical backdrop, we point to a complementary source of interdependencies
across business units: capital constraints that also need to be factored into capital allocation
decisions. This leads us to derive a new optimality metric: constraint- and risk-adjusted net
marginal return – or CRAR. Our metric is similar to that proposed by Perold [2005] as both do
not simply compare profitability to the level of risk capital but consider the marginal contribution
of a business unit’s expansion to required capital. A novel element of CRAR is its flexibility as
regards the binding constraint. The optimality condition that equates CRARs across business
units accommodates cases in which the binding constraints are risk-based, or size-based, or risk-
based for some business units and size-based for others. This allows us to study a whole spectrum
of bank reactions to a tightening constraint.

Market frictions represent another key consideration for capital allocation. With such frictions
in mind, we assume that the bank cannot raise additional capital after the realisation of shocks.
With this assumption, we follow closely Stoughton and Zechner [2007], who stress banks’ (almost)
continuous access to debt markets and argue that the cost of debt – rather than the cost of equity
– drives capital allocation.

Our analysis also relates to the capital allocation problem in Baud et al. [2000], which studies
constraints arising from regulation or investor objectives. The common element stems from the
dynamic nature of capital allocation, whereby today’s decisions influence tomorrow’s optimal allo-
cation. In our paper, this surfaces as the bank responding to the tightening of a constraint because
the constraint may bind tomorrow, not necessarily because it binds contemporaneously.

The need to better understand the interaction of new regulatory standards and their market
implications has spurred research on the effects of the post-crisis regulatory reforms. To this
strand of the literature belong Chami et al. [2017], who also study several regulatory standards
and consider a trading and a lending unit within a bank holding company. In contrast to our focus
on capital re-allocations in response to a tightened constraint, they focus on the principal-agent
conflict that may arise because the bank management has incomplete control over the risk-taking
activities of the trading desk. Their analysis illustrates how bank governance measures, such as
choosing appropriate traders or imposing risk limits on the trading desks, can help sustain the
benefits of having multiple business lines within the bank holding company.

Cecchetti and Kashyap [2016] study the interaction of regulatory metrics from a bank-wide
perspective. They argue that the regulatory framework encourages banks to choose similar busi-
ness models because the tightness of individual regulatory requirements depends on the bank’s
balance sheet choices. Expanding on this, we highlight that the interaction of constraints with the
underlying risks of different business units is a key driver of the bank’s balance sheet composition.

Several studies consider the effect of recent regulatory reforms on market liquidity. A common
thread in the analysis is the link between banks’ willingness to maintain securities inventory in
order to make markets in less liquid markets, such as those for corporate bonds. Empirical analysis
by, for example, Bao et al. [2016] suggests that restrictions on banks’ proprietary trading under the
Volcker rule reduced dealers’ willingness to warehouse US corporate bonds and can be associated
with a decline in market liquidity at times of stress. By comparison, Adrian et al. [2017] document
a reversal in the relationship between US dealer capitalisation and corporate bond liquidity. While
bonds traded by weakly capitalised dealers enjoyed better liquidity before the Great Financial
Crisis, bonds traded by better capitalised banks are found to be relatively more liquid post-crisis
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as new regulatory requirements are phased in. Another example is Baranova et al. [2017], who
model the response of dealer-banks to an increase in market volatility. Their model suggests
that leverage regulation induces banks to operate with less leverage, which reduces their market-
making capacity. As a result, liquidity premia in secondary markets rise. From a financial stability
perspective, it would be important to establish whether the reduction in leverage translates into
greater balance sheet capacity that can serve to accommodate liquidity demand at times of stress.
Against this background, our paper sheds light on the link between risk management and market
liquidity by analysing optimal capital re-allocation when financial conditions change.

3 Model
We model a bank with two business units: market-making and lending. After outlining the building
blocks of the model in Section 3.1, we zoom in sequentially on each of the two units in Section 3.2.
We describe these units’ risk- and size-based constraints in Section 3.3.

3.1 Setup
The bank operates on three dates: 0, 1 and 2. Subject to size- and risk-based constraints, it
optimises its balance sheet with the goal of maximising the expected final value of its capital.

The timeline is portrayed in Figure 1. On date 0, the bank chooses the sizes of its loan and
market-making units – L0 and M0, respectively – while facing unit-specific LR and VaR constraints.
The L0 loans are valued at 1 each, whereas the M0 bonds in the market-making inventory are valued
at p0. The bank finances the two units with its capital endowment, K0, and a one-period debt, D0.
Then, the bank enters date 1 and a first set of credit and market shocks materialises. These shocks
determine the end-period value of the two business units, a part of which pays off the debt. The
remaining value equals the new level of capital, K1. At the end of date 1, the bank chooses new
sizes for its units, L1 and M1, funding them with capital, K1, and another issuance of one-period
debt, D1. Again, it needs to satisfy LR and VaR constraints on each unit. Then, the bank enters
date 2 and a second set of credit and market shocks materialises. These shocks determine the
end-period value of the two units, which is used to pay off debt. The remainder is the final value
of capital, K2.

The balance sheet identity on each date t ∈ {0, 1} implies

Lt + ptMt = Dt +Kt

Kt = KtL +KtM

where KtL and KtM are the amounts of capital allocated to the loan and market-making units,
respectively. While our model does not exclude an absorbing default state, our discussion focuses
exclusively on Kt > 0 for all t.

Throughout the paper, we will rule out external capital raising (as well as disbursements
to shareholders). This is motivated by the observation of capital stickiness, reflecting banks’
infrequent access to capital markets (Stoughton and Zechner [2007]). Effectively, we follow the
spirit of Adrian and Shin [2011] in viewing capital as predetermined over sufficiently short periods.

We conclude this subsection by stressing a key difference between the date-0 and date-1 prob-
lems.

On date 1, provided that the units’ marginal profitability is sufficiently high, the bank would
expand its balance sheet by as much as the constraints allow it. Thus, there would be binding
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Figure 1: Timeline

constraints, and tightening or loosening them would affect the bank’s decisions. But there would
also be slack constraints on date 1. These would be either the weaker of the constraints in each unit,
or, for sufficiently low profitability of loans and market-making, all the constraints. Marginally
changing a slack constraint on date 1 would be inconsequential.

On date 0, the bank acts in anticipation of date-1 shocks. Even though some of the constraints
would be slack on date 0, adverse date-1 shocks might turn them into binding constraints on
date 1. And, as we show below, the bank’s optimal date-0 exposure to date-1 shocks depends on
the tightness of all the constraints that could bind on date 1. Thus, in contrast to date 1, changing
a contemporaneously non-binding constraint could influence the bank’s decision on date 0.

3.2 Risk-return profile: market-making and lending
The two business units share two features in common. First, the bank is a monopolist in both
lending and market-making.5 Second, cash flows increase in each unit’s size but by less and less
as a result of successive expansions: i.e. there are decreasing marginal returns. We now provide
further detail, dropping time subscripts from this point on where this does not create confusion.

