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by

Srichander Ramaswamy*

July 1998

Abstract

This paper examines the one-step prediction of financial time series from a binary
decision theory perspective. Under the assumption that the decision statistic of the
binary hypothesis testing problem is a Gaussian random variable, bounds for the
forecasting efficiency of the hypothesis testing problem are derived. When the
criterion for forecasting performance is the total return over the investment period,
an optimisation problem is formulated to compute an optimally weighted decision
statistic for the binary hypothesis testing problem. Numerical results are illustrated
using weekly time series of excess return between two US dollar bond portfolios
having six months duration difference. In particular, it is shown that, on average, a
27 basis point excess return per annum is possible against a given benchmark by
carrying out active duration management.
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Introduction

Many empirical studies in the literature have examined the predictability of financial

time series. A measure that is commonly used in these studies to compare the performance of various

forecasting models is the mean square forecasting error. Although it appears reasonable to use this as

a performance criterion, the end objective of much financial markets forecasting is to maximise the

return from any investment over a given time horizon. If this is indeed the case, then the total return

over the investment horizon is the appropriate criterion to use to compare the forecasting performance

of different models. This paper addresses the forecasting problem from this perspective. In particular,

it is assumed that position taking in the market involves being either long or short against a given

benchmark and the investment objective is to outperform the benchmark. The forecasting problem

posed here reduces to a binary hypothesis testing problem where the question of interest is to know

whether a long or a short position against the given benchmark is to be taken. Posing the forecasting

problem in the binary decision theory framework is also appealing given the way financial market

participants operate: many investment houses provide traders with a benchmark that they are required

to outperform including specific guidelines which indicate to what extent traders can deviate from the

given benchmark at any given time.

In this paper, we use a US Treasury bond portfolio as an example and assume that the

benchmark portfolio has a modified duration of 3.75 years with bond holdings in the one to ten-year

maturity sector. It is further assumed here that one can deviate from the benchmark duration by three

months on either side. The forecasting problem is posed as a binary hypothesis testing problem which

indicates whether a long or short position of three months duration is to be taken once every week

against the benchmark. Performance bounds are then derived to compute the achievable forecasting

efficiency and excess return over the benchmark. This problem is of interest to many investment

houses since it will provide some evidence on whether active fund management can lead to systematic

excess return against a given benchmark.

The numerical results from the study carried out suggest that over a four-year period

between January 1994 and December 1997 it was possible to achieve on average a 27 basis point

excess return per annum over the benchmark when no transaction costs are involved. Transaction

costs were not considered here because they tend to be quite small if the strategy is implemented

using the current ten-year Treasury note and bond futures contract. It is of interest to note that, based

on the weekly position taking, a perfect foresight model would have produced a 150 basis point

excess return per annum over the same period. The results based on this study are quite interesting

because the 27 basis point excess return is quite significant compared with a static duration extension

by three months over this period. Incidentally, a three months static duration extension would have led

to only a 7 basis point excess return per annum over the benchmark portfolio. Further, under the
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assumption that the decision statistic of the binary hypothesis testing problem is a Gaussian random

variable, it is shown that during the four-year investment period considered here, the maximum

theoretically achievable forecasting efficiency is close to 60%.

The rest of the paper is organised in the following manner. Section 1 provides

background information and a literature survey for the forecasting problem addressed in this paper.

Section 2 briefly describes the nearest neighbour approach of Casdagli (1989) and Mizrach (1993) for

forecasting, and a probabilistic interpretation of the nearest neighbour forecasting method is given.

Section 3 examines the forecasting problem from the binary decision theory perspective. In this

section, the general Gaussian problem and determination of performance bounds for the hypothesis

testing problem are also presented. The results from Section 3 are used in Section 4 to formulate a

suitable optimisation problem to compute the decision statistic of the binary hypothesis testing

problem. The forecasting efficiency and total return over the investment horizon of the proposed

technique are compared in Section 5 against the equally weighted nearest neighbour approach and a

random walk model. The time series used for this performance comparison is the weekly excess return

between two bond portfolios having different duration. The final section concludes.

1. Background

Central to any classical approach to time series analysis is the assumption of stationarity

of the time series, which allows one to invoke the Wold decomposition theorem. The Wold

decomposition theorem states that stationary processes have moving average representations, and

hence any stationary time series can be approximated to an arbitrary degree of accuracy by the

rational transfer function of an ARMA model. Moreover, any segment of a stationary time series has

the same statistical properties as any other segment of the time series. However, when one considers a

time series of asset returns, the statistical properties of different sections of the return series may

differ during different time periods for a variety of reasons. In general, when the time series has

different probability density functions over different time periods, one is confronted with a

heterogeneous stochastic system. Finding predictive models for such a time series is a non-trivial

exercise. This is because any parametric model fitted over a given sample period of the time series

may not be valid over another sample period. For this reason, when one is considering a time series of

asset returns, it is not uncommon to find that the out-of-sample forecasting performance of parametric

models is worse than a random walk model. In trying to explain this empirical observation, recent

work on forecasting financial time series has focused on non-linearity of the data generating process

as a possible key to this puzzle (see Mark (1985), Krugman (1988) and Scheinkman and LeBaron
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(1989)). However, the study carried out by Flood et al. (1990) indicates that the use of non-linear

models do not result in improved out-of-sample forecasting performance over the random walk model.

