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Abstract
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ification and calibration errors on measures of portfolio credit risk. When applied to large
simulated portfolios with realistic characteristics, this procedure reveals that violations of
key assumptions of the well-known Asymptotic Single-Risk Factor (ASRF) model are vir-
tually inconsequential. By contrast, flaws in the calibrated inter-dependence of credit risk
across exposures, which are driven by plausible small-sample estimation errors or popular
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sures of portfolio credit risk. Similar inaccuracies arise under erroneous, albeit standard,
assumptions regarding the tails of the distribution of asset returns.
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1 Introduction

Assessments of portfolio credit risk, which are often based on analytical models, have at-

tracted much attention in recent years. One reason is that participants in the increas-

ingly popular market for structured finance products rely heavily on estimates of the inter-

dependence of credit risk across various exposures.1 Such estimates are also of principal

interest to financial supervisors who, in enforcing new standards in the banking and insur-

ance industries, have to ensure that regulatory capital is closely aligned with credit risk.

This paper investigates the well-known Asymptotic Single-Risk Factor (ASRF) model

of portfolio credit risk. The popularity of this model stems from its implication that the

contribution of each exposure to the credit value-at-risk (VaR) of the portfolio – defined as

the maximum default loss that can be incurred with a given probability over a given horizon

– is independent of the characteristics of the other exposures. This implication – which has

been derived rigorously in Gordy (2003) and is known as portfolio invariance of marginal

credit VaR contributions – underpins the internal-ratings-based (IRB) approach of the Basel

II framework (BCBS, 2005). The implication has been interpreted as alleviating the data

requirements and computational burden on users of the model. Indeed, portfolio invariance

implies that credit VaR can be calculated solely on the basis of exposure-specific parameters,

including individual probability of default (PD), loss-given-default (LGD) and dependence

on the common factor.

Its popularity notwithstanding, the “portfolio invariance” implication of the ASRF model

hinges on two strong assumptions that have been criticized as sources of misspecification

errors. Namely, the model assumes that the systematic component of credit risk is governed

by a single common factor and that the portfolio is so finely grained that all idiosyncratic risks

are diversified away. Violations of the “single-factor” and “perfect granularity” assumptions

would translate directly into erroneous assessments of portfolio credit risk.

Moreover, an application of the ASRF model may be quite challenging, even if this model

is well specified. An important reason is that the portfolio invariance implication does not

exempt a user of the model from adopting a global approach. In particular, estimates of

exposure-specific dependence on the common factor, which are required for a calibration

of the ASRF model, hinge on information about the correlation structure in the portfolio

1Examples of structured finance products are collateralized debt obligations (CDOs), nth-to-default credit
default swaps (CDSs) and CDS indices.
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or about the common factor itself.2 When such portfolio- or market-wide information is

imperfect, the user will implement a flawed calibration of the model, which will be another

source of errors in measured portfolio credit risk.

A contribution of this paper is to develop a unified method for quantifying the im-

portance of model misspecification and calibration errors in assessments of portfolio credit

risk. In order to implement this method, we rely on a large data set that comprises Moody’s

KMV estimates of PDs and pairwise asset return correlations for nearly 11, 000 non-financial

corporates worldwide. We treat these estimates as the actual credit risk parameters of hy-

pothetical portfolios that match the industrial-sector concentration of typical portfolios of

US wholesale banks. For each such portfolio, we derive the “true” probability distribution of

default losses and then condense this distribution into unexpected losses, which are defined

as a credit VaR net of expected losses. This summary statistic is equivalent to a “target”

capital measure necessary to cover default losses with a desired probability.3 The target

capital measure can be compared directly to a “shortcut” capital measure, which is based

on the ASRF model and a rule-of-thumb calibration of exposure-specific dependence on a

single common factor.

We decompose the difference between the target and shortcut capital measures into four

non-overlapping and exhaustive components. Two of these components relate to the sources

of misspecification of the ASRF model discussed above and are attributed to a “multi-factor”

effect and a “granularity” effect, respectively. The other two components, which we derive

after transforming the correlation structure to be consistent with the ASRF model, relate to

errors in the calibration of the inter-dependence of credit risk across exposures.4 Specifically,

the calibration errors we consider arise either from an overall bias in the measured correlations

of firms’ asset returns – which gives rise to what we dub the “correlation level” effect – or from

noise in the measured dispersion of these correlations across pairs of firms – the “correlation

dispersion” effect.

Another contribution of this paper is that it provides two additional perspectives on flaws

in the calibration of the ASRF model. First, we calculate deviations from a desired capital

2The IRB capital formula of Basel II avoids the necessity of a global approach by postulating that firm-
specific dependence on the single common factor is determined fully by the level of the corresponding PD.

3In this paper, we use the terms “assessment of credit risk” and “capital measure” interchangeably.
Importantly, our capital measures do not correspond to “regulatory capital”, which reflects considerations
of bank supervisors, or to “economic capital”, which reflects additional strategic and business objectives of
financial firms.

4In order to sharpen the analysis, we do not analyse the implications of errors in the estimates of PDs
and LGDs.
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buffer that arise not from the adoption of rule-of-thumb parameter values but from plausible

small-sample errors in asset return correlation estimates. Second, motivated by the analysis

in Gordy (2000) and Frey and McNeil (2003), we examine the importance of errors in the

calibrated tail dependence among individual asset return distributions. The impact of such

errors on capital measures is similar to but separate from the impact of errors in estimated

asset return correlations.

Our main conclusion is that errors in the practical implementation, as opposed to the

specification, of the ASRF model are the main sources of potential miscalculations of the

credit risk in large portfolios. Specifically, the misspecification-driven multi-factor effect leads

a user of the model to underpredict target capital buffers by only 1%. This is because a single-

factor approximation, if chosen carefully, fits well the correlation structure of asset returns in

our data. Similarly, the granularity effect causes calculated capital to underpredict the target

level by 5%. By contrast, assessments of portfolio credit risk are considerably more sensitive

to possible miscalibrations of the single-factor model. The correlation dispersion effect, for

example, leads to capital measures that are 12% higher than the target level. In turn,

the correlation level effect makes calculated capital over(under)predict the target measure

by roughly 8% for each percentage point over(under)estimation of the average correlation

coefficient. Furthermore, plausible small-sample errors in correlation estimates – arising

when users of the model have 5 to 10 years of monthly asset returns data – translate into

capital measures that may deviate from the target level by 30 to 45%.5 Finally, data on asset

returns suggests that the empirical tail dependence among the underlying distributions is at

odds with the conventional multi-normality assumption. Concretely, a capital measure that

incorporates this assumption underestimates the target level by 22 to 86%.

Among the four effects on capital calculations, only the granularity effect is sensitive

to the number of exposures in the portfolio. When this number decreases, the portfolio

maintains a larger portion of idiosyncratic risks and, thus, we are not surprised to find

that the granularity effect leads to a 19% underestimation of target capital in typical small

portfolios.

In comparison to articles in the related literature, this paper covers a wider range of

errors in assessments of portfolio credit risk. Most of these articles have focused exclusively

5Of course, it is reasonable to expect that plausible small-sample estimation errors would have a significant
impact on capital measures based on any model of portfolio credit risk, irrespective of whether the model
accommodates a single or multiple factors. We do not quantify such an impact, however, because doing so
would be a digression from the main focus of our analysis.
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on misspecifications of the ASRF model and have proposed ways to partially correct for

them without impairing the model’s tractability. Empirical analyses of violations of the

perfect granularity assumption include Martin and Wilde (2002), Vasicek (2002), Emmer

and Tasche (2003), and Gordy and Luetkebohmert (2006). For their part, Pykhtin (2004),

Duellmann (2006), Garcia Cespedes et al. (2006) and Duellmann and Masschelein (2006a)

have analyzed implications of the common factor assumption under different degrees of

portfolio concentration in a limited number of industrial sectors. In addition, Heitfield et al.

(2006) and Duellman et al. (2006) have examined both granularity and sector concentration

issues in the context of US and European bank portfolios, respectively.6 A small branch

of the related literature, which includes Loeffler (2003) and Morinaga and Shiina (2005),

has analyzed calibration issues and has derived that noise in model parameters can have a

significant impact on assessments of portfolio credit risk.

