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Abstract

Why should risk management systems account for parameter uncertainty? In

order to answer this question, this paper lets an investor in a credit portfolio face

non-diversifiable estimation-driven uncertainty about two parameters: probability

of default and asset-return correlation. Bayesian inference reveals that — for realistic

assumptions about the portfolio’s credit quality and the data underlying parame-

ter estimates — this uncertainty substantially increases the tail risk perceived by

the investor. Since incorporating parameter uncertainty in a measure of tail risk

is computationally demanding, the paper also derives and analyzes a closed-form

approximation to such a measure.
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Introduction

Measures of credit risk are often based on an analytic model and on the assumption that

the parameters of this model are known with certainty. In turn, it is common practice

for risk management systems to rely on such measures because of their tractability, even

though it is attained at the cost of ignoring estimation noise. This practice may impair

severely the quality of risk management systems because, besides credit-risk factors,

estimation noise is another important determinant of uncertainty about potential losses.

In order to substantiate this claim, this paper generalizes the popular asymptotic

single risk factor (ASRF) model of portfolio credit risk by allowing for noisy estimates

of two key parameters: probability of default (PD) and asset-return correlation.1 Ap-

plied to a stylized empirical framework, the generalized model delivers two alternative

measures of tail risk that help underscore the importance of estimation noise. The first

measure is a naive value-at-risk (VaR) of the portfolio, which accounts for the credit-risk

factor under the assumption that point estimates of the PD and asset-return correlation

are equal to the true values of the respective parameters. The second is the correct VaR

measure, which accounts not only for the credit-risk factor that influences the naive

VaR but also for the uncertainty stemming from estimation noise.

A Bayesian inference procedure reveals that ignoring estimation noise leads to a

substantial understatement of the correct VaR. In the benchmark specification (where

an investor in a homogeneous portfolio estimates the PD and asset-return correlation at

1% and 20%, respectively, on the basis of data covering 200 obligors over 10 years) the

correct VaR is 27% higher than the corresponding naive VaR. This result is striking, not

least because the underlying stylized empirical framework incorporates a lower bound

on the amount of estimation noise.

In addition, accounting for estimation noise (correctly) dampens the sensitivity of

VaR measures to changes in parameter estimates. The flip side of this result is that,

by abstracting from estimation noise, naive VaRs overstate the information content of

parameter estimates. A concrete implication of the result is that the difference between

the correct and naive VaRs — i.e. the add-on induced by parameter uncertainty —

decreases (increases) by less than the naive VaR when changes in parameter estimates

suggest lower (higher) tail risk of the portfolio.

In comparison to Gössl (2005) — which also argues for incorporating estimation noise

in measures of portfolio tail risk — this paper conducts the analysis in a more transparent

framework that allows for comparing in a straightforward fashion the importance of

1The paper abstracts from issues arising from model uncertainty. For an empirical analysis of the
impact of model mis-specification on portfolio tail risk, see Tarashev and Zhu (2008a).
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different sources of noise. Namely, a lengthening of the time series of the available data

from 5 to 10 or from 10 to 20 years is seen to reduce the correct VaR add-on by a factor

of two. In comparison, similar changes to the size of the cross section have a markedly

smaller impact on the add-on. This finding is rooted in the standard assumption that

credit risk is driven by asset returns that are serially uncorrelated but are correlated

across obligors, which implies that increasing the time series of the data brings in more

information than expanding the cross section.

The transparent framework of this paper also helps to analyze the trade-off between

accuracy and reduction of the computational burden. This trade-off underscores the

advantages of an approximate VaR measure, which exists in closed form, accounts for

uncertainty about the PD and can be easily adjusted to reflect uncertainty about the

correlation coefficient stemming from noise in observed asset returns. Given a judicious

adjustment for such noise, this measure approximates the correct VaR quite well and

alleviates substantially the computational burden.

That said, owing to the underlying Bayesian inference procedure, the computational

burden is substantial for both the correct and the approximate VaR measures. This

procedure is instrumental for capturing an important empirical regularity. Namely, over

a realistic range of parameter values, higher levels of the PD and asset-return correlation

are associated with greater noise in the associated estimates. This dependence between

estimation noise and true parameter values, which is missed if one circumvents Bayesian

inference, raises the probability that the true PD and correlation are bigger than their

point estimates and, consequently, raises the correct VaR.

From a general point of view, this paper provides support to a call made by Borio and

Tsatsaronis (2004) for including “measurement error information” in financial reporting.

In deriving an ideal information set for attaining efficiency of the financial system, that

paper emphasizes measurement error — a specific example of which is estimation error

— as a piece of information that is of natural interest to risk managers and supervisors

alike. From this perspective, the results derived below highlight specific scenarios in

which knowledge of measurement error is indeed highly valuable as such error accounts

for much of the uncertainty about potential credit losses.

The present paper differs in an important way from a number of recent articles — e.g.

Löffler (2003), Tarashev and Zhu (2008a) and Heitfield (2008) — that have analyzed es-

timation noise in the context of portfolio credit risk.2 These articles examine how errors

2Of these three papers, only Löffler (2003) analyzes uncertainty about PD on the basis of actual
default data and does so via non-parametric bootstrap. See Lando and Skodeberg (2002) and Hanson
and Schuermann (2006) for an extensive analysis of bootstrap approaches to the derivation of PD
confidence intervals and Cantor et al (2008) for an application of such an approach to a large dataset.
The analysis below, just like Heitfield (2008) and Tarashev and Zhu (2008a), circumvents the use of
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in parameter estimates translate into errors in capital measures that ignore parameter

uncertainty. However, the articles do not address the fact that parameter uncertainty

should be a key input to appropriately constructed measures of portfolio credit risk. In

terms of the terminology introduced in this paper, these articles quantify drawbacks of

naive VaRs but do not derive correct VaRs.

The rest of the paper is organized as follows. Section 1 describes the model and

then derives alternative measures of portfolio VaR. These measures are considered in

the context of an empirical framework that is outlined in Section 2. In turn, Section 3

presents and analyzes the quantitative results. This section also derives a closed-form

approximation to portfolio VaR that accounts rigorously only for uncertainty about the

PD. Finally, Section 4 provides two extensions of the baseline analysis.

1 Stylized credit portfolio

The impact of parameter uncertainty on measures of tail risk is analyzed on the basis

of a stylized credit portfolio. There are n exposures in this portfolio and all of them are

of equal size, which is set to 1/n. The analysis considers the limit, n → ∞, in which
the portfolio is referred to as asymptotic or “perfectly fine-grained”.

In addition, all exposures exhibit ex ante homogeneous credit risk. This is captured

by assuming that the value of the assets of each obligor i, Vi,τ , reflects this obligor’s

credit condition and evolves in the following way:3

ln (Vi,τ ) = ln (Vi,τ−∆) + μ∗∆+ σ∗
√
∆
³p

ρ∗Mτ +
p
1− ρ∗Zi,τ

´
(1)

where Mτ ∼ N (0, 1) , Zi,τ ∼ N (0, 1) ,

Cov (Mτ , Zi,τ ) = 0, Cov (Zi,τ , Zj,τ ) = 0 for all i and j 6= i,

and ∆ denotes the period, in years, between two observations. The riskiness of obligor i

is driven by a factor that is common to all obligors in the portfolio,M , and a factor that

is specific to this obligor, Zi. The factorsMτ and {Zi,τ}ni=1 are also serially uncorrelated.
The drift of the asset value, the volatility of the asset value and the share of the common

factor in this volatility are controlled by μ∗, σ∗ > 0 and ρ∗ ∈ [0, 1], respectively. These
parameters are the same for all obligors in the portfolio.

Obligor i defaults if and only if ln (Vi,τ ) is below some threshold, D∗i . Default

events are assumed to occur only at the end, t ∈ {1, 2, · · · , T}, of non-overlapping

bootstrap methods by assuming that the functional form, albeit not the parameter values, of the data
generating process is known.

3 In this paper, “obligor” and “exposure” are used as close synonyms.
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and adjacent one-year periods, which may be longer than the periods between two

consecutive observations of the obligors’ assets, i.e. 1 ≥ ∆. Then, assuming that the
loss-given-default on each exposure is unity, equation (1) implies that the loss on this

portfolio over the next year t, Ln,t, equals:

Ln,t =
nX
i

Ui,t, where

Ui,t =

(
1/n

0

if
√
ρ∗Mt +

√
1− ρ∗Zi,t < Φ

−1 (PD∗)

otherwise
(2)

Φ−1(PD∗) = (D∗i − ln (Vi,t−1)− μ∗) /σ∗

and PD∗ is the unconditional one-year probability of default, which is assumed to be the

same across exposures (requiring that so is D∗i − ln (Vi,t−1)). The expression Φ−1(PD∗)
is henceforth referred to as the (standardized) default point.4

An investor is interested in the maximum portfolio loss that can be incurred within a

year with probability (1− α), i.e. in the one-year VaR at the (1− α) confidence level. It

will be assumed that the investor knows how the portfolio loss is determined, i.e. knows

the model in (2) and the distribution of the credit risk factors, M and Zi. However, the

investor has to estimate the homogeneous asset-return correlation, ρ∗, and probability

of default, PD∗.

The remainder of this section outlines three alternative measures of portfolio VaR

that make different uses of the information available to the investor. The first measure

is the naive VaR, which treats the point estimates of the asset-return correlation and

probability of default — denoted by ρ̂ and dPD — as equal to the true parameter values.