In general, the problem of identifying a predictive model based on the sequence of

iterates from a data generating process is referred to as the inverse problem in dynamical systems (see

Casdagli (1989)). One way to construct such a predictive model is to use approximation functions or

interpolating polynomials (see Casdagli (1989) and Powell (1981)). A useful variant to this method is

to identify nearest neighbours from a Euclidean-norm point of view and use this for forecasting. This

procedure is in some sense similar to the locally weighted regression technique of Cleveland and

Devlin (1988). Geometrically, the predictions obtained using the nearest neighbour technique are

based on finding local portions of the curve in the past that closely resemble the present. This method

has much in common with technical analysis, which is widely used for trading purposes. One

potential strength of the nearest neighbour method is that it is a non-parametric method and uses only

information local to the points to be predicted. This avoids potential problems such as over-fitting and

model order misspecification that arise with other parametric methods.

In a study reported by Mizrach (1993), the nearest neighbour approach has been

examined in the context of forecasting exchange rates. Mizrach compares the forecasting efficiency

(measured in terms of the mean square forecast error) of the nearest neighbour method with that of a

random walk model. On the basis of the study, he concludes that the outperformance of the nearest

neighbour method is not statistically significant compared with the forecast from a random walk

model. A similar conclusion is reached by Parhizgari and De Boyrie (1997) when comparing the out-

of-sample performance of various forecasting models against a random walk model on exchange rate

data. The main motivation for the present study is the observation that most studies reported in the

literature use mean square forecast error as the criterion to compare the forecasting performance of

various models. This, in our opinion, is questionable because the objective of an economic agent in

using a forecasting model is to maximise profit over the investment horizon of interest. If this is true,

then the return over the investment horizon should be the criterion used for performance comparison.

In the study reported here, the annualised return over the investment horizon will be used

to compare the performance of competing forecasting models. The model that will be used to generate

the one-step forecast is the nearest neighbour approach (see Dockner et al. (1997)). In order to

compute the return over the investment horizon generated by the forecasting model, it will be assumed

that a long position (of constant size) will be taken against a given benchmark if the forecast indicates

that the market will rally. Similarly, a short position (of constant size) will be assumed to be taken

against the benchmark if the forecast indicates the market will fall. The annualised excess return over

the benchmark generated by such position taking will be used to measure the forecasting performance.
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Considering that the model’s forecast will be used to take a long or short position against a given

benchmark, we will formulate the forecasting problem in the binary hypothesis testing framework.

2. Nearest neighbours

Finding predictive models for financial time series that outperform a random walk model

out-of-sample is a difficult exercise. This has been attributed to a non-linear data generating process

that governs the evolution of such time series and/or the non-stationarity of the time series. In order to

model and extract some predictive information from such time series, recent studies have focused on

using non-linear models. However, in the context of exchange rate prediction, Diebold and Nason

(1990) conclude that non-linearities of exchange rates cannot be exploited to improve out-of-sample

forecasts. Considering that, among other reasons, the unsatisfactory out-of-sample performance of

forecasting models for financial time series has been attributed to non-linearities and/or non-

stationarity, we will consider the nearest neighbour technique (see Casdagli (1989), Mizrach (1993)

and Dockner et al. (1997)) for forecasting. The advantage of using the nearest neighbour technique is

that it is capable of accounting for both the non-linearities and the non-stationarity of the given time

series. The nearest neighbour method consists of embedding the original time series into m-vectors

where each vector is formed using lagged variables (see Casdagli (1989) and Mizrach (1993)). Each

such m-vector will represent a point in the m-dimensional space and m is referred to as the embedding

dimension. The forecasting problem is then reduced to first identifying the nearest neighbours in the

m-dimensional space to the current m-vector whose one step forecast is required, and then computing

a weighted average of the last coordinate of the vectors following the nearest neighbours. The details

and an example are given below.

Let { })(nx  be a discrete time series and let the one-step prediction be required at n N= .

If m is the embedding dimension, we construct m-vectors of the form

[ ] mNimixixixiZ −=+++= ,,1,0, )(,),2(),1()( LL      (1)

The distance between any two m-vectors can be defined in terms of a suitable norm. In the present

study, the distance between any two m-vectors will be defined by the Euclidean 2-norm L2 . If we

consider two m-vectors Z i( ) and Z j( ) , then the distance ijd  between the two vectors is given by

( ) ( )[ ] 2/122 )()()1()1( mjxmixjxixdij +−++++−+= L      (2)

The nearest neighbour approach consists of first finding m-vectors from the embedding space that are

closest to the current m-vector )( mNZ −  in the L2 -norm sense. Let us denote the M nearest
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neighbours to the current m-vector as .,,2,1),( MkiZ k L=  Then the forecast for )1( +Nx  is given

by the arithmetic average

∑
=

++=+
M

k
kM

mixNx
1

1 )1()1(ˆ      (3)

The forecast error is given by

( )2
1 )1()1(ˆ +−+=+ NxNxeN      (4)

If a total of K forecasts are made, then we define the mean square forecast error as

( )∑
=

+−+=
K

i
x

iNxiNx
n

1

2
)(VAR

1 )()(ˆMSE      (5)

where )(VAR nx  is the variance of the original time series. Casdagli (1989) suggests that one way to

select the embedding dimension is to pick a suitable value of m that minimises the mean square error

given by equation (5). Further, it is suggested that a suitable choice for the number of nearest

neighbours is )1(2 +> mM , which in turn will tend to reduce the forecast error arising from noise.