The remainder of this paper is organized as follows. Section 2 outlines the ASRF model

and the empirical methodology applied to it. Section 3 describes the data and Section 4

reports the empirical results. Finally, Section 5 concludes.

2 Methodology

In this section, we first outline the ASRF model. Then, we discuss how violations of its

key assumptions or flawed calibration of its parameters can affect assessments of portfolio

credit risk. Finally, we develop an empirical methodology for quantifying and comparing

alternative sources of error in such assessments.

2.1 The ASRF model7

The ASRF model of portfolio credit risk – introduced by Vasicek (1991) – postulates that

an obligor defaults when the value of its assets falls below some threshold. In addition, the

model assumes that asset values are driven by a single common factor:

ViT = ρi · MT +
√

1 − ρ2
i · ZiT (1)

6The recent working paper by the Basel Committee on Bank Supervision (BCBS, 2006) provides an
extensive review of these articles.

7This section provides an intuitive discussion of the ASRF model. For a rigorous and detailed study of
this model, see Gordy (2003). In addition, Frey and McNeil (2003) examine the calibration of the ASRF
model under the so-called Bernoulli mixture representation.
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where: ViT is the value of assets of obligor i at time T ; MT and ZiT denote the common

and idiosyncratic factors, respectively; and ρi ∈ [−1, 1] is the obligor-specific loading on the

common factor. The common and idiosyncratic factors are independent of each other and

scaled to random variables with mean 0 and variance 1.8 Thus, the asset return correlation

between borrowers i and j is given by ρiρj .

The ASRF model delivers a closed-form approximation to the probability distribution of

default losses on a portfolio of N exposures. The accuracy of the approximation increases

when the number of exposures grows, N → ∞, and the largest exposure weight shrinks,

supi (wi) → 0. In these limits, as the portfolio becomes perfectly granular, the probability

distribution of default losses can be derived as follows. First, let the indicator IiT equal 1 if

obligor i is in default at time T and 0 otherwise. Conditional on the value of the common

factor, the expectation of the indicator equals

E(IiT |MT ) = Pr(ViT < F−1(PDiT )|MT )

= Pr(ρi · MT +
√

1 − ρ2
i · ZiT < F−1(PDiT )|MT )

= H
(

F−1(PDiT ) − ρiMT
√

1 − ρ2
i

)

where: PDiT is the unconditional probability that obligor i is in default at time T ; the

cumulative distribution function (CDF) of ZiT is denoted by H(·); and the CDF of ViT is

F(·), implying that the default threshold equals F−1(PDiT ).

Second, under perfect granularity, the Law of Large Numbers implies that the conditional

total loss on the portfolio, TL|M , is deterministic for any value of the common factor M :

TL|M =
∑

i

wi · E (LGDi) · E(Ii|M)

=
∑

i

wi · E (LGDi) · H
(

F−1(PDi) − ρiM
√

1 − ρ2
i

)

(2)

where time subscripts have been suppressed. In addition, the loss-given-default of obligor i,

LGDi , is assumed to be independent of both the common and idiosyncratic factors.9

8The ASRF model can accommodate distributions with infinite second moments. Nonetheless, we abstract
from this generalization in order to streamline the analysis.

9The ASRF model does allow for inter-dependence between asset returns and the LGD random variable.
Such inter-dependence leads to another dimension in the study of portfolio credit risk, which is explored by
Kupiec (2007). We abstract from this additional dimension in order to focus on the correlation of default
events.
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Finally, the conditional total loss TL|M is a decreasing function of the common factor M

and, consequently, the unconditional distribution of TL can be derived directly on the basis

of equation (2) and the CDF of the common factor, G(·). Denoting by TL1−α the (1 − α)th

percentile in the distribution of total losses, i.e. Pr (TL < TL1−a) = 1 − α, it follows that:

TL1−α =
∑

i

wi · E (LGDi) · H
(

F−1(PDi) − ρiG−1(α)
√

1 − ρ2
i

)

(3)

= TL|Mα

where Mα is the αth percentile in the distribution of the common factor. The magnitude

TL1−α is also known as the credit VaR at the (1 − α) confidence level.

Thus, in order to cover unexpected (i.e. total minus expected) losses with probability

(1 − α), the capital buffer for the entire portfolio should be set to:

κ = TL1−α −
∑

i

wi · E (LGDi) · PDi

=
∑

i

wi · E (LGDi) · [H
(

F−1(PDi) − ρiG−1(α)
√

1 − ρ2
i

)

− PDi] (4)

≡
∑

i

wi · κi

As implied by this equation, the capital buffer for the portfolio can be set on the basis of

exposure-specific parameters. These parameters reflect the weight of a given exposure in the

portfolio, the exposure’s LGD and PD as well as the underlying dependence on the common

factor. The flip side of this implication is that each exposure-specific portion of the capital

buffer is independent of the rest of the portfolio and, thus, is portfolio invariant.

In practice, an implementation of the ASRF model requires that one specify the distri-

bution of the common and idiosyncratic factors of asset returns. It is standard to assume

normal distributions and rewrite equation (4) as:

κ =
∑

i

wi · E (LGDi) · [Φ
(

Φ−1(PDi) − ρiΦ
−1(α)

√

1 − ρ2
i

)

− PDi] (5)

where Φ(·) is the CDF of a standard normal variable. Notice that equation (5) underpins

the regulatory capital formula in the IRB approach of Basel II, in which LGD is set to be

45% and α is chosen as 0.1%.
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2.2 Impact of model misspecification

The portfolio invariance implication of the ASRF model hinges on two key assumptions, i.e.

that the portfolio is of perfect granularity and that there is a single common factor. In the

light of this, we examine at a conceptual level how violations of either of these assumptions

– which give rise to “granularity” and “multi-factor” effects – affect capital measures. For

the illustrative examples in this section, we use the ASRF formula in equation (5) and set

α = 0.1%.

2.2.1 Granularity effect

The granularity effect arises empirically either because of a limited number of exposures or

because of exposure concentration in a small number of borrowers. In either of these cases,

idiosyncratic risk is not fully diversified away. Therefore, the existence of a granularity

effect implies that capital measures based on the ASRF model would be insufficient to cover

unexpected losses.

The top-left panel in Figure 1 provides an illustrative example of the granularity effect. In

this example, the desired capital level for a homogenous portfolio is computed as a function of

the number of exposures (solid line).10 In addition, the figure also plots the capital measure

implied by the ASRF model (dotted line), which differs from the target one only in that it

assumes an infinite number of exposures. The difference between the dotted and solid lines

equals the magnitude of the granularity effect. As expected, the granularity effect is always

negative and decreases when the number of exposures increases.

Gordy and Luetkebohmert (2006) derive a closed-form “granularity adjustment”, which

should approximate the negative of the granularity effect. When the portfolio is homoge-

neous, the approximation is linear in the reciprocal of the number of exposures, which is

largely in line with the properties of the granularity effect plotted in Figure 1.11

2.2.2 Multi-factor effect

The impact of various macroeconomic and industry-specific conditions on portfolio credit

risk may be best accounted for by generalizing equation (1) in order to incorporate multiple

(potentially unobservable) common factors. Multiple common factors affect the likelihood

10The calculation of the desired capital level uses a Gaussian copula (see Appendix A).
11Further comparison between the granularity effect and the granularity adjustment of Gordy and Luetke-

bohmert (2006) is reported in Section 4.1 below.
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of default clustering – i.e. the likelihood of a large number of defaults occurring over a given

horizon – which influences the tails of the probability distribution of credit losses. In line

with our empirical results (reported in Section 4), our conceptual analysis treats a fattening

of these tails as implying unambiguously a higher level of the desired capital buffer.12

The existence of multiple common factors of credit risk violates the single-factor assump-

tion of the ASRF model, leading to what we call a multi-factor effect in capital measures.

Depending on the characteristics of the credit portfolio, the multi-factor effect could be ei-

ther negative – i.e. implying that the ASRF model underestimates the desired capital – or

positive. To illustrate the two possibilities, we generalize equation (1):

Vi = ρ1,i · M1 + ρ2,i · M2 +
√

1 − ρ2
1,i − ρ2

2,i · Zi (6)

assuming that M1, M2 and Z are mutually independent standard normal variables.