The second measure equals the correct VaR perceived by the investor. This measure

also relies on the point estimates ρ̂ and dPD but, in addition, incorporates the investor’s

uncertainty about the true parameter values. The third measure, considered only in

passing, has the same functional form as the naive VaR but, instead of the estimates ρ̂

and dPD, incorporates conservative values of the asset-return correlation and the proba-
bility of default. These values, although related to the size of the investor’s uncertainty

about the true parameters, are determined in an ad-hoc way.

4 In order to streamline the analysis, this setup abstracts from important aspects of portfolio credit
risk. Unlike Gordy and Lütkebohmert (2007), for example, it does not address real-life departures
from perfect granularity, which influence tail risk by increasing the role of exposure-specific factors.
In addition, the setup rules out stochastic shocks to loss-given-default and exposure-at-default, which
are modelled as correlated with the common default-risk factor by Kupiec (2008), and abstracts from
cross-sectional dispersion of credit risk parameters, which is analyzed by Tarashev and Zhu (2008a).

4



1.1 Portfolio VaR under the ASRF model

In deriving the naive VaR measure, the uncertainty in parameter estimates is abstracted

from, which reduces the above setup to a special case of the popular asymptotic single

risk factor (ASRF) model. Then, results in Gordy (2003) imply that the naive VaR

of the portfolio at the (1− α) confidence level equals the sum of exposure-specific ex-

pected losses, conditional on the common risk factor,M , being at the αth quantile of its

distribution.5 Given that the forecast horizon is one year, expression (2) implies that

this boils down to:

V aRnaive = E
³
Ln|M = Φ−1(α), PD∗ =dPD, ρ∗ = ρ̂

´
= Φ

Ã
Φ−1(dPD)−√ρ̂Φ−1(α)√

1− ρ̂

!
(3)

where Φ (·) denotes the standard normal CDF. In addition, time subscripts have been
suppressed in order to alleviate the notation.

1.2 Portfolio VaR with parameter uncertainty

Since it abstracts from estimation noise, the naive VaR measure in (3) fails to reflect the

fact that the correct VaR, i.e. the one perceived by the investor, incorporates candidate

values of the PD and asset-return correlation, PDc and ρc, as random variables. The

joint probability density of these random variables is assumed to be well-defined, con-

tinuous and bounded away from zero everywhere on its support, which is (0, 1)× (0, 1).
The next section presents a concrete empirical framework, in which this assumption is

borne out.

Parameter uncertainty implies that the investor faces multiple common risk factors.

These are the common credit-risk factor,M , and the common “estimation-risk” factors,

PDc and ρc. Since M is serially independent and the uncertainty embedded in ρc and

PDc is driven by past data, M is independent of ρc and PDc.

Importantly, the presence of multiple risk factors violates a key assumption of the

ASRF model, implying that the formula in (3) can no longer be used for calculating the

VaR of the portfolio. Instead, it is necessary go through the following four steps. First,

5 In general terms, the qth quantile of the distribution of a generic random variable Y is defined as
Qq (Y ) ≡ inf {y : Pr (Y ≤ y) ≥ q}.
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consider the following conditional expected loss on the portfolio:

E (Ln|M,PDc, ρc) =
nX
i=1

Φ

µ
Φ−1 (PDc)−√ρcM√

1− ρc

¶
≡ E (L|M,PDc, ρc) (4)

which is a random variable that is independent of the sample size, n, owing to the

assumed homogeneity of parameters across obligors. Second, denote the (1− α) quantile

of this conditional expectation by Q1−α (E (L|M,PDc, ρc)). Third, denote the correct

VaR of the portfolio at the (1− α) confidence level by Q1−α (Ln). Finally, the following

proposition, which is proved in Appendix A, states that the correct VaR of an asymptotic

portfolio equals Q1−α (E (L|M,PDc, ρc)):

Proposition 1 As n→∞, Q1−α (Ln)→ Q1−α (E (L|M,PDc, ρc)).

It is important to note that there would generally not be an analytic expression for

the correct VaR measure, even in the limit n → ∞. This might make it tempting to
consider alternative measures that focus directly on conservative values of the credit-

and estimation-risk factors. Specifically, given the confidence level of the desired VaR,

such an alternative could condition on the α quantile of the common credit factor and

the (1−a) quantiles of the probability of default and correlation candidates (henceforth,
PDc

1−α and ρc1−α):

V aRalt = E
¡
L|M = Φ−1(α), PDc = PDc

1−α, ρ
c = ρc1−α

¢
= Φ

Ã
Φ−1

¡
PDc

1−α
¢
−
p
ρc1−αΦ

−1(α)p
1− ρc1−α

!
(5)

Albeit computationally more efficient, V aRalt turns out to be larger than the correct

VaR,Q1−α (E (L|M,PDc, ρc)). There are two reasons for this. First, in all the numerical

examples considered below, the two alternative measures coincide when the credit-risk

factor,M , is perfectly correlated with the estimation-risk factors, PDc and ρc.6 Second,

since these risk factors are not perfectly correlated, there are “diversification benefits”

that depress the correct VaR measure but do not affect V aRalt. The difference between

the two alternative measures is quantified in Sections 3.1 and 3.2 below.

6 In this context, “perfectly correlated” is to be understood as follows: conditional on the common
credit-risk factor being equal to the qth quantile of its distribution, the PD and correlation candidates
are at the (1− q)th quantiles of their respective distributions with probability 1.

6



2 The Empirical framework

This section outlines the derivation of the correct VaRmeasure, Q1−α (E (L|M,PDc, ρc)).

In addition to the distribution of the common credit-risk factor, this measure incorpo-

rates the joint probability distribution of estimation-risk factors, which reflects features

of the data used for estimation and the inference procedure. These features are assumed

to be such as to ensure that the correct VaR measure entails reasonable computational

burden and, at the same time, is informative about the impact of estimation noise in

real-life applications.

2.1 Stylized dataset

The investor observes asset returns and default rates, which are delivered by the data-

generating process specified in (1) and (2). It will be assumed that these data cover

T cohorts, each one of which comprises N obligors. Each cohort is followed for one

year t ∈ {1, · · · , T} and, for each month in this year, the investor observes the assets of
the N obligors (implying that the length of the period between two consecutive asset

observations is ∆ = 1/12). At the end of each year t, the investor also observes the

default rate in the respective cohort. In line with the investor’s portfolio, all obligors in

each cohort are characterized by an asset-return correlation that equals ρ∗ and (at the

beginning of the relevant year) a probability of default that equals PD∗.

The stylized dataset warrants four remarks. First, the assumed frequencies of asset

and default rate observations are intended to capture common practice. Reportedly,

in order to filter out high-frequency noise, practitioners base their estimates of asset-

return correlations on weekly or monthly time series of assets that are obtained from

daily equity prices and/or CDS spreads.7 In turn, yearly observations of one-year default

rates are standard ex post measures of short-term credit risk.

Second, despite the maintained focus on an asymptotic portfolio, the numerical re-

sults below reflect datasets with finite cross sections. This corresponds to the likely

real-life case in which the investor has access to data on only a subset of his/her ex-

posures. That said, the benchmark numerical exercise in this paper uses a portfolio of

N = 200 exposures and it turns out that expanding such a cross section leads to small

declines of estimation noise that have a limited impact on the VaR perceived by the

investor (see Sections 3.1 and 3.2 below).

Third, the benchmark exercise incorporates one-year default rates realized over T =

10 years and asset returns realized over T = 120 months. To put the length of these

7 In line with such practice, Moody’s KMV publishes monthly estimates of the market value of the
assets of the firms in its database. See Heitfield (2008) and Tarashev and Zhu (2008b) for further detail.

7



time series into perspective, note that the Basel II accord requires regulated institutions

to base their PD estimates for corporate exposures on at least 5 years of data.

Fourth, changes in credit-risk outlooks are a frequent real-life phenomenon, which

might invalidate the assumption that a fixed number of obligors, N , feature the same

parameters, ρ∗ and PD∗, over several years. A time invariant N is, however, in line

with the illustrative nature of the analysis.

2.2 Bayesian inference procedure

The investor tackles estimation noise on the basis of a Bayesian inference procedure.

Namely, the investor does not know the true values of the asset-return correlation and

the probability of default, ρ∗ and PD∗, but holds prior beliefs about the probability

distribution of the candidate values, ρc and PDc. Then, on the basis of the data

described in Section 2.1 and knowledge of the true structure of the data generating

process, the investor derives the point estimates, bρ and dPD, and uses them in order to

update the prior beliefs into posterior probability distributions of ρc and PDc.

More concretely, the inference procedure is conducted in two consecutive steps. This

procedure reflects the fact that, in the adopted empirical framework, default-rate data

do not affect the inference about the asset-return correlation but inference about the

probability of default needs to condition on information about this correlation. The

first step in the procedure derives the posterior distribution of correlation candidates,

ρc, as follows:

• The investor starts with the prior belief that the PDF of ρc is g (ρc).

• The investor then obtains the point estimate bρ solely on the basis of data on
asset returns. Given that asset returns are observed directly,8 default data do not

provide any additional information regarding the asset-return correlation.

• Recognizing that bρ is affected by estimation noise, the investor uses the condi-
tional PDF of the correlation estimate, f (bρ|ρc),9 in order to derive the posterior
distribution of correlation candidates:

h (ρc|bρ) = g (ρc) f (bρ|ρc)R
g (ρc) f (bρ|ρc) dρc (6)

8This assumption is relaxed in Section 4.2 below.
9As shown in Appendix B, this conditional PDF and its analog in the context of PD estimation are

unaffected by the values of the drift and volatility parameters, μ∗ and σ∗ (recall expression (1)), but
are affected by the fact that σ∗ needs to be estimated.
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The second step of the inference procedure derives the posterior distribution of the

probability-of-default candidates, PDc:

• The investor starts with the prior belief that the PDF of PDc is g̃ (PDc).