The following example illustrates the nearest neighbour methodology. Consider the time

series given by {2.0, 2.3, 2.1, 2.2, 2.6, 1.9, 2.3, θ}. It is assumed that the embedding dimension is

m = 3 and the forecast for the last element θ of the time series is required. Table 1 shows the phase

space embedding of the time series. The first three columns in this table indicate the three-

dimensional embedding vectors and the fourth column indicates the next co-ordinate of the three-

dimensional vector in the given time series. The last column gives the 2L norm ijd  between the given

three-dimensional vector and the current three-dimensional vector (shown in the last row of the table)

for which the one-step forecast is required. Examining Table 1, it can be inferred that under the

assumption that M = 2, the best estimate for θ is 2.25.

Table 1

Phase space embedding

1x 2x 3x 4x ijd

2.0 2.3 2.1 2.2 0.7483

2.3 2.1 2.2 2.6 0.3742

2.1 2.2 2.6 1.9 0.5916

2.2 2.6 1.9 2.3 0.9000

2.6 1.9 2.3 θ
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2.1 Probabilistic interpretation

The discussion above shows that the nearest neighbour method selects local m-segments

from the past that are close to the current m-segment of the time series in order to generate the one-

step ahead forecast. Since such a method avoids fitting global parameters over the entire time series,

parameter instability issues that arise when using standard regression models can be avoided,

particularly when the time series under consideration is non-stationary. In this section we will show

that the estimate )1(ˆ +Nx  of the random variable )1( +Nx  given by equation (3) is the maximum a

posteriori (MAP) estimate under the following assumptions.

Let MkiZ k ,,2,1),( L=  denote the nearest neighbours in the m-dimensional embedding

space to the current m-vector ).( mNZ −  The nearest neighbour forecast is based on finding the

arithmetic average of the past observations Mkmix k ,,2,1),1( L=++  of the time series. Denoting

Mkmixr kk ,,2,1),1( L=++=  we form the observation vector [ ]Mrrrr ,,, 21 L
r = . Let us assume

that the unconditional distribution of the random variable )1( +=θ Nx  is Gaussian with ),0( θσN .

Our objective is to estimate on the basis of the data set r
r

, the value of the random variable θ, and this

requires knowledge of the conditional probability density function )|( rp
rθ . If this function is known,

then one can compute the MAP estimate of θ by solving the following equation:

0
)|(ln

)(ˆ =
∂θ

θ∂
θ=θ r

rp
r

r

     (7)

In general, it is easier to work with the conditional density function )|( θrp
r

, and hence express the

conditional density )|( rp
rθ  as

)(

)()|(
)|(

rp

prp
rp r

r
r θθ=θ       (8)

Let us assume that observations satisfy the equation

Mknr kk ,,2,1, L=+θ=      (9)

where the additive noise kn  are independent and normally distributed random variables with

N n( , )0 σ . Since the random variable is ),0( θσN  and kn  are independent and normally distributed,

the conditional density function )|( θrp
r

 is given by

∏
=












σ
θ−

−
σπ

=θ
M

k n

k

n

r
rp

1
2

2

2

)(
exp

2

1
)|(

r
   (10)

Following the arguments in Van Trees (1968) it can be shown that the MAP estimate of the parameter

θ is given by (see Appendix A.1)
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





σ+σ

σ
=θ ∑

=θ

θ
M

k
kM

Mn

r
1

1
22

2

MAP
/

ˆ    (11)

Under the assumption that Mn /22 σ>>σθ , it follows that the MAP estimate reduces to the arithmetic

average of the M nearest neighbours given by

∑
=

=θ
M

k
kM

r
1

1
MAP

ˆ    (12)

Comparing equations (3) and (12), one can interpret the conditional forecast made using the nearest

neighbour approach as the MAP estimate. This is true under the assumption that the random variable

)1( +=θ Nx  being estimated is normally distributed and that the a priori knowledge of the mean of θ

is of limited value. Note that if we are using a time series of asset returns, then these assumptions are

quite reasonable. It is useful to note here that under the Gaussian assumptions for θ and the noise, the

conditional density )|( rp
rθ  is also Gaussian. It follows from this that the estimate given by equation

(11) is also the minimum mean square estimate of the random variable )1( +=θ Nx .

3. Binary hypothesis testing

The motivation for forecasting financial time series is to explore trading strategies that

are superior to a buy-and-hold strategy and hence provide an opportunity for making excess profit.

The analysis presented by Mizrach (1993) suggests that the nearest neighbour approach does not

outperform a random walk model in forecasting exchange rates. However, the criterion used for

making such a comparison is based on the mean square forecast error. This, in our opinion, may not

be the most appropriate criterion to use. The reason for this is that the ultimate objective of any

forecasting model is to enable a trading position to be taken against a given benchmark (which could

be cash, for instance) in order to generate an excess return. If we assume that the size of the trading

position is constant (denoted here as long or short against the benchmark), then one way to implement

the trading strategy is to use the sign of the forecast to take the position. The performance of the

competing forecasting models can then be compared on the basis of the total excess return generated

over the investment period. Such a criterion will have economic significance. We will show here by

considering a simple example that the mean square forecast error can be a misleading indicator of

forecasting performance to a profit-maximising economic agent.