In our first example, we consider a portfolio in which all exposures have equal weights,

have the same PD and are divided into two groups according to their dependence on the

common factors. For exposures in the first group, 0 < ρ1,i = ρ < 1 and ρ2,i = 0; while ρ1,j = 0

and 0 < ρ2,j = ρ < 1 for exposures in the second group. Thus, the common factors are group

specific and underpin positive and homogeneous within-group pairwise correlations and zero

across-group correlations. The solid line in the top-right panel of Figure 1 plots the desired

capital measure for such a portfolio as a function of the relative weight of exposures in group

1.13 This measure is lowest when the portfolio is most diversified between the two groups

of exposures and, thus, the probability of large default losses is minimized. In addition, the

dashed line in the figure plots an alternative capital measure, which is based on the ASRF

model and is underpinned by a single-factor structure of the asset return correlations. This

structure, which allows for providing the ASRF model with as much information about the

true correlations as possible (see Appendix C), turns out to match extremely well the true

average asset return correlation but to approximate only roughly the dispersion of correlation

coefficients in the cross section of exposures.

The difference between the dashed and solid lines equals the multi-factor effect. This

effect is negative because the single-factor assumption of the ASRF model ignores the fact

12Note that, depending on the confidence level of the targeted credit VaR, a fattening of the tails of the
probability distribution of credit losses may either raise or lower the desired capital buffer. Ceteris paribus,
fatter tails of the loss distribution translate into a higher desired level of the capital buffer if the value of α

in equation (4) is sufficiently close to zero.
13The desired capital buffer is calculated on the basis of Monte Carlo simulations (see Appendix B) for a

portfolio consisting of 1000 exposures.
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that the common factors are two independent sources of default clustering, which leads to an

underestimation of the desired capital. The underestimation is largest when the two groups

enter the portfolio with equal weights, in which case the role of multiple factors is greatest.

It is possible, however, to construct another example, in which imposing an erroneous

single-factor structure on portfolio credit risk distorts the interaction between asset return

correlations and individual PDs in a way that leads to a positive multi-factor effect. Consider

a portfolio comprising two groups of exposures, with the exposures in the first group being

individually riskier but less correlated among themselves than the exposures in the second

group. In terms of equation (6), this can be formalized by postulating that firms with

high PDs feature 0 < ρ1,i = ρ < 1 and ρ2,i = 0, whereas firms with low PDs feature

0 < ρ1,j = ρ2,j = ρ < 1. A single-factor approximation to this correlation structure would

match the average correlation coefficient but would also imply too high a correlation among

riskier exposures. This could raise the probability of default clustering, suggesting a capital

buffer that is larger than desired.14

2.3 Impact of calibration errors

Errors in the calibration of the ASRF model will affect assessments of portfolio credit risk

even if this model is well specified. In this paper, we focus on errors in the calibration of the

inter-dependence of credit risk across exposures, which can be driven by noise in the adopted

values of asset return correlations or by a flawed assumption regarding the distribution of

asset returns. When analyzing the consequences of such errors, we maintain our earlier

practice and treat fattening of the tails of the loss distribution as implying unambiguously a

higher 99.9% credit VaR and, thus, a higher desired level of the capital buffer. In this way,

we sharpen the conceptual analysis and keep it in line with our empirical findings.

We study two general types of errors in calibrated asset return correlations: errors in the

average correlation coefficient and errors in the dispersion of correlation coefficients across

exposure pairs. Each error type is trivially independent of the granularity effect. In addition,

extracting the multi-factor effect on the basis of the single-factor approximation described

in Section 2.2.2 allows us to separate this effect from errors in the average correlation. By

contrast, errors in the calibrated dispersion of asset return correlations could arise either as

a result of imposing a single-factor structure on the correlation matrix in the presence of

14A similar result emerges when the dispersion of correlation coefficients is distorted and the true corre-
lation structure is driven by a single common factor. In order to avoid overburdening of the exposition, we
provide a graphical illustration only in the single-factor context (see Section 2.3 below).
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multiple factors (recall Section 2.2.2) or as a result of noise in the estimated factor loadings

when there is a single common factor. In this section, we are concerned with the second

case, as it is consistent with a correct specification of the ASRF model and refers only to

calibration errors.

The two types of errors in calibrated asset return correlations have various potential

sources. One possibility is that a user of the ASRF model is data constrained and, hence,

relies on rule-of-thumb values, which may simply be correlation estimates for popular credit

indices. Such estimates will lead to a discrepancy between desired and calculated capital

to the extent that the underlying indices are not representative of the user’s own portfolio.

Alternatively, a user of the model may have insufficient data on the assets of the obligors in

the portfolio, which would lead to small-sample estimation errors in asset return correlations.

Indeed, limitations on the availability of data points are likely to be important in practice

because: (i) asset value estimates are typically available at low (i.e. monthly or quarterly)

frequencies and (ii) supervisory texts require that financial institutions possess only five years

of relevant data.15

A positive error in the average level of asset return correlations leads to a capital measure

that is higher than the desired one (Figure 1, bottom-left panel). This result reflects the

intuition that inflating asset return correlations increases the likelihood of default clustering,

which fattens the tails of the loss distribution. In the remainder of this paper, the implication

of such errors is dubbed the “correlation level” effect.

In turn, the effect of noise in the estimated dispersion of correlation coefficients can be

seen in the following example. Suppose that all firms in one portfolio have homogeneous PDs

and exhibit homogeneous pairwise asset return correlations. Suppose further that a second

portfolio is characterized by the same PDs and average asset return correlation but includes

a group of firms that are more likely to default together. The second portfolio, in which

pairwise correlations exhibit dispersion, is more likely to experience several simultaneous

defaults and, thus, has a loss distribution with fatter tails. Consequently, between the two

portfolios, the second one requires higher capital in order to attain solvency with the same

probability. This is portrayed by the upward slope of the solid line in the bottom-right panel

of Figure 1 and is a particular instance of what we dub the “correlation dispersion” effect,

which arises in the context of a single common factor.

15Data limitations are likely to be important irrespective of how a user of the model estimates asset return
correlations. Such estimates may rely on balance sheet information and stock market data. Alternatively,
as derived in Tarashev and Zhu (2006), asset return correlations can be extracted from the CDS market.
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This result can be strengthened (dashed line in the same panel) but also weakened or even

reversed if PDs vary across firms. To see why, consider the previous example but suppose

that the strongly correlated firms in the second portfolio are the ones that have the lowest

individual PDs. In other words, the firms that are likely to generate multiple defaults are

less likely to default. As a result, greater dispersion of asset return correlations may lower

the probability of default clustering in the second portfolio to an extent that depresses the

desired capital level below that for the first portfolio. This is illustrated by the negative

slope of the dotted line in the bottom-right panel of Figure 1.

Even if asset return correlations were known with certainty, a flawed calibration of

the marginal distributions of asset returns would still drive errors in the calibrated inter-

dependence of credit risk across exposures. Although the ASRF model imposes quite weak

restrictions on asset return distributions, it is common practice to adopt distributions whose

main advantages stem not from realistic features but from operational convenience. In par-

ticular, the consensus view in the literature is that asset returns have fatter tails than those

imposed by the conventional normality assumption. To the extent that this fatness of the

tails reflects the distribution of the common factor, the probability of default clustering and,

thus, the desired capital level would be higher than those derived under normality (Hull

and White, 2004; Tarashev and Zhu, 2006). We study this issue by considering Student-t

distributions for both the common and idiosyncratic factors of asset returns.

2.4 Evaluating various sources of error

An important contribution of this paper is to present a unified empirical method for quanti-

fying the impact of several sources of error in model-based assessment of portfolio credit risk.

In particular, we focus on the difference between target capital measures and shortcut ones,

the latter of which are based on the ASRF model and possible erroneous calibration of its

parameters. We dissect this difference into four non-overlapping and exhaustive components,

attributing them to the multi-factor, granularity, correlation level and correlation dispersion

effects. In order to probe further the likely magnitude of the last two effects, we derive

plausible small-sample errors that could affect direct estimates of asset return correlations.

Finally, we also examine the implications of erroneous assumptions regarding the marginal

distribution of asset returns.