• Conditioning on a particular correlation candidate, ρc, the investor obtains the
point estimate, dPD (ρc), solely on the basis of data on default rates.

• Then, using the conditional PDF of the probability-of-default estimate,
f̃
³dPD (ρc) |PDc, ρc

´
, the investor derives the conditional posterior distribution

of candidate values as follows:

h̃
³
PDc|dPD (ρc) , ρc´ = g̃ (PDc) f̃

³dPD (ρc) |PDc, ρc
´

R
g̃ (PDc) f̃

³dPD (ρc) |PDc, ρc
´
dPDc

(7)

The investor is now in a position to derive the distribution of the conditional ex-

pected loss on the portfolio, E (L|M,PDc, ρc). He/she does so by recognizing that the

expressions in (6) and (7) define the joint posterior distribution of ρc and PDc and re-

calling that the credit risk factor, M , is a standard normal variable that is independent

of ρc and PDc.

2.3 Posterior distributions

In practical applications, a VaR measure would typically be based on a specific parame-

terization of the posterior distributions in (6) and (7). This paper adopts the following

parameterization and assumes that it is known to the investor:

• The estimates of the asset-return correlation and default probability are delivered
by minimum-variance unbiased estimators. Thus, given candidate parameter val-

ues, ρc and PDc, the standard deviations of the noise in the point estimates, bρ
and dPD (ρc), equal the respective Cramer-Rao lower bounds, denoted by σρ (ρ

c)

and σPD (PD
c, ρc).10

• The conditional distributions of the estimators, f (•|ρc) and f̃ (•|PDc, ρc), are

specified as follows:

10See Appendix B for further information on σρ (ρc) and σPD (PDc, ρc).
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— f (•|ρc) is a beta PDF with a mean ρc and variance σ2ρ (ρ
c):11

f (•|ρc) = beta (•;A,B) , where

A ≡ ρc

1− ρc
B, B ≡

(1− ρc)
¡
ρc (1− ρc)− σ2ρ (ρ

c)
¢

σ2ρ (ρ
c)

— f̃ (•|PDc, ρc) has a mean PDc and variance σ2PD (PD
c, ρc). The exact shape

of this distribution is such as to guarantee that the associated posterior of

PDc is as defined below.

• The posteriors of the parameter candidates, h (•|bρ) and h̃
³
•|dPD (ρc) , ρc´, are

defined as follows:

— h (ρc|bρ) = f (bρ|ρc), as implied by (6) under a uniform (or diffuse) prior, g (ρc) =
1 for ρc ∈ [0, 1].

— h̃
³
•|dPD (ρc) , ρc´ satisfies two criteria. First, in accordance with (7), its

mean and variance are equal to the ones implied by f̃ (•|PDc, ρc) and a

uniform prior, g̃ (PDc) = 1 for PDc ∈ [0, 1]. Second, the implied posterior
distribution of the default point Φ−1 (PDc) is normal.

2.4 Measuring portfolio VaR

In quantifying portfolio VaR, the investor makes use of the following three pieces of

information:

• a panel dataset of asset-returns and default rates;

• the posterior distribution of correlation candidates, h (•|•);

• the conditional posterior distribution of PD candidates, h̃ (•|•, •).

Then, the probability distribution of the conditional expected loss, E (L|M,PDc, ρc),

is quantified via the following simulation procedure:

1. The data on asset returns produce a point estimate of their correlation, bρ.
2. A candidate ρc is drawn from the posterior distribution h (·|bρ).12

11Note that the Fischer information inequality, which is behind the Cramer-Rao lower bounds on
estimation noise, specifies only the first two moments of minimum-variance unbiased estimators.
12For the numerical exercise below, this distribution is discretized as described in Appendix C.
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3. Conditioning on ρc, the point estimate of the probability of default, dPD (ρc), is
obtained from data on default rates via maximum likelihood estimation.13

4. Continuing to condition on ρc, a value of Φ−1 (PDc) −√ρcM is drawn from the

normal PDF implied by the posterior distribution of PDc, h̃
³
·|dPD (ρc) , ρc´, the

standard normal distribution of M and the independence between PDc and M .

5. Repeating step 4 a large number of times (the specific exercise employs 1 million

such repetitions) delivers the distribution of the conditional expectation

E (L|M,PDc, ρc) for the given ρc.

6. Repeating steps 2—5 delivers the distribution of this conditional expectation for

any point estimate bρ and observed default rates.
By Proposition 1, the (1− α) quantile of the so-derived distribution equals the

correct VaR at the (1− α) confidence level.

2.5 Discussion of the empirical framework

This sub-section revisits important aspects of the stylized empirical framework. First,

some of the framework’s underlying assumptions — e.g. homogeneity of exposures, a

time-invariant size of the dataset, a convenient parameterization of probability distri-

butions — are key for deriving measures of portfolio VaR that are both influenced by

parameter uncertainty and not prohibitively burdensome to calculate. The reason is

that these assumptions limit the number of the parameters of interest to two — i.e. the

common PD and asset-return correlation — and help circumvent inference about “nui-

sance” parameters, which are not central to the problem at hand (such as the drift and

volatility of asset returns).14 To see the importance of this implication, note first that

the calculation of a single VaR measure under the adopted framework requires roughly

six days of computer time (on a Pentium(R) 4 CPU 3.20GHz machine with 2GB of

RAM). Moreover, as indicated by the procedure described in Section 2.4, the number

of simulations grows exponentially in the number of parameters relevant for deriving a

VaR.

A second important aspect of the framework is that some of the simplifying as-

sumptions are likely to depress the perceived VaR. For example, the assumptions of
13Most of the numerical analysis below makes use of the Cramer-Rao lower bounds on the variance of

parameter estimators, keeping in the background the exact specification of these estimators. That said,
simulation exercises reveal that the maximum-likelihood estimator of the probability of default attains
the Cramer-Rao lower bound and is largely consistent with the assumed shape of f̃ (•|PDc, ρc). This
estimator is referred to explicitly only in Section 3.3, which discusses how ρc affects PD.
14See Heitfield (2008) for a setup, in which it is necessary to make inference about nuisance parameters.
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minimum-variance unbiased estimators, homogeneous exposures and a fixed size of the

cross section of the data limit significantly the amount of estimation noise that is al-

lowed to affect the investor’s perception of risk. As a result, the correct VaR derived

under such simplifying assumptions should be treated as a lower bound on the VaRs

faced by investors in real-life portfolios, where many of these assumptions are violated.

That said, a third important aspect of the framework relates to the inference pro-

cedure, which has been designed to insulate the precision of parameter estimates from

some highly stylized aspects of the dataset. Namely, when estimating the probability

of default, the investor is not allowed to use information that is contained in observed

asset returns but is missed by the estimate of their correlation (see Section 2.2). Thus,

the investor is not allowed to exploit the fact that, since all obligors are assumed to be

ex ante homogeneous, the minimum asset value among surviving obligors and the max-

imum asset value among defaulting obligors bound from below and above the possible

values of the default point. Given the sizes of the datasets examined in this paper, the

two bounds are typically so close to each other as to effectively reveal the default point

and, thus, the PD.

The inference procedure adopted here abstracts from this clearly unrealistic implica-

tion. Indeed, Heitfield (2008) reports that, in real-life applications — where (i) obligors

are heterogeneous and (ii) asset-return and default-rate data cover different sets of oblig-

ors — the common practice is to use asset-returns data to estimate the average correlation

and to use the default data to estimate the average PD but not to use asset-returns

data for a direct estimation of the default point. The empirical framework in this paper

emulates this common practice.

A fourth important aspect of the empirical framework relates to the assumption that

prior beliefs about the credit-risk parameters are diffuse. Although this assumption is

quite in line with the level of generality in this paper, it could easily be replaced with

other similarly acceptable alternatives. Section 4.1 below derives such alternatives on

the basis of long historical data on default rates and then studies their implications for

portfolio VaR.

Fifth, the assumption that asset returns are observed directly masks an important

challenge associated with correlation estimates. In practice, asset returns are subject to

observation noise because they need to be extracted from other variables, such as stock

prices and CDS spreads. As shown in Section 4.2, abstracting from observation noise

in asset returns can bias the VaR measure. The section also discusses conditions under

which the bias can be positive or negative, and proposes a correction.
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3 Results

The main result is that ignoring parameter uncertainty leads to a significant under-

statement of the portfolio tail risk perceived by the investor. Importantly, this result

is derived within a stylized empirical framework, which, as argued above, provides only

the lower bound of the impact of parameter uncertainty on VaR measures. In addition,

the result is robust to changes in the point estimates of the credit risk parameters, dPD
and bρ, and in the size of the dataset, N and T .

A numerical example, drawn from the top right-hand panel of Table 1, helps fix ideas.

Consider the benchmark case in which an investor obtains point estimatesdPD = 1% andbρ = 20% on the basis of panel data on (monthly) asset-returns and (yearly) default rates
that are observed for T = 10 years and N = 200 obligors. If the investor is interested

in the portfolio VaR at the 99.9% confidence level and ignores estimation noise, he/she

uses equation (3) and calculates a naive VaR that equals 14.55 cents on the dollar.

However, applying Proposition 1 reveals that estimation noise requires an “add-on” —

on top of the naive VaR — that equals 3.93 cents on the dollar. Thus, the correct VaR

perceived by the investor is 27% higher than the naive one.