Let us assume that the weekly return in basis points generated by a trading position is

given by the difference equation



8

104,,2,1,3.04.11 1
2

1 L=+−= −+ trrr ttt     (13)

with initial conditions 10.01 −=r  and 12.00 =r . Let the following forecasting models be used for

position taking:

104,,2,1),(5763.08371.03978.01 L=−+−=+ tyryy tttt    (14)

104,,2,1),(4.08.052.01 L=−+−=+ tzrzz tttt    (15)

The initial conditions are taken to be 011 == zy  in the above models. We will refer to equation (14)

as model A and equation (15) as model B. The trading strategy is to take a long position if the model’s

forecast is greater than or equal to zero and a short position if the model output is negative. The total

return generated over the investment period is given by

1)1(
104

1
1 −+= ∏

=
+

t
tttotal rIR    (16)

where tI  is an indicator variable taking the value +1 or –1 depending upon whether the forecast

model’s output is positive or negative, respectively. The mean square forecast error for model A is

defined as

( )∑
=

++ −=
104

1
11MSE

t
tt yr

2
   (17)

The mean square prediction error for model B is similarly defined. Table 2 shows the total return over

the investment period and the mean square prediction error for both models. It can be seen from this

table that although model A has a lower mean square prediction error, it has a lower total return than

model B over the investment period.

Table 2

Forecasting performance comparison

Model MSE totalR (bps)

A 47.80 48.90

B 50.12 57.25

The simple example considered above illustrates that the mean square forecast error may

not be the appropriate criterion to use when comparing the forecasting performance of different

models. Considering that the output from any forecasting model has to be ultimately transformed into

a trading position that can be interpreted as being long or short against a given benchmark, the

forecasting problem of interest is a binary hypothesis testing problem. In general, the classical binary
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hypothesis testing problem involves observing a set of random variables, and on the basis of this one

has to decide which of the alternate hypotheses is true. With reference to the forecasting problem of

interest here, the competing hypotheses are a short and a long position against a given benchmark.

The short position will be denoted as hypothesis 0H  and the long position as hypothesis 1H . The

basic components of a binary decision theory problem are shown in Figure 1. The first is a source that

generates an output. The second is a probabilistic transition mechanism that generates a point in the

observation space according to some probability law. Finally, on the basis of the outcome in the

observation space, a decision rule assigns each point to one of the two hypotheses.

Figure 1

Components of a decision theory problem

Source
H1

H0

Probabilistic
transition
mechanism

Observation
     space

Decision
    rule

Decision

Let us assume that [ ]Mrrrr ,,, 21 L
r =  denotes the set of M observations from a source that

generates random variables belonging to two known conditional densities )( 0Hrp
r

 and )( 1Hrp
r

depending upon which hypothesis is true. It can be shown that the application of the Bayes or

Neyman-Pearson criterion leads to an optimal test that involves processing the M observations to find

the likelihood ratio and then comparing this value against a threshold to make the decision (see Van

Trees (1968)). In general, it is easier to work with the logarithm of the likelihood ratio and this is

given by

01
0

1  otherwise ,  then 
)(

)(
log)( HH

Hrp

Hrp
r γ>










= r

r
r

l    (18)

3.1 General Gaussian problem

The above discussion shows that the binary hypothesis testing problem leads to a

likelihood ratio test involving the conditional density functions of the observations under the two

hypotheses. In this section it is shown that if the observation vector is a Gaussian density under both

hypotheses, then some useful performance measures can be derived for the test statistic. Such an

assumption will allow us to find bounds for achievable forecasting efficiency for the observed time

series and to determine the optimal embedding dimension m. Let us again assume that the observed



10

M-vector of nearest neighbours (selected using any appropriate distance measure) is given by

],,,[ 21 Mrrrr L
r = . The conditional density of the random vector r

r
 is assumed to be Gaussian with

mean vectors 0µr  and 1µr  under the hypotheses 0H  and 1H . The covariance matrix under both

hypotheses is assumed to be equal and denoted Σ . The likelihood ratio test for deciding the true

hypothesis involves computing the quantity )(r
r

l  given by equation (18). Denoting Q=Σ−1 , it is easy

to show that the likelihood test reduces to (see Appendix A.2)

( ) γµ−µ <
>

0

1

01
H

H
T rQ

rrr
   (19)

ZKHUH� �LV�D�VXLWDEO\�FKRVHQ�WKUHVKROG�DQG�DOO�YHFWRUV�XQGHU�FRQVLGHUDWLRQ�DUH�DVVXPHG�WR�EH�FROXPQ

vectors. For the sake of convenience, we will denote ( )01 µ−µ=µ∆ rrr
, so that the likelihood ratio test

is given by

γµ∆= <
>

0

1

)(
H

H
T rQr

rrr
l    (20)

We note that the function )(r
r

l  is a linear transformation of Gaussian random variables, and hence is

also a Gaussian random variable. This will allow us to characterise the performance of the test using

the distance d between the means under the two hypotheses when the variance is normalised to unity.

