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Multiplex interbank networks and systemic importance
An application to European data™

Ifaki Aldasoro!, Ivdn Alves?

Abstract

Research on interbank networks and systemic importance is starting to recognise that the web
of exposures linking banks’ balance sheets is more complex than the single-layer-of-exposure
approach suggests. We use data on exposures between large European banks, broken down
by both maturity and instrument type, to characterise the main features of the multiplex (or
multi-layered) structure of the network of large European banks. Banks that are well connected
or important in one network, tend to also be well connected in other networks (i.e. the network
features positively correlated multiplexity). The different layers exhibit a high degree of simi-
larity, stemming both from standard similarity analyses as well as a core-periphery analyses at
the layer level. We propose measures of systemic importance that fit the case in which banks
are connected through an arbitrary number of layers (be it by instrument, maturity or a com-
bination of both). Such measures allow for a decomposition of the global systemic importance
index for any bank into the contributions of each of the sub-networks, providing a potentially
useful tool for banking regulators and supervisors in identifying tailored policy responses. We
use the dataset of exposures between large European banks to illustrate that both the method-
ology and the specific level of network aggregation may matter both in the determination of
interconnectedness and in the policy making process.

Keywords: interbank networks, systemic importance, multiplex networks
JEL: G21, D85, C67

1. Introduction

Growing interest in the analysis of financial interconnectedness and the assessment of sys-
temic risk reflects policy concerns extending well beyond traditional micro-prudential supervi-
sion. Risk externalities of bank behaviour, which are not taken into account by micro-prudential
policies, call for a macroprudential approach (see Crockett (2000)). The recent financial crisis
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and the stress suffered in interbank markets brought to the fore the relevance of bank intercon-
nectedness and the importance of higher-order feedback loops embedded in the reciprocal web
of exposures linking financial institutions.

Of critical importance in macroprudential policy is the identification of key players in the fi-
nancial network, as exemplified by recently introduced Basel Committee on Banking Supervision
(BCBS) requirements for global systemically important banks (G-SIBs, see Basel Committee on
Banking Supervision (2011)). While early contributions on interbank contagion and networks
have focused on aggregated exposures, it is now increasingly recognised that the web of credit
relationships linking banks’ balance sheets is generally more intricate and complex. The em-
pirical literature thus far has either disregarded heterogeneity in credit relationships or worked
with only one layer (typically the overnight unsecured market), resting on the tenet that it is
representative of the whole web of exposures.? Of course, there is a very good reason why most
of the extant literature on interbank networks has worked with the simplification of a single
layer of exposures, namely data availability. The feature present in many networks whereby
the edges or links connecting nodes can be of multiple types has been termed multiplezity, in
contrast to the monopler nature of networks represented by a single set of connections.

The main contribution of our paper is the proposal of a decomposition of systemic importance
into the contribution of different constituent layers. The starting point is a holistic accounting
representation of the balance sheet of the banking system, that allows for a consistent decom-
position of systemic importance. Building on a dataset that provides the necessary granularity,
this paper employs the framework by Aldasoro and Angeloni (2015) and expands two of their
systemic importance measures to the case in which banks are connected through different layers.
The goal is to attribute to each subnetwork its contribution to the systemic importance index for
any given bank. Our dataset of exposures between large European banks features a high level
of disaggregation in terms of instruments and maturity, and it was originally introduced into
the literature in Alves et al. (2013). We analyse its multiplex structure and use it to illustrate
the proposed measures.

Macro prudential policy addressing banks’ systemic importance could indeed benefit from
considering sub-networks and the aggregated network separately from each other. To the ex-
tent that transmission channels’ magnitude and speed differ across layers, institutions’ systemic
importance may differ at the aggregate and more granular levels. Furthermore, systemic im-
portance may depend on which activity is at the time more critical or more directly addressed
by the specific policy being considered. This is indeed the logic that drives the policy process
of assessing banks’ importance at the Basel Committee on Banking Supervision, whereby global
importance is constructed by an aggregation of the presence of the banks in relevant activities
(see Basel Committee on Banking Supervision (2013)). The resulting scores are then (exoge-
neously) weighted to derive a unique ranking of systemic importance. Yet, for policy making
purposes, it can be useful to refine the measurement of systemic importance in such a way
that individual banks’ importance relative to a given fragility can be identified. This requires
granular information on banks’ centrality in the interconnectivity of the relevant activities. Our
approach builds on the logic that drives the existing processes for assessing banks’ systemic im-
portance at both the national and international levels, particularly as far as interconnectedness
is concerned. However, it delves deeper into this aspect by considering the different layers in an
integrated accounting framework.

The remainder of the paper is structured as follows. Section 2 briefly outlines the relation
to the literature, whereas in Section 3 we develop the logic behind multilayer networks, present

3Exceptions to this are the recent contributions by Bargigli et al. (2015) and Langfield et al. (2014) among
others. See the literature review section below for more details.



the approach to systemic importance in single layer networks and its extension to the multiplex
case. Section 4 presents the analysis of the multiplex structure of the network of large European
banks, while Section 5 uses the data to illustrate our proposed measures and their decomposition.
Finally, Section 6 concludes.

2. Related Literature

Our paper is related to strands of literature which can be traced back to the seminal con-
tributions by Allen and Gale (2000) and Freixas et al. (2000). These theoretical papers were
pivotal in their recognition of the importance of the structure of interconnections between fi-
nancial institutions. In the wake of these contributions, distinct approaches emerged in the
literature, ranging from a static understanding of financial relationships to dynamic approaches
built on assumed interactive frameworks.? Whereas interactive models include those dealing
with contagion simulations (with specific assumptions on the reaction function of banks), the
static types look at empirical data of some form of link between banks and remain mute on the
mechanisms characterising contagion. Our paper relates to the empirical approach to systemic
importance on the basis of static networks, and highlights the important policy content of the
granularity of information in the analysis of systemic importance. The method used in this pa-
per derives interconnectedness measures from traditional network models based on sufficiently
granular data on financial institutions’ balance sheets.

In recent years, a number of papers on real-world interbank networks and payment systems
have built on specific datasets by constructing indicators with a financial focus.® Starting with
the contribution by Boss et al. (2004) based on the Austrian interbank market, other studies
made use of alternative country-specific datasets: Craig and von Peter (2014) for Germany,
Soraméki et al. (2007) and Bech and Atalay (2008) for the U.S.A., Degryse and Nguyen (2007)
for Belgium, van Lelyveld and In’t Veld (2012) for the Netherlands, Fricke and Lux (2012) for
Italy, Langfield et al. (2014) for the U.K., and Alves et al. (2013) for large European banks,
among others. Taken together, these and similar studies provide a series of “stylised facts”
of real-world interbank networks: a tiered banking network structure (with a core of highly
connected institutions to which other periphery banks are linked), low density, low average
path length, a scale-free degree distribution, high clustering relative to random networks and
disassortative behaviour.

Our paper builds on the dataset of Alves et al. (2013) (more on the dataset in Appendix
A) and the recent contribution by Aldasoro and Angeloni (2015) that uses measures of the
traditional input-output literature translated to a banking context.

While it is usually recognised that the web of exposures linking financial institutions is much
more complex than a single matrix of exposures would suggest, data limitations have typically
hindered more holistic analyses of interbank networks in which financial institutions’ balance
sheets are intertwined through a variety of layers. Recent contributions are starting to fill this
gap. Bargigli et al. (2015) study the multiplex structure of interbank networks using Italian data
broken down by maturity and by the nature of the contract involved (secured versus unsecured).
They find that different layers present several topological and metric properties which are layer-
specific, whereas other properties are of a more universal nature. Using granular U.K. interbank

4For a good overview of simulation studies and methods applied to interbank contagion see Upper (2011). For
recent overviews of the literature on interbank exposure networks and interbank networks at large see Langfield
and Soramdéki (2014) and Hiser (2015) respectively.

5Examples of these are DebtRank by Battiston et al. (2012), SinkRank by Soramiki and Cook (2013) or the
contributions by Denbee et al. (2016) and Greenwood et al. (2015) among others.



data, Langfield et al. (2014) present an analysis of different layers of the U.K. interbank exposure
and funding networks. Their findings, again, point to the importance of considering different
layers, as structure typically differs among them. For instance, how close the network resembles
a core-periphery structure depends on the asset class considered. Ledn et al. (2014) study the
network of Colombian sovereign securities settlements by combining data on transactions from
three different individual networks. Interestingly, they find that the most important layer in
terms of market value transacted does not transfer its properties to the multiplex (or aggregated)
network. Molina-Borboa et al. (2015) present an analysis of the persistence and overlap of
relationships between banks in a decomposition of the Mexican banking system’s exposures
network.

Even when detailed data is available, the papers addressing different layers of exposures
between banks typically perform separate analyses for each layer and the aggregated network.
We add to this literature by providing two holistic accounting-based measures that allow for
decomposing systemic importance into layer-specific contributions. Two closely related papers
are the contributions by Montagna and Kok (2013) and Poledna et al. (2015), which show non-
linearities that emerge when risks from different layers sum up together, when there are dynamics
and reaction functions embedded in the system. The former present a multi-layered network
consisting of three different subnetworks: short term interbank loans, longer term bilateral
exposures and common exposures in banks’ securities portfolios. They embed an agent-based
model on top of the multi-layered network, thereby providing dynamic mechanisms for shocks
transmission via balance sheet adjustment. Their model is calibrated to European data and
further balance sheet items are considered for a more comprehensive assessment of systemic
risk. Contrary to them, in our paper the different layers are directly linked by a self-contained
accounting framework which includes bilateral data, from which the measures are derived and
decomposed. Our paper differs also in that it does not include endogenous mechanisms for
balance sheet adjustment. Poledna et al. (2015) use a rich dataset for the Mexican interbank
system, study its multiplex structure and show the existence of non-linearity in the way risks are
aggregated: systemic risk for the aggregated network is larger than for the sum of the component
subnetworks. This important insight is obtained by using the DebtRank measure developed by
Battiston et al. (2012), applied to the different layers and the aggregated network separately.
The framework of the DebtRank algorithm to identify systemic banks is formally related to
the one presented here, as both build on representations based on eigen-systems, that take into
account all possible interconnections. Two important differences in approach are worth noting,
however. First, at a technical level, DebtRank focuses on the first two elements in the infinite
series which summarises the interactions in the network, under the premise that otherwise cycles
are considered.® While we do not question the wisdom of this approach, our framework instead
considers all indirect connections as they provide for a benchmark of potential impact (akin to an
impulse-response function). Second, our framework is constructed directly from an accounting
representation of the balance sheet of the banking system, so centrality is embedded within a
consistent system larger than the interbank network itself. Our framework provides a mapping
between balance sheet characteristics, with the interbank matrix playing an important, but not
exclusive, role. Poledna et al. (2015) look at the different layers one at a time and then at the
aggregate layer, whereas we take a different route instead by starting from the aggregate and
then decomposing it.