Market-making unit We model the bank’s market-making in the spirit of Garman [1976].
Concretely, the bank needs to hold a securities inventory of M at date-(t − 1) in order make
markets for a total transaction volume of λM at date-t, where λ > 1. An interpretation of λ is
that it is inversely related to the expected security holding period. See Figure 2. Suppressing time
subscripts, the transaction volume λM pins down the bid and ask prices pb and pa of the traded
inventory, which come from the associated supply and demand:

pb = γ + δλM + ε and pa = α− βλM , (1)
5For examples of a monopolistic market maker, see Kyle [1989], O’Hara and Oldfield [1986], Glosten and Milgrom

[1985].
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where the supply shock, ε, is normally distributed

ε ∼ N
(
0, σ2

ε

)
and i.i.d. over time. It is ε that generates market risk.

The bid-ask spread s is given as:

s = pa − pb = (α− γ)− λM(β + δ)− ε. (2)

In turn, the post-shock value of the inventory is given by the “fair” price p, at the intersection of
the demand and supply schedules:

p : pa = pb =⇒ p = α− β
(
a− γ − ε
β + δ

)
. (3)

The market-making unit’s net cash flow is given by:6

Vm(M,Km; ε) = sλM + pM −R(p−1M −Km). (4)

and comprises three terms. The first one, sλM , represents the revenue from charging a spread
on the volume of intermediated transactions. The second term, pM , is equal to the fair value at
which the bank sells the inventory. The third term, R(p−1M −Km), captures the cost of funding
the inventory M at the interest rate R. The funding needs are given by the inventory purchase
value at the previous date, p−1M , less the amount that is funded by capital Km.

The supply shock has two opposing effects on the net cash flow. As revealed by equation (2),
ε < 0 increases the bid-ask spread, s. At the same time, it lowers the inventory value, as seen
in equation (3) and in the right-hand panel of Figure 2. Ultimately, substituting for the bid-ask
spread and the inventory price, we obtain

Vm(M,Km, ε) = −λ2(β + δ)︸ ︷︷ ︸
f2

M2 +
(

(α− γ)λ+ α− βα− γ
β + δ

)
︸ ︷︷ ︸

f1

M −RM − ε
(
λ− β

β + δ

)
M +RKm

= F (M)− ε
(
λ− β

β + δ

)
M︸ ︷︷ ︸

Market-making revenue

−R (M −Km)︸ ︷︷ ︸
Cost of debt

, (5)

defining the gross cash flow as F (M) ≡ f1M + f2M
2, where f1 > 0 and f2 < 0. The latter

inequality implies diminishing marginal returns.

Lending unit The gross contractual payment on each loan – the loan interest rate, H (L) – is
a decreasing function of the loan volume:

H(L) = g1 + g2L,

where g1 > 0 and g2 < 0. The gross contractual payment on all the loans is given by G(L) ≡
H(L)L. The downward sloping loan demand (g2 < 0) implies diminishing marginal returns for the
loan unit.

6Throughout the paper, we use lower case (m, l) to denote a business unit, and we use upper case (M,L) to
denote business unit size. Likewise, when we do not specify the exact unit, we use x or y (respectively, X or Y ).
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Figure 2: Market-making, and the determination of the bid-ask spread

Credit risk implies that the actual payments on the loans would deviate from the contractual
ones. The deviations could be due to loans that default or do not perform, or pre-pay. To capture
this parsimoniously, we assume that the actual payment is G(L)− ZL, where

Z ∼ N
(
0, σ2

Z

)
and Z is i.i.d. over time and independent of ε.7 We note that a higher Z means a lower loan
revenue.

The net cash flow from lending is:

Vl(L,Kl;Z) = G(L)− ZL︸ ︷︷ ︸
Loan revenue

−R(L−Kl)︸ ︷︷ ︸
Cost of debt

(6)

3.3 VaR and leverage ratio constraints
We study the interaction of risk-based and size-based constraints.

VaR constraints The VaR constraint for the market-making unit (V aRm) and the lending unit
(V aRl) are defined in terms of the respective net cash flows in equations (5) and (6):

V aRm : Pr(Vm(M,Km; ε) ≤ 0) ≤ am and V aRl : Pr(Vl(L,Kl;Z) ≤ 0) ≤ al.

When a business unit x ∈ {m, l} satisfies V aRx, this unit’s capital is sufficiently high to ensure
that a negative net cash flow occurs with a probability not greater than ax.

We rewrite each unit’s VaR constraint in terms of the implied minimum required capital (MRC).
For the market-making unit:

MRCV aR
m = RM + ΩM − F (M)

R︸ ︷︷ ︸
Minimum required capital

≤ Km︸︷︷︸
Capital

allocated

(7)

for Ω ≡
(
λ− β

β + δ

)
N−1(1− am, 0, σ2

ε ),

7Despite this admittedly strong assumption, we obtain spillover effects across the two business units.
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where N−1(1 − am, 0, σ2
ε ) is the inverse CDF of the market shock, ε, evaluated at the 1 − am

percentile (confidence level). Given that the size of the market-making unit is M , the capital
allocated to it is Km and the debt-funding cost is R, Ω denotes the maximum value of the random
loss that the market-making unit can incur per unit of inventory and still generate a non-negative
net cash flow.

In turn, the MRC of the lending unit is given by:

MRCV aR
l = RL+ ΘL−G(L)

R︸ ︷︷ ︸
Minimum required capital

≤ Kl︸︷︷︸
Capital

allocated

(8)

for Θ ≡ N−1(1− al; 0, σ2
Z),

where N−1(1−al; 0, σ2
Z) is the inverse CDF of the credit shock, Z, evaluated at the 1−al percentile.

Given that the size of the lending unit is L, the capital allocated to it is Kl and the debt-funding
cost is R, Θ denotes the maximum value of the random loss per loan that is consistent with a
non-negative net cash flow.8

Leverage ratio (LR) constraint If a minimum LR (χ) is imposed on each business unit, the
two LR constraints and the corresponding levels of minimum required capital (MRC) are:

LRm : χM ≤ Km and LRl : χL ≤ Kl, (9)
where MRCLR

m = χM and MRCLR
l = χL.

For future reference, we also record an LR constraint applied at the bank-wide level:

χ(L+M) ≤ K. (10)

4 Bank’s Problem
We solve the bank’s optimization problem by backward induction. That is, we begin by solving
the date-1 problem. Then, we embed the solution in the date-0 problem. In the main text, we
present the case where the bank applies the LR constraint at the business-unit level.

Date 1. Starting with the current capital stock, K1 – which is the result of date-0 decisions
and date-1 shocks – the bank chooses the size of each unit and the associated capital allocation –
that is, L1,M1, Km1 and Kl1 – to maximize the expected value of the end capital stock, E (K2).
Denoting the maximised value of E (K2) by U1(K1), we write

U1(K1) = max
L1,M1,Km1,Kl1

∆

E
[
Vm2(M1, Km1; ε2) + Vl2(L1, Kl1;Z2)

], (11)

where ∆ is the discount factor and the expectation is taken over the distributions of the date-2
credit and market shocks, Z2 and ε2. Equations (5) and (6) deliver the business units’ cash flows,
Vm2 and Vl2, for specific values of M1, Km1, ε2, L1, Kl1 and Z2. The constraints are Km1+Kl1 ≤ K1
and as given by expressions (7), (8) and (9).