This distance d can be computed from

[ ]
)|(Var

)|()|(

0

2
012

H

HEHE
d

l

ll −
=    (21)

It is easy to show by evaluating the conditional expectations that d2  is given by (see Appendix A.3)

µ∆µ∆= rr
Qd T2    (22)

Further simplifications in performance computation are possible if we assume that the Gaussian

random variables that constitute the vector r
r

 are independent so that the covariance matrix is

diagonal. In this case it is easy to show that the likelihood ratio test reduces to

γ
σ
µ∆

= <
>

=
∑

0

1

1
2

)(
H

HM

k k

kk r
r
r

l    (23)

where 2
kσ  is the variance of the random variable kr . Likewise, it can be shown that under these

assumptions 2d  is given by
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∑
= σ

µ∆
=

M

k k

kd
1

2

2
2 )(

   (24)

In the following section, we will show how the distance measure given by equation (24) can be used

to establish bounds for the test performance. The analysis presented will also enable us to compute the

optimal embedding dimension m for selecting the nearest neighbours.

3.2 Performance bounds

In order to characterise the performance of the likelihood ratio test, we need to compute

the conditional probability of accepting the hypothesis 1H  when the true hypothesis is 0H  and the

conditional probability of accepting the hypothesis 1H  when the true hypothesis is 1H . In the first

case, the conditional probability is referred to as the false alarm probability FP  and in the second case

as the detection probability DP . The objective of any hypothesis testing problem will be to maximise

the detection probability DP  and minimise the false alarm probability FP . The ability to achieve this

trade-off will in general depend on the distance d between means under the two hypotheses with the

test performance improving monotonically as d� LQFUHDVHV�� ,I� � LV� WKH� WHVW� WKUHVKROG� WR� GLVWLQJXLVK

between the two hypotheses, then it can be shown that FP  and DP  are given by

( ) l
r

l dHrpPF  )( 0∫
∞

γ
=    (25)

( ) l
r

l dHrpPD  )( 1∫
∞

γ
=    (26)

Using the above equations, it is possible to characterise the trade-off between DP  and FP  as a

function of the distance d�ZKHQ�WKH�WKUHVKROG� �LV�LQFUHDVHG��7KLV�LV�VKRZQ�LQ�)LJXUH���

Considering that the end objective of the forecasting problem of interest here is to

maximise the return over the investment period, a reasonable criterion to use for selecting the test

threshold for the hypothesis testing problem is to minimise the total probability of decision error. If

one is considering a daily or weekly time series of asset returns, then it is reasonable to assume that

the a priori probabilities of a negative return (which corresponds to the hypothesis 0H ) and a positive

return (which corresponds to the hypothesis 1H ) are equally likely over one time step. Using the

Bayes criterion (see Appendix A.4) it can be shown that the total probability of error is given by

)1(5.05.0 DF PP −+=ℜ    (27)
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Figure 2

Test performance as a function of γ and d
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Considering that both FP  and DP  depend explicitly on the test threshold  and implicitly on the

embedding dimension m through the test statistic )(r
r

l , we will denote the total probability of error in

equation (27) as ).,( mγℜ  For any given embedding dimension m, it is possible to compute an optimal

test threshold *γ  that minimises the total probability given by equation (27), which we denote

),( *
min mγℜ . Further, since the total probability of error is also dependent on the embedding

dimension m, we will denote the embedding dimension *mm =  that minimises the total probability of

error as the optimal embedding dimension and the corresponding total probability of error as

),( **
min mγℜ . For the choice of embedding dimension as *mm = , the maximum achievable

forecasting efficiency *η  for the hypothesis testing problem is given by

[ ]),(1100 **
min

* mγℜ−=η    (28)

Equation (28) provides a statistical upper bound on the achievable forecasting efficiency for the

hypothesis testing problem. The choice of the optimal embedding dimension *m  will be examined in

Section 5 for the time series of excess return between two bond portfolios with different duration.
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4. Optimal test statistic

In Section 3, the binary hypothesis testing problem was examined and it was shown that,

under the assumption that the test statistic is a Gaussian random variable, performance bounds can be

derived in terms of the distance between the conditional means under the two hypotheses. The

assumption that the test statistic is a Gaussian random variable is not as restrictive as it may first

appear. In particular, if we consider the time series of asset returns, the assumption that the returns are

normally distributed is quite reasonable to a first approximation. Moreover, since the observation

vector r
r

 in this case is comprised of asset returns from different periods of the data sample, it is again

reasonable to assume that the observations are uncorrelated. These two assumptions together will

ensure that the random vector r
r

 is jointly Gaussian with diagonal covariance matrix, and hence the

analysis given in Section 3 can be applied. Under the Gaussian assumption, the test statistic given by

equation (23) can be rewritten as

γ= <
>

=
∑

0

1

1

)(
H

HM

k
kk rwr

r
l    (29)

where

Mkw
k

k
k ,,2,1,

2
L=

σ
µ∆

=    (30)

Using historical data it is easy to compute the mean and variance of the random variables that

constitute the vector r
r

 of nearest neighbours, and hence the weights kw  in equation (30). We will

denote by maxb  the maximum absolute value of kw  in equation (30), which can be computed using

the historical data.