SIn a sense, this introduces a behavioral assumption on the reaction of banks. Our framework, on the other
hand, does not venture into such assumptions. For more details on the infinite series summarizing interactions
in the network, see section 3 below.



3. Analysing complexity in multilayered banking networks

Following a brief review of the convenient input-output technique adopted by Aldasoro and
Angeloni (2015) in approaching financial networks of a single layer (or aggregate) network (i.e. a
monoplez interbank network) and an outline of the notion of systemic importance in section 3.1,
section 3.2 develops the analytical foundation for connections through different “layers” (i.e. a
multiplex interbank network).

3.1. The Input-Output approach to banking and the notion of systemic importance

We consider a banking system composed of n banks, each of which collects deposits and
equity, lends to non bank customers and lends to and borrows from other banks. The aggregated
balance sheet in matrix notation can be expressed as follows:”

e+d+X'i=Xi+1 (1)

where e, d, 1 are column vectors denoting respectively, equity, deposits and total non-
interbank lending (composed of loans, net securities holdings and lending to (reserves at) the
central bank), i is a unit (i.e. summation) vector of appropriate size, and X is the matrix of
interbank gross bilateral positions,® where an element x;; represents lending from bank 7 to bank
j and where by construction x;; = 0, Vj = 1,...,n. All magnitudes are expressed in monetary
terms, say euros.

Let q be a vector with total bank assets/liabilities and g be a corresponding diagonal matrix,
such that i = q. Then the right hand side of Equation 1 can be written in the following form:

q=X§q 'gi+1=Aq+1 (2)

where A = X§ ! is the matrix of interbank positions in which each column is divided
by the total assets of the borrowing bank. Hence, the columns of A are fractions of unity
and express, for each bank, the share of funding from other banks as a ratio to total funding.
Equation 2 is similar in form and interpretation to the familiar input-output system.? For a
given matrix A, the relation between loans and total assets is given by the well-known Leontief
inverse B= (I - A)~L:

q=(I-A)"'1=BI (3)

The Leontief inverse B captures all direct and indirect connections between banks,'? a feature
that relates it to a standard result in graph theory: matrix B can be expressed as an infinite series
as B =T+ Y77, A* (we use this property later in the paper). Self impact is captured by the
identity matrix, direct impact by A and second and higher rounds of indirect interconnections

"Unless otherwise specified, we use standard notation from matrix algebra. By capital bold fonts (e.g. X)
we denote an n X n matrix with generic elements x;;, whereas lower case bold fonts (e.g. x) represent n x 1
column vectors with generic elements x;. The transpose of a matrix or vector is indicated with a prime (as in X'
or x'). The vector x; denotes de 4" column of matrix X, whereas x} stands for the ith row of matrix X. The
identity matrix is indicated by I, the unit (column) vector is indicated by i, and i; stands for the jt" column of
I. Finally, a lower case bold letter with a "hat” on it (e.g. X) denotes an n X n diagonal matrix with the vector
X on its main diagonal.

8We can think of X as aggregating different types of exposures between banks. Such a matrix has been the
focus of analysis of much of the work on financial networks and we refer to it as the monoplez interbank network.

9For a complete treatment of input-output analysis including several different applications see the manual by
Miller and Blair (2009) or the classic work by Pasinetti (1977).

10See Aldasoro and Angeloni (2015) for the conditions needed to express total assets in terms of non-interbank
lending and the Leontief inverse, and for a discussion on the stability of matrix X.



are captured by A*, with k > 2. The (i,5)-th element of matrix A* will be positive if there
exists a path of length k& between banks 7 and j. In our context this implies that banks ¢ and j
are linked indirectly in terms of borrowing/lending relationships via k — 1 intermediaries. The
Leontief inverse captures in a unique way the magnifying and distributive role shocks on lending
or investment have on the interbank system.

Given this setting, we can study how distress in non-interbank loans for one bank (I;) affects
all banks in the system, in a way that depends on the matrix of bank interconnections B.
Additionally, we may assess the effect that distress in the primary sources of funding (equity
and deposits) has on the total size of banks’ balance sheets. To this end we need a slight
transformation of the framework just presented, by focusing on the liability side instead of the
asset side:

g=e+d+Xi=v+Xi (4)
N——
=V
—=q=v+i4§G'X=v'+q'0 (5)

where §1X = O is the matrix of output coefficients. This is the matrix of interbank positions
in which each row is divided by the total assets of the lending bank. Hence the rows of O are
fractions of unity that express, for each bank, the share of funding provided to other banks as
a share of total funding provided.

It is then straightforward to see that Equation 5 yields the following:

q =Vv'G, (6)

where G = (I— O)_l. Equation 6 represents the supply-side version of the input-output
scheme (known as the “Ghosh inverse”).

There are different ways in which the importance of nodes in a network can be characterised,
ranging from simple degree metrics (measuring the number of a node’s linkages), to more elabo-
rate metrics trying to ascertain the specific role a node may play within the distribution function
served by the network. Although this issue is also central in the context of multiplex networks,
we seek here the simplest tractable decomposition of standard measures of importance that
illustrate the lessons to be drawn from the decomposition itself.

Aldasoro and Angeloni (2015) present several measures to assess the systemic importance
of banks in the interbank system, adapted from the input-output literature. Of particular
interest here are two measures: namely “backward” and “forward” linkages related to Equation 3
and Equation 6, respectively. These measures are related to interconnectedness risks stemming
from credit extension and funding requirements, and they build on the mappings established in
Equation 3 and Equation 6.

Backward linkages are useful in illustrating the transmission mechanism associated to distress
in non-interbank assets. Assume, for example, that the banking system suffers a shock to the
non-interbank lending portion of one of its member banks, say bank j. On impact, the balance
sheet of bank j is obviously negatively affected, and this would show up in the j** element of
vectors q and 1. Subsequently, however, banks other than j may be affected as bank j starts
curtailing credit demand from other banks in the system: as the fraction of interbank borrowing
relative to total assets/liabilities remains constant, bank j reduces its interbank market activity.
Such second round effects are going to be captured by the elements in the j** column of matrix
A. Following this logic, third and subsequent round effects will be captured by the different
powers of matrix A (starting from A2 ad infinitum). Ultimately, a unitary drawdown in non-
interbank lending for bank j would affect the system to an extent given by the j** column of



matrix B. The Rasmussen-Hirschman (RH) backward linkage index for bank j, which we denote
as hy,, can therefore be computed as the sum of all elements in column j of matrix B:

hy, = i'Bi; (7)

The notion of a backward linkage stems from the fact that the hypothetical shock originates
in non-interbank lending and the index traces back its effect through the entire system, with
interbank linkages playing a crucial role in the process.!! The backward index can be normalised
by, for instance, relating it to the mean of the system (which we set equal to one):

- i'Bij
M, = 1B ®
Similarly, the forward index captures the transmission of shocks on equity and deposits. It
builds on Equation 6 by summing along the row dimension of the so-called “Ghosh” inverse G
(based on the output matrix O):
hy = i;Gi (9)

J

This equation establishes an alternative mapping, that goes from primary (non-interbank)
sources of financing to total assets/liabilities. In this context it is useful to think about a
hypothetical shock that may come from the non-interbank funding side of the balance sheet of
bank j. As opposed to the backward linkage indicator, this index traces what happens with uses
of funds in the hypothetical event of a unitary shock hitting the sources of funds. As before, the
matrix of interconnections plays a critical role in this transmission process. It should be noted
though that the matrices A and O represent different transformations of the original matrix of
interbank exposures. Each of these transformations underpins the logic of the two indicators:
matrix A starts at the end of the “banking process” with a change in non-interbank lending and
traces its effect backward through the system,'? by focusing on the matrix of interconnections
from a borrower’s perspective; matrix O, on the other hand, starts at the beginning with a
change in primary sources of funding and traces the effects forward through the system, by
focusing on the matrix of exposures from a lender’s perspective.

As with the backward index, the forward index can also be normalised relative to the mean
of system:

i,Gi
n
'Gi
Based on the normalised version of the indices one can construct a taxonomy of systemic
importance as seen from either banks’ credit or funding activities. By aligning the indicators
with the mean of the system (normalised at 1 here), a bank showing an indicator above 1 will
present an above average score of systemic importance, i.e. a shock to this bank will affect the
system more than the same shock to the average of all banks. This taxonomy is summarized in
Table 1 and we use it in Section 4 in order to identify the set of systemically important banks

as those for which both normalised indicators are above one, i.e. banks having above average
institutional levels of interconnectedness.!® On the other hand, for the purposes of illustrating

ij = (10)

11Tt is important to stress that this indicator, as well as the other considered in this paper, do not necessitate
the existence of a shock to be computed. In other terms, there is no actual contagion process taking place.

121t is implicitly assumed that the final goal of banking is the provision of credit to the non-financial sector.

13Battiston et al. (2015) present a taxonomy in a similar spirit by classifying banks as impactful or vulnerable,
i.e. those that cost most equity depletion to others and those that suffer the most in terms of equity depletion
because of others, respectively. Parallels can be drawn between the categorizations, as for instance banks that



the multiplex extension of the two measures, we stick to the unnormalised version of the indices
as they allow for better comparability.

Table 1: Classification based on backward and forward linkages

ij
<1 >1
- <1 Generally independent Important provider of funds
o, > 1 Dependent on funds from others Key bank

Before moving to the multiplex extension of our measures, a few remarks are in order regard-
ing the nature and limitations of the approach. As noted earlier, the framework used here relates
to the empirical approach that uses static representations of financial networks to draw implica-
tions for systemic importance. Our indicators are not measures of systemic risk, as there is no
actual risk being measured. Even when we motivate the measures by referring to hypothetical
shocks, we don’t observe actual shocks and hence there is no shock propagation process.'?