A comparison between the top and bottom right-hand panels of Table 1 reveals that

the correct VaR measure is less sensitive to changes in the parameter estimates than the

naive VaR. Changing the PD estimate in the benchmark example to dPD = 5% results

in the correct VaR measure rising from 18.48 (i.e. 14.55 + 3.93) cents on the dollar to

43.37 (38.44 + 4.93) cents, or by a factor of 1.35. At the same time the naive VaR rises

by a factor of 1.64, from 14.55 to 38.44 cents on the dollar. Further, this difference in

sensitivities to changing parameter estimates becomes more pronounced as the sample

size (N and/or T ) decreases and, thus, parameter uncertainty increases.

From a different perspective, either reducing the cross section of the data or short-

ening its time series leads to higher uncertainty-induced VaR add-ons but the effect of

the latter is considerably more important (see Table 1 ). Starting with the benchmark

example and then halving the length of the time series (to T = 5 years of data) more

than doubles the VaR add-on (to 8.20 cents on the dollar). By contrast, decreasing the

size of the cross section by a factor of four (to N = 50 obligors) raises the VaR add-on

by 50% (to 5.85 cents).

The remainder of this section analyzes in some detail the impact of parameter un-

certainty on the VaR measure and, in the process, provides explanations for the above

results. The analysis first considers uncertainty stemming only from the estimation of

the asset-return correlation, under the assumption that the PD is observed directly. The

advantage of focusing on this case stems from the existence of an analytical expression
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for the dependence of correlation uncertainty on the size of the dataset and the true pa-

rameter values. Then, the section proceeds to focus on the impact of uncertainty about

the PD, assuming that the asset-return correlation is observed directly. Even though

PD uncertainty cannot be analyzed analytically, there is a closed-form expression for

the VaR that incorporates a measure of this uncertainty. The last part of this section

argues in favour of using this closed form expression in order to approximate the correct

VaR perceived by the investor.

3.1 Correlation uncertainty

Uncertainty about the asset-return correlation leads to a small VaR add-on. To parallel

the above benchmark example, suppose that the investor knows with certainty that the

true PD∗ = 1% and obtains the point estimate bρ = 20% on the basis of T = 120 months
of data covering the asset returns of N = 200 obligors. As reported in the top middle

panel of Table 1, the resulting VaR add-on is 0.41 cents on the dollar. This is roughly

2.8% of the naive VaR, which ignores parameter uncertainty altogether, and slightly

more than 10% of the add-on that incorporates noise in both the correlation and PD

estimates.

Further numerical results, reported in Table 2, allow for analyzing the importance

of alternative drivers of correlation uncertainty. For example, it can be seen that the

VaR add-on induced by noise in the correlation estimate depends little on the size of

the cross-section, N , but is quite sensitive to the length of the sample period, T . As

reported in the centre panel of Table 2, shrinking the cross-section by a factor of 4 (i.e.

switching from N = 200 to N = 50) leaves the correct add-on virtually unchanged when

T = 120 months and raises it by 9% if T = 60.15 By contrast, shortening the time series

by a factor of 2 (i.e. switching from T = 120 to T = 60) roughly doubles the VaR

add-on for both N = 50 and N = 200.

Heuristically, this result reflects the fact that, as the sample size expands, the conver-

gence of estimates to the true parameter values is “slowed down” by correlation among

observations. This convergence is underpinned by the Law of Large Numbers (LLN),

which, in the present context, “works” fully in the time dimension (as there is serial

independence) but only up to a point in the cross section (because the common credit-

risk factor leads to a positive correlation among obligors). The intuition behind LLN

is that, when the sample size increases, there is greater chance that estimation noise

is “averaged out” and, as a result, point estimates become more precise. Of course,

15A “correct” add-on in Table 2 is one that incorporates fully correlation uncertainty but also reflects
the maintained assumption that the PD is known. Similar definitions apply to the correct add-ons in
Tables 3 and 5.
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increasing either N or T leads to an averaging out of obligor-specific noise. By contrast,

the noise stemming from the common factor is averaged out by increasing T but not by

increasing N .

This intuition finds its concrete expression in the Cramer-Rao lower bound on the

variance of the noise in correlation estimates (see Appendix B):

σ2ρ (ρ
∗;N,T ) =

2 (1− ρ∗)2 (1 + (N − 1) ρ∗)2

TN (N − 1) (8)

This variance decreases to zero as T →∞ but to a positive number, i.e. 2 (1− ρ∗)2 (ρ∗)2
.
T ,

as N →∞. This is illustrated in Figures 1 and 2, which plot, respectively, the impact

of increasing the time series and the cross-section of the data on σρ (ρ
∗;N,T ).

A comparison among the top, middle and bottom panels of Table 2 reveals that

the correct VaR add-on (driven only by noise in the correlation estimate) increases as

the point estimate of correlation increases within the considered range. If N = 200

and T = 120 months, for example, this add-on increases from 0.26 to 0.41 and then to

0.50 cents on the dollar as the point estimate, bρ, increases from 10% to 20% and 30%.

The reason for this is that the variance of the noise in correlation estimates increases as

the true correlation increases from 0% to (roughly) 50% (see Figures 1 and 2 ). More

precisely, by equation (8),16

dσ2ρ (ρ
∗;N,T )

dρ∗
> 0 for ρ∗ ∈

∙
0, 0.5

N − 2
N − 1

¸
(9)

This points to a pitfall in measuring VaR without taking into account the depen-

dence of the size of estimation uncertainty on the true value of the correlation. If this

dependence were ignored, the posterior distribution of correlation candidates would co-

incide with f (•|ρ∗ = bρ), which is the PDF of the correlation estimator when the true
parameter, ρ∗, happens to be at the point estimate, bρ. In this case, the Bayesian up-
dating procedure would be redundant and, thus, the computational burden would be

substantially reduced. However, as indicated by expression (9), a higher ρ∗ is associated

with greater dispersion in f (•|ρ∗). Thus, a given point estimate, bρ, is more likely to
be associated with ρ∗ > bρ than with ρ∗ < bρ, implying that the posterior distribution
of correlation candidates, h (•|bρ), has a more pronounced right skew and a higher mean
than f (•|ρ∗ = bρ). This result holds irrespective of the fact that the estimator of the
asset-return correlation is unbiased.

Thus, ignoring that estimation noise depends on the true parameter value leads to

16This result holds true even if pairwise asset-return correlations are heterogeneous.
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a mis-specified posterior distribution that attributes too much (little) probability mass

to low (high) correlation candidates. In turn, since higher values of the asset-return

correlation imply higher tail risk, this mis-specification leads to an understatement

of the VaR perceived by the investor. The magnitude of such an understatement is

illustrated in Table 2 by the difference between correct VaR add-ons and “sloppy VaR”

add-ons, which are based on the (wrong) assumption that estimation uncertainty is

independent of the true ρ∗. For all considered sample sizes (N,T ) and values of the

point estimate, the former add-ons are roughly twice the size of the latter.

That said, when the point estimate of correlation increases, the VaR add-on induced

by noise in this estimate decreases as a share of the naive VaR. Continuing with the

above example, in which N = 200 and T = 120 months, the add-on decreases from

3.4% of the naive VaR when bρ = 10% to 2.2% of the naive VaR when bρ = 30%. The

flipside of this result is that the naive VaR, which abstracts from the noise in parameter

estimates and, thus, overstates their information content, is more sensitive to changes

in these estimates than the correct VaR (i.e. the naive VaR plus the add-on).

The underlying framework allows for a straightforward derivation of V aRalt add-ons

that focus directly on specific quantiles of the distribution of ρc and the common credit-

risk factor, M (recall equation (5)). The two right-most panels of Table 2 quantify two

versions of these add-ons. One of them arises when the dependence of estimation noise

on the true parameter value is taken into account (“alternative add-on”) and the other

one when it is not (“alternative sloppy add-on”). As anticipated in Section 1.2, the

alternative add-ons, ranging between 35% and 71% of the corresponding naive VaR, are

substantially larger than the correct add-ons.

3.2 PD uncertainty

When one considers solely uncertainty about the probability of default, the analytic

challenges are the reverse of these encountered in the previous subsection. Namely, the

Cramer-Rao lower bound on the variance of the noise in PD estimates does not exist

in closed form but, for a given value of this lower bound, the VaR measure itself does.

In order to see the latter implication, let the true correlation be observed without noise

(bρ = ρ∗) and recall that the distribution of the common credit risk factor, M , and the

posterior distribution of the default point, Φ−1 (PDc), are both normal. By expression

(2), this means that the investor effectively faces a single common risk factor, which

equals Φ−1 (PDc)−
pbρM and has a normal distribution. As a result, the ASRF model
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is applicable, implying that the portfolio VaR at the (1− α) confidence level equals:17

V aR
³dPD,bρ´ = Φ

⎛⎜⎜⎝μD

³dPD,bρ´−rbρ+ σ2D

³dPD,bρ´Φ−1 (α)p
1− bρ

⎞⎟⎟⎠ (10)

where μD

³dPD,bρ´ and σ2D

³dPD,bρ´ denote the mean and variance of the posterior
distribution of the default point. Expression (10) leads to VaR add-ons that are reported

in the left-hand panels of Table 1 as well as in Table 3.