The choice of the weights kw  in equation (29) plays an important role in the forecasting

performance of the hypothesis testing problem. Although the choice of these weights using equation

(30) is one possible alternative, from a forecasting performance point of view this may not be

necessarily optimal. In the context of forecasting financial time series, the performance criterion of

interest is usually the total return over the given investment horizon. Let us consider a weekly trading

strategy where a long or a short position against the benchmark is taken based on the output from the

binary hypothesis testing problem, and let )}({ nx  denote the time series of weekly returns for the

asset under consideration. If we consider a P-period investment horizon starting from time n = N, then

the total return R arising from the trading strategy is given by

( ) 1)(1
1

−++= ∏
=

P

i
i iNxIR    (31)
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where )( iNx +  denotes the one period realised return at time iNn += . In equation (31), Ii  is an

indicator variable that takes the value +1 or -1 depending on whether the test statistic given by

equation (29) indicates that the true hypothesis is 1H  or 0H , respectively. Note that the indicator

variable is a function of the weights kw . In this study, we will use the total return R or, equivalently,

the average annualised return over the investment horizon as the criterion to compare the performance

of various forecasting models. In the numerical study, the investment horizon of interest was taken to

be four years so that with weekly data we have P = 208.

In order to maximise the return over the investment period, the optimal weights for

computing the decision statistic )(r
r

l  can be determined by carrying out an in-sample optimisation of

an objective function as in equation (31). In such an in-sample optimisation, we use the observed time

series up to n = N to compute the weights kw , and use these weights to evaluate the out-of-sample

forecasting performance from time step 1+= Nn  onwards. However, a better investment

performance criterion to use for computing the weights would be the one that maximises the worst

case investment return during any sub-period of the in-sample investment horizon. Such a criterion

will also lead to more robust out-of-sample performance and will be the one used in the present study.

If we denote the length of the sub-period as L, then the weights kw  for computing the test statistic in

equation (29) in order to ensure a robust out-of-sample performance can be determined by solving the

following optimisation problem:

( )







−−+

−∈ ∏
=

L

i
i jiNxI

LKjw 1
)(1

],,1,0[

MinMax

L
   (32)

subject to constraints

Mibwb i ,,2,1,maxmax L=≤≤−    (33)

In the objective function given above, K denotes the historical K-period investment

horizon over which the in-sample optimisation is carried out. In the numerical example presented in

the next section, it was assumed that the historical period over which the in-sample optimisation is

carried out is two years so that K = 104 for a time series of weekly returns. The optimisation problem

formulated above is non-convex in the design variables kw . Hence, the search for a global minimum

can be carried out using the modified simulated annealing algorithm (see Srichander (1995)). The

performance of different forecasting models with respect to the annualised return over the investment

horizon will be examined in the next section.
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5. Numerical results

This section examines the out-of-sample performance of a program trading strategy that

uses an optimally weighted test statistic to decide whether a long or a short position is to be taken in

the market over the period of the forecast. The performance of the optimal program trading strategy is

compared against both a random walk model and the equally weighted nearest neighbour approach of

Mizrach (1993) where the 2L  norm is used to select the nearest neighbours. The number of nearest

neighbours used in this study is M = 10. The performance comparison is based on the average

annualised excess return generated over a given investment horizon by taking either a long or a short

position against a given benchmark. Such a position is taken on the basis of the directional return

forecast made by the particular trading model under consideration. The time series data used for

performance comparison of the forecasting models is the weekly excess return between two US dollar

portfolios, one with 4.0 year modified duration and another with 3.5 year modified duration. The

weekly excess return time series was computed using the J.P. Morgan total bond return index in the

one to ten-year sector. The motivation for considering this time series was to explore whether it is

possible to achieve excess returns against a given benchmark by pursuing an active portfolio duration

management strategy. Table 3 shows the average annualised return over the period January 1994 to

December 1997 for holding a US dollar portfolio with fixed duration of 3.5, 3.75 and 4.0 years.

Table 3

Average annual return (January 1994 - December 1997)

Duration 3.50 years 3.75 years 4.0 years

Annual return 6.26 % 6.33 % 6.40 %

It can be inferred from Table 3 that during the period January 1994 to December 1997

there was on average a 7 basis point excess return for a static duration extension of every 0.25 years in

the US Treasury market. If we consider the benchmark duration to be 3.75 years, then any active

duration management strategy with a permissible duration in the range 3.5 to 4.0 years that produces

more than a 7 basis point excess return over the benchmark during the four-year investment period

will be deemed to be efficient. The performance of the various forecasting models which generate

trading rules once every week to take a duration position of either 3.5 or 4.0 years will be compared in

this section. In order to provide enough historical data while searching for nearest neighbours, weekly

returns for each day of the week starting from January 1986 has been used in the present study. Before

proceeding with the out-of-sample performance analysis, we will illustrate the choice of the optimal

embedding dimension *m  for selecting the nearest neighbours and establish performance bounds for

the achievable forecasting efficiency.
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5.1 Optimal embedding dimension

In this section, the method used to select the optimal embedding dimension will be

presented. Under the assumption that the decision statistic of the hypothesis testing problem is a

Gaussian random variable, the analysis in Section 3.1 showed that the distance between the

conditional means under the two hypotheses can be used to characterise the performance of the test.