The approach takes the balance sheet of the banking system as given and, in the spirit
of the classic input-output literature, uses the interbank matrix as a quantifiable accounting
representation of general interdependence in the banking system. It is incontestable as any
accounting relationship can be and agnostic in terms of theory, i.e. a data framework. This is in
contrast to theoretical frameworks, which require a theory or model to account for the observed
reality and, hence, come with assumptions that may or may not be contestable on different
grounds. In any case, it is important to stress that these assumptions are inherent to the model
and are not a necessary feature of the data.

Some recent works bridge the distance between model and data frameworks by micro-
founding the observed interbank network (see Cohen-Cole et al. (2015) or Denbee et al. (2016),
who closely follow the seminal contribution by Ballester et al. (2006) originally applied to social
networks). By assuming certain functional forms for the costs of forming links, and focusing
exclusively on the lending aspect of interbank interactions, this literature presents an impor-
tant result: the equilibrium outcome of the lending game between banks is proportional to the
well-known Katz-Bonacich centrality measure (see Bonacich (1987)). It is straightforward to see
that, if total assets are exactly the same for each and every bank in our system, the measures
discussed here are virtually identical to Katz-Bonacich centrality as used in this literature.!®
However, the advantage of our framework is that we do not need to assume any functional form
for any hypothetical utility or cost function. Furthermore, our data framework is flexible, al-
lowing us to alternate the focus between the lending and borrowing sides of the market. Hence,
it is arguably more general and illustrates that centrality-like measures are in fact embedded in
accounting 1relationships.16 Our measures are meant to be ez-ante measures: given a snapshot

are more dependent on funds by definition are high borrowers and through their distress can therefore severely
impair other actors in the network (i.e. they are more impactful).

14In a similar fashion, for example, degree centrality is an indicator of how many counterparties would be
affected in the event a shock takes place, without the need to have an actual shock in order to derive the
measure.

151n this case, the so-called decay factor used in these papers would equal the inverse of total assets for each
bank.

16 Aldasoro and Angeloni (2015) show how the backward and forward linkage measures mathematically relate



of the banking system as captured by its balance sheet in matrix form, the measures will rank
banks according to different criteria that potentially drive systemic importance. The measures
are silent as to what could be the change in the configuration of the network and the effect at
large given, say, a default of one bank. But it should be noted that when we try to ascertain
the (hypothetical) potential reaction to changes in one or more elements in our system, “the
character of such reactions depends upon the initial structural properties of the empirically given
system” (Leontief (1937), emphasis added).

On the downside, by virtue of not incorporating explicit micro-foundations, we cannot study
how to affect the incentives of players in the market to achieve a specific outcome. Our approach
does not incorporate reaction functions of financial institutions, which arguably play a critical
role in distress propagation in times of stress. To the extent that the interbank matrix is
substantially rewired under stress, measures of systemic risk and systemic importance will tend
to diverge and potentially deliver different results. The evidence points, however, to a relative
stability and persistence of interbank matrices (see the discussion in Aldasoro and Angeloni
(2015) or more recent evidence in Roukny et al. (2014) and Bluhm et al. (2016)).

8.2. Systemic importance in a multipler context

Interconnectedness analysis generally focuses on a single network. However, in many, if not
most, complex systems, the web of links connecting the actors of interest is more intricate and
involved. In social networks, this is so because the links connecting different actors can take
place at distinct levels: for instance people might be connected in the “workplace” network
and not in the “gym” network. If one were to aggregate all connections into a single matrix of
interconnections, the implications for, say, the spread of rumours, could be non-trivially altered.
In transportation networks the multi-level nature of connections is even more evident: think
for example of the bus, tram, subway and suburban train networks in any modern city. These
networks share many nodes (in many stations one can commute from one network to the other
in order to reach the final destination) and serve the overall purpose of taking people from point
A to point B in a cost-effective manner. Inoperability of one node might be quite consequential
if, for example, the node is an important nexus between different network layersx.

Similarly, the relationship between financial institutions can be based on many forms of links,
including ownership, common interest on third parties, but also different types and maturities
of financial contracts per se. Aggregation of these relationships also affects non-trivially the
behaviour of lending relationships and, importantly, the flow and transmission of risk.

The fact that in many networks the edges or links connecting nodes can be of multiple types
has been termed multiplexity,'” as opposed to a single-layer type network which is referred to
as a monoplex network.

A single-layer graph is typically characterised as a tuple G = (E,V) where V is the set of
vertices or nodes and E C V' x V is the set of edges or links. The characterisation of multi-layer
networks requires the specification of levels or layers of connectivity between the nodes.'®

to in/out degree and strength centrality and appendix 3 of that paper also shows how generalized versions of the
backward and forward linkages converge to, respectively, the left and right eigenvectors of the input and output
matrices (what we define as A and O in the paper). The connection to the “key player” problem (or as Denbee
et al. (2016) put it, the “level key player”) is also discussed in that paper. We refer the reader to Aldasoro
and Angeloni (2015) for further details on these issues, as well as for two simple numerical examples used for
comparison of the measures.

17See De Domenico et al. (2013), D’Agostino and Scala (2014), Kiveld et al. (2014) and references therein. As
noted by these authors, the engineering and in particular the sociology literature have pioneered the study of
multilayer networks.

18Regarding the terminology and technical notation that we use to discuss multi-layer networks, we follow the
review article by Kiveld et al. (2014).



To keep a high level of generality, one can note that a multi-layer network can have different
aspects. A clear example of what an aspect represents is given by the case that concerns us in
this paper, namely interbank networks. In this context, different aspects would help characterise
different types of exposures. Thus: one aspect of banks’ exposures depends on the “instrument
type”, whereas another aspect on the “maturity type” of the exposure (for a stylised example see
Figure 1 below). Each aspect can have one or more elementary layers. In the interbank market
example the aspect “maturity type” can for instance have three elementary layers: “short term”,
“medium term” and “long term”; while the aspect “instrument type” could be divided in, say,
“credit claims” and “derivatives”. A network can have any number of aspects d and one can
define the sequence of aspects L = {La}zzl, such that to each aspect a corresponds a set of
elementary layers L,. The term layer is hence reserved for the combination of all elementary
layers corresponding to all aspects of the network.

Short Term Long Term Short + Long Term

Instrument A N \

-

Instrument B

Instrument C

Total
Instruments A,
B,C

Figure 1: A stylised representation of a multiplex interbank network, where directionality and weights of links
have been omitted. Black dots indicate node-aligned banks, and thick lines indicate connections within a given
layer. This network displays two aspects, i.e. maturity type and instrument type. The former aspect is composed
of two elementary layers (short term and long term), whereas the latter aspect presents three elementary layers
(instruments A, B and C). The multiplex network is therefore composed of 2 x 3 = 6 layers.

The network in Figure 1 generates 6 aggregated networks depending on the aspect one wishes
to emphasise. If the focus is on maturity, one can aggregate the networks across instruments to
get the overall short term and overall long term networks. Whereas, if the focus is instead on
instrument types, one can aggregate across maturity in order to get the network for instrument
i (short + long term). Finally, either way one chooses to aggregate, one can always get the
overall aggregation of exposures (the lower right network).

Generally speaking, in a multi-layer network nodes can be present in all or a subset of the
layers, and links can not only exist between a given node and its counterpart in another layer,
but also between different nodes in different layers. In this regard, our setting is more simple and
we are therefore able to abstract from some complications that would require further notation:
(i) every layer is composed of the exact same set of nodes, and (7i) inter-layer links are implicit
and given between a node and its counterpart (i.e. a copy of the same node) in another layer.
The first feature implies that our network of interest is node-aligned and one can define the
set of vertices as Viy =V x L1 X ... x Ly (implying an edge set given by Ey C Vi x Var),
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the second feature implies that the network is diagonal'® We therefore have that multiplex

networks are a subset of multi-layer networks, and we can characterise them by the quadruplet
M = Vi, Eyp, V, L),

Having briefly provided some terminology for multiplex networks, we now exemplify the
measures presented above with banks’ exposures being composed by a variety of instruments or
maturities. Of particular interest is the decomposition of the systemic importance index for the
aggregated network for a given bank, i.e. a decomposition of the vectors h;) and hy) introduced
above. That is, instead of calculating systemic importance measures for the different layers and
for the overall network separately, ideally one would like to see how much of the overall systemic
importance score of a given bank can be attributed to each of the different subnetworks that
together constitute the aggregated network of connections.

To make the discussion general, let us assume that there are o = 1, ..., L different layers,
such that X = Zi:l X4. Without loss of generality these could represent the combination of
elementary layers of different aspects: for example one aspect could be instrument type whereas
another could be maturity type, as shown in Figure 1 and discussed above. The balance sheet
of the banking system would read as:

L
etd+ (> X, |i=> X, ]i+l (11)

Focusing on the asset side of the banking system we can perform transformations analogous to
those used to arrive to Equation 2 and Equation 3, and we obtain the same expression involving
the Leontief inverse, namely q = (I — A)7!'1 = BI, with A = 25:1 A, and A, = X, q7,
where as before each matrix A, represents the interbank network for layer a where each column
is divided by the total assets of the borrowing bank.

A useful property of the Leontief inverse is that can be expressed as an infinite series:

B=(I-A)"
=I+A+A*+A%+. ..

=I+A(I+A+A*+--)
=1+ AB

Using this and noting that A = Zizl A, Equation 3 can be expressed as:

L
q=Bl=(I+AB)l=(I1+)> H,|1 (12)
a=1
where Hy, = A,B, a=1,...,L.2° Tt is apparent from Equation 12 that the balance sheet
equation can be decomposed into layers, such that each layer’s role in magnifying shocks on the
asset’s side is evident.

19 Alternatively, one can define the multilayer network as a multigraph that can be represented by a weighted
adjacency tensor with 3 dimensions (or 4 if we also consider maturity on top of instrument type). Using tensor
decompositions one can assign scores to different layers, thereby providing an alternative way of decomposing
multiplexity. See Kolda et al. (2005) for a proposal on network centrality using tensor decompositions and
Bonacina et al. (2015) for an application to networks of corporate governance in italian firms. While these
applications focus on the networks themselves, the approach used here takes a broader look at the balance sheet
of the banking system and derives measures of systemic importance within this accounting framework. We thank
an anonymous referee for noting the connection to tensor decompositions.

20 An alternative way of arriving at Equation 12 is by noting that ¢ = Aq+1 and q = BI, replacing the second
equation in the right-hand side of the first one and using A = Z§:1 A,.
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The backward linkage index is still calculated as in Equation 7, but now we are able to
attribute to each layer « its contribution to the overall systemic importance index, as measured
by the column sum of the H, matrices.