8The application of the VaR constraint at a business unit level is in line with regulatory standards. These
standards incorporate the conservative assumption of no diversification benefits in credit and market risks.
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Date 0. The date-0 objective is to maximise the discounted expected value of the date-1 max-
imisation of E (K2). The bank chooses L0,M0, Km0 and Kl0 while taking the capital endowment
K0 as given:

max
L0,M0,Km0,Kl0

∆E
[
U1
[
Vm1(M0, Km0; ε1) + Vl1(L0, Kl0;Z1)

]]
(12)

where U1 (·) is as defined by the date-1 problem in expression (11) and the expectation is taken
over the distributions of the date-1 credit and market shocks, Z1 and ε1. Equations (5) and (6)
deliver the business units’ cash flows, Vm1 and Vl1, for specific values of M0, Km0, ε1, L0, Kl0
and Z1. The constraints are Km0 + Kl0 ≤ K0 and as given by expressions (7), (8) and (9). We
will see in Section 4.1 that, in contrast to the date-1 problem, the date-0 problem incorporates
contemporaneously non-binding but influencing constraints.

4.1 Optimality conditions
In Appendix A.1, we derive the following optimality conditions. When no constraint binds contem-
poraneously, the first-order conditions constitute the optimality conditions, and consist of setting
the expected net marginal cash flow for each business unit equal to zero on each date:

dE
[
Vm2(M1, Km1; ε2)

]
dM1

=
dE
[
Vl2(L1, Kl1;Z2)

]
dL1

= 0 and

dE
[
U1
[
Vm1(M0, Km0; ε1) + Vl1(L0, Kl0;Z1)

]]
dM0

=
dE
[
U1
[
Vm1(M0, Km0; ε1) + Vl1(L0, Kl0;Z1)

]]
dL0

= 0.

If constraints i and j bind on date 1 for the market-making and loan units, respectively, whereas
constraints i′ and j′ bind on date 0, then

MRCi
m1 = Km1, MRCj

l1 = Kl1, (13)
MRCi′

m0 = Km0 and MRCj′

l0 = Kl0, where i, j, i′, j′ ∈ {V aR,LR}

The first-order conditions under binding constraints are

dE
[
Vm2(M1, Km1; ε2)

]
dM1

/
dMRCi

m1
dM1

=
dE
[
Vl2(L1, Kl1;Z2)

]
dL1

/
dMRCj

l1
dL1

and, (14)

dE
[
U1
[
Vm1(M0, Km0; ε1) + Vl1(L0, Kl0;Z1)

]]
dM0

/
dMRCi′

m0
dM0

=

dE
[
U1
[
Vm1(M0, Km0; ε1) + Vl1(L0, Kl0;Z1)

]]
dL0

/
dMRCj′

l0
dL0

.

These mean that on any given date, the last increment of required capital delivers the same value,
irrespective of which unit the bank deploys it in.

Several remarks are in order. First, capital fungibility makes it impossible to have only one unit
with a binding constraint. If such a situation were to arise, capital would be transferred to this
unit so that either zero or two units end up with binding constraints in equilibrium. Second, the
conceptual difference between the optimality condition on date 1 and that on date 0 stems from
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how they incorporate cash flows. On date 1, the bank considers the expected value of unit-specific
marginal net cash flows on date 2.

On date 0, by contrast, it considers how changing the size of a business unit affects a non-linear
transformation of aggregate net cash flows, i.e. U1 (·). To see where the non-linearity comes from,
note that adverse date-1 shocks would effectively tighten any binding constraints and necessitate
a contraction of the balance sheet. Because of diminishing marginal returns, the resulting drop in
cash flows would be larger than the corresponding rise triggered by favourable shocks. This lack of
symmetry is reinforced if the adverse shocks transform non-binding constraints into binding ones.
From the standpoint of date 0, these would be non-binding but influencing constraints. In sum, the
combination of diminishing marginal returns and capital constraints implies that adverse date-1
shocks have an asymmetrically larger impact on the maximised expected value of end capital, K2.
At date 0, this leads the bank to consider not only the expected value but also the riskiness of
the shock-driven date-1 cash flows.

From this point on, we alleviate the notation with the following shortcuts. When no constraint
binds contemporaneously, the bank equalises business units’ expected r isk-adjusted net marginal
returns (RAR), where:

RARx,t ≡
dE
[
Ut+1

[
Vm,t+1(Mt, Km,t; εt+1) + Vl,t+1(Lt, Kl,t;Zt+1)

]]
dXt

, (15)

where x ∈ {m, l}, X ∈ {M,L}, t ∈ {0, 1}, U1 is given by (11) and U2 is the identity function.
When there are binding constraints, we say that the bank equalises the expectation of business
units’ constraint- and r isk-adjusted net marginal returns (CRAR). In this case:

CRARi
x,t ≡

dE
[
Ut+1

[
Vm,t+1(Mt, Km,t; εt+1) + Vl,t+1(Lt, Kl,t;Zt+1)

]]
dXt

/
dMRCi

x,t

dXt

, (16)

where x ∈ {m, l}, X ∈ {M,L}, t ∈ {0, 1}, U1 is given by (11) and U2 is the identity function.

4.2 Defining efficiency
When a constraint tightens, capital becomes scarcer and the overall balance sheet has to shrink. A
passive response would be to maintain the old capital allocations and simply shrink each business
unit to the extent required to satisfy the new constraint. However, the resulting outcome would
typically be suboptimal as the CRARs would differ across units. This implies that the optimising
bank needs to re-allocate capital across business units. And one would expect the re-allocation to
result in a smaller reduction (or even an expansion) of the unit that makes a better use of the last
increment of the scarcer capital.

To derive a concrete expression for this intuition, we define two concepts that help describe the
passive response. First, we denote by ∂CRARi

x

∂i
the change in the CRAR of unit x ∈ {m, l} when

constraint i ∈ {V aR,LR} tightens and all else stays the same. In the light of expressions (7), (8)
and (9), this tightening corresponds to an increase in Ω, Θ or χ. Second, we denote by Ẋ|

MRC
i
x

the downsizing that restores the initial MRC, where x ∈ {m, l}, X ∈ {M,L} , i ∈ {V aR,LR}.
Here and below, the dot notation denotes the first derivative of a unit’s size with respect to a
parameter of the tightening constraint and an upper bar indicates that the corresponding object
remains constant.
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Definition. Let constraint i and j bind for business units x and y, respectively, where x, y ∈
{m, l} and i, j ∈ {V aR,LR}. For a tightening of constraint i, business unit x is more efficient if

∂CRARi
x

∂i
+ ∂CRARi

x

∂X
Ẋ|

MRC
i
x
>
∂CRARj

y

∂i
+
∂CRARj

y

∂Y

·
Y |

MRC
j
y

(17)

In other words, if both business units were downsized to levels that satisfy the tightened constraint
at the old capital allocation, the more efficient unit would increase by more the profits it generates
with the last increment of capital.

In the next subsections, we show that relative efficiency guides capital re-allocation.

4.3 Response to a tighter binding constraint on date 1
On date 1, the bank’s response reflects expected net cash flows:

E
[
Vm2(M1, Km1; ε2)

]
= F (M)− (M −Km)R and (18)

E
[
Vl2(L1, Kl1;Z2)

]
= G(L)− (L−Kl)R.