The basic empirical method consists of two general steps. In the first step, we construct

a hypothetical portfolio that is either “large” – consisting of 1,000 equal exposures – or
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“small” – consisting of 200 equal exposures.16 The sectoral composition of such a portfolio is

designed to be in line with the typical loan portfolio of large wholesale banks in the United

States.17 Given the constraints of such a composition, the portfolio is drawn at random from

our sample of firms. Since each simulated portfolio is subject to sampling noise, we examine

3,000 different draws for both large and small portfolios.

For a portfolio constructed in the first step, the second step calculates five alternative

capital measures, which differ in the underlying assumptions regarding the inter-dependence

of credit risk across exposures. Each of these alternatives employs the same set of PD values

and assumes that asset returns are normally distributed. In addition, each alternative is

based on the assumption that LGD is a random variable, which has a symmetric triangular

distribution that is identical across exposures, peaks at 50% and has a continuous support

on the interval [0%, 100%].18

Each measure differs from a previous one owing to a single assumption:

1. The target capital measure incorporates data on asset return correlations, which are

treated as representing the “truth”. Using these correlations, we conduct Monte Carlo

simulations to construct the “true” probability distribution of default losses at the

one-year horizon. The implied 99.9% credit VaR minus expected losses equals target

capital (see Appendix B for further detail).

2. The second capital measure differs from target capital only owing to a restriction on

the number of common factors governing asset returns. In particular, we adopt a

correlation matrix that fits the original one as closely as possible under the constraint

that correlation coefficients should be consistent with the presence of a single common

factor (see Appendix C). The fitted single-factor correlation matrix is used to derive

the one-year probability distribution of joint defaults on the basis of the so-called

16The distinction between what we dub large and small portfolios does not reflect the size of the aggregate
exposure but rather different degrees of diversification across individual exposures. Importantly, the degree
of diversification in the large hypothetical portfolios studied in this paper matches the diversification in
the large real-world portfolios studied by Heitfield et al. (2006) (see Section 3.2). The small hypothetical
portfolios exhibit similar properties.

17Such a portfolio does not incorporate consumer loans and, thus, may not be representative of all aspects
of credit risk.

18The LGD specification warrants an explanation. The independence between the incidence of defaults
and LGDs implies that, in the absence of simulation noise, only the mean of the LGD distribution enters (as
a multiplicative factor) capital measures. However, the entire LGD distribution affects measures obtained
from Monte Carlo simulations. Importantly, assuming a continuous distribution for LGDs smooths the
derived probability distribution of joint defaults, which improves the robustness of simulation-based capital
measures.
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Gaussian copula method (see Appendix A). This distribution is then mapped into a

probability distribution of default losses and, finally, into a capital measure.

3. The third capital measure differs from the second one only in that it assumes that

all idiosyncratic risk is diversified away. This assumption allows us to use the fitted

single-factor correlation matrix underpinning measure 2 in the ASRF formula (equation

5).

4. The fourth capital measure differs from the third one only in that it is based on the

assumption that loading coefficients on the single common factor are the same across

exposures. The resulting common correlation coefficient, which is set equal to the

average of the pairwise correlations underpinning measures 2 and 3, is used as an

input to the ASRF formula (equation 5).

5. Finally, the shortcut capital measure differs from the fourth one only in that it incor-

porates alternative, rule-of-thumb, values for the common correlation coefficient.

The three intermediate measures lead to a straightforward dissection of the difference

between target and shortcut capital.19 Specifically, the difference between measures 5 and

1 is the sum of the following four components: (i) the difference between measures 2 and

1, which equals the multi-factor effect; (ii) the difference between measures 3 and 2, which

equals the granularity effect; (iii) the difference between measures 4 and 3, which equals the

correlation dispersion effect; and (iv) the difference between measures 5 and 4, which equals

the correlation level effect.

The specific ordering and choice of the three intermediate capital measures is a result

of the following reasoning. As far as measure 2 is concerned, its position is fixed by the

necessity to extract the multi-factor effect first. The reason for this is twofold. First, deriving

a capital measure that assumes an infinite number of exposures but allows for multiple

factors (i.e. calculating measure 2 after the extraction of the granularity effect) is subject

to approximation errors (see Pykhtin, 2004, for example). Second, it is possible to isolate

calibration errors (via measures 3 and 4) only after the extraction of the multi-factor effect

(via measure 2) has modified the original correlation matrix to render it consistent with

the ASRF model. Likewise, an application of this model for the extraction of calibration

19Importantly, the method also applies to alternative definitions of target and short-cut capital, so long
as the true correlation structure and short-cut correlation estimates chosen by the user are clearly defined.
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errors requires the assumption of infinite granularity, which fixes the position of measure 3.20

Finally, modifying measure 4 by preserving the cross-sectional distribution of the single-

factor correlation coefficients but changing their average level would reverse the order in

which the correlation level and dispersion effects are extracted. An important problem with

this procedure is that it would allow only for an imperfect estimate of the correlation level

effect because this estimate would be influenced by changes in the structure of the single-

factor correlation matrix.

2.4.1 Two extensions

In an attempt to delve further into the impact of plausible calibration errors on capital

measures, we conduct two additional exercises. Each exercise focuses on a specific type of

errors in the calibrated inter-dependence of defaults and incorporates the assumption that

the true PDs are identical across exposures. This assumption insulates capital measures

from the impact of interaction between heterogeneous PDs and errors in the calibrated

inter-dependence of defaults.

In the first exercise, we derive the extent to which plausible limitations on the size of

available data can affect assessments of portfolio credit risk by affecting the estimates of asset

return correlations. Specifically, we draw time series of asset returns from a joint distribution

characterized by constant pairwise correlations equal to the correlation underpinning measure

4. Using the sample correlation matrix of the simulated series and a typical value for the

probability of default, we obtain an “estimated” capital measure on the basis of the ASRF

formula in equation 5.21 The difference between this measure and the desired capital, which

employs the exact correlation structure, are driven by small-sample noise in the estimates of

the overall level and dispersion of asset return correlations.

In our second exercise, we examine how measure 4 would change if the common and

idiosyncratic factors of asset returns are in fact driven by Student-t distributions. The results

of this exercise reveal how flawed calibration of the tail dependence among exposures’ asset

returns – which is separate from flaws in correlation values – affects capital calculations.

In order to carry out the exercise, we use the general ASRF formula in equation (4) and

make two technical adjustments to the empirical setup. The first adjustment corrects for the

20Despite this observation, we have also experimented with imposing the infinite granularity assumption
only after we calculate the correlation dispersion and level effects (i.e. deriving measure 3 after measures 4
and 5). This modifies the meaning of these two effects but alters negligibly their magnitudes, as well as the
magnitude of the granularity effect.

21This measure abstracts from the granularity and multi-factor effects.
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fact that the variance of a Student-t variable is larger than unity.22 The second adjustment

addresses the fact that the generalized CDF of asset returns, F(·), does not exist in closed

form. In concrete terms, we calculate the default threshold F−1(PDi) on the basis of 10

million Monte Carlo simulations.

3 Data description

This section describes the two major blocks of data that we rely on: (i) credit risk parameter

estimates provided by Moody’s KMV and (ii) the sectoral distribution of exposures in typical

portfolios of US wholesale banks.

3.1 Credit risk parameters

Our sample includes the universe of firms covered in July 2006 by both the expected default

frequency (EDFTM) model and the global correlation (GCorrTM) model of Moody’s KMV.

These two models deliver, respectively, estimates of 1-year physical PDs and physical asset

return correlation coefficients for publicly traded companies. We abstract from financial

firms – whose capital structure makes their PDs notoriously difficult to estimate – and work

with 10,891 companies.

The sample covers firms with diverse characteristics. Specifically, 5,709 of the firms are

headquartered in the United States, 4,383 in Western Europe, and the remaining 799 in the

rest of the world. The distribution of the 10,891 firms across industrial sectors is reported in

the last column in Table 1, with the largest share of firms (10.4%) coming from the business

service sector. Importantly, only 1,434 (or 13.2%) of the firms have a rating from either

S&P or Moody’s, which matches the stylized fact that the majority of bank exposures are

unrated.