A comparison between the left-hand and middle panels of Table 1 points to three

important differences between the impact of PD uncertainty on the VaR perceived by

the investor and the corresponding impact of correlation uncertainty. First, the VaR

add-on induced by uncertainty in the PD estimate is much higher. If, for example,

ρ∗ = 20% and the point estimate dPD = 1% is obtained from data covering N = 200

obligors over T = 10 years, the correct add-on is 3.17 cents on the dollar, or 22% of the

naive VaR. This add-on is almost 8 times larger than the corresponding add-on induced

by correlation uncertainty.

The difference between these add-ons is a natural consequence of the fact that the

uncertainty about the probability of default is greater than the uncertainty about the

asset-return correlation. In turn, the relative size of the two types of uncertainty is

mostly driven by the maintained assumption that there are fewer data points for de-

fault rates than for asset returns (see Section 2.1 above).18 For an implication of this

assumption, suppose that the true parameter values are ρ∗ = 20% and PD∗ = 1%, and

the sample is of size N = 200, T = 10. In this case, the Cramer-Rao lower bound on the

standard deviation of the PD estimate is 0.47%, i.e. almost half of the true parameter

value (see the second panel of Table 4 ). By contrast, the Cramer-Rao lower bound on

the standard deviation of the correlation estimate is 2.1%, which is slightly more than

one-tenth of the true parameter value (see Figure 2 ).

The second noteworthy difference from the case of correlation uncertainty is that the

VaR add-on induced by PD uncertainty is more sensitive to changes in the size of the

cross section. For example, when ρ∗ = 20%, dPD = 1% and T = 10, reducing the cross

section of the dataset from N = 200 to 50 obligors increases the VaR add-on by 60%

(from 3.17 to 5.07 cents on the dollar). By contrast, as seen above, the corresponding

change is virtually nil in the context of correlation uncertainty. Furthermore, raising

17This expression incorporates the independence between PDc and M .
18Another important assumption in this context is that asset returns are observed directly. This

assumption is relaxed in Section 4.2 below.
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N = 200 to 1000 obligors depresses the VaR add-on by a non-negligible 21%. That

said, at 2.49 cents on the dollar or 17% of the naive VaR, the VaR add-on remains

substantial even when N = 1000, i.e. when there are data on all the exposures in a

virtually asymptotic portfolio.19

Third, analysis of PD uncertainty provides the only examples in which a rise in the

point estimate can lead to a decline in the correct add-on, together with a rise in the

naive VaR. If, for example, N = 50 and the time series covers T = 5 years, a rise in

the point estimate from dPD = 1% to dPD = 5% leads to a decline in the add-on from

10.77 to 8.92 cents on the dollar (see the left-hand panels of Table 1 ). This is another

manifestation of the fact that, since it accounts for noise in parameter estimates, the

correct VaR is less sensitive to changes in these estimates than the naive VaR, which

abstracts from estimation noise. The difference between the alternative sensitivities is

greater in the context of PD uncertainty because this uncertainty is greater than that

about the asset-return correlation.

Besides these three differences, there are a number of qualitative similarities between

the effect of PD uncertainty and that of correlation uncertainty on VaR measures. In

particular, a comparison between Tables 2 and 3 reveals similar consequences of: (i)

changing the time span of the data, (ii) ignoring the dependence of estimation noise

on the true parameter, (iii) focusing directly on specific quantiles of the credit- and

estimation-risk factors.

3.3 Combining the two sources of uncertainty

The interaction between noise in the estimator of the asset-return correlation and noise

in the PD estimator inflates the VaR perceived by the investor. In order to see what

drives this result, it is useful to step back and recall the sequential estimation proce-

dure. As outlined in Section 2.4, the investor first derives the posterior distribution of

candidate values for the correlation coefficient. Then, conditioning on such a candidate

value and the observed default rates, the investor obtains a point estimate of the PD.

For the considered empirical framework and parameter values, a higher correlation

candidate induces a higher point estimate of the PD. This is illustrated in Figure 3,

where the squares plot the typical distribution of 10 one-year default rates for a true

correlation ρ∗ = 20% and a true PD∗ = 1%.20 In addition, the blue stars plot the

19Tarashev and Zhu (2008a) demonstrate that a portfolio of 1000 homogeneous exposures can be
safely treated as perfectly fine grained (or asymptotic).
20This typical distribution is based on 100, 000 sets of 10 one-year default rates, which are simulated

for the given PD∗ and ρ∗. Then, the ten default rates in each set are ordered from lowest to highest.
In turn, ordered sets are used as columns in a 10× 100, 000 matrix of default rates. The median of the
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distribution of joint defaults implied by a low value of the correlation candidate, de-

noted by ρc1 in the figure, and the corresponding estimate of the probability of default,

PD (ρc1).
21 In turn, the red stars plot the probability distribution of joint defaults ob-

tained by combining the same PD (ρc1) with a higher correlation candidate, ρ
c
2. The

differences between the blue and red stars arise from the fact that, all else constant, a

higher correlation increases the probability of default clustering, which is manifested in

a higher probability of zero and many defaults but lower probabilities of intermediate

numbers of defaults. Importantly, since the initial pair {ρc1, PD (ρc1)} delivers an op-
timal fit to the typical default rates (blue stars), using PD (ρc1) with ρc2 worsens this

fit (red stars). By extension, the point estimate PD (ρc2), which is based on the higher

correlation candidate ρc2, leads to a reversal of this worsening of the fit (green stars).

Since PD (ρc2) > PD (ρc1) the reversal involves a lower (higher) probability of zero (a

positive number of) defaults.

The positive relationship between the correlation candidate and the PD point esti-

mate imputes a positive correlation in the joint posterior distribution of the candidate

values ρc and PDc. In turn, this positive correlation increases the VaR measure, albeit

only slightly (refer to Table 1 ). In the benchmark example, where the point estimates

are dPD = 1%, bρ = 20% and there are T = 10 years of data on N = 200 obligors,

the correct VaR add-on (3.93 cents on the dollar) is 10% larger than the sum of the

two add-ons associated, respectively, with noise only in the PD or correlation estimates

(3.17 + 0.41 cents on the dollar).

3.4 A closed-form approximation of the VaR measure

An important by-product of the analysis is that the closed-form approximate measure

in expression (10), which incorporates only uncertainty about the PD, goes a long away

in accounting for the VaR perceived by the investor. This is clearly seen by referring

to Table 1 and reconstructing VaR measures by adding the add-ons reported in the

default rates in the first row of this matrix is plotted in Figure 3 as the lowest value in the typical draw
of default rates. The median in the second row is plotted as the second lowest value in the typical draw
of default rates, etc.
21More precisely, an implied probability distribution attributes non-zero probability mass to each

default rate in the set {0, 1/N, 2/N, · · · 1}, which in the specific example equals {0, 0.005, 0.01, · · · 1}.
In order to facilitate comparisons with the typical distribution of default rates (squares in Figure 3 ),
an implied distribution (stars) is plotted as follows. The implied probabilities of the default rate being
equal to 0 or 0.005 are plotted directly. The implied probability of the default rate being equal to 0.01
and half of the implied probability of the default rate being equal to 0.015 are added and their sum
equals the height of a star at 0.01. Half of the implied probability of the default rate being equal to
0.015 and the probabilities of the default rate being equal to 0.02 and 0.025 are added and their sum
equals the height of a star at 0.02. The implied probabilities of the default rate being equal to 0.03 or
more are added and their sum equals the height of a star at 0.035.
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left- and right-hand panels to the corresponding naive VaRs. For the point estimates

and sample sizes considered for this table, VaR measures that incorporate only PD

uncertainty tend to understate the corresponding correct VaRs by 5% or less.

Importantly, the closed-form expression in (10) has two general computational ad-

vantages. First, it reduces the computational burden by limiting the Bayesian inference

procedure to a single parameter: the probability of default. Second, for a given posterior

distribution of PD candidate values, this expression delivers a VaR measure directly,

without relying on numerical simulations.

4 Extensions

This section considers two extensions of the estimation procedure, which address aspects

of the investor’s information set that the analysis has so far abstracted from. The first

subsection illustrates how richer prior beliefs about credit-risk parameters can affect the

VaR measure. Then, the second subsection shows that noise in observed asset returns

complicates the inference procedure and then proposes how to account for such noise in

a computationally efficient way.

4.1 Prior beliefs about probability of default

The results reported in Section 3 are based on diffuse priors regarding the asset-return

correlation and the PD. The benefit of assuming such priors is that they render trans-

parent the transition from the conditional PDF of the estimator to the posterior PDF

of the parameter (see equations (6) and (7)). That said, an investor’s information about

a parameter may go beyond the information contained in the dataset that he/she uses

in order to obtain a point estimate of this parameter. In other words, the prior be-

lief may not be diffuse, which would affect the parameter’s posterior distribution and,

consequently, the perceived VaR in important ways.

Consider an investor who has a short forecast horizon and is interested in the VaR

of a portfolio of homogeneous obligors that have a particular credit rating. Suppose

further that the investor observes a rather long time series of the one-year default

rates in the same rating class. Given the investor’s short horizon and assuming rather

frequent, albeit persistent, changes in the (average) PD within the rating class, the

investor might derive a posterior distribution of PD candidates that relies more heavily

on recent default rates. In the light of equation (7), one way of doing this is to let all of

the observed default rates determine prior beliefs but to derive a point estimate of the

PD only on the basis of the last several default rates.
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The extent to which prior beliefs affect the VaR measure depends on the extent to

which they are in accordance with the point estimate. To take a concrete example, sup-

pose that the investor bases his/her prior on the one-year default-rates of all corporate

obligors rated BB by Moody’s from 1990 to 2007. The average of these default rates

is 0.98% and their standard deviation is 1.18%.22 Suppose further that the investor

obtains a point estimate dPD = 1% on the basis of default data covering N = 200 BB-

rated obligors over T = 5 years and, for simplicity, observes directly the true correlation

ρ∗ = 20% . Since, in this example, the prior mean and the point estimate are quite

close, the main effect of the prior is to tighten the posterior distribution of PD candi-

dates relative to that implied by a diffuse prior. Being tantamount to less parameter

uncertainty, this results in a VaR add-on that equals 3.25 cents on the dollar, down

from 6.41 cents under a diffuse prior (refer to Table 3 ).