Combined with (13) and (14), these cash flows are at the centre of the bank’s response to the
tightening of a binding constraint.

4.3.1 Different constraints bind for the two business units

We consider cases in which a binding constraint tightens. For example, χ increases (for the LR
constraint), or σε increases (for the market-making VaR constraint), or σZ increases (for the lending
unit’s VaR constraint). For these cases, we prove the following proposition.

Proposition 1.1. When a constraint tightens, the bank’s optimal response is to reduce the size of
the business unit for which this constraint binds.

Proof. (by contradiction): Assume that the bank were to expand unit x for which a binding
constraint has tightened. Since MRC is an increasing function of the unit’s size – see Appendix
A.1 – the bank would now need to allocate more capital to unit x. At the same time, the increased
size would lower the unit’s CRAR because of diminishing marginal returns – recall (7), (8), (9),
(16) and (18). This adds to the CRAR decline that is due to the tightening of the constraint.
For the optimality condition (14) to be restored, the CRAR of the other unit, y, must decline as
well, necessitating an increase in the size of y because of diminishing marginal returns. Since the
binding constraint of y has not weakened, the bank would need to allocate more capital to y as
well. Yet, for a given amount of capital and binding constraints, the bank cannot allocate more
capital to both units at the same time – a contradiction. �

The unit with a tightened constraint shrinks, but what happens to the size of the other unit?
The answer to this question depends on the bank’s optimal re-allocation of capital. If this involves
a shift of capital towards (respectively, away from) the unit with a tightened constraint, the other
unit shrinks (respectively, expands). The following proposition – proved in Appendix A.2 – states
formally the capital re-allocation rule.
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Figure 3: The bank’s response to an increase in market risk when market-making is the more efficient unit.

Proposition 1.2. Assume that the binding constraints, i and j, differ across the two business units,
x and y. Suppose that only the binding constraint i for business unit x is tightened, which implies
∂CRARi

y

∂i
+ ∂CRARi

y

∂Y

·
Y |

MRC
i
y

= 0. In line with expression (17), capital is allocated to business unit x –

i.e. K̇x > 0, K̇y < 0 and Ẏ < 0 – if this unit is more efficient, i.e. if ∂CRARi
x

∂i
+ ∂CRARi

x

∂X
Ẋ|

MRC
i
x
> 0.

Otherwise, K̇x < 0, K̇y > 0 and Ẏ > 0.

To illustrate the mechanisms at work, Figure 3 focuses on a case in which the two VaR con-
straints bind. The bank equalises CRARs across units if and only if the relevant iso-profit curve
is tangent to the relevant budget set in this figure. Initially, the relevant budget set combines the
red and blue areas and the optimum choice of M and L is at point A. Suppose then that the
market-making constraint tightens, which contracts the budget set to the blue area, so that point
A is no longer feasible. The bank’s passive response, point B, would be to only reduce M in order
to satisfy the new constraint at the old capital allocation. This is suboptimal, as the iso-profit
curve is not tangent at B to the blue budget set. The optimal response is at point C, where the
bank attains the highest feasible iso-profit curve. In moving from B to C, M increases and L
declines, indicating a re-allocation of capital to the market-making unit. Per Proposition 1.2, the
capital re-allocation reveals that the market-making unit is the more efficient one. That said, the
move from the old optimum (A) to the new optimum (C) results in a net decline in M, in line
with Proposition 1.1.

To establish which business-unit features drive relative efficiency, we write explicitly changes
of specific CRARs, triggered by a passive response to the tightening of specific constraints:

∂CRARV aR
m

∂Ω + ∂CRARV aR
m

∂M

·
M |

MRC
V aR
m

= −F
′ (M)−R

Ω2 − F ′′ (M)
Ω

M

R + Ω− F ′ (M)
∂CRARLR

m

∂Ω + ∂CRARLR
m

∂M

·
M |

MRC
LR
m

= −F
′(M)−R
χ2 − F ′′ (M)M

χ2 (19)

∂CRARV aR
l

∂Θ + ∂CRARV aR
l

∂L

·
L|

MRC
V aR
l

= −G
′ (L)−R

Θ2 − G′′ (L)
Θ

L

R + Θ−G′ (L)
∂CRARLR

l

∂Θ + ∂CRARLR
l

∂L

·
L|

MRC
LR
l

= −G
′(L)−R
χ2 − G′′ (L)L

χ2
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where the prime and double-prime notation denotes first and second derivatives, respectively. For
the interpretation of these expressions, we note that:

• The gross marginal return is higher than the marginal cost of debt when the unit is con-
strained: F ′(M) > R and G′(L) > R.

• There are diminishing marginal returns: F ′′(M) < 0 and G′′(L) < 0.

• MRCs in (7) and (8) increase with the unit’s size (see Appendix A.1): R + Ω > F ′(M) and
R + Θ > G′(L).

• The VaR losses and the LR constraint’s parameter are positive: Ω > 0, Θ > 0 and χ > 0.

• Units’ sizes are positive: M > 0 and L > 0.

We can now discuss the drivers of efficiency. For one, efficiency increases with the sensitivity
of a unit’s gross marginal returns to the unit’s size, i.e. with |F ′′(M)| or |G′′(L)|. This is because
the higher this sensitivity, the greater the increase in CRAR for a given downsizing. In addition,
efficiency increases with the unit’s size, i.e. with M or L. This stems from the fact that a tightening
of a constraint raises the MRC of a larger unit by more. All else the same, this implies that a larger
unit needs to downsize more in order to satisfy a tightened constraint, which, given diminishing
marginal returns, raises the unit’s CRAR by more.

Expression (19) indicates that other business unit characteristics play a role as well. That said,
the VaR losses entering the tightened constraint, i.e Ω or Θ, as well as the gross marginal return,
F ′ (M) or G′ (L), have an ambiguous net effect on efficiency. In turn, parameters of the unchanged
constraint play an indirect role in (19), only through their impact on units’ sizes.

4.3.2 The same constraint binds in both business units

If the same constraint is to bind in both business units, this must be the LR constraint, as the
VaR constraints differ across units. In this case, the CRAR and MRC conditions – (9) and (16) –
take on particularly simple forms:

G′(L)−R
χ

= F ′(M)−R
χ

(20)

χM + χL = K. (21)

We now have a variant of Proposition 1.1:

Proposition 2.1. When the LR constraint binds for both business units, an increase in χ implies
that both business units contract.

Proof. The proof of Proposition 1.1 still goes through, given that, by (20), a change in χ does not
affect the CRAR-equality condition. �

Capital re-allocation follows the same rule as before, thus leading to the following proposition,
which we prove in Appendix A.3:

Proposition 2.2. Assume that the LR constraint binds for two business units, x and y, and is
tightened. Capital is allocated to business unit x – i.e. K̇x > 0, K̇y < 0 and Ẏ < 0– if inequality
(17) holds, thus implying that unit x is more efficient. Otherwise, K̇x < 0, K̇y > 0 and Ẏ > 0.
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To establish what business unit characteristics drive relative efficiency in this case, we refer
to the definitions of F (·) and G (·) in Section 3.2, the second and fourth lines in (19), and the
equilibrium conditions in (20) and (21). We then obtain that inequality (17) holds for x = l,
X = L, y = m and Y = M if and only if

g1 > f1. (22)

This result is fully in line with the drivers of relative efficiency under different binding con-
straints. Greater curvatures of G (·) and F (·) – i.e. higher |g2| and |f2|, respectively – imply higher
sensitivities of marginal returns to size but, per condition (20), also reduce the optimal sizes of the
respective units. In the specific case at hand, the two counteracting effects offset each other exactly.
By contrast, higher linear coefficients, g1 and f1, raise the optimal unit sizes without affecting the
sensitivity of marginal returns to these sizes. Thus, the relative values of these coefficients drive
relative efficiency when LR binds for the two units.