There are several reasons why EDFs and GCorr correlations are natural data for our

exercise. First, both measures are derived within the same framework, which builds on the

model of Merton (1974) and is in the spirit of the ASRF model (see Das and Ishii, 2001;

Crosbie and Bohn, 2003; Crosbie, 2005, for detail). Second, in line with their role in this

paper, Moody’s KMV EDFs have been widely used as proxies for actual default probabilities

(see Berndt et al., 2005; Longstaff et al., 2005, for example). Third, the GCorr correlations

have a multi-factor structure, which is crucial for our study of the multi-factor effect. In

22Specifically, a Student-t variable with r > 2 degrees of freedom has a variance of r

r−2
.
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particular, this model incorporates 120 common factors, including 2 global economic factors,

5 regional economic factors, 7 sector factors, 61 industry-specific factors and 45 country-

specific factors.

Table 2 and Figure 2 report summary statistics of the Moody’s KMV 1-year PD and asset

return correlation estimates. PDs have a long right tail and, thus, their median (0.39%) is

much lower than their mean (2.67%). In addition, the favorable credit conditions in July

2006 result in 1,217 firms (i.e. about 11.2% of the total) having the lowest EDF score (0.02%)

allowed by the Moody’s KMV empirical methodology. At the same time, the upper bound

on the Moody’s KMV PD estimates (20%) is attained by 643 firms. For their part, GCorr

correlations are limited between 0 and 65%. Clustered mainly between 5% and 25%, these

correlations average 9.24%.23

3.2 Characteristics of hypothetical portfolios

The portfolios we simulate match the sectoral distribution of the typical portfolio of US

wholesale banks. Specifically, to construct a large portfolio (1000 exposures), we apply the

40 non-financial sector weights reported by Heitfield et al. (2006) (see Table 1). For a small

portfolio (200 exposures), we rescale the 10 largest sectoral weights so that they sum up

to unity and set all other weights to zero. Within each sector, we draw firms at random.24

All firms in a portfolio receive equal weights (up to a rounding error) and, thus, there is a

one-to-one correspondence between the number of firms in a sector and this sector’s weight

in the portfolio.

The sector and name concentration indices, reported at the bottom of Table 1, provide

justification for our design of large and small portfolios. Calculated as the sum of squared

sectoral (name) weights, the sector (name) concentration index of the large portfolios studied

in this paper equals 0.0432 (0.001). This belongs to the corresponding interval [0.03, 0.045]

([0.000, 0.003]) reported in Heitfield et al. (2006) for large portfolios of US banks. For

small portfolios, the analogous indices and intervals are 0.1135 (0.005) and [0.035, 0.213]

([0.001, 0.008]), respectively.

23The GCorr correlation estimates are quite in line with correlation estimates reported in other studies.
For instance, Lopez (2004) documents an average asset correlation of 12.5% for a large number of US firms
and Duellman et al. (2006) estimate a median asset return correlation of 10.1% for European firms.

24Within each industry sector, we draw randomly with replacement. If the same firm is drawn twice, the
corresponding pairwise correlation is set equal to the average correlation for the sector. Drawing randomly
without replacement does not affect materially the results.
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4 Empirical results

We implement the empirical methodology described in Section 2.4 in order to quantify the

impact of various sources of error in ASRF-based assessments of portfolio credit risk. Before

reporting our findings, it is useful to highlight several aspects of the methodology.

First, as far as calibration of the model is concerned, the analysis in this paper focuses

exclusively on errors in the values of parameters that relate to the inter-dependence of credit

risk across exposures. Considering the impact of noise in PD and LGD estimates would

make it extremely difficult to isolate the correlation level and dispersion effects we focus on.

This is because noise in PDs and LGDs would interact with noise in correlation inputs in a

highly non-linear fashion.

Second, we make the stylized assumption that portfolios consist of equally weighted

exposures. Considering disparate exposure sizes would require considering an additional

dimension of portfolio characteristics, as it will no longer be the case that the granularity of

a larger portfolio is necessarily finer. In addition, lower granularity that results from higher

concentration in a small number of borrowers would also have a bearing on the number of

common factors affecting the portfolio and on the overall correlation of risk. This would

make it impossible to isolate the granularity effect from the other three effects we consider.

Finally, our analysis treats the correlation matrix provided by Moody’s KMV as revealing

the “true” correlation of asset returns. Of course, this matrix is itself an estimate that is

subject to errors. Nevertheless, the Moody’s KMV correlation matrix provides a reasonable

benchmark to work from. In addition, we have verified that results regarding the relative

importance of alternative sources of error depend only marginally on the accuracy of the

GCorr estimates, even though the absolute impact of alternative sources of error does change

with the benchmark correlation level.

4.1 Various errors in shortcut capital measures

To study various sources of error in assessments of portfolio credit risk, we start by calculating

the five capital measures listed in Section 2.4 for 3000 large and as many small hypothetical

portfolios. Even though they have the same sectoral composition by construction, the sim-

ulated portfolios differ from each other with respect to the individual constituent exposures

and, thus, with respect to the underlying risk parameters. For example, as reported in Table

3, the average PDs in large portfolios have a mean of 2.42% but, owing to sampling variance,

vary between 1.79% and 3.12%. In comparison, the average asset return correlation remains
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more stable, ranging between 9.14% and 10.73% across large portfolios. In addition, in ac-

cordance with an assumption of the Basel II IRB approach, firms with higher PDs tend to

be less correlated with the rest of the portfolio.25 This is illustrated succinctly by the last

line in each panel of Table 3, which reports negative correlations between individual PDs

and the corresponding loading on a single common factor.26

Table 4 reports summary statistics of the target and shortcut capital measures (i.e. the

two extremes described in Section 2.4). For large portfolios, the table reveals that target

capital averages 3.31% (per unit of aggregate exposure) across the 3000 simulated portfolios.

The corresponding shortcut level (based on a rule-of-thumb asset return correlation of 12%)

is 81 basis points higher.

Decomposing the difference between target and shortcut capital for large portfolios re-

veals that errors caused by model misspecification play a minor role. In qualitative terms,

the multi-factor effect can be of either sign (fourth column in Table 4) but is more likely to

be negative (fourth and fifth columns in Table 4). In the light of the discussion in Section

2.2.2, imposing a single-factor framework is more likely to lead to too low a capital buffer

because such a framework ignores the existence of multiple sources of default clustering.

In quantitative terms, however, the multi-factor effect entails an average discrepancy that

amounts to less than 1% of the average target capital level.27 This is because the single-factor

approximation fits closely the raw correlation matrix. Indeed, our single-factor approxima-

tion matches almost perfectly the level of average correlations (with a maximum discrepancy

across simulated portfolios of less than 4 basis points) and explains on average 76% of the

variability of pairwise correlations in the cross section of exposures.28,29

Similarly, the granularity effect is with the expected negative sign but, for large portfolios,

leads to a small deviation from target capital. With an average of −16 basis points (or 5%

of target capital), this deviation is higher than that induced by the multi-factor effect but is

25The negative relationship between PDs and correlations (or loading coefficients in a single-factor setting)
is likely to be a general phenomenon. See, for example, Lopez (2004), Arora et al. (2005) and Dev (2006)
who find that global factors often play bigger roles for firms of better credit quality.

26This calculation is conducted under the single-factor approximation of the correlation matrix
27A similar result is obtained by Duellmann and Masschelein (2006b) who rely on Pykhtin (2004) to

approximate the multi-factor effect in loan portfolios of German banks.
28The goodness-of-fit measure for the one-factor approximation is described in Appendix C. Across the

3000 simulations of large portfolios, this measure ranges between 67% and 85%. For small portfolios, the
range is 63% to 86%.

29Principal component analysis confirms this result. Specifically, the portion of the total variance of asset
returns explained by the first principal component is at least 10 times larger than the portion explained by
the second principal component.
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still small.

Furthermore, the granularity effect we calculate is approximated extremely well by (the

negative of) the closed-form granularity adjustment of Gordy and Luetkebohmert (2006),

which averages −17 basis points for large portfolios in our sample. In addition, the corre-

lation between the granularity effect and the granularity adjustment across large simulated

portfolios is 66%.

By contrast, erroneous calibration of the ASRF model leads to much greater deviations

from the target capital. For large portfolios, the correlation dispersion effect raises the capital

measure by 39 basis points, which amounts to roughly 12% of the target level.30 The sign

of the effect reflects the regularity that exposures with higher PDs tend to be less correlated

with the rest of the portfolio. The shortcut capital measure ignores this regularity and, in

line with the intuition provided in Section 2.3, overestimates the target capital.