Importantly, the result could be quite different if, keeping all else constant, the

investor’s dataset covered B-rated corporate obligors. A point estimate dPD = 1% for

B-rated obligors is admittedly extreme but not unreasonable, given that the default

rate of such obligors has averaged 1.01% between 2003 and 2007. However, such a point

estimate would be quite at odds with a prior belief that incorporates the default history

of B-rated corporate obligors since 1990: this history features an average default rate

of 5% and a standard deviation of default rates of 4%. Against such a prior, the point

estimate appears overly optimistic. Consequently, the implied posterior distribution

attributes more probability mass to high PD candidates than a posterior based on a

diffuse prior. Not surprisingly then, the end result is a VaR add-on of 9.15 cents on the

dollar, up from 6.41 cents under a diffuse prior.

The above two illustrative examples indicate that departures from the assumption of

diffuse priors can lead to substantial changes in perceived VaR. These changes may stem

from an improved precision of the information set, as most clearly seen in the example

with BB-rated obligors, or from an alignment of posterior beliefs with long-term default

experience, as seen in the example with B-rated obligors. That said, a rigorous analysis

of prior distributions and their transformation into posterior beliefs would have to be

based explicitly on a learning process, which is beyond the scope of this paper.

4.2 Noise in observed asset returns

In real-life applications, asset returns — or, more generally, the stochastic drivers of

default events — would be observed with noise. Depending on whether the noise is

idiosyncratic (driven by obligor-specific imperfections in the measurement of assets’

22The data source is the Credit Risk Calculator database of Moody’s Investors Service.
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market value) or systematic (a result, for example, of mapping equity prices of different

obligors into corresponding asset values via the same mis-specified model), it could lead

to a downward or upward bias in correlation estimates.

To see why, generalize (1) to account for observation noise, which is denoted by Uiτ :

ln (Vi,τ )− ln (Vi,τ−1) = μ∗∆+ σ∗
√
∆
p
1− ψ∗

³p
ρ∗Mτ +

p
1− ρ∗Zi,τ

´
+σ∗
√
∆
p
ψ∗Uit

Uiτ =
√
λ∗MU

τ +
p
1− λ∗ZU

iτ

MU
τ ∼ N (0, 1) is independent of ZU

iτ ∼ N (0, 1)

ψ∗ ∈ [0, 1] , λ∗ ∈ [0, 1]

where ψ∗ and λ∗ control, respectively, the amount of observation noise and the sys-

tematic component of this noise. Then note that the true correlation of observed asset

returns equals

ρ∗,OBS = (1− ψ∗) ρ∗ + λ∗ψ∗ (11)

where ρ∗ continues to indicate the true correlation of actual asset returns. All else

constant, ρ∗,OBS increases in the systematic component of the observation noise, λ∗.

The level of ρ∗,OBS also increases in the overall amount of noise, ψ∗, if the systematic

component is large enough, i.e. if λ∗ > ρ∗.

An important implication of (11) is that, if the data comprise only noisy observations

of asset returns, the true correlation of actual asset returns is unidentifiable. Namely,

for any given ρ∗,OBS, one can pick any admissible value of the correlation of actual asset

returns, ρ∗, and find a continuum of different pairs (λ∗, ψ∗) that render ρ∗,OBS and ρ∗

mutually consistent. This is illustrated in Figure 4.

Given that the asset-return correlation is unidentifiable, an investor could impose a

conservative upward adjustment on the point estimate bρ and treat the adjusted value
as if it were coming from data that are free of observation noise. By equation (11), a

possible conservative adjustment would be one consistent with no systematic observation

noise (λ∗ = 0) and some idiosyncratic observation noise (ψ∗ > 0). As illustrated by

Table 5, such an approach results in significant upward revisions of the VaR measure.

Suppose, for example, that the true probability of default PD∗ = 1% is known and the

correlation is estimated at bρ = 20% on the basis of data that cover N = 200 obligors

over T = 120 months. Then, setting ψ∗ = 0.05 (i.e. allowing idiosyncratic observation

noise to accounts for 5% of the variability of observed asset returns) leads to a VaR

add-on that is almost three times as high as the add-on obtained for ψ∗ = 0. However,
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in order to match the add-on induced by PD uncertainty when N = 200, T = 10 years,dPD = 1% and the correlation is known to be ρ∗ = 20% (recall Table 3 ), it is necessary

to set ψ∗ = 0.15.

In order to incorporate asset-return observation noise in the closed-form VaR ap-

proximation (10), it is necessary to abstract from the estimation noise studied above in

Section 3.1. In other words, it is necessary to treat the point estimate bρ as if it were
equal to ρ∗,OBS. Then, equation (11) allows to map ρ∗,OBS into a correlation of actual

asset returns, ρ∗, which can be used directly in (10). Of course, the mapping and, thus,

the VaR measure will be affected by the parameterization of the idiosyncratic and sys-

tematic observation noise. The effect of different parameterizations is illustrated in the

“T = ∞” rows in Table 5, which contain VaR add-ons that are based on infinite time

series of data and, thus, on perfect knowledge of ρ∗,OBS.

The discussion in this section has so far abstracted from data on default rates. In

principle, this is important because, when asset returns are observed with noise, such

data do provide useful information about the asset-return correlation. In the context

of the adopted empirical framework, however, using data on default rates in order to

make inference about the asset-return correlation would be of little value but would be

associated with substantial computational burden. Here is why.

First, the correlation estimate based on default data is extremely imprecise, espe-

cially if the obligors are of moderate to high credit quality. For example, given a true

PD∗ = 1% and a true correlation ρ∗ = 20%, default data covering N = 200 obligors

over T = 10 years imply that the noise in the most efficient unbiased estimator of ρ∗

has a standard deviation of 12.5 percentage points. To put this into perspective, note

that: (i) realistic values of the (average) asset-return correlation are between 5% and

45% and (ii) the standard deviation of a uniform random variable with support from

5% to 45% equals 11.55%.

Second, a VaR measure that incorporates explicitly inference about observation

noise in asset returns would face the so-called “curse of dimensionality”. To see why,

recall that the VaR measures discussed in Section 3 are based on posterior distributions

that condition on two parameter estimates: bρ and dPD. In the presence of observation
noise, properly constructed posterior distributions would need to condition on two more

estimates: those of the observation noise parameters ψ∗ and λ∗.23 Since the number

of numerical simulations grows exponentially in the number of parameters that the

inference procedure is applied to, doubling the latter number would be prohibitively

burdensome.
23This is because the amount of estimation noise in correlation and PD estimates depends on the

values of the noise parameters ϕ∗ and ψ∗.
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Conclusion

This paper has analyzed the impact of parameter uncertainty on the VaR perceived by

an investor in a homogeneous asymptotic credit portfolio. The main conclusion is that

this impact is strong for a wide range of portfolio characteristics and for a wide range

of dataset sizes. As a useful by-product, the analysis has delivered an approximate VaR

measure, which exists in closed-form and is, thus, computationally convenient. This

measure accounts for PD uncertainty and, given a judicious adjustment for noise in

observed asset returns, could approximate well the correct VaR measure.

Relaxing some of the assumptions adopted by this paper would provide for fruitful

directions of future research. One is to address rigorously the issue of parameter hetero-

geneity in the context of credit VaR measures. Given that deriving and simulating the

joint posterior distribution of a large number of heterogeneous parameters is likely to

impose an insurmountable computational burden, it is important to establish conditions

under which it is justifiable to focus solely on noise in the estimator of a representa-

tive (e.g. the average) parameter. Another possible direction of future research is to

consider cyclical developments in credit conditions, which make credit-risk parameters

change over time and, consequently, impair the estimates of these parameters.

Appendix A

In order to render the appendix self-contained, the statement of Proposition 1 contains

more information here than in the main text.

Proposition 1: Denote the correct VaR of the portfolio at the (1− α) confidence

level by Q1−α (Ln). Define X ≡ {M,PDc, ρc}. The expectation E (Ln|X) does not

depend on n and can be denoted by Φ̃ (X), where Φ̃ (·) is an analytic function. De-

note the (1− α) quantile of the distribution of Φ̃ (X) by Q1−α
³
Φ̃ (X)

´
. As n → ∞,

Q1−α (Ln)−Q1−α
³
Φ̃ (X)

´
→ 0.

Proof. The proof relies on three aspects of the model:
Aspect 1: The assumed homogeneity of parameters across exposures implies that

the following holds trivially:

lim
n→∞

E (Ln|X) = E (L|X) = Φ
µ
Φ−1 (PDc)−√ρcM√

1− ρc

¶
≡ Φ̃ (X) (12)

Aspect 2: The expected loss E (L|X = x) ≡ Φ̃ (x) changes continuously in x.

Aspect 3: The PDF of X is well-defined and continuous everywhere on its support.
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By the law of iterated expectations, it follows that

lim
n→∞

Pr
³
Ln ≤ Q1−α

³
Φ̃ (X)

´´
= lim

n→∞

Z
R3

Pr
³
Ln ≤ Q1−α

³
Φ̃ (X)

´
|X = x

´
dF (x)

(13)

where F (x) is the CDF of X.