To see what the column sums of matrix H, (i.e. for an instrument «) look like we can
re-express the matrix in vector notation as follows:

ag, by - ay by

/ /
a),b; --- al, b,

where a,; indicates the i*" row of matrix A, and b; denotes the j* column of matrix B.

Now consider the backward linkage indicator of bank j, which is given by the sum of the
elements in column j of matrix B as shown in Equation 7. The share of this index that can be
attributed to layer « is given in turn by the sum of the elements in column j of matrix Hy:

VH,i; =a/;b; +---+al,b;=(al; +--+al,)b; (14)

Note that the overall effect behind the logic of the backward linkage index is captured by
the vector bj, i.e. the 4" column of the Leontief inverse B. In the case of a monoplex system
the sum of the elements of b; would constitute the index of interest. Here we are concerned
with the disentanglement of how each layer connecting banks contributes to the overall systemic
importance index of banks. This is captured by the ay;, i =1,...,n.

If bank j has exposures on layer «, it follows that this layer will have a bearing on the final
index of systemic importance for bank j. On the other hand, bank j might not be exposed to
another bank 7 on layer «, so distress in bank i on layer o will not affect bank j directly. In
a monoplex network there exists the possibility that j is nonetheless affected through a third
bank k£ which is exposed to ¢ and to which bank j is itself exposed. The incorporation of this
type of channel is indeed a major asset of network analysis. A multiplex structure expands these
indirect channels, and these channels can help in assessing the nature and extent of the policy
impact.

For the sake of argument, let us assume that bank j has no exposures on layer «, then it
will be the case that a;j = 0’. By Equation 14 it is obvious that this does not imply that layer
« is not relevant to account for the overall systemic importance index of bank j, since bank j is
exposed to other banks on other layers 8 # o, 3 =1,..., L (as captured by b;) and these other
banks might themselves be exposed in layer « (as captured by al,, #0', k # j,k=1,...,n).

Likewise, shocks originating in the liabilities are magnified via the different layers via a similar
decomposition. As noted above, in the case of forward linkages, interest lies in tracing forward
the effect of unitary declines in the primary sources of funding (deposits and equity) of any given
financial institution, using the supply-side version of the input output model (see Equation 6).
The forward index involves summation along the row dimension of matrix G = (I—0)".
In the context of a multiplex network we note that the output matrix O can be expressed as

0= 25:1 O, where the output matrix for each layer o (a = 1,...,L) is in turn given by
O, = §q 'X,.
Using the same logic for infinite series as above, we can re-express the Ghosh inverse as:
L
G=(I-0)"'=1+GO=I+) K, (15)
a=1
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where K, = GO,, a=1,..., L. In vector notation such K, matrices can be expressed as:

glloal T glloan
Ko=1 =0 (16)
g;Loal e g;Loan

where g/ stands for the i*" row of G, whereas 0,; denotes the 4t column of O

Since the forward linkage indicator is constructed by summing along the row dimension of
matrix G, that part of the index for bank i that can be attributed to layer a can be expressed
as:

iiKoi=glog + + &i0an (17)

As before, lack of exposure by bank ¢ in layer « implies that o,; = 0, but layer « can
still contribute to systemic importance as measured by the forward index via the vectors o,
(k#14,k=1,...,L) and their interactions with the total effect as measured by gj.

The focus here is on measures of systemic importance which are decomposable into layer-
specific contributions. We note, however, that further variations of systemic importance mea-
sures in a multiplex context can be derived from the framework. For instance, Aldasoro and An-
geloni (2015) present the total linkage effect for bank j, defined as t; = i'q—i'q™? = B—i'B7I,
where B~ = (I — A_j)_l and A7 is the input matrix in which the j** row and column have
been set to zero. This captures the cost, in terms of total system assets lost, of eliminating
bank j from the interbank system.?! In a multiplex context, one could think of at least three
possibilities. First, it is possible to evaluate which is the “key layer” by computing the total
linkage after eliminating a layer «, say, derivatives (and picking the layer that maximizes this):
t, =1BU, (I+ DQV’O(BUQ)f1 D, V! Bl where we have used the singular value decomposition
of the matrix corresponding to layer a, A, = U,D,V’,.?2 A second option could be to evalu-
ate the total linkage effect when eliminating bank j from all layers, ¢; = ﬁi’ Biji;ABl,

provided i}ABij # 1. Finally, one could evaluate the total linkage effect stemming from the

elimination of bank j only from layer a: t;, = mi’Biji;AaBl.
jAaBl;

4. The multi-layered network of large European banks

This section motivates the analysis of multiplex networks by zooming in on different char-
acteristics of the multi-layered network of large European banks. In particular, we quantify
the extent of similarity between the different layers, we evaluate the correlation of layer-specific
measures of systemic importance across layers, and we compute the core-periphery structure of
the different layers and the aggregated network separately. This sets the stage for the decompo-
sition of systemic importance along the lines proposed in 3, which we undertake in the following
section.

211t is formally very similar to the problem of identifying the key bank in Cohen-Cole et al. (2015) and level
key player in Denbee et al. (2016). More precisely, finding the key bank is equivalent to finding the bank with
the maximum total linkage. While the approach in these papers focuses on the interbank network itself, the
total linkage has a broader focus. As noted earlier, these papers heavily draw from the seminal contribution
by Ballester et al. (2006). The development of the total linkage effect indicator in the input-output literature
pre-dates that of the key player as defined in Ballester et al. (2006) (see for instance Miller and Blair (2009)).
228ee for instance Meyer (2000).
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Due to space considerations, we relegate the detailed description of the data used to Appendix
A, which also presents a network plot. We only shall note at this stage a couple of relevant
features. In particular, the dataset presents two aspects, namely instrument and maturity type.
The partition of exposures according to instrument type is given by: (i) assets (A), further
subdivided into credit claims (CC), debt securities (DS) and other assets (OA), (i) derivatives
(D), and (iii) off-balance-sheet (Off BS) exposures. In addition, exposures according to maturity
type are divided into: (i) less than one year including on sight (“short term (S5)”), (i7) more
than one year (“long term (L)”), and (44) a residual of unspecified maturity (U).

4.1. Layer similarity analysis

Network layers’ similarity or proximity can be assessed in a variety of ways, which in essence
boil down to measuring how similar the layer’s structures are. At a very basic level of comparison,
as noted by Bargigli et al. (2015), it is important to distinguish between topological similarity
and point-wise similarity, as one does not necessarily imply the other. For instance, two networks
may be very similar in terms of density, degree distribution, etc., but the existence of a link
between two nodes in the first network may be irrelevant to explain the existence of an analogous
link in the second network. For interbank exposures such differences are particularly relevant,
since for two identical distributions of a given characteristic across layers, point-wise dissimilarity
would indicate institutional specialisation in the trade of an instrument or within a maturity
type, or changes of interbank relations when carrying out the analysis in time.??

The focus here is on point-wise similarity,?* in particular using measures designed for binary
and weighted networks.?> A distance metric useful for binary representations of the network
layers is the Jaccard similarity index (J), capturing the probability of observing a given connec-
tion in a network conditional on observing the same link in the other network. For a given pair
of vectors x and y, the index is computed as the quotient between the size of the intersection
and size of the union of the two ordered vectors:

_xny|

J(Xay) - |ny|

(18)
For networks with weighted links the Cosine similarity index (C') can be used as a proximity
metric. As indicated by its name, C measures the cosine of the angle formed by the two vectors

by means of a normalised dot product between them:2°

Xy
Cxy) =1 (19)

[l > [lyll
Table 2 presents results for Jaccard (lower triangle) and Cosine (upper triangle) similarity

for European banks, according to instrument type.?” While numbers are rarely above 50% (in

23Given the lack of a time series of interbank exposures for large European banks we are only able to perform
the first type of comparison in the present paper.

24 Alves et al. (2013) present some measures on topological similarity so we shall not repeat them here. Appendix
A presents degree distributions as an additional means of comparing the structure of the different layers.

25Binary networks are those indicating only whether ties do or do not exist, in a 0-1 fashion. Weighted networks
assign some value to the relationship being modelled (for instance, a monetary value). Both types of measures
considered here represent the matrices as ordered vectors which are then compared.

26See the discussion in Bargigli et al. (2015) regarding the preference for this measure as opposed to the
Pearson correlation coefficient for weighted networks. In the case of both similarity metrics used here, we have
that S € [0,1], S = J,C. In principle the Cosine similarity index ranges from -1 to 1, but since the network in
our application presents non-negative values only, this index only takes non-negative values.

27Some of the indices need to be interpreted with caution. For instance, the index comparing the credit
claims network with the total assets network will be necessarily high as one is a subset of the other. While still
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particular for non-overlapping networks), they are relatively big (compared to, for instance, Table
7 in Bargigli et al. (2015)), pointing to a relative lack of complementarity between instruments.
This is particularly true when comparing derivatives with assets. Off-balance-sheet exposures
present lower indices when compared to assets and derivatives, though values above 40% can
still be considered relatively large. When comparing overlapping networks one can see that
roughly 80% of the connections that are present in the total network are also present in the
assets network, whereas this percentage drops below 50% when the comparison is between off-
balance-sheet and total exposures. This last number implies, for instance, that almost half of
the connections present in the total aggregated network are also present in the off-balance-sheet
network.

As can be seen in the upper triangle of Table 2, similarity computed based on weights rather
than on a binary indicator of existence/absence of relationship delivers lower values for the
index, but the overall distribution remains unchanged.

A-CC A-DS A-Other A-Total Derivatives Off BS Total

A-CC 0.32 0.29 0.80 0.33 0.18 0.70
A-DS 0.50 0.08 0.82 0.26 0.24 0.71
A-Other 0.18 0.15 0.29 0.10 0.12 0.26
A-Total 0.70 0.78 0.16 0.36 0.26 0.88
Derivatives  0.50 0.46 0.15 0.53 0.13 0.66
Off BS 0.44 0.37 0.16 0.41 0.41 0.54
Total 0.57 0.63 0.13 0.81 0.61 0.48

Table 2: Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by instrument type. Non-
overlapping networks are highlighted in bold fonts. A=Assets, CC=Credit Claims, DS=Debt Securities,
OffBS=0ff Balance Sheet. Higher index values indicate greater point-wise similarity.

A relative lack of complementarity between different maturities can also be appreciated from
the high values reported in Table 3: the long and short term networks share 62% of connections.
This number drops to 43% when evaluating Cosine similarity (upper triangle of Table 3, still a
high number for a comparison of weighted matrices).?® Table B.4 in Appendix B delves more
deeply into the combination of instrument and maturity and reinforces the message: higher
values of similarity are typically between different maturities for the same type of instrument.