4.4 Response to a tighter constraint on date 0
The date-0 problem incorporates a non-linear transformation of date-1 cash flows – recall (15)
and (16). That said, when a contemporaneously binding constraint tightens, the date-1 capital
re-allocation rule results extend to the date-0 problem.9

Importantly, even a contemporaneously non-binding constraint can be influencing on date 0.
If the bank perceives such a constraint as binding for certain date-1 states – i.e. for certain
realisations of date-1 shocks – then it would re-allocate capital in response to a tightening of the
constraint. Following the same rule, the bank would re-allocate capital towards the business unit
that is more efficient in those date-1 states in which the tightened constraint binds. We confirm
this numerically in the next section, where we calibrate the model.

5 Numerical Illustrations
To illustrate the above analytic takeaways, we calibrate our model to US bank data. Section 5.1
discusses these data and the calibration approach. The calibration is simplified by the fact that
the initial capital endowment, K0, is a scale variable, which we set to 1 without loss of generality.
Section 5.2 works with the calibrated model, focuses on date 1 and portrays how the bank re-
adjusts its balance sheet in response to a tightening of a binding constraint. Maintaining the
focus on date 1, Section 5.3 reports corresponding results for a bank-wide application of the LR
constraint. In Section 5.4, we focus on date 0 and examine how the bank responds to a tightening
of an influencing constraint.

5.1 Data and Calibration
Data We calibrate the model to data on US bank holding companies (BHCs) with significant
exposures to both credit and market risk. Concretely, we select all banks that are subject to the
Dodd-Frank stress-testing exercise and for which the relevant variables are available from SNL.
This results in 28 BHCs in total, for which we collect quarterly financial statements from 2012

9The bank also takes into consideration the state-contingent date-1 tightness of constraints that bind on date
0. However, our numerical exercise reveals that such considerations are of second order relative to the constraints’
tightness on date 0.
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to 2015. In addition, we obtain US corporate-bond bid-ask spread estimates from the Federal
Reserve Bank of New York for the period from the first quarter of 2012 to the second quarter of
2015. These estimates are based on TRACE securities trading data.

We transform the data to represent a bank with a two-period planning horizon. For one, we
compute bank-specific means and standard deviations across time, which we then average across
banks. In addition, we annualise the quarterly data, so that one period in the model corresponds
to one year.

Calibration The calibration builds on several sets of parameters. The first set comprises pa-
rameters that we derive directly from the data or the literature (Table 1, first block). First, we
set the discount factor to a standard value. Then, we derive the borrowing cost R from the av-
erage interest expense in the data. And we set the LR constraint to be consistent with the US
supplementary leverage ratio (SLR).

The last parameters in the first set are the percentiles defining the loan and market-making
units’ VaR constraints, al and am. For these parameters, we match the minimal capital require-
ments that internationally active banks need to satisfy in order to comply with the BCBS’s credit-
and market-risk frameworks. We thus set al to be consistent with a 99.9% VaR at a 1-year horizon.
For the market-making unit, we refer to the 99% VaR at the 40-day horizon.10 This corresponds
to the requirement for exposures to investment-grade corporate bonds, which is broadly consistent
with the fixed-income instruments in our data. We then transform the 40-day 99% VaR percentile
into its one-year counterpart. Concretely, denoting the standard normal CDF by Φ and assuming
250 business days in a year, we set

am = 1− Φ
(√

40/250 Φ−1(0.99)
)
. (23)

Next, we derive six model-implied moments and match them with their data-implied values
(Table 1, second block). We obtain closed-form expressions for the model-implied moments on the
basis of the solution to the bank’s date-1 problem. These are six equations comprising the nine
unknown parameters shown in the third block of Table 1.

To solve these equations, we need to reduce the number of unknown parameters so that it is
not higher than the number of equations. To this end, we impose the following three restrictions.
First, we assume that (α + γ)/2 = R, which implies that the bank’s borrowing cost lies half way
between the intercepts of the supply and demand schedules for the fixed-income security. Second,
we assume that β = δ, which equalises the absolute values of the price elasticities of the same
supply and demand. Together, these two assumptions imply that the expected capital gain on
bonds is equal to R. Third, we assume that the bank is unconstrained at date-1 with close to
zero probability. This imposes a restriction on the ratio of the actual to the unconstrained (i.e.
counterfactual) size of the bank’s bond inventory. Given these assumptions, the model is exactly
identified. This means that the values of the parameters in the third block of Table 1 deliver
model-implied moments that are exactly equal to their data-implied values in the second block.
For completeness, we also report the marginal return from market-making (f1) and the associated
curvature (f2) which depend on α, β, γ, δ and λ, as shown in (5) (fourth block).

10Recent revisions to regulatory standards for market risk are cast in terms of expected shortfall, as opposed to
VaR (BCBS [2016]). Given that we consider Gaussian shocks, the two risk metrics deliver identical results.
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Parameter/Moment Name Value
∆ Discount factor 0.99
R Borrowing cost 1.0209
χ LR 0.03
am Market-making VaR 0.176
al Lending VaR 0.001

L/M Lending to market-making volume ratio 5.0089
E[s/p] Expected spread as a ratio of price 0.0077

K/(L+M) Leverage ratio 0.0732
Km/M Leverage ratio of market-making unit 0.0382
G(L)/L Expected gross return from lending unit 1.0424
F (M)/M Expected gross return from market-making unit 1.0333

α Demand schedule intercept 1.0260
β Demand schedule slope 0.0003
γ Supply schedule intercept 1.0157
δ Supply schedule slope 0.0003
λ Market-making technology 1.6103
σε Stdev. of supply schedule 0.0497
g1 Marginal return from loans 1.0472
g2 Curvature in loan return –0.0004
σZ Stdev. of loan payoff 0.0334

f1 Marginal return from market-making 1.0374
f2 Curvature in market-making return –0.0018

Table 1: Parameters and moments. To be consistent with the International Financial Reporting Standards (IFRS),
the GAAP based leverage ratio computed from bank balance sheet data in SNL is adjusted downwards by a factor
of 0.22. This adjustment factor is estimated from data on US banks that report both GAAP and IFRS-based
leverage ratios.

The model calibration is consistent with some commonly held views on the characteristics of
bank lending and market-making. First, lending has a higher expected gross return (Table 1).
Second, the market-making unit is more leveraged, as implied by its leverage ratio being lower
than that of the bank as a whole. Third, given the fixed capital endowment, the higher gross
expected returns and the lower leverage of the lending unit imply that this unit also generates
higher expected net returns.