In addition, Proposition 1 in Gordy (2003), which is applicable owing to Aspects 1-3

above, implies that Ln|x→ Φ̃ (x) almost surely as n→∞.
Given this implication, the fact that F (·) is absolutely continuous (by Aspects 2 and

3) and that Pr
³
Ln ≤ Q1−α

³
Φ̃ (X)

´
|X = ·

´
is bounded between 0 and 1, the dominated

convergence theorem applies (see Billingsley (1995)). Thus:

lim
n→∞

Z
R3

Pr
³
Ln ≤ Q1−α

³
Φ̃ (X)

´
|X = x

´
dF (x)

=

Z
R3

lim
n→∞

Pr
³
Ln ≤ Q1−α

³
Φ̃ (X)

´
|X = x

´
dF (x)

=

Z
R3

Pr
³
Φ̃ (x) ≤ Q1−α

³
Φ̃ (x)

´´
dF (x)

= Pr
³
Φ̃ (X) ≤ Q1−α

³
Φ̃ (X)

´´
= 1− α (14)

where the second equality follows from Proposition 1 in Gordy (2003). The third equality

in expression (14) follows from (12). In turn, the fourth equality is a result of the fact

that Pr
³
Φ̃ (x) ≤ ·

´
is continuous.

Combining expressions (13) and (14), it follows that:

lim
n→∞

Q1−α (Ln) ≤ Q1−α
³
Φ̃ (X)

´
Repeating the steps from expression (13), it follows that, for any ε > 0, there exists

δ > 0 such that:

lim
n→∞

Pr
³
Ln ≤ Q1−α

³
Φ̃ (X)

´
− ε
´
= (1− α)− δ

Thus,

Q1−α
³
Φ̃ (X)

´
− ε ≤ lim

n→∞
Q1−α (Ln) ≤ Q1−α

³
Φ̃ (X)

´
Since ε can be arbitrarily close to 0, the proof is complete.
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Appendix B

This appendix derives the Cramer-Rao lower bounds on the standard deviations of the

noise of correlation and PD estimates. These lower bounds are denoted by σρ (ρ
c) and

σPD (PD
c, ρc) in the main text.

Given that the data generating process is as specified in (1) and (2) and the dataset

is as described in Section 2.1, the log likelihood of asset returns on a particular date

t ∈ {1, 2, · · · , T} is simply the log-likelihood of N jointly-normal random variables, with

mean μ∗, variance σ∗2 and correlation ρc. Denote this log-likelihood by LLar
³
{Vit}Ni=1 ; θ∗

´
,

where θ∗ ≡ {μ∗, σ∗, ρc}. The Fischer information matrix is then given by

I (θ∗) = E

⎛⎝ ∂2LLar
³
{Vit}Ni=1 ; θ

´
∂θ2

¯̄̄̄
¯̄
θ=θ∗

⎞⎠
Given that asset returns are serially uncorrelated, the Cramer-Rao lower bounds on the

variances of parameter estimators are as reported in the following matrix

1

T
I−1 (θ∗) =

(σ∗)2(1+(N−1)ρc)
NT 0 0

0
2(σ∗)4(1+(N−1)(ρc)2)

NT
2(σ∗)2ρc(1−ρc)(1+(N−1)ρc)

NT

0 2(σ∗)2ρc(1−ρc)(1+(N−1)ρc)
NT

2(1−ρc)2(1+(N−1)ρc)2
TN(N−1)

The (3, 3) element of this matrix refers to the variance of the correlation estimator:

σ2ρ (ρ
c) =

2 (1− ρc)2 (1 + (N − 1) ρc)2

TN (N − 1)

This Cramer-Rao lower bound is:

1. not affected neither by the value of μ∗ nor by the fact that this value has to be

estimated;

2. not affected by the value of σ∗ but inflated by the fact that this value has to be

estimated;

3. declines to 0 as the length of the time series, T , increases;

4. declines to 2 (ρc (1− ρc))2
.
T > 0 as the size of the of the cross-section increases;

5. increases in ρc for ρc ∈
³
0, N−2
2(N−1)

´
but decreases in ρc for ρc ∈

³
N−2
2(N−1) , 1

´
.
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The date-t log-likelihood of defaults conditions on a candidate value of the correla-

tion, ρc:

LLdr
³
{dit}Ni=1 ;PDc, ρc

´
(15)

= log

Z
Φ

µ
Φ−1 (PDc)−√ρcM√

1− ρc

¶Dt

Φ

µ√
ρcM −Φ−1 (PDc)√

1− ρc

¶N−Dt

φ (M) dM

where di = 1 if obligor i defaults and di = 0 otherwise; Dt =
PN

i=1 dit. Then, the

Cramer-Rao lower bound on the noise in the estimate of PDc is given by

σ2PD (PD
c, ρc) = 1

,
T ·E

⎛⎝ d2LLdr
³
{dit}Ni=1 ;π, ρc

´
dπ2

¯̄̄̄
¯̄
π=PDc

⎞⎠
This lower bound is derived numerically.

As implied by (15), the Cramer-Rao lower bound on the variance of the noise in the

PD estimate is unaffected neither by the value of μ∗ nor by the fact that this value has

to be estimated. Further, this Cramer-Rao lower bound does not depend on the value

of σ∗ but, via the posterior distribution of ρc, does depend on the fact that this value

has to be estimated.

Appendix C

A discretization of the posterior distribution h (ρc|bρ) has two effects. First, it reduces
the number of Monte Carlo simulations necessary for an estimate of the distribution of

the conditional loss, Φ
¡
Φ−1 (PDc)−√ρcM

±√
1− ρc

¢
. Second, a discretization impairs

the precision of this such an estimate. In order to address this trade-off, I proceed as

follows:

1. Divide the support of ρc into a number of intervals, such that the probability mass

associated with any interval is a scalar multiple of the largest probability mass

associated with a single interval.

2. Focusing on a particular interval, I assign the entire associated probability mass

to a single point that equals the expected value of ρc, conditional on ρc belonging

to the interval.

3. I increase the number of intervals and repeat steps 1. and 2. This process continues

until the implied relative change in portfolio VaR is less than 1%.
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The final discretization adopted by this paper assigns probability mass to 10 points

on the support of ρc. Specifically, probability of 2.5% is assigned to 4 points that equal

the expected value of ρc, conditional on ρc ∈ [−∞, 2.5%] , [2.5%, 5%] , [95%, 97.5%] or

[97.5%,+∞]. In addition, probability mass of 15% is assigned to 6 six points that equal
the expected value of ρc, conditional on

ρc ∈ [5%, 20%] , [20%, 35%] , [35%, 50%] , [50%, 65%] , [65%, 80%] or [80%, 95%].
Thus, the discretized version of the posterior h (ρc|bρ) can be simulated with as a

few as 40 draws of ρc: 1 draw of each of the two smallest and two largest values on the

discretized support and 6 draws of each of the six intermediate values.
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T A B L E – 1 – 

 

Impact of estimation noise on portfolio VaR (in per cent) 

 

 = 1%; ρ̂  = 20% 

 Naïve 
VaR 

Noise in  only; 
add-ons to naïve VaR 

Noise in ρ̂  only; 
add-ons to naïve VaR 

Noise in both  and ρ̂ : 
add-ons to naïve VaR 

  N=50 200 1000 N=50 200 1000 N=50 200 1000 

T=5 years  
(=60 months) 

10.77 6.41 4.98 0.91 0.82 0.81 13.10 8.20 7.00 

    

T=10 years 
(=120 months) 

       

 

14.55 
5.07 3.17 2.49 0.42 0.41 0.40 5.85 3.93 3.22 

 

 

  = 5%; ρ̂  = 20% 

 Naïve 
VaR 

Noise in  only; 
add-ons to naïve VaR 

Noise in ρ̂ only;  
add-ons to naïve VaR 

Noise in both  and ρ̂ : 
add-ons to naïve VaR 

  N=50 200 1000 N=50 200 1000 N=50 200 1000 

T=5 years  
(=60 months) 

8.92 6.71 5.17 1.94 1.79 1.77 11.37 9.08 7.36 

    

T=10 years 
(=120 months) 

       

 

38.44 
4.71 3.71 2.90 0.97 0.89 0.88 5.97 4.93 3.96 

 

Note: Results refer to the 99.9% VaR of an asymptotic homogeneous portfolio. Panel headings refer to 
particular point estimates of the probability of default,  and asset-return correlation, ρ̂ . Row 
headings, T, refer to the length of the time series underpinning  (years) and ρ̂  (months). Column 

headings, N, refer to the number of obligors in the dataset underpinning  and ρ̂ . 