Long Short Total Unclassified

Long 0.43 0.75 0.03
Short 0.62 0.81 0.23
Total 0.69 0.73 0.50

Unclassified 0.04 0.03 0.16

Table 3: Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by maturity type. Higher index
values indicate greater point-wise similarity.

informative, it should be read in a different light as the index comparing, say, credit claims and derivatives. We
highlight with bold fonts the indices corresponding to “non-overlapping” networks in Tables 2 and 3.

28Some matrix comparisons between overlapping networks present a Cosine above the Jaccard similarity: this
indicates that when taking monetary values into account the proximity between the matrices is higher than when
only considering the existence/absence of relationships.
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Layers, therefore, appear closer to the extent they represent the same type of business, and
to some extent maturity, underlying the relation. The differences, however, can be non-negligible
across layers of activity types. This is a first indication of the importance of explicitly addressing
the multilayer structure of financial networks.

4.2. Systemic importance across layers of the banking network

In this subsection, we evaluate the robustness of institutions’ relative systemic importance
across layers, as well as gauging the appropriateness of using of an aggregate network repre-
sentation for supporting policy. We then contrast the core-periphery structure of the different
layers.

Banks that are well connected or important in a network might also be well connected in
other networks. When such importance in connectedness is persistent across layers, the network
is said to feature positively correlated multiplexity.?® Such feature has been suggested to be
central for the unfolding of failure cascades through the system (see Buldyrev et al. (2010)).

In order to evaluate the extent of correlated multiplexity, we first look at a number of
measures of centrality not allowing for an analytic decomposition between layers, which capture
alternative notions of systemic importance, and test whether there is evidence of correlated
multiplexity for any or all of these measures. When the centrality rankings of banks across
layers is resilient, then one can speak of the presence of correlated multiplexity. In this case,
independently of the specific structure of the transmission involved, the central institutions are
likely to be the same. When this is not the case, then multiplexity is not correlated and this
centrality is layer-specific.

Correlation of systemic importance across layers. We consider degree and strength measures
of bank centrality, which for a directed network measure the number of relationships and the
weight of such links, respectively. These represent local measures of centrality, as the focus is
on the immediate neighborhood of banks. A directed version of PageRank, the algorithm used
by Google to rank webpages within their search engine, is used for connectivity at the global
level.30

The correlation of the measures across layers (see tables B.5, B.6 and B.7) overwhelmingly
points to the existence of positively correlated multiplexity. Banks that are well connected or im-
portant in a network tend also to be well connected in other networks. This is particularly strong
when looking at degree centrality for both its incoming and outgoing versions (though in gen-
eral out-degree centrality tends to present slightly lower correlations than in-degree centrality).
When looking at strength centrality, the message remains unaltered, though the magnitudes are
reduced, in particular for out-strength in the short term derivatives network and the two off-
balance-sheet networks. Focusing on node-specific global measures of importance does not alter

29The correlation in nodes’ degrees across layers has been termed correlated multiplexity by Lee et al. (2014).
For instance, it can be expected that a person with many links in the “friendship” layer of a social multiplex
network also has a relatively high number of links in other networks by virtue of her being a friendly person.
Parshani et al. (2010) show how well connected ports tend to couple with well connected airports. Barigozzi
et al. (2010) present similar evidence for the international trade network by comparing commodity-specific sub-
networks and the aggregate.

30 pageRank builds on the simplest global measure of centrality, namely eigenvector centrality, but improves
upon some of its shortcomings. Eigenvector centrality is a global measure of centrality, as the score of a given node
depends upon the score of nodes to which it is connected, in a recursive manner. The most notable shortcoming
of classic eigenvector centrality arises in the case in which a node presents a zero score for incoming or outgoing
links, which can translate into other nodes which are not part of a strongly-connected component presenting also
a score of zero (see Newman (2010)).
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the takeaway from the analysis: the correlation of PageRank centrality across networks delivers
similar results to strength centrality, though slightly stronger than the latter (Table B.7).3!

Taken together, these results suggest that, for the network considered, centrality is strongly
permanent across layers, underlining the usefulness of ranking under limited information in
identifying critical institutions. In contrast, using data on the Mexican interbank system Molina-
Borboa et al. (2015) find that important actors in the different layers differ and take this as a
significant reason to motivate the use of multiplex networks instead of just a single aggregated
network. We agree, but argue further that even in the case in which the importance of actors
is strongly persistent across layers (as it is the case for the network considered here), there is
still significant value in considering all possible layers (i.e. the multiplex network), especially if
one is able to decompose systemic importance into layer-specific contributions, as our method
illustrates. Before substantiating this point in Section 5, we look into differences in the core-
periphery structure across layers to illustrate further differences.

Core-periphery structure. An important avenue for characterising structural features of net-
works is the core-periphery paradigm, which describes a structure that is ubiquitous in several
types of networks.??> To identify the core-periphery structure, we focus here on the block-
modeling-based approach of Craig and von Peter (2014).33

The results are shown in Figure C.12, which suggests that core size is large, with ”marginal
networks” being an exception (i.e. other assets and unspecified maturity).** Important in
reading these large figures is noting that the sample of banks in the study is already the core of
the European financial system, and thus we are looking at the “core of the core”. In particular,
banks in the sample are already “national champions”, and tend to be well connected and
thereby display strong interconnectivity density. Each of the different layers feature more than
20 banks in the core, whereas the overall network presents 31 banks in the core. Within the
instrument type division, the off-balance sheet network features the best fit to the core-periphery
model (lowest error score), whereas short term exposures fit the core-periphery model slightly
better than long term exposures. In terms of core composition, the instrument dimension shows
a bit more heterogeneity: there are 11 banks which are part of the core in all subnetworks
(excluding other assets). For the maturity dimension, this is not the case: out of the 23 banks
present in the core of the long term network, 20 are also part of the short term core. Results
from a continuous measure of coreness that allows to establish a ranking of banks within the
core (see Appendix C) show that we never find the same bank at the top of the coreness ranking,
regardless of whether the focus is on instrument or maturity type.

Even though the stability of these results through time cannot be asserted with the infor-
mation available, they already indicate the importance of some banks across and within layers
may not be as universal as suggested by the monoplex approach. In order to better understand
what differences may be evident in the data that escape the broader correlation analysis and
which may motivate differences in the core-periphery boundary across measures, we now look

31Two additional centrality measures, closeness (in its in and out versions) and betweenness centrality, show
similar results. The results on correlated multiplexity are even stronger when considering Spearman rank corre-
lation instead of the simple Pearson correlation. Results are available upon request from the authors.

32For applications to interbank networks see: Craig and von Peter (2014) who propose an algorithm for the
identification of the core set of banks based on the idea of intermediation and use it with German data, Fricke
and Lux (2012) for the case of Italy, van Lelyveld and In’t Veld (2012) for the Netherlands, Soraméiki et al.
(2007) for the FedWire payment system in the U.S. and Langfield et al. (2014) for the U.K., among others. For
applications in other sciences see references in Borgatti and Everett (1999).

33Due to space considerations we relegate the details to Appendix C, where we also also present results for the
core-periphery profile approach of Della Rossa et al. (2013).

34We thank Ben Craig for making available the code needed for the computation.
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in more detail at the alternative and more detailed specification of decomposition of the layer
structures.

5. Identifying systemic importance across layers numerically

The decomposition of global (monoplex) systemic importance into layer-specific contributions
developed in section 3.2 provides an estimate of the contribution of a bank’s activity within each
layer to the overall importance of that bank. The decomposition of backward and forward indices
for the top 10 banks according to instrument and maturity type is illustrated in figures 2 and 3.
There is no reason to expect that the ranking of top 10 banks for each indicator would coincide,
and indeed this is not the case. That said, 5 out of the top 10 banks are shared by the two
indicators.
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For the analysis of the decomposition of systemic importance indicators into the contributions
by each layer, we make use of the classification outlined in Table 1 and focus on the set of systemic
banks, i.e. those that present both normalised backward and forward indices above one. Figure 4
presents the normalised indices for all banks for the two indicators considered; systemic banks
are those in the upper right quadrant of the figure (i.e. those that show a score above the mean
of the system in both indicators). Some banks highly ranked on one of the indicators may not
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be considered systemically important because they rank poorly on the other indicator: this is
the case most notably for the third ranking bank according to the forward index (bank 27).
Additionally, there is one bank that is not in the top 10 banks in either indicator, but still is
systemically important. Not surprisingly, five banks feature in both lists of top ten banks.
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Figure 4: Normalized backward and forward indices. Bubble size indicates (scaled) total assets.

Figure 5 presents the backward and forward indices for systemically important banks by
instrument type. For the backward index, a significant portion of the contribution to the overall
systemic importance of the most important banks is given by the two main asset exposure sub-
categories, namely credit claims and debt securities. This is broadly in line with the composition
of exposures by instrument (see Figure A.7), in particular for the two top banks for which also
off balance sheet exposures account for a non-negligible share of their critical transmission role.

Despite accounting for slightly more than 25% of exposures, the derivatives network does
not contribute much to the ranking of systemically important banks, pointing to one important
insight of our analysis: importance in terms of interconnectivity is driven by more than size.

The backward index focuses on the importance of the transmission of shocks to the borrowing
side of the balance sheet, by summing along the column dimension of the transformed interbank
matrix. Conversely, by summing along the row dimension, the forward index illustrates the
transmission of shocks on the lending side of the balance sheet. In the case of such asset shocks,
the outline of importance is quite different: the top-ranked bank (bank 45) stands out notably
against the rest, and an overwhelming majority of this difference is attributable to the off-balance
sheet network. Naturally, bank 45 is an important player in terms of interconnectedness in this
particular network,?> but still it only accounts for roughly 1/5 of all off balance sheet exposures

35In fact, this bank belongs to the core of only two networks: the other assets (a rather “marginal” network)
and the off-balance sheet networks.
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Figure 5: RH backward (left) and forward (right) indices, for systemic banks by instrument type.

and it is not in fact the top-ranked bank in this regard. A network that has a rather minor share
of overall exposures (the off-balance sheet network accounts for 1/7 of exposures, see Appendix
A) can nonetheless be a major driver of the systemic importance score of specific banks. While
such a result might seem obvious at the intuitive level, our measures provide a clear-cut way
of quantifying this. Note that such insights would go unnoticed in a layer-specific analysis of
centrality.