The calibration does not provide an immediate answer as to which of the two units is more
efficient and, thus, would attract capital if a constraint tightens. On the one hand, the loan unit
is roughly five times larger. We argued in Section 4.3.1 that, all else equal, this would imply that
the loan unit is more efficient. On the other hand, however, the marginal gross cash flow of the
market-making unit is more sensitive to the unit’s size (i.e. |f2| > |g2| in Table 1). On its own,
this would imply that the market-making unit is more efficient. In the next subsection, we check
which of the two drivers dominates.

18



Bond inventory: M

(ii) Loan VaR &
Market LR

bind

(i) Both VaR
bind

0.02 0.05 0.08

0.5

1

1.5
Lending volume: L

0.02 0.05 0.08
0.98

1

1.02

1.04

Leverage ratio: K/(L+M)

0.02 0.05 0.08
6.5%

7%

7.5%

8%

Market-making capital: K
m

0.02 0.05 0.08

0.6

0.8

1

1.2
Lending capital: K

l

0.02 0.05 0.08
0.98

1

1.02

1.04

Bid-ask spread (bps): E[s]

0.02 0.05 0.08

70

80

90

100

Figure 4: Effect of a change in market risk, σε, on bank choices. The vertical axes in left-hand and centre panels
express quantities relative to their benchmark values (red dot). The bid-ask spread (bottom right-hand panel) is
expressed in basis points relative to the bond price. The shaded areas indicate regions underpinned by different
binding constraints.

5.2 Date-1 comparative statics
In this subsection, we illustrate date-1 capital re-allocations in response to changes in financial
conditions. For each of the examples, we start from our baseline calibration, deviate from it by
changing the value of one model parameter, and record the implications of the capital re-allocation
rule that we derived in Section 4.

The first comparative statics exercise has to do with changes in market risk. Its results are
portrayed in Figure 4, where the benchmark calibration outcomes are shown with red dots. As we
move from left to right in each panel, market risk increases.

Looking at how the bank adjusts its market-making capital (bottom left-hand panel), we iden-
tify three phases. For a sufficiently low level of market risk, the LR constraint binds for the
market-making unit, whereas this unit’s VaR constraint is slack (grey-shaded area). Changes in
market risk within this phase are thus inconsequential. As market risks increase, the market-
making VaR constraint starts to bind (white area).11 In this second phase, which includes the
calibration benchmark (red dot), the bank responds to higher market risk by reducing the size
of the market-making unit (top left-hand panel), as implied by Proposition 1.1. In this phase,
the market-making unit is more efficient because of the higher sensitivity of its marginal return
and despite its small relative size (recall Section 4.3.1 and Table 1). Thus, in line with the rule
developed in Proposition 1.2, it attracts more capital.

11The discontinuity in each of the panels of Figure 4 is due to the different optimality conditions in the grey-
shaded and white regions. The loan unit’s VaR-based CRAR is equalised to the market-making unit’s LR-based
CRAR in the former region but to the corresponding VaR-based CRAR in the latter region. Similar discontinuities
are observed in subsequent figures for similar reasons.
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As we move to even higher levels of market risk, we enter a third phase, in which market-making
has contracted to such an extent that it is now the less efficient unit. Thus, following again the
capital re-allocation rule, the bank draws capital from the market-making unit and allocates it to
the loan unit (bottom centre panel). The inverted U-shaped curve for the market-making capital
reflects the change in relative efficiency due to changes in market risk.

Figure 4 portrays two direct outcomes of the reduction in market-making on the back of a
binding VaR constraint and rising market risk. First, the expected bid-ask spread increases (bottom
right-hand panel), in line with equation (2). Second, as higher risk means scarcer capital, the overall
balance sheet contracts which – given the fixed capital stock – implies a higher leverage ratio (top
right-hand panel).

Changes in credit risk lead to qualitatively similar outcomes (Figure 5). The loan unit’s VaR
constraint does not bind for low levels of credit risk, implying that changes in this risk are incon-
sequential (grey-shaded areas). As credit risk increases, this VaR constraint starts to bind (white
area) and, per Proposition 1.1, the loan unit contracts (top centre panel). Again, the capital alloca-
tion reflects the units’ relative efficiency. At intermediate levels of credit risk, the loan unit is more
efficient owing to its sufficiently larger size. Thus, per Proposition 1.2, a rise in credit risk from
these levels induces the bank to reallocate capital towards the loan unit (bottom centre panel) and
away from the market-making unit (bottom left-hand panel). This leads to a contraction of the
bond inventory (top left-hand panel). For sufficiently high credit risk, such as at the calibration
benchmark (red dot), the loan unit becomes relatively less efficient because of its reduced size.
Here, an increase in credit risk prompts a re-allocation of capital towards market-making (bottom
left-hand panel), which results in an expansion of the bond inventory (top left-hand panel) and
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a decline in the expected bid-ask spread (bottom right-hand panel). These re-allocation patterns
surface as an inverted U-shaped curve of the loan unit’s capital (bottom centre panel).
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Figure 6: Changing relevance of constraints.
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Figure 7: Effect of a change in credit risk, σZ , on bank choices in the bank-wide LR and business-unit LR cases.
The vertical axes in left-hand and centre panels express quantities relative to their benchmark values (benchmark
not shown). The bid-ask spread (bottom right-hand panel) is expressed in basis points relative to the bond price.
The shaded areas indicate regions underpinned by different binding constraints in the two cases.

Overall, changes in market or credit risk give rise to four binding-constraint combinations at
date 1 (Figure 6, top panel). First, for sufficiently high levels of both risks – such as at the
calibration benchmark (red dot) – the two units’ VaR constraints bind (region (i)). Second,
lowering only market risk (i.e. moving to the left in the panel) implies that the market-making
unit is bound by the LR constraint, while the VaR constraint binds for the loan unit (region (ii));
Symmetrically, lowering only credit risk (e.g. moving to the bottom in the panel from the red dot)
implies that the loan unit is bound by the LR constraint, while the VaR constraint binds for the
market-making unit (region (iii)). Finally, low levels of both market and credit risk make the LR
constraints bind for both units (region (iv)).

5.3 Date-1 comparative statics, bank-wide LR constraint
Applying the LR constraint at the overall bank level alleviates the scarcity of capital and increases
the bank’s value in those cases where the LR binds for only one business unit in the business-unit
LR regime.12 This is consistent with (i) the proof in Appendix A.4 that at least one business unit
must expand when the bank switches from business-unit to bank-wide LR constraint; and (ii) our
specific parameterisation. To illustrate this point, we zoom in on relatively low levels of credit risk
where LR constraints come into play (Figure 7). We plot as blue lines comparative statics results
from a bank-wide application of the LR constraint. For comparison, we also plot (with red lines)
the corresponding results from Figure 5, which are based on LR constraints at the business-unit
level.