The correlation level effect has a similarly important implication. Specifically, this effect

reveals that raising the average correlation coefficient from 9.78% (the one observed in the

data) to a rule-of-thumb value of 12% leads to an 18% overestimation of the target capital

level. The sign of the deviation is not surprising in the light of the discussion in Section 2.3.

Importantly, the shortcut measure drops (rises) by roughly 8% with each percentage point

decrease (increase) in the homogeneous correlation coefficient. Thus, using a rule-of-thumb

correlation of 6% leads to a 32% under -estimation of the target level.31

Turning to small portfolios, the decomposition results are qualitatively the same, with the

notable exception of the granularity effect. In these portfolios, a much smaller portion of the

idiosyncratic risk is diversified away and the granularity effect equals −73 basis points, which

is a 19% underestimation of the target capital. This underestimation is approximated well

by the Gordy and Luetkebohmert (2006) granularity adjustment, (the negative of) which

averages −86 basis points for small portfolios and whose correlation with the corresponding

granularity effect is 89%.

4.2 Regression analysis of calibration errors

Given the dominant role of correlation level and dispersion effects as determinants of model-

based assessments of portfolio credit risk, we investigate the sources of these two effects via

a regression analysis. The regressions – run on the cross section of simulated portfolios – are

30On the basis of a hypothetical portfolio of US firms, Hanson et al. (2006) also demonstrate the importance
of accounting for cross-sectional heterogeneity in credit risk parameters.

31The rule-of-thumb asset return correlations reported in the literature range between 5 and 25%.
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simple linear models of calibration-driven capital discrepancy, which is defined as shortcut

capital (based on a correlation of 12%) minus target capital net of the multi-factor and

granularity effects.

We consider two blocks of explanatory variables. The first block comprises the average

level and the dispersion of the asset return correlation coefficients underlying each simulated

portfolio. These variables are natural drivers of the correlation level and dispersion effects

and would explain the two effects completely if assessments of portfolio credit risk did not

depend on the interaction of asset return correlations with PDs. In order to account for such

interaction, we include a second block of explanatory variables, which comprises average

PDs and the cross-sectional correlations between PDs and single-factor loading coefficients.

One would recall that the PDs underlying target capital are identical to those underlying

the shortcut measure. Thus, the regression coefficient of the first variable in the second

block reflects how a general rise in single-name credit risk interacts with the different av-

erage correlations and correlation structures behind the two capital measures. Finally, the

coefficient of the last explanatory variable captures the component of the correlation disper-

sion effect that is driven by a systematic relationship between individual firms’ riskiness and

their dependence on the common factor.32

The regression results, reported in Table 5, reveal that the correlation level and dispersion

variables have strong explanatory power. Depending on the portfolio size, these variables

explain one-third or more of the variation in calibration-driven capital discrepancies across

simulated portfolios and enter the regressions with statistically significant coefficients of

the expected signs. First, the positive impact of a higher average correlation on target

capital translates into a negative impact on capital discrepancy because the correlation

underpinning the shortcut measure stays constant across simulated portfolios. Second, the

correlation dispersion variable enters with a positive coefficient because – given that the

empirical relationship between PDs and asset return correlations is negative and that the

shortcut capital measure abstracts from correlation dispersion – shortcut capital overpredicts

the target level by more when correlation dispersion is greater. In order to visualize this

phenomenon refer back to the dotted line in the bottom-right panel of Figure 1. In this

plot, shortcut capital appears at zero correlation dispersion (c = 0) and a rise in correlation

dispersion (i.e. a rise in c) translates into a downward movement of target capital along the

32The correlation dispersion variable is calculated as the standard deviation of the loading coefficients
under the single-factor approximation of the correlation matrix. The correlation between these loading
coefficients and the associated PDs delivers the last explanatory variable.
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dotted line.

The second part of the analysis reveals that the interaction between correlation coeffi-

cients and PDs is the main driver of the correlation level and dispersion effects. In particular,

adding the second block of explanatory variables to the regression raises the goodness of fit

measures (adjusted R2) by 50 percentage points (to 89%) for large portfolios and by 53 per-

centage points (to 86%) for small portfolios. In addition, the positive statistically significant

coefficient of average PDs indicates that, although an increase in this variable raises both the

target and shortcut capital measures, the effect is stronger under the higher (homogeneous)

asset return correlation underpinning the latter measure. Finally, the statistically significant

coefficient of the correlation between PDs and loading factors is with the expected nega-

tive sign. This is because target capital tends to increase in the correlation between PDs

and loadings on the single factor – as illustrated by an upward movements across the lines

in the bottom-right panel of Figure 1 – whereas the shortcut measure abstracts from this

correlation.

Reassuringly, the regression results are extremely robust across portfolio sizes. The ro-

bustness can be seen in that the values of the goodness-of-fit measures and the coefficient es-

timates obtained in the context of large portfolios match almost exactly their small-portfolio

counterparts. Moreover, this match extends to the t-statistics of the estimates. In a further

test of the robustness of the regression results, we pool observations across the two portfo-

lio sizes and observe that all estimates change only marginally, leaving the message of the

regression analysis intact.33

4.3 Estimation errors

The above results show that capital measures based on shortcut input estimates can deviate

substantially from target. In practice, shortcut measures are likely to be adopted by less

sophisticated users of the ASRF model who face constraints in terms of data and analytical

capacity. By contrast, larger and more sophisticated users are likely to construct their own

estimates of asset return correlations on the basis of in-house data. This section demon-

strates that, for realistic sizes of such data, small-sample estimation errors in the correlation

parameters are still likely to lead to large flaws in assessments of portfolio credit risk.

In order to quantify plausible estimation errors, we consider a portfolio whose “true”

33Background checks reveal that the regression residuals can be attributed to a large extent to interactions
among PDs and asset return correlations that are non-linear and difficult to pin down.
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credit risk parameters match those of the “typical” portfolio in our data set. For this

portfolio, we impose the simplifying assumption of homogeneous PDs (1%), LGDs (50%)

and pairwise asset return correlations (9.78%) and consider different numbers of underlying

exposures (see Table 6). Abstracting from issues related to granularity and multiple factors,

this assumption allows us to use the ASRF model and calculate that the desired capital

buffer, dubbed “benchmark”, equals 3.31% for each portfolio size. Referring to Table 4, this

is seen as the typical (i.e. average) target capital buffer studied in Section 4.1.34

Then, we place ourselves in the shoes of a model user who does not know the exact asset

return correlations but estimates them from available data.35 Specifically, we endow the

user with 60, 120 or 300 months of asset returns data – drawn from the “true” underlying

distribution – and calculate the sample correlation matrix. In order to quantify a plausible

range of errors in the estimate of the correlation matrix, we repeat this exercise 1000 times.

As reported in panels A and B of Table 6, the sample correlations contain estimation error

that remains substantial even for 300 months (or 25 years) of data.

Panel C of the table reveals how estimation errors in correlation coefficients translate

into deviation from the desired benchmark capital buffer. First, these deviations are affected

little by the number of exposures in the portfolio. Second, at standard confidence levels,

the deviations decrease in the size of the available time series of asset returns but remain

substantial even if this size is assumed to be unrealistically large. Specifically, if a portfolio

comprises 1000 exposures and a user has 120 months of data, estimated capital buffers can

deviate from the benchmark level by as much as 30% with a 95% probability. The size

of the deviation decreases to 18% on the basis of 300 months of data. Third, estimated

capital buffers exhibit a positive bias relative to the benchmark level, i.e. their average level

is invariably higher than 3.31%. This is because the true correlation structure is assumed

to be homogeneous, while small-sample errors introduce dispersion in estimated correlation

coefficients. By the intuition presented in Section 2.3, this dispersion raises the implied

capital buffer in the presence of homogenous PDs.

34Given that we abstract from model misspecification in this subsection, the benchmark capital measure
is conceptually equivalent to what we earlier called target capital.