This distance measure was used in Section 3.2 to find performance bounds for the hypothesis testing

problem. Since the conditional distribution of the test statistic )(r
r

l  under the hypotheses 0H  and 1H

is a function of the nearest neighbours, the choice of the nearest neighbours will influence the error

probability given by equation (27). In order to minimise this error probability, we will select the

embedding dimension m such that for a given number of nearest neighbours M = 10, the distance d

between the means under the two hypotheses as computed from equation (24) is maximised. The

embedding dimension *m  that maximises the distance d will be referred to as the optimal embedding

dimension. For a given *m  it is possible to compute the minimum error probability ),( **
min mγℜ ,

and hence the maximum achievable forecasting efficiency *η  from equation (28). Table 4 shows the

distance d and the forecasting efficiency *η  for various choices of the embedding dimension m

computed using the historical data.

Table 4

Performance bounds using historical data

Time period Embedding
dimension m

Distance  d Optimal
threshold γ *

Forecasting
efficiency η*

2 0.413 0.22 58.18 %

3 0.466 0.25 59.21 %

4 0.309 0.15 56.14 %

5 0.378 0.20 57.49 %

January 1992 -

December 1995

6 0.316 0.18 56.28 %

2 0.403 0.22 57.98 %

3 0.464 0.25 59.17 %

4 0.468 0.25 59.25 %

5 0.340 0.20 56.75 %

January 1994 -

December 1997

6 0.314 0.18 56.24 %

Examining Table 4 it can be seen that over the two different time periods considered in

the study, the maximum forecasting efficiency achievable is close to 60%. This maximum forecasting



17

efficiency occurs for the embedding dimension 3* =m , and hence we will choose this as the optimal

embedding dimension.

5.2 Out-of-sample performance

In this section the out-of-sample performance of the various forecasting models is

compared. In each case, weekly forecasts were made every Wednesday and, depending on the output

of the forecasting model, a duration position of either 3.5 or 4.0 years was assumed to be taken for a

one-week period. The annualised excess return generated from such a trading strategy over the

benchmark portfolio duration of 3.75 years during the four-year investment period January 1994 to

December 1997 is used to compare the performance of competing models. It has been assumed here

that a long position in the market is to be taken when the one-period forecast is positive for the

random walk model. In the case of the trading model based on nearest neighbours, the decision

statistic )(r
r

l  was compared against the optimal threshold 25.0* =γ  for deciding whether to take the

long or short position. The parameters for the random walk model were selected on the basis of the

mean and variance of the excess return time series over the period January 1986 to December 1993.

The weights for the optimal decision statistic )(r
r

l  of the binary hypothesis testing problem were

selected on the basis of the optimisation formulation given in Section 4. In particular, it was assumed

that the length of the sub-period is six months, and the historical time period used for the in-sample

optimisation is two years. This implies that L = 26 and K = 104 in the objective function given by

(32). The optimal weights of the decision statistic were recomputed once every six months while

carrying out the out-of-sample performance analysis. The out-of-sample performance for the various

forecasting models during the investment period January 1994 to December 1997 is shown in Table 5.

The performance figures for the random walk model are the average values after running the random

walk forecast with 50 different starting seed values to generate the random numbers.

Table 5

Forecasting performance of different models

Model Embedding
dimension

Forecasting
efficiency

Annual excess
return (bps)

Optimised 3 58.0% 27.0

Equal weights 3 58.0% 17.0

Equal weights 4 57.5% 16.5

Equal weights 5 58.0% 16.0

Random walk - 49.8% 1.5
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It can be seen from Table 5 that the optimised nearest neighbour approach suggested in

this paper outperforms the other models in terms of the annualised excess return over the investment

horizon. Although in terms of forecasting efficiency the model with optimal weights is only

marginally better than the model with equal weights, this model performs much better than the other

models considered here in terms of the return over the investment period. In fact, the use of the

optimal decision statistic to decide whether to take a long or short position against the benchmark

leads to an outperformance of 27 basis points on an annualised basis. In other words, the dynamic

portfolio duration management using the model suggested in this paper leads to a 20 basis point

excess return over a static duration extension of 0.25 years. Clearly, such an excess return is quite

significant over the investment horizon considered in the study and could be particularly interesting

for active portfolio duration management against a given benchmark.

The model with equal weights also performs reasonably well over the investment period

since it has an excess return of 10 basis points over a static duration extension by 0.25 years. It is of

interest to note here that the model with equal weights with m = 3 is the one that performs best. This

again suggests that the optimal embedding dimension for this time series is 3* =m . The performance

of the random walk model, on the other hand, is the worst in terms of the excess return over the

investment horizon. In fact, the performance of the random walk model is very similar to that of a

portfolio with a static duration of 3.75 years. The random walk model has a forecasting efficiency of

50%, indicating that it has little forecasting ability.