The second-ranked bank (bank 44), in contrast, has on the other hand a significant share of its
score accounted for by the derivatives network. It is worth noting that this bank is not the largest
derivatives holder, i.e. it does not account for a large share of exposures in this network.?¢ This
critically emphasizes the importance of multi-layered network analysis. Interestingly, four out
of the ten systemically important banks do not form part of the core of any network (according
to Craig and von Peter (2014)’s algorithm). That is, systemic importance measured in terms of
a bank’s ability to transmit shocks also needs to be qualified by the nature of the shock affecting
the system, in addition to the market through which the transmission takes place.

The comparison of a bank’s forward and backward transmission role indicates that the
drivers of systemic importance can vary substantially depending on the criterion of emphasis,
and there is value in the consideration of both dimensions simultaneously.?” Figure D.15 presents
a comparison of the contribution of the different layers to the systemic importance score of all
banks, by instrument type. It can be seen that while the contribution of the off balance sheet
network to the forward score of bank 45 is substantial, this is not so for the backward index (nor
for other layers like derivatives for the same bank). In these charts, a layer contributes more to
systemic importance as captured by one type of indicator vis-a-vis the other to the extent that
more bubbles lie on one side of the 45 degree line.

Figure 6 displays the partition of systemic importance indices by maturity type for the 10
more systemic banks. Long and short term exposures account for roughly 4/5 of the total

361t in fact ranks in position 35 in terms of share of exposures in this network, and even lower in terms of
borrowing.

37Furthermore, the methodology presented in Section 3.2 allows for further decompositions, though for ease of
exposition we do not pursue this here. For instance, we could partition the indices according to both instrument
and maturity type, allowing for a finer distinction of the sources of systemic importance. For illustrative purposes,
we focus on a specific partition by instrument and maturity type, and a specific subset of banks.
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couple of exceptions, long term exposures account for the largest share. Most notable within
the exceptions is the second highest ranking bank, for which half of the index is explained by
short term exposures with the other half shared equally between long term exposures and those
of unspecified maturity.
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Figure 6: RH backward (left) and forward (right) indices, for systemic banks by maturity type.

When it comes to the forward index, we see that for the three top systemically important
banks at least half of the score is accounted for by the long term network. With the exception
of one bank, the network of unspecified maturity does not play a role (the entire forward trans-
mission score of the exceptional bank is attributable to this network). It could in principle be
the case that a bank has a great deal of its systemic importance score explained by off-balance
sheet instruments of unspecified maturity. The ability to detect such opacity as the driver of
the systemic importance ranking of a bank is another potentially interesting insight from the
analysis we present. Similar to Figure D.15, Figure D.16 presents a comparison of contributions
by the different layers to backward and forward indices by maturity type.

A key finding is that identification of systemic importance is far from being a synonym
with being in the core, neither for the aggregate network nor for its different layers, and the
choice among the different implementations matters for identification. Based on the algorithm
by Craig and von Peter (2014), five out of the ten systemically important banks belong to the
core of the short term network, whereas three out of this five also belong to the core of the
long term network. Based on the alternative algorithm for identification of a core-periphery
profile by Della Rossa et al. (2013) , only one systemic bank belongs to the core of the long term
network (bank 35) and none to the short term. There are no banks that are present in the core
of most networks regardless of the method used to identify the core. When the method used is
that of Craig and von Peter (2014), bank 35 is present in all cores except that of the off-balance
sheet network.

Overall, as apparent from the figures presented above, the method proposed here allows
for a decomposition and description of banks’ systemic importance from a holistic perspective,
starting from a matrix representation of the balance sheet of the entire banking system. Even
though the derivation of the measures is grounded in theory and involves some matrix algebra,
the ultimate motivation of our endeavour is practical in nature. We posit that such measures
can be of potential use for bank regulators and supervisors, provided that sufficiently granular
data are available.
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6. Concluding remarks

The recent financial crisis brought to the fore the relevance of interconnectedness in general,
and in particular in interbank markets. Of critical importance in this context is the identification
of the key players in the financial network. While early contributions on the topic have focused
on aggregated exposures, it is now increasingly recognised that the web of reciprocal exposures
linking bank balance sheets is more intricate and complex. Interbank networks are better
characterised as multiplex networks, featuring connections at multiple levels.

In the present paper, we analyse the multiplex structure of the network of large European
banks, making use of a detailed dataset presenting exposures partitioned according to maturity
and instrument type. We find a high level of similarity between the different layers (both by
instrument and maturity), a core periphery structure which comprises a large core (relative
to studies using country-specific datasets), and positively correlated multiplexity. The results
suggest that an institution’s role in the channel of transmission is critical in determining the
global importance of such institution, and that the notion of importance may not be related
to its traditionally studied core-periphery role. Nevertheless, key forms of non-decomposable
(across layers) centrality measures are resilient across layers, indicating that centrality at the
layer-level can be robust to the absence of granular data availability.

We develop two measures of systemic importance suited to the case in which banks are
connected through an arbitrary number of different layers. This allows us to compute systemic
importance indicators and decompose them into the contributions of the different layers, provid-
ing a holistic analysis that truly incorporates the multiplex structure of the network (instead of
doing separate analyses for the different layers and the aggregate network) and is built directly
from a consistent accounting representation of the system. Previous literature has justified the
need to use granular data by noting that banks can rank differently in different layers in terms
of systemic importance and thereby the focus on a single layer can be misleading. We confirm
that, even when centrality is persistent across layers, there is still important information to be
obtained from granular data, in particular if one is able to decompose global systemic impor-
tance into layer-specific contributions. Nevertheless, we also show that when such granular data
is not available, simple measures can be a good second best. We illustrate our measures with
the dataset on exposures between large European banks, delving deeply into issues of intercon-
nectedness across the various layers of an integrated accounting framework. The results suggest
that our proposed measures can be useful tools for practical policy analysis.

22



References

Aldasoro, 1. and Angeloni, I. (2015). Input-output-based measures of systemic importance.
Quantitative Finance, 15(4):589-606.

Allen, F. and Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1):1-33.

Alves, L., Ferrari, S., Franchini, P., Heam, J.-C., Jurca, P., Langfield, S., Laviola, S., Liedorp, F.,
Sénchez, A., Tavolaro, S., and Vuillemey, G. (2013). Structure and resilience of the european
interbank market. Occasional Papers 3, European Systemic Risk Board.

Ballester, C., Calvé-Armengol, A., and Zenou, Y. (2006). Who’s who in networks. Wanted: the
key player. Econometrica, 74(5):1403-1417.

Bargigli, L., di Iasio, G., Infante, L., Lillo, F., and Pierobon, F. (2015). The multiplex structure
of interbank networks. Quantitative Finance, 15(4):673-691.

Barigozzi, M., Fagiolo, G., and Garlaschelli, D. (2010). Multinetwork of international trade: A
commodity-specific analysis. Physical Review E, (046104).

Basel Committee on Banking Supervision (2011). Basel III: A global regulatory framework for
more resilient banks and banking systems. Basel Committee on Banking Supervision.

Basel Committee on Banking Supervision (2013). Global systemically important banks: updated
assessment methodology and the additional loss absorbency requirement. Rules text, Bank
of International Settlements.

Battiston, S., Caldarelli, G., D’Errico, M., and Gurciullo, S. (2015). Leveraging the network: a
stress-test framework based on debtrank. http://arxiv.org/abs/1503.00621.

Battiston, S., Puliga, M., Kaushik, R., Tasca, P., and Caldarelli, G. (2012). Debtrank: Too
central to fail? financial networks, the fed and systemic risk. Scientific Reports, 2(541).

Bech, M. L. and Atalay, E. (2008). The topology of the federal funds market. Staff Reports
354, Federal Reserve Bank of New York.

Bluhm, M., Georg, C.-P., and Krahnen, J.-P. (2016). Interbank intermediation. Working Pa-
per 16, Deutsche Bundesbank.

Bonacich, P. (1987). Power and centrality: a family of measures. American Journal of Sociology,
92(5):1170-1182.

Bonacina, F., D’Errico, M., Moretto, E., Stefani, S., Torriero, A., and Zambruno, G. (2015).
A multiple network approach to corporate governance. Quality & Quantity: International
Journal of Methodology, 49(4):1585-1595.

Borgatti, S. P. and Everett, M. G. (1999). Models of core/periphery structures. Social Networks,
21:375-395.

Boss, M., Elsinger, H., Summer, M., and Thurner, S. (2004). Network topology of the interbank
market. Quantitative Finance, 4:677-684.

Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S. (2010). Catastrophic
cascade of failures in interdependent networks. Nature, 464:1025-1028.

23



Cohen-Cole, E., Patacchini, E., and Zenou, Y. (2015). Static and dynamic networks in interbank
markets. Network Science, 3(1):98-123.

Craig, B. and von Peter, G. (2014). Interbank tiering and money center banks. Journal of
Financial Intermediation, 23(3):322-347.

Crockett, A. D. (2000). Marrying the micro- and macro-prudential dimensions of financial
stability. Remarks by Andrew D Crockett, General Manager of the Bank for International
Settlements and Chairman of the Financial Stability Forum, before the Eleventh International
Conference of Banking Supervisors, held in Basel, 20-21 September 2000.

D’Agostino, G. and Scala, A., editors (2014). Networks of Networks: The Last Frontier of
Complezity. Understanding Complex Systems. Springer International Publishing Switzerland
2014.

De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kiveld, M., Moreno, Y., Porter, M. A., Gémez,
S., and Arenas, A. (2013). Mathematical formulation of multi-layer networks. Physical Review
X, 3(041022).

Degryse, H. and Nguyen, G. (2007). Interbank exposures: an empirical examination of systemic
risk in the belgian banking system. International Journal of Central Banking, 3(2):123-171.

Della Rossa, F., Dercole, F., and Piccardi, C. (2013). Profiling core-periphery network structure
by random walkers. Scientific Reports, 3(1467).

Denbee, E., Julliard, C., Li, Y., and Yuan, K. (2016). Network risk and key players: A structural
analysis of interbank liquidity.

Freixas, X., Parigi, B. M., and Rochet, J.-C. (2000). Systemic risk, interbank relations, and
liquidity provision by the central bank. Journal of Money, Credit and Banking, 32(3):611-38.

Fricke, D. and Lux, T. (2012). Core-periphery structure in the overnight money market: Ev-
idence from the e-mid trading platform. Kiel Working Papers 1759, Kiel Institute for the
World Economy.

Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable banks. Journal of Financial
Economics, 115(3):471-485.

Hiiser, A.-C. (2015). Too interconnected to fail: A survey of the interbank networks literature.
Journal of Network Theory in Finance, 1(3):1-50.

Kiveld, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A. (2014).
Multilayer networks. Journal of Complex Networks, 2(3):203-271.

Kolda, T. G., Bader, B. W., and Kenny, J. P. (2005). Higher-order web link analysis using
multilinear algebra. In Data Mining, Fifth IEEE International Conference.

Langfield, S., Liu, Z., and Ota, T. (2014). Mapping the uk interbank system. Journal of Banking
& Finance, 45:288-303.

Langfield, S. and Soramaki, K. (2014). Interbank exposure networks. Computational Economics.

Lee, K.-M., Kim, J. Y., Lee, S., and Goh, K.-1. (2014). Multiplex networks. In D’Agostino, G.
and Scala, A., editors, Networks of Networks: The Last Frontier of Complezity, Understanding
Complex Systems, chapter 3. Springer International Publishing Switzerland 2014.

24



Leén, C., Pérez, J., and Renneboog, L. (2014). A multi-layer network of the sovereign securities
market. Borradores de Economia 840, Banco de la Reptblica de Colombia.

Leontief, W. (1937). Interrelation of prices, output, savings, and investment. The Review of
Economics and Statistics, 19(3):109-132.

Meyer, C. D. (2000). Matriz Analysis and Applied Linear Algebra. STAM.

Miller, R. E. and Blair, P. D. (2009). Input-output analysis: foundations and extensions. Cam-
bridge University Press, second edition.

Molina-Borboa, J.-L., Martinez-Jaramillo, S., Lépez-Gallo, F., and van der Leij, M. (2015).
A multiplex network analysis of the mexican banking system: link persistence, overlap and
waiting times. Journal of Network Theory in Finance, 1(1):99-138.

Montagna, M. and Kok, C. (2013). Multi-layered interbank model for assessing systemic risk.
Working Paper 1873, Kiel Institute for the World Economy.

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.

Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., and Havlin, S. (2010). Inter-similarity
between coupled networks. arXiv:1010.4506 [physics.data-an].

Pasinetti, L. L. (1977). Lectures on the Theory of Production. Columbia University Press.

Poledna, S., Molina-Borboa, J. L., Martinez-Jaramillo, S., van der Leij, M., and Thurner, S.
(2015). The multi-layer network nature of systemic risk and its implications for the costs of
financial crises. Journal of Financial Stability, 20:70 — 81.

Roukny, T., Georg, C.-P., and Battiston, S. (2014). A network analysis of the evolution of the
german interbank market. Working Paper 22, Deutsche Bundesbank.

Soraméki, K., Bech, M., Arnold, J., Glass, R., and Beyeler, W. (2007). The topology of interbank
payment flows. Physica A, 379(1):317-333.

Soramiki, K. and Cook, S. (2013). Algorithm for identifying systemically important banks in
payment systems. Economics: The Open-Access, Open-Assessment E-Journal, 7(28):1-27.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank markets.
Journal of Financial Stability, 7(3):111-125.

van Lelyveld, I. and In’t Veld, D. (2012). Finding the core: Network structure in interbank
markets. DNB Working Papers 348, Netherlands Central Bank.

25



Appendix A. Overview of the data

We make use of a unique dataset of anonymised interbank exposures between large European
banks, originally presented in Alves et al. (2013). The preparation of the dataset was part of
a collective effort undertaken by the Furopean Systemic Risk Board, the Furopean Banking
Authority and national supervisory authorities. In particular, the dataset presents bilateral
exposures between 53 large European banks as of end 2011, with breakdown according to both
maturity and instrument type.® Banks report their exposures at the level of the banking
group, the implication being that non-financial subsidiaries and insurance are not included in
the reporting exercise, and exposures to counterparties were aggregated using an accounting
scope of consolidation (hence including all subsidiaries of that counterparty). The exposure
data represents a directed and weighted network, in which each node is represented by a banking
group and each link going from node A to node B accounts for an exposure of the former to the
latter. The multiplex structure of the dataset stems from the level of disaggregation that the
dataset contains, namely along the instrument and maturity dimensions.

The partition of exposures according to instrument type is as follows: (i) assets, further
subdivided into credit claims, debt securities and other assets, (ii) derivatives, and (%ii) off-
balance-sheet exposures. On the other hand, exposures according to maturity type are struc-
tured according to: (i) less than one year including on sight (“short term”), (i) more than
one year (“long term”), and (%) a residual of unspecified maturity.?® Coming back to the
terminology introduced in section 3, the interbank exposure dataset used presents two aspects,
namely instrument type and maturity type. The former has either 3 or 5 elementary layers
(depending on whether we consider the subdivision of assets or not) whereas the latter presents
3 elementary layers. As a consequence we can have either 9 or 15 layers.*?

The combination of the three types of asset exposures (namely credit claims, debt securities
and other assets) accounts for almost 2/3 of overall exposures (see Figure A.7). Derivatives
explain 27% of exposures, whereas off-balance-sheet items account for the smallest share at 17%.
Furthermore, almost all banks report exposures on credit claims and debt securities and therefore
the shares are more evenly distributed among banks: to reach 80% of total exposures for each of
these categories one needs 18 banks. While also a significant amount of banks report derivatives
exposures, these are more concentrated as it takes 12 banks to reach the 80% share of total
exposures in this category. Off-balance-sheet exposures, on the other hand, are characterised
by fewer banks reporting and much more concentration: the first 6 banks account for 80% of
exposures in this category. Regarding maturity type, the distinction between exposures is not
different as it is for instruments: short and long exposures account for roughly the same share
of overall exposures and both present a similar number of reporting banks.*!

38There are 53 reporting banks, while there is a bank which did not report exposures to other institutions.
Hence, there are 53 banks reporting exposures to 54 banks, and the matrices we work with are of dimension
54-by-54.

39The original dataset presents further subdivisions of interbank credit claims and off-balance-sheet items. We
keep the partition mentioned above as it is enough for our illustrative purposes. But it should be noted that the
method presented here can be applied to any arbitrary number of sub-divisions.

40 As noted earlier, one can focus attention on a given aspect of the network by aggregating across the other
aspect , i.e. in order to focus on maturity type, aggregate across instrument type to have the “short term”, “long
term” and “unspecified maturity” networks.

41Tt should be noted that in the case of long term exposures there is one bank which stands far above the rest,
accounting for almost 20% of exposures in this category.
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Figure A.7: Composition of exposures by instrument and maturity (left and right panel respectively).

Exposures of unspecified maturity behave quite differently, with just 7 banks reporting and
with the first 3 accounting for 75% of exposures in this category. When combining the maturity
and instrument type dimensions, one sees that each instrument presents its own nuances in
terms of maturity breakdown (see Figure A.8). While asset exposures are marginally tilted
toward shorter maturities, derivatives present more diversity and are slightly leaning towards
longer term exposures. Off-balance-sheet exposures, on the other hand present a good deal of
dispersion for short term but not so much for long term exposures, which present a very small
median. Furthermore, for this instrument type there is a non-negligible share of exposures of
unspecified maturity, which speaks to the well-known opacity of these types of instruments.
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Figure A.8: Share of short and long term exposures (left and right panels respectively) in total exposure by
instrument.

It should be noted that the network built with the data comprises the exposures between
the group of banks which participated in the exercise, hence exposures of this group of banks to
other EU banks are not considered in the analysis. That said, the bilateral exposures reported
by banks represent slightly more than half of total exposures to EU banks, thereby capturing a
good piece of the action, in particular between the larger banks.*?

42The share of exposures to large EU banks relative to total exposure to EU banks varies depending on
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The level of connectivity of the network of large European banks is large relative to other
studies that focus on national banking systems, as reflected in the relatively high density of
the network: 60% of all possible connections are actually present for total exposures. While
the density is naturally lower in composing layers (48%, 36% and 29% for assets, derivatives
and off-balance-sheet respectively), values still remain well above those encountered in previous
studies focusing on national banking systems.*> This can be appreciated visually on Figure A.9,
which provides the real data counterpart to the stylized multilayer chart presented in the main
body of the paper.

Short Term Long Term Unspecified Total

e e

Off Bal. Sheet Derivatives Assets

Total

Figure A.9: The multilayer network of large European banks. Node size indicates total assets, links width
indicate size of exposure, whereas link direction goes from lender to borrower bank.

Figure A.10 and Figure A.11 present the degree distributions according to instrument and

instrument type and bank, with the median for total exposures being 60%. For details see Alves et al. (2013), in

particular Chart 2.
43Gee among others Craig and von Peter (2014), van Lelyveld and In’t Veld (2012), Fricke and Lux (2012),
Soramiki et al. (2007) for the cases of Germany, the Netherlands, Italy and the U.S. respectively.
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maturity type respectively. While there is not much of a difference between the degree distri-
butions of the long and short term networks, the layers corresponding to different instruments
present more diversity. The layer corresponding to the assets network is closer to the overall
network for both in- and out-degree distributions, in line with the share of these type of expo-
sures in overall exposures (see Figure A.7). On the other hand, the off-balance-sheet layer is
farthest from the total network, with the derivatives layer lying somewhere in between. The
distinction between layers becomes less clear-cut for the out-degree distribution.

0
[ w—— y T 10 T W] T -
S PHg Eém SN o g éméugvoAo @
a O e @
rt;%%& %, B %
B 9D O @%
O Q g ?
o 3% L Ao
O Py [o)
[m] A 0O “A®
o O jul A O
o %O ] a ,
o 20 (&) L\%
[= e} 0A O
oA 0 A0
1 O -1 oo O
10 ) 10 | o b
oA fa¥e)
oo =2
[m] [xke)
o Total O Total
A Assets aa A Assets &
0 Derivatives 0 Derivatives
2 Off-BS 2 Off-BS
10 0 ‘ 1 2 10 0 ‘ 1
10 10 10 10

10 10°

Figure A.10: In- and out-degree distributions - left and right panel respectively - by instrument type (in log-log
scale).