35In order to focus on issues in the estimation of the inter-dependence of credit risk across exposures, we
assume that the user knows the true PD and LGD.
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4.4 Alternative asset return distributions

There is general consensus in the literature that the marginal distributions of asset returns

have tails that are fatter than the tails of the convenient normal distribution. Importantly,

an erroneous normality assumption tends to bias capital buffers downwards to the extent

that the empirical distribution of asset returns is driven by fat tails in the distribution of the

common factor.36 Such a distribution of the common factor implies great tail dependence

across exposures, which leads to a large probability of default clustering.

In order to quantify the impact of alternative asset return distributions on capital mea-

sures, we consider a homogeneous portfolio in which all PDs equal 1%, all LGDs equal 50%

and all asset return correlations equal 9.78% (the same as in Section 4.3). Given these risk

parameters, we follow the literature on the pricing of portfolio credit risk (see Hull and

White, 2004; Kalemanova et al., 2007) and consider the case in which both the common and

idiosyncratic factors of asset returns have the same Student-t distribution. Experimenting

with different distributional specifications, we do see that fatter tails of the distribution of

the common factor (i.e. fewer degrees of freedom) translate into larger deviations from a

capital buffer derived under the normality assumption (Table 7, left panel).

In order to examine which distributional specification is supported by the data, we rely

on time series of asset returns estimated by Moody’s KMV. For each of the 10,891 firms in

our sample, we use the available 59 months of estimated returns (from September 2001 to

July 2006) to calculate the sample kurtosis, which is the standard measure of tail fatness.

The mean and median of this statistic across firms equal 7.96 and 5.28, respectively. Then,

on the basis of 10,000 Monte Carlo simulations, we derive the distributions of the estimators

of these mean and median when: (i) the data size matches the size of the Moody’s KMV

data on asset return estimates and (ii) both the common and idiosyncratic factors of asset

returns follow the same Student-t distribution. As revealed by the confidence intervals for

these estimators (Table 7, right panel), the Moody’s KMV data support only the “double-t”

specification with 3 degrees of freedom for each factor.

If the asset returns are indeed driven by such marginal distributions – which would be

in line with findings in Kalemanova et al. (2007) – then a normality assumption will lead

to tremendous underpredictions of the desired capital buffer. Specifically, we find that a

double-t specification with 3 degrees of freedom implies a capital buffer of 6.17% per unit

36For existing theoretical and empirical analysis of the treatment of tail dependencies by credit risk models,
see for example Gordy (2000), Lucas et al. (2002) and Frey and McNeil (2003).
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of aggregate exposure. This buffer is 86% higher than the capital buffer calculated under a

normality assumption.

Even though this result may be undermined by probable errors in the Moody’s KMV

estimates of asset returns, alternative double-t specifications studied in the related literature

also lead to capital measures that are significantly higher than those implied by a normal

distribution. Indeed, given that the available time series of Moody’s KMV asset return

estimates are short, plausible systemic errors in these estimates across firms might affect

substantially the cross-sectional mean and median of the sample kurtosis. This casts doubt

on the validity of the double-t specification with 3 degrees of freedom and prompts us to

consider alternative specifications, with 4 degrees of freedom (which is recommended by

Hull and White, 2004) and 5 degrees of freedom (which is reportedly a market standard).

As revealed in Table 7, these alternatives imply capital measures that are, respectively, 39

and 22% higher than the measure incorporating normal distributions.

5 Concluding remarks

This paper quantified the relative importance of alternative sources of error in model-based

assessments of portfolio credit risk. We found that a misspecification of the popular ASRF

model is likely to have a limited impact on such assessments, especially for large well-

diversified portfolios. By contrast, erroneous calibration of this model – driven by flaws

in popular rule-of-thumb values of asset return correlation, plausible small-sample estima-

tion errors, or a wrong assumption regarding the marginal distributions of asset returns –

has the potential to affect substantially measures of portfolio credit risk.

These results reveal a challenging task for risk managers. For one, it is reasonable to

anticipate that calibration errors could also have a substantial impact on measures of portfolio

credit risk implied by alternative models, irrespective of the number of common factors being

incorporated. Moreover, our analysis has abstracted from several additional sources of error

in credit risk parameter estimates. In particular, we assumed that PDs and LGDs are free

of estimation noise, which is likely to be sizeable in practice and to interact with noise in

correlation estimates in generating errors in measured portfolio credit risk. In addition, there

may be time variation in credit risk parameters that relate to the likelihood and severity of

default losses as well as to the correlation of the occurrence of such losses across exposures.

Such time variation, which could be due either to cyclical developments or to structural

changes in credit markets, would impair the useful content of the available data and, thus,
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would make it even more difficult to measure portfolio credit risk.
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Lucas, André, Pieter Klaassen, Peter Spreij, and Stefan Straetmans (2002), “Extreme tails

for linear portfolio credit risk models,” Risk Measurement and Systemic Risk: Proceed-

ings of the 3rd Joint Central Central Bank Research Conference, Bank for International

Settlements .

27



Martin, Richard and Tom Wilde (2002), “Unsystematic credit risk,” Risk , pages 123–128.

Merton, Robert (1974), “On the pricing of corporate debt: the risk structure of interest

rates,” Journal of Finance, vol. 29, 449–470.

Morinaga, Satoshi and Yasushi Shiina (2005), “Underestimation of sector concentration risk

by mis-assignment of borrowers,” Working Paper .

Pykhtin, Michael (2004), “Multi-factor adjustment,” Risk , pages 85–90.

Tarashev, Nikola and Haibin Zhu (2006), “The pricing of portfolio credit risk,” Bank for

International Settlements Working Paper .

Vasicek, Oldrich (1991), “Limiting loan loss probability distribution,” KMV Working Paper .

Vasicek, Oldrich (2002), “Loan portfolio value,” Risk , pages 160–162.

28



Appendix

A Gaussian copula

The Gaussian copula is an efficient algorithm for measuring portfolio credit risk when a

portfolio consists of a finite number of exposures, the correlation matrix is driven by a factor-

loading structure and underlying distributions are normal. The efficiency of the algorithm

stems from the fact that, conditional on the realization of the common factor(s), defaults

occurrences are independent across exposures. This allows for a closed-form solution for

the conditional probability of joint defaults. The corresponding unconditional probability is

then derived by integrating over the probability distribution of the common factor(s). For

further detail, see Gibson (2004).

B Monte Carlo simulations

Monte Carlo simulations deliver the target capital level. This method can be applied to

any portfolio comprising N equally weighted exposures, provided that the exposure-specific

probabilities of default, PDi, the distribution of LGDi and the correlation matrix of asset

returns, R, are known.

Given that LGDi is assumed to be independent of the factors underlying PDi, and that

the distribution of LGDi is identical across exposures, the simulation of portfolio credit

losses can be divided in two parts. The first part calculates the probability distribution of

joint defaults. Given this distribution, the second part incorporates the LGD distribution

to derive the probability distribution of portfolio losses.

Specifically, we estimate the probability of joint defaults as follows:

1. Using the vector {PDi}N

i=1 and the assumption that asset returns are distributed as

standard normal variables, we obtain an N × 1 vector of default thresholds.

2. We draw an N × 1 vector from N standard normal variables whose correlation matrix

is R. The number of entries in this vector that are smaller than the corresponding

default threshold is the number of simulated defaults for the particular draw.

3. We repeat the previous step 500,000 times to derive the probability distribution of

the number of defaults, Pr(nd = k), where nd refers to the number of defaults and

k = 0, 1, · · · , N .

Then, we estimate the probability distribution of portfolio credit losses as follows:

1. For each possible number of defaults, k, we draw LGDs for the defaulted exposures

1,000 times and calculate the conditional loss distribution, Pr(TL|nd = k).
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2. We repeat the above exercise for each k = 0, 1, · · · , N , and calculate the uncon-

ditional probability distribution of portfolio credit losses. Specifically, Pr(TL) =
∑

k Pr(TL|nd = k) · Pr(nd = k).

Finally we set the capital measure to equal TL1−α −∑N

i=1
E(PDi) · E(LGDi), where

α = 0.1%.

C Fitting a single-factor correlation structure

A single-factor approximation of an empirical correlation matrix is obtained as follows. De-

note the empirical correlation matrix by Σ and its elements σij , for i, j ∈ {1, · · · , N}. The

single-factor loading structure ρ ≡ [ρ1, ...ρN ] that minimizes the discrepancies between the

elements of Σ and their fitted counterparts are given by:

min
ρ

∑

i=1,··· ,N−1

∑

j>i

(σij − ρiρj)
2

Andersen et al. (2003) propose an efficient algorithm to solve this minimization problem.