Conclusions

In this paper we examined the predictability of financial time series using the nearest

neighbour approach. Posing the problem of one-step prediction as a binary hypothesis testing

problem, it was shown how the embedding order m for the given time series can be determined. It was

suggested that a suitable performance criterion that has economic significance is the average

annualised return over the investment horizon. Such a criterion was used to compare the performance

of competing forecasting models. Although there has been evidence in the literature for the support of

a random walk model for forecasting financial time series, the criterion used for performance

comparison can play an important role. Since the end objective for forecasting any financial time

series is to maximise total investment return over a given time horizon, the use of such a performance

criterion is easy to motivate. Using the excess return time series between two US dollar bond

portfolios, it was shown that a trading model that uses the directional forecast from a nearest

neighbour  forecasting model outperforms the random walk model.
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Some of the findings in this paper are significant. In particular, the demonstration that

bond returns tend to follow past return patterns is significant as it provides theoretical justification for

the use of technical analysis in trading over the short term. Moreover, under the assumption that the

decision statistic of the hypothesis testing problem is Gaussian, it was shown that the use of past

return patterns for forecasting leads to a maximum predictive efficiency of 60% for the US dollar

bond returns over the investment period studied. In general, the out-of-sample forecasting

performance, which is measured in terms of average annualised return over the investment horizon,

depends on the ability to predict big market moves. The present study shows that models with similar

forecasting efficiency (measured in terms of the percentage of correct predictions) can have

significantly different annualised return over the investment horizon. Using the total return over the

investment horizon as the objective function, the study showed how an optimal decision statistic of

the hypothesis testing problem can be computed.
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Appendix

A.1 Nearest neighbour estimate

It will be shown here that the equally weighted nearest neighbour estimate can be

interpreted as the MAP estimate under the following conditions. Let the set of nearest neighbours

Mkmixr kk ,,2,1),1( L=++=  satisfy the following observation equation:

Mknr kk ,,2,1, L=+θ=    (A1)

In the above equation, the random variable )1( +=θ Nx  is assumed to be Gaussian ),0( θσN  and kn

are each independent Gaussian random variables given by ),0( nN σ . We then have
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To compute the MAP estimate, we need the density function )(rp
r

. However, noticing that )|( rp
rθ  is
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From equation (8) it follows that
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The term in the exponent can be rewritten as
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Adding and subtracting the term 
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Absorbing the terms containing the observation vector r
r

 in the constant )(r
rΨ , we have
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Examining (A9) we see that )|( rp
rθ  is just a Gaussian density. In this case the maximum value of

)|( rp
rθ  occurs at the conditional mean so that
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Further, since the minimum mean square estimate is just the conditional mean of )|( rp
rθ , it follows

that the minimum mean square estimate is equal to the MAP estimate, i.e. MAPMSE
ˆˆ θ=θ .

A.2 Likelihood ratio test

We will derive the likelihood ratio test statistic under the assumption that the conditional

densities )|( 0Hrp
r

 and )|( 1Hrp
r

 are Gaussian. Let the conditional mean under the two hypothesis

be given by
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We will assume that the covariance matrix under the two hypotheses is equal and given by

[ ] [ ]111000 ))(())(( HrrEHrrE TTTT µ−µ−=µ−µ−=Σ
rrrrrrrr

(A13)

The conditional densities under the two hypotheses are then given by
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It follows from equation (18) that the likelihood ratio test is given by
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Setting Q=Σ−1  we can simplify (A16) to
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A.3 Hypothesis test performance

The distance d between the means under the two hypotheses when the variance is

normalised to one can be used to characterise the test performance. The square of this distance 2d  is

given by
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where )(r
r

ll =  denotes the likelihood ratio given by (A18). Taking conditional expectations, we have
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The conditional variance is given by

{ }])[()]([)|( 000 µ∆µ−µ−µ∆= rrrrrr
l QrrQEHVar TTT (A21)

This can be simplified by taking expectations of the variables to
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Noting that Q=Σ−1 , we have

µ∆µ∆= rr
Qd T2 (A23)
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A.4 Bayes criterion

In any binary hypothesis testing problem, there are four possible outcomes and to each of

these we assign a cost. These are:

(a) 0H  is true and the test decides 0H  (cost 00C )

(b) 0H  is true and the test decides 1H  (cost 01C )

(c) 1H  is true and the test decides 0H  (cost 10C )

(d) 1H  is true and the test decides 1H  (cost 11C )

The application of the Bayes criterion assumes that the a priori probabilities of occurrence of the

events 0H  and 1H  are known and are given by 0p  and 1p , respectively. The choice of the Bayes

decision rule is based on minimising the average cost of the various outcomes of the hypothesis test. If

we assume that γ  is the test threshold, then denoting the expected value of cost as risk ℜ , we have

)|Pr()|Pr( 0101000000 trueisHHsaypCtrueisHHsaypC +=ℜ

)|Pr()|Pr( 1111110101 trueisHHsaypCtrueisHHsaypC ++ (A24)

If we assume that making a right decision does not involve any cost, then we can set .01100 == CC

Using equations (25) and (26) and assuming that the cost of incorrect decisions is equal and given by

10110 == CC , we have

)1(10 DF PpPp −+=ℜ (A25)

Under the assumption that the a priori probabilities of occurrence of the events 0H  and 1H  are

equally likely, we have

)1(5.05.0 DF PP −+=ℜ (A26)
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