T A B L E – 2 – 

Impact of noise in the correlation estimate on portfolio VaR (in per cent) 

ρ̂  = 10%; PD* = 1% 

 Naïve Sloppy add-on Correct add-on Alternative sloppy add-on Alternative add-on 

 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 

T=60 months 0.27 0.21 0.19 0.66 0.56 0.52 4.65 3.99 3.82 5.53 4.95 4.79 

     

T=120 months 

 

 

7.75 

0.14 0.11 0.10 0.32 0.26 0.25 3.11 2.69 2.58 3.53 3.16 3.06 

ρ̂  = 20%; PD* = 1% 

 Naïve Sloppy add-on Correct add-on Alternative sloppy add-on Alternative add-on 

 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 

T=60 months 0.40 0.34 0.34 0.91 0.82 0.81 8.59 7.97 7.81 9.79 9.31 9.18 

     

T=120 months 

 

 

14.55 

0.22 0.19 0.18 0.42 0.41 0.40 5.78 5.38 5.27 6.36 6.03 5.94 

ρ̂  = 30%; PD* = 1% 

 Naïve Sloppy add-on Correct add-on Alternative sloppy add-on Alternative add-on 

 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 

T=60 months 0.55 0.44 0.43 0.95 0.95 0.95 12.38 11.81 11.66 13.19 12.80 12.69 

     

T=120 months 

 

 

22.44 

0.32 0.25 0.24 0.50 0.50 0.50 8.38 8.01 7.91 8.83 8.54 8.47 

 

Note: Results refer to the 99.9% VaR of an asymptotic homogeneous portfolio. Panel headings refer to a particular point estimate of the asset-return 
correlation, ρ̂ , and a particular true value of the probability of default, PD*. Row headings, T, and column headings, N, (continues on the next page) 



(continues from the previous page) refer, respectively to the size of the time series and cross section underpinning ρ̂ . “Naïve” = a VaR measure that 
abstracts from estimation noise.  Add-ons are defined as follows: “sloppy” = the difference between (i) a VaR measure that ignores the dependence of 
estimation noise on the value of the true parameter and (ii) the naive VaR measure; “correct” = the difference between (i) the correct VaR measure (under the 
assumption that the PD* is observed directly) and (ii) the naive VaR measure; “alternative sloppy” = the difference between (i) an alternative VaR measure 
based on the 99.9th quantile of a probability distribution of correlation candidates that ignores the dependence of estimation noise on the true value of the asset-
return correlation and (ii) the naive VaR measure; “alternative” = the difference between (i) an alternative VaR measure based on the 99.9th quantile of the true 
posterior distribution of correlation candidates and (ii) the naive VaR measure. 

 



T A B L E – 3 – 

Impact of noise in the PD estimate on portfolio VaR (in per cent) 

 

ρ* = 20%;  = 1% 

 Naive Sloppy add-on Correct add-on Alternative sloppy add-on Alternative add-on 

 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 

T=5 years 5.56 3.34 2.48 10.77 6.41 4.98 31.57 23.78 20.09 39.07 28.07 23.43 

     

T=10 years 

 

 

14.55 

2.92 1.73 1.29 5.07 3.17 2.49 22.04 16.40 13.91 25.11 18.40 15.40 

 

ρ* = 20%;  = 5% 

 Naive Sloppy add-on Correct add-on Alternative sloppy add-on Alternative add-on 

 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 N=50 N=200 N=1000 

T=5 years 6.38 4.82 4.25 8.92 6.71 5.17 30.77 27.02 25.48 32.52 27.96 24.91 

     

T=10 years 

 

 

38.44 

3.31 2.48 2.18 4.71 3.71 2.90 22.62 19.68 18.49 23.76 20.63 18.50 

 

Note: Results refer to the 99.9% VaR of an asymptotic homogeneous portfolio. Panel headings refer to a particular point estimate of the probability of default, 
, and a particular true value of the asset-return correlation, ρ*. Row headings, T, and column headings, N, refer, respectively to the size of the time series 

and cross section underpinning . “Naïve” = a VaR measure that abstracts from estimation noise. Add-ons are defined as follows: “sloppy” = the difference 
between (i) a VaR measure that ignores the dependence of estimation noise on the value of the true parameter and (ii) the naive VaR measure; “correct” = the 
difference between (i) the correct VaR measure (under the assumption that ρ* is observed directly) and (ii) the naive VaR measure; “alternative sloppy” = the 
difference between (i) an alternative VaR measure based on the 99.9th quantile of a probability distribution of PD candidates that ignores the dependence of 
estimation noise on the true value of the probability of default and (ii) the naive VaR measure; “alternative” = the difference between an alternative VaR 
measure based on the 99.9th quantile of the true posterior distribution of PD candidates and (ii) the naive VaR measure. 



T A B L E – 4 – 
Errors in PD estimators 

(Cramer-Rao lower bound on the standard deviation of unbiased estimators, in per cent) 

ρ* = 10%; PD* = 1% 

 N = 50 obligors N = 200 obligors N = 1000 obligors 

T =  5  years 0.76 0.51 0.41 

T = 10 years 0.54 0.36 0.29 

T = 20 years 0.38 0.26 0.21 

ρ* = 20%; PD* = 1% 

 N = 50 obligors N = 200 obligors N = 1000 obligors 

T =  5  years 0.88 0.67 0.57 

T = 10 years 0.62 0.47 0.40 

T = 20 years 0.44 0.33 0.28 

ρ* = 30%; PD* = 1% 

 N = 50 obligors N = 200 obligors N = 1000 obligors 

T =  5  years 1.02 0.81 0.69 

T = 10 years 0.72 0.57 0.49 

T = 20 years 0.51 0.41 0.35 

ρ* = 10%; PD* = 5% 

 N = 50 obligors N = 200 obligors N = 1000 obligors 

T =  5  years 2.04 1.63 1.50 

T = 10 years 1.44 1.15 1.06 

T = 20 years 1.02 0.82 0.75 

ρ* = 20%; PD* = 5% 

 N = 50 obligors N = 200 obligors N = 1000 obligors 

T =  5  years 2.56 2.20 2.06 

T = 10 years 1.81 1.56 1.46 

T = 20 years 1.28 1.10 1.03 

ρ* = 30%; PD* = 5% 

 N = 50 obligors N = 200 obligors N = 1000 obligors 

T =  5  years 2.94 2.54 2.11 

T = 10 years 2.08 1.79 1.49 

T = 20 years 1.47 1.27 1.05 

 

Note: Panel headings indicate the true values of credit-risk parameters. 



T A B L E – 5 – 

Impact of noise in observed asset returns on portfolio VaR (in per cent) 

ρ̂  = 10%; PD* = 1% 

 Naive Correct add-on 

  N = 50 obligors N = 200 obligors 

 ψ* = 0.0 ψ*= 0.05 ψ*= 0.1 ψ*= 0.15 ψ*= 0.20 ψ* = 0.00 ψ*= 0.05 ψ*= 0.10 ψ*= 0.15 ψ*= 0.20 

T=60 months 0.66 1.00 1.44 1.90 2.42 0.56 0.90 1.32 1.79 2.33 

T=120 months 0.32 0.68 1.06 1.53 2.01 0.26 0.64 1.03 1.46 1.95 

T = ∞ 

7.75 

0 0.33 0.71 1.13 1.61 0 0.33 0.71 1.13 1.61 

ρ̂  = 20%; PD* = 1% 

 Naive Correct add-on 

 N = 50 obligors N = 200 obligors 

 ψ* = 0.0 ψ*= 0.05 ψ*= 0.1 ψ*= 0.15 ψ*= 0.20 ψ* = 0.00 ψ*= 0.05 ψ*= 0.10 ψ*= 0.15 ψ*= 0.20 

T=60 months 0.91 1.71 2.70 3.78 5.06 0.82 1.68 2.59 3.71 4.93 

T=120 months 0.42 1.26 2.19 3.22 4.42 0.41 1.21 2.13 3.22 4.37 

T = ∞ 

14.55 

0 0.78 1.66 2.65 3.80 0 0.78 1.66 2.65 3.80 

ρ̂  = 30%; PD* = 1% 

 Naive Correct add-on 

 N = 50 obligors N = 200 obligors 

 ψ* = 0.0 ψ*= 0.05 ψ*= 0.1 ψ*= 0.15 ψ*= 0.20 ψ* = 0.00 ψ*= 0.05 ψ*= 0.10 ψ*= 0.15 ψ*= 0.20 

T=60 months 0.95 2.43 4.01 5.88 8.21 0.95 2.39 4.00 5.86 8.09 

T=120 months 0.50 1.84 3.45 5.27 7.39 0.51 1.86 3.40 5.22 7.37 

T = ∞ 

22.44 

0 1.35 2.89 4.66 6.71 0 1.35 2.89 4.66 6.71 

Note: The value of ψ* captures the amount of systemic noise in observed asset returns (refer to equation (11) and set λ* = 0). See Table 2 for further explanation. 
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Figure 1                                                  
                                                          

Benefit of lengthening the time series (for N = 200 firms)

 

 
ρ* = .1
ρ* = .2
ρ* = .3
ρ* = .5
ρ* = .7
ρ* = .8
ρ* = .9

Note: All lines are plotted on the basis of equation (8).
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Figure 2

Benefit of increasing the cross section (for T = 120 months)

 

 ρ*=.1
ρ*=.2
ρ*=.3
ρ*=.5

ρ*=.7
ρ*=.8
ρ*=.9

Note: All lines are plotted on the basis of equation (8).
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Figure 3

Distribution of joint defaults
(an aspect of PD estimation)

 

 
typical, implied by PD* = 1%; ρ* = 20%
implied by ρ1
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Figure 4
                      

Iso−correlation curves

ρ* = 20%

point estimate = ρ*,OBS = 20%
(infinite sample size)

True vaules, ρ*, associated with
red lines, from left to right, per equation (11):
19.8%; 19.6%; 19.4%; 19.2%; 19.0%.

Associated VaR’s:
14.4%; 14.3%; 14.1%; 14.0%; 13.8%.

True vaules, ρ*, associated with
blue lines, from left to right, per equation (11):
20.2%; 20.4%; 20.6%; 20.8%; 21.0%; 22.0; 24.0.

Associated VaR’s:
14.7%; 14.9%; 15.0%; 15,1%; 15.3% 16.0; 17.6.
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