Further properties of the network are its high level of reciprocity (especially for higher levels
of aggregation of exposures) and its disassortative behaviour. Higher reciprocity implies that a
high share of exposures are reciprocated by a corresponding counter-exposure, suggesting that
systemic risk might be lower for high levels of aggregation since some exposures might be netted.
A network is said to be assortative (with respect to its nodes’ degrees) if high (low) degree nodes
tend to be connected to other high (low) degree nodes. If instead high degree nodes tend to be
connected to low degree nodes the network is said to be disassortative. Interbank networks are
typically found to be disassortative, and the network of large European banks is no exception.
This feature is closely associated to the core-periphery structure of interbank networks found in
the extant literature, and it reflects efficient specialisation between the actors in the network.
In the European interbank network this specialisation is more apparent in granular instrument

and maturity types. For further details on the network and some of its topological properties
we refer the interested reader to Section 3 in Alves et al. (2013).
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Appendix B. Additional Tables

1) 2 (3 456 (1) (5 (9 (10
(1) Assets-CC L 0.23 0.33 0.14 0.30 0.14 0.35 0.06 0.08 0.11
(2) Assets-CC S 0.33 0.22 0.13 0.08 0.15 0.24 0.15 0.04 0.12
(8) Assets-DS L 0.31 0.43 0.31 0.07 0.07 0.24 0.09 0.04 0.23
(4) Assets-DS S 0.25 0.37 0.42 0.01 0.05 0.11 0.04 0.05 0.28
(5) Assets-Other L 0.16 0.09 0.09 0.08 0.09 0.13 0.02 0.01 0.01
(6) Assets-Other S 0.13 0.11 0.10 0.11 0.18 0.07 0.03 0.15 0.12
(7) Derivatives L 0.27 035 035 0.27 0.11 0.11 0.18 0.07 0.11
(8) Derivatives S 0.27 0.40 0.33 0.24 0.09 0.09 0.45 0.02 0.06
(9) OffBS L 0.35 0.25 0.26 0.23 0.11 0.09 0.23 0.23 0.36
(10) OffBS S 0.32 0.38 0.27 0.26 0.11 0.10 0.29 0.34 0.31

Table B.4: Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by instrument and maturity

type. CC stands for Credit Claims, DS stands for Debt Securities, and L (S) stands for Long (Short) Term.

Assets-L.  Assets-S Deriv.-LL Deriv.-S OffBS-L. OffBS-S

Assets-L 0.77%%* 0.64%*** 0.527%%* 0.57H** 0.44%%*
Assets-S  0.88%** 0.71 %% 0.58%** 0.39%** 0.60%**
Deriv.-L  0.69%** 0.80%** 0.72%%* 0.44%** 0.53%**
Deriv.-S (.78 0.89%** 0.90%** 0.40%%* 0.63%***
OffBS-L (.83 .87k (.73 %%* 0.79%** 0.52%%*
OffBS-S 0.84%** 0.91%** 0.79%** 0.86%** 0.92%**

Table B.5: Correlation indices for in-degree (lower triangle) and out-degree (upper triangle) centrality. L (S)
stands for Long (Short) Term. *** (***) denotes statistical significance at the 1% (5%, 10%) level.

30

2



Assets-L.  Assets-S Deriv.-LL Deriv.-S OffBS-L. OffBS-S

Assets-L 0.62%** 0.83%** 0.15 0.14 0.25*
Assets-S 0.50%** 0.49%** 0.18 0.08 0.26*
Deriv.-L 0.46%** 0.64*** 0.11 0.17 0.17
Deriv.-S 0.37%** 0.70%*** 0.85%** -0.00 0.09
OffBS-L 0.26* 0.67*** 0.48*** 0.55%*** 0.69***

OffBS-S 0.40%** 0.79%** 0.55%** 0.55%** 0.5 2%

Table B.6: Correlation indices for in-strength (lower triangle) and out-strength (upper triangle) centrality. L (S)
stands for Long (Short) Term. *** (** *) denotes statistical significance at the 1% (5%, 10%) level.

Assets-L.  Assets-S Deriv.-LL Deriv.-S OffBS-L. OffBS-S

Assets-L 0.62%*** 0.78%** 0.14 0.18 0.39%**
Assets-S 0.60*** 0.45%** 0.18 0.07 0.22
Deriv.-L 0.52%** 0.71%%* 0.15 0.16 0.19
Deriv.-S 0.46*** 0.75%** 0.87*** -0.00 0.16
OffBS-L 0.33** 0.65*** 0.52%** 0.53*** 0.73%**

OffBS-S 0.50%** 0.80%** 0.61%** 0.61%** 0.56%**

Table B.7: Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality. L (S) stands
for Long (Short) Term. *** (** *) denotes statistical significance at the 1% (5%, 10%) level.

Appendix C. Core-periphery Analysis and Figures

In the wake of the seminal contribution by Borgatti and Everett (1999), different methods
to assess the core-periphery structure of networks have been proposed. Borgatti and Everett
(1999) propose two types of core-periphery analyses, namely a discrete and a continuous version.
The former builds on block-modelling and proposes a two-class partition of nodes, in which some
nodes form part of the densely connected core (a I-block in block-modelling terminology) while
the remaining nodes make up the periphery, loosely connected to the core and not connected
within itself (a 0-block). A stylised representation in matrix notation would be as follows:

— = i ‘?
Core-Core Core-Periphery } _ [1 ] (C.1)

- Periphery-Core Periphery-Periphery 70

where the off-diagonal blocks are left to be specified by the researcher depending on the
application at hand. The idea is then to a find a fit (optimal in some sense) between a given
empirical network and this idealised structure, such that the optimal core size is found in the
process.

The continuous model of core-periphery analysis assigns a level of “coreness” to each node,
without the need to partition the network into two (or more) classes of nodes ex ante. The
notion of closeness plays an important role in this method, as the strength of the connection
between a pair of nodes will be a function of their closeness to the centre.

For the case of interbank networks, the seminal contribution by Craig and von Peter (2014)
builds on the block-modelling approach and motivates the choice of a specific structure for the off-
diagonal elements of the block matrix. In particular, building on the concept of intermediation,
they suggest that core banks should lend to and borrow from at least one bank in the periphery.
This translates into two restrictions: the Core-Periphery block should be row regular (i.e. each
row has at least one 1) and the Periphery-Core block should be column regular (i.e. each column
has at least one 1). According to this approach, core banks are a strict subset of intermediaries.
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A more flexible definition of the core used by Della Rossa et al. (2013) avoids the explicit (and
often artificial) partition in subnetworks of block-modelling and is more natural for weighted
networks, in contrast to block-modelling which is better suited for binary networks.

Della Rossa et al. (2013) associate to each network a core-periphery profile, which is a discrete
and non-decreasing function oy, ag, ..., ay, that: (i) assigns a coreness value to each node, (ii)
provides a graphical representation of the network structure, (iii) and allows for the computation
of a centralisation indicator which measures the distance to an idealised core-periphery structure
(the “star” network). Furthermore, the method allows for the definition of the a-periphery which
collects all nodes with a coreness value below a given threshold o,** and identifies the set of
p-nodes, which are those that constitute the periphery in a strict sense, i.e. those nodes that
together form a 0-block.*?

Below we present figures summarizing the results from the two approaches as applied to our
data. Since we comment on the Craig and von Peter (2014) approach in the main text, we
comment here only on the second approach.

BNe L]
B Ne of Core Banks (LHS) W Error Score (RHS) Ne of Core Banks (LHS) Error Score (RHS)
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20 20
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Figure C.12: Core banks and error score based on Craig and von Peter (2014) algorithm, by instrument and
maturity (left and right panel respectively). The error score is expressed as a share of all possible connections.

Figure C.13 presents the core-periphery profile by instrument and maturity type against
two extreme benchmarks, namely the complete network and the star network. There are some
similarities with respect to the insights gained from the block-modelling approach, but also
some differences. In particular, the partition according to the instruments’ maturity shows
more homogeneous results than that of the instruments’ type, where differences are more clear.

In addition, the short term network is closer to an idealised core-periphery structure (in the
block-modelling analysis this manifested itself in a better fit, see Figure C.12), whereas in the
second analysis the core-periphery profile of the long term network is very similar to that of
the total network (same number of core banks® and very similar centralisation index, see also
Figure C.14). There are three banks which are simultaneously present in the core of the short
term, long term and total networks.

Regarding results of the type partition, off-balance sheet and derivatives exposures show
more proximity to the star-network ideal (Figure C.13) and a higher centralisation index (just as
before they showed a lower error score, see Figure C.12). Different from the the block-modelling

44 Alternatively, one can think of the a-core as the complement of the a-periphery.
45The code for the computation of the core-periphery profile is available from the authors’ website.
46We take as core banks those that have an a-coreness above 0.5. See Appendix C for details.
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approach, the debt securities network shows the most proximity to the total aggregated network
in terms of its core-periphery profile. There is only one bank that belongs to the core in all
networks according to instrument type (excluding other assets). At the same time, all of the
banks belonging to the core in the derivatives and off-balance sheet networks are part of the
core in the aggregated network, while for the debt securities network this number is only 4 out
of 8. Similar core-periphery profiles are therefore no guarantee of similar composition of the
core.
Finally, we note that at the very top of the coreness ranking we never find the same bank
for any pair of networks when the focus is on either instrument or maturity type. That said,
the bank with the highest coreness in the short term network is also the same bank sitting at
the top of the debt securities coreness ranking (also for the aggregated network), whereas the
top bank in the long term network coincides with that of the derivatives network.
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Figure C.13: Core-periphery profile by instrument and maturity (left and right panel respectively), based on the
method by Della Rossa et al. (2013). Blue straight lines indicate the complete (diagonal) and star (“inverted
L”) networks as benchmarks.
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Figure C.14: Core banks, p-nodes and

B N2 of Core Banks (LHS) ™ p-nodes as share of total (RHS)

Credit Claims

L

Debt Securities

Other Assets

Derivatives

A Centralization Index (RHS)

A

Off-Bal. Sheet

Total

1

0.8

0.6

0.4

0.2

B Ne of Core Banks (LHS) ™ p-nodes as share of total (RHS) A Centralization Index (RHS)

8 A 1
|

o
o

Short
Long
Total

Unclassified

centralisation by instrument and maturity (left and right panel respec-

tively), based on the method by Della Rossa et al. (2013). Core banks are those with ay > 0.5; p-nodes are

periphery nodes in the strict sense (o = 0).
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Appendix D. Additional Figures
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Figure D.15: Contribution to backward and forward indices by layer of instrument type. Bubble size indicates
(scaled) total assets.
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Short Term Short Term - Excluding bank #45
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Figure D.16: Contribution to backward and forward indices by layer of maturity type. Bubble size indicates
(scaled) total assets.
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