The comparison of the two scenarios delivers four takeaways. First, for sufficiently high levels
12In the business-unit LR regime, if the LR binds for both units, changing the application of the LR constraint

to the overall bank level would have no effect on the bank’s choices.
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of credit risk (white areas), switching to a bank-wide application of the LR constraint is incon-
sequential as this constraint is irrelevant. Concretely, the blue and red lines coincide for high σZ
in Figure 7. Second, relative to a business-unit LR constraint, a bank-wide LR constraint starts
binding only at lower levels of risk. In Figure 7, this is seen in that the bank-wide LR constraint
does not bind in the grey region whereas the loan unit’s LR constraint does bind. The same take-
away emerges for both credit and market risk in Figure 6. This figure shows that, applied to each
business unit separately (top panel), the LR constraint binds for wider parameter regions than if
applied to the bank as a whole (centre panel).

Third, for intermediate levels of credit risk (grey-shaded regions in Figure 7), switching from a
business-unit to a bank-wide LR constraint alters the binding constraint for the loan unit. Namely
this unit’s LR constraint is replaced by the less demanding VaR constraint. This allows the bank to
re-allocate capital from the loan to the market-making unit (bottom, left-hand and centre panels)
while expanding both business units (top, left-hand and centre panels). It also translates into a
lower leverage ratio (top, right-hand panel) and a lower bid-ask spread (bottom, right-hand panel).

Fourth, for low levels of credit risk (amber regions in Figure 7), the switch to a bank-wide LR
constraint alleviates capital scarcity. Thus, the bank expands both units (top left-hand and centre
panels), lowers its leverage ratio (top right-hand panel) and lowers the bid-ask spread (bottom
right-hand panel). When a bank-wide LR binds, the level of capital allocated to a specific business
unit is indeterminate. To signal this, we do not plot blue lines in the amber regions of the bottom
left-hand and centre panels.

5.4 Date-0 comparative statics
We now consider the date-0 implications of the calibration on the basis of LR constraints at the
business-unit level. The bottom panel of Figure 6 provides a comprehensive view as regards which
constraint binds on date 0 for different levels of risk. The benchmark calibration (red dot) belongs
again to the region in which the VaR constraints bind for each of the two business units. And,
similar to the date-1 case, the market-making unit continues to be the more efficient one in a
neighbourhood around the benchmark calibration. Thus, deviations from the benchmark that
are due to changes in market or credit risk have similar implications as those portrayed above in
Figures 4 and 5.13

The main novelty on date 0 is the possibility that a constraint influences the bank without
binding contemporaneously. In particular, our calibration implies that LR constraints are non-
binding but influencing for intermediate levels of credit or market risk (Figure 6, bottom panel,
region (v)). To examine the implications of an influencing constraint, we select a parameter
configuration that differs from the calibration benchmark only in that credit risk is lower (black
square).14

To verify relative efficiency in this case, we focus on those future, i.e. date-1, states for which an
LR constraint binds. And we confirm that – given a tightening of an LR constraint – downsizing
the two units to satisfy this constraint at the initial capital allocation results in a higher CRAR
for the loan unit. Thus, in terms of the definition in Section 4.2, the loan unit is more efficient.

Relative efficiency governs the bank’s responses when an influencing LR constraint tightens,
i.e. χ increases (Figure 8). Namely, a tightening of the constraint leads to a re-allocation of

13We verify that the tightening of any contemporaneously binding constraint has qualitatively similar implications
on dates 1 and 0. These results are available upon request.

14We focus on an influencing LR constraint, but note that the same reasoning applies to the case of an influencing
VaR constraint.

23



2.6% 2.8% 3% 3.2% 3.4%

0.9985

0.999

0.9995

1
Bond inventory: M

2.6% 2.8% 3% 3.2% 3.4%

1

1.00005

1.0001

1.00015

1.0002
Lending volume: L

2.6% 2.8% 3% 3.2% 3.4%

3.61488%

3.61490%

3.61492%

Leverage ratio: K/(L+M)

2.6% 2.8% 3% 3.2% 3.4%

0.9985

0.999

0.9995

1

Market-making capital: K
m

2.6% 2.8% 3% 3.2% 3.4%

1

1.0001

1.0002

Lending capital: K
l

2.6% 2.8% 3% 3.2% 3.4%

67.84

67.86

67.88

Bid-ask spread (bps): E[s]

Figure 8: An influencing LR constraint for low credit risk. The vertical axes in left-hand and centre panels express
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capital from the market-making to the loan unit (bottom left-hand and centre panels). Since the
contemporaneously binding VaR constraints have not changed, the capital re-allocation translates
into a smaller market-making unit and a larger loan unit (top left-hand and centre panels). And
since a tightened constraint makes capital scarcer, the overall balance sheet size declines and the
leverage ratio rises (top right-hand panel). Finally, the smaller bond inventory triggers an increase
in the bid-ask spread (bottom right-hand panel).

6 Conclusion
The above analysis reveals that bank capital allocation creates potentially important spillovers
across different business units and over time. These spillovers emerge even when successive shocks
are uncorrelated and each unit is subject to independent sources of risk and faces separate capital
constraints. They are the result of centralised decision-making that optimises the overall value of
the bank.

The spillovers imply that the same outcome may have very different root causes. For instance,
a reduction in market-making could be due to stricter regulation or risk management. But it could
also stem from a change in measured credit risk that leads the bank to optimally re-allocate capital
away from market-making. Importantly, the outcome could have been the opposite if the change
had occurred for a different initial level of measured risk. Furthermore, a constraint that does
not bind contemporaneously could still influence decisions if financial conditions evolve and imply
that this constraint is more or less likely to bind in the future. All this calls for extra caution in
empirical analyses of the drivers of observable bank behaviour.
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A Appendix

A.1 Business-unit LR constraint
The optimisation problem of the bank at date t ∈ {0, 1} is as follows:

Ut(Kt) = max
Lt,Mt,Kmt,Klt

∆

E
[
Ut+1

(
Vmt+1(Mt, Kmt; εt+1) + Vlt+1(Lt, Klt;Zt+1)

)]
subject to

MRCLR
mt ≡ χMt ≤ Kmt [ζLRmt ] (24)

MRCLR
lt ≡ χLt ≤ Klt [ζLRlt ] (25)

MRCV aR
mt ≡ RMt + ΩMt − F (Mt)

R
≤ Kmt [ζV aRmt ] (26)

MRCV aR
lt ≡ RLt + ΘLt −G(Lt)

R
≤ Klt [ζV aRlt ] (27)

Kmt +Klt = Kt [ηt]
where Ut is the value function, the bank’s capital stock, Kt, is the state variable and Lagrange
multipliers are in square brackets. Since the bank is risk-neutral, U2 is the identity function.

Suppose that the binding constraints for the loan and market-making units are i and j, respec-
tively. We then obtain the feasibility condition

MRCi
mt +MRCj

lt ≤ Kt i, j ∈ {V aR,LR}
and the first-order optimality conditions for the two units:

[Mt] : E
[
U ′t+1(.)∂Vmt+1

∂Mt

]
− ζ imt

∂MRCi
mt

∂Mt

= 0

[Lt] : E
[
U ′t+1(.)∂Vlt+1

∂Lt

]
− ζjlt

∂MRCj
lt

∂Lt
= 0.

Since capital is fungible between the two units, the Lagrange multipliers of the two binding con-
straints are equal in equilibrium, ζ imt = ζjlt. Defining CRARs as in (16), it follows that they should
be equal across units:

E

[
U ′t+1(.)∂Vmt+1

∂Mt

]/
∂MRCi

mt

∂Mt︸ ︷︷ ︸
CRARi

mt

= E

[
U ′t+1(.)∂Vlt+1

∂Lt

]/
∂MRCj

lt

∂Lt︸ ︷︷ ︸
CRARj

lt

.

In the special case of no binding constraint, ζ imt = ζjlt = 0 and the bank equalises RARs, as defined
in (15).

Note that MRCs increase in the size of the underlying unit: dMRCi
xt/dX > 0. For binding LR

constraints, this is seen immediately in expressions (24) and (25). For binding VaR constraints,
expressions (26) and (27) reveal that MRC is a convex function of the unit size. Since this function
also passes through the (0, 0) point, it is guaranteed to be increasing wherever size and MRC are
both positive (which is the only relevant case).

Note also that the date-1 CRAR decreases in the underlying unit’s size: dCRARi
xt/dX < 0.

This is the result of diminishing marginal returns, which make (i) marginal cash flows decrease in
the unit’s size – recall expressions (5) and (6) – and (ii) marginal MRC weakly increase in this size
– see expressions (24) to (27).
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A.2 Proof of Proposition 1.2
Let x stand for the business unit whose binding constraint is tightened and let X stand for this
unit’s size. Conversely, let y and Y stand for the other business unit and its size. By proposition
(1.1), the tightened constraint causes unit x to shrink: Ẋ < 0. In this appendix, we prove under
what conditions the capital allocated to unit x, i.e. Kx, rises (drops), thus necessitating a drop
(rise) in Ky and Y .

Consider two hypothetical responses of unit x to a tightening of its binding constraint. Namely,
we denote by Ẋ|

MRC
i
x
< 0 and Ẋ|

CRAR
i
x
< 0 the change in X that maintains the unit’s MRC –

respectively, CRAR – constant. Each of these changes is negative because, as proved in Appendix
A.1 – dMRCi

x/dX > 0 and dCRARi
x/dX < 0.

Next, we show that the actual response, Ẋ, can be neither smaller nor larger than both of these
hypothetical responses.

• Ẋ < min(Ẋ|
MRC

i
x
, Ẋ|

CRAR
i
x
) < 0 leads to a contradiction. If this ordering held in equilib-

rium: (i) Ẋ < Ẋ|
MRC

i
x

would imply a drop in Kx; (ii) Ẋ < Ẋ|
CRAR

i
x

and dCRARi
x/dX < 0

would imply a rise in the CRAR of unit x. When Kx declines, Ky increases because the over-
all capital is fixed and unit y was initially facing a binding constraint. Since this constraint
did not change, an increase in Ky implies a higher Y . But a higher Y and dCRARi

y/dY < 0
imply a drop in the CRAR of unit y. In conjunction with (ii), this implies that the CRARs
are not equal across business units. This cannot be an equilibrium.

• max(Ẋ|
MRC

i
x
, Ẋ|

CRAR
i
x
) < Ẋ < 0 also leads to a contradiction. The argument is symmetric

to the previous one, with all signs reversed and the conclusion still being that the CRARs
are not equal across business units.

There are thus two possible orderings of the actual and hypothetical responses.

• Ẋ|
MRC

i
x
< Ẋ < Ẋ|

CRAR
i
x
< 0. In this case, X decreases by less than what is needed to

maintain the original MRC. Thus, the MRC increases and so must Kx for the tightened
constraint to be satisfied.

• Ẋ|
CRAR

i
x
< Ẋ < Ẋ|

MRC
i
x
< 0. In this case, a symmetric argument leads to the conclusion

that Kx declines.

The first ordering is a necessary and sufficient condition for unit x to be the more efficient
one. When this ordering is in place, dCRARi

x/dX < 0 implies that the shrinkage of unit x that
maintains the initial MRC also raises the CRAR above its initial level. Symmetrically, if the
second of the two possible orderings is in place, the shrinkage of unit x that maintains the initial
MRC also suppresses the CRAR below its initial level. Or, in terms of the notation introduced
in Section 4.2, Ẋ|

MRC
i
x
< Ẋ|

CRAR
i
x

is equivalent to ∂CRARi
x/ ∂i+ (∂CRARi

x/ ∂X) Ẋ|
MRC

i
x
> 0.

And since constraint i does not bind for unit y, it is trivially the case that ∂CRARj
y

/
∂i +(

∂CRARj
y

/
∂Y

) ·
Y |

MRC
j
y

= 0. Thus, unit x satisfies the efficiency condition (17) if and only if
Ẋ|

MRC
i
x
< Ẋ|

CRAR
i
x
.

Finally, we showed above that capital is re-allocated to unit x if and only if Ẋ|
MRC

i
x
< Ẋ|

CRAR
i
x
.

This proves Proposition 1.2.
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A.3 Proof of Proposition 2.2
Recall the equilibrium conditions:

G′(L)−R
χ = F ′(M)−R

χ (28)
χM + χL = K (29)

Without loss of generality, let the lending unit be more efficient. Applying the definition of
efficiency (17) to equations (28) and (29) leads to:

−MF ′′(M) < −G′′(L)L. (30)

The goal is to show that Kl increases in response to a higher χ if and only if the latter inequality
holds. Total differentiation of equations (28) and (29) implies:

G′′(L)L̇ = F ′′(M)Ṁ , (31)
χL̇+ L+ χṀ +M = 0. (32)

And the solution of this system of equation delivers:

K̇l = χL̇+ L = −MF ′′(M)− LG′′(L)
F ′′(M) +G′′(L) ,

where the first equality follows from the definition Kl ≡ χL. Indeed, the last expression is positive
if and only if inequality (30) holds.

A.4 Bank-wide LR constraint
In this appendix, we show that both business units cannot shrink if the bank switches from a
business-unit to a bank-wide LR constraint. In the first case, the constraint set is the intersection
of allocations that are feasible given the two VaR constraints and the two LR constraints:

C1 =
{

(L,M,Kl, Km) ∈ R4
+ | Km +Kl = K; χL ≤ Kl; χM ≤ Km;

RL+ ΘL−G(L)
R

≤ Kl;
RM + ΩM − F (M)

R
≤ Km

}
In the second case, the constraint set is the intersection of allocations that are feasible given the
two VaR constraints and the single bank-wide LR constraint:

C2 =
{

(L,M,Kl, Km) ∈ R4
+ | Km +Kl = K; χ(L+M) ≤ K;

RL+ ΘL−G(L)
R

≤ Kl;
RM + ΩM − F (M)

R
≤ Km

}

We will first show that C1 ⊂ C2. To this end, consider an arbitrary point c = (L′,M ′, K ′l , K
′
m) ∈

C1. First, note that c satisfies the two VaR constraints, as they are common determinants of
C1 and C2. Second, note that since c satisfies χL′ ≤ K ′m and χM ′ ≤ K ′l , it trivially satisfies
χ(L′ +M ′) ≤ K = K

′
m +K

′
l . Therefore, any point in C1 belongs to C2 as well.

C1 ⊂ C2 implies that the maximum of the value function achieved under C2 is at least as high
as that achieved under C1. Since this function is monotonically increasing in L and M , it then
follows that L and M cannot be both smaller in the bank-wide LR regime.
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