The fitted correlation matrix Σ̂ has elements ρiρj .

We also construct a measure that reflects the “explanatory power” of the single-factor

approximation:

Goodness-of-fit measure ≡ 1 − var(ǫ)

var(σ)

where σ is a vector of all pairwise correlation coefficients σij (i, j = 1, · · · , N, i < j) and ǫ

is a vector of the errors σij − ρiρj (i, j = 1, · · · , N, i < j). This measure reflects the degree

to which the cross-sectional variation in pairwise correlations can be explained by common

factor loadings in a single-factor framework.
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Figure 1: Four sources of error in capital measures
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Note: Capital measures, in per cent and per unit of aggregate exposure, on the vertical axes. For each panel

(unless noted otherwise), PD = 1% and LGD = 50% are the same across exposures.
1 The solid line plots target capital for a portfolio in which all pairwise asset return correlations equal

10%. The number of exposures in the portfolio (N) varies across the horizontal axis. The dotted line plots

the corresponding capital estimate when N = ∞. 2 The portfolio consists of 1000 exposures that are

divided into two groups, with w denoting the weight of the first group. Within each group, the asset return

correlation equals 20% for all exposure pairs. Inter-group correlations are zero. The solid line plots the

target capital level, which incorporates the two common factors in the simulated data. The dashed line plots

the capital calculated under a one-common-factor approximation of the correlation structure (see Appendix

C). 3 Capital measures for different levels of homogeneous pairwise asset return correlation. 4 The solid

line plots capital measures under the assumption that PD = 1%, there is a single common factor and the

loadings on this factor are distributed uniformly in the cross section between
√

0.1− c and
√

0.1 + c. For the

other two lines, PDs are distributed uniformly in the cross section between 0.5% and 1.5% and are perfectly

positively (dashed line) or negatively (dotted line) correlated with the common-factor loadings.
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Figure 2: Distribution of individual PDs and pairwise correlations
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Note: The parameter estimates are reported by Moody’s KMV in July 2006 and relate to 10,891 non-financial

firms.
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Table 1: Sectoral composition of simulated portfolios

Large portfolio Small portfolio Memo:

Sector Number of Exposure Number of Exposure number of firms
names weight (%) names weight (%) in the sample

Aerospace & Defense 31 3.1 105
Agriculture 9 0.9 56
Air Transportation 4 0.4 83
Apparel, Footwear, & Textiles 17 1.7 357
Automotive 51 5.1 19 9.5 198
Broadcast Media 43 4.3 16 8.0 191
Business Services 23 2.3 1132
Chemicals 42 4.2 15 7.5 940
Computer Equipment 10 1.0 746
Construction 43 4.3 16 8.0 277
Electric, Gas, & Sanitary 107 10.7 39 19.5 335
Electronics & Electrical 18 1.8 693
Entertainment & leisure 33 3.3 294
Fabricated Metals 17 1.7 146
Food, Beverages, & Tobacco 63 6.3 23 11.5 490
General Retail 31 3.1 133
Glass & Stone 6 0.6 149
Health care 38 3.8 14 7.0 178
Legal & Other Services 16 1.6 452
Lodging 22 2.2 70
Machinery & Equipment 36 3.6 13 6.5 645
Medical Equipment 10 1.0 334
Mining 6 0.6 486
Miscellaneous Manufacturing 18 1.8 130
Non-defense Trans. & Parts 2 0.2 53
Oil Refining & Delivery 24 2.4 100
Oil & Gas Exploration 55 5.5 20 10.0 458
Other Trans. Services 22 2.2 108
Paper & Forestry 23 2.3 172
Personal Services 7 0.7 31
Primary Metals 11 1.1 188
Printing & Publishing 28 2.8 186
Repair Services & Rental 13 1.3 37
Restaurants 9 0.9 141
Rubber & Plastics 18 1.8 120
Semiconductors 2 0.2 177
Telecommunications 69 6.9 25 12.5 177
Trucking & Warehousing 5 0.5 68
Water Transportation 5 0.5 104
Wood, Furniture, & Fixtures 13 1.3 151

Total 1000 100 200 100 10891
Name concentration index 0.0010 0.0050
Sector concentration index 0.0432 0.1135

Note: A concentration index is defined as the sum of squared weights, which are set either at the firm or the

sector level.
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Table 2: Summary statistics (in percent)

mean std. dev. skewness median minimum maximum

1-year PDs 2.67 5.28 2.49 0.39 0.02 20.00
Pairwise correlations 9.24 3.86 1.87 8.45 0.29 65.00

Note: The sample includes 10,891 non-financial firms.

Table 3: Characteristics of simulated loan portfolios (in percent)

A. Large portfolios (1000 firms)
mean std. dev. median minimum maximum

average PD 2.42 0.19 2.42 1.79 3.12
std. dev. of individual PDs 5.16 0.26 5.16 4.25 6.14
median PD 0.26 0.03 0.26 0.18 0.36
average correlation 9.78 0.22 9.77 9.14 10.73
std. dev. of loadings 9.33 0.31 9.32 8.33 10.47
corr (PD, loadings) -20.0 2.04 -20.1 -26.7 -12.8

B. Small portfolios (200 firms)
mean std. dev. median minimum maximum

average PD 2.28 0.36 2.26 1.24 3.68
std. dev. of individual PDs 5.05 0.53 5.06 3.01 6.89
median PD 0.24 0.05 0.23 0.11 0.55
average correlation 10.49 0.44 10.48 8.99 12.00
std. dev. of loadings 10.54 0.70 10.55 7.80 12.79
corr (PD, loadings) -19.8 4.59 -20.2 -31.8 -1.2

Note: The results are based on 3,000 simulated portfolios and are carried out in two steps. First, portfolio-

specific characteristics specified by row headings are calculated for each simulated portfolio. Second, sum-

mary statistics specified by column headings are calculated for each of the portfolio specific characteristics

obtained in the first step. “Loadings” are estimated under a one-common-factor approximation of the cor-

relation structure and refer to the firm-specific loadings of asset returns on the single common factor.
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Table 4: Capital measures and four sources of errors (in percent)

A. Large portfolios (1000 firms)

mean std. dev. median 95% interval 50% interval
Target capital 1 3.31 0.18 3.30 [2.97, 3.67] [3.19, 3.42]

Deviation from target due to: 2

Multi-factor effect 3 -0.03 0.02 -0.03 [-0.08, 0.01] [-0.05, -0.02]
Granularity effect 4 -0.16 0.004 -0.15 [-0.16, -0.15] [-0.16, -0.15]
Correlation dispersion effect 5 0.39 0.05 0.39 [0.30, 0.48] [0.36, 0.42]
Correlation level effect 6 0.61 0.06 0.62 [0.49, 0.73] [0.57, 0.66]

Shortcut capital (corr=12%) 4.12 0.20 4.12 [3.75, 4.51] [3.99, 4.25]

Memo: correlation level effect if:

corr=6% -1.06 0.08 -1.06 [-1.23, -0.92] [-1.11, -1.01]
corr=18% 2.24 0.10 2.24 [2.05, 2.43] [2.17, 2.30]
corr=24% 3.86 0.14 3.86 [3.59, 4.14] [3.77, 3.95]

B. Small portfolios (200 firms)

mean std. dev. median 95% interval 50% interval
Target capital 1 3.86 0.32 3.85 [3.25, 4.55] [3.64, 4.07]

Deviation from target due to: 2

Multi-factor effect 3 -0.04 0.04 -0.04 [-0.12, 0.04] [-0.07, -0.01]
Granularity effect 4 -0.73 0.03 -0.73 [-0.79, -0.67] [-0.75, -0.71]
Correlation dispersion effect 5 0.42 0.12 0.42 [0.19, 0.65] [0.34, 0.50]
Correlation level effect 6 0.40 0.13 0.40 [0.16, 0.67] [0.32, 0.48]

Shortcut capital (corr=12%) 3.91 0.38 3.90 [3.17, 4.70] [3.64, 4.16]

Memo: correlation level effect if:

corr=6% -1.19 0.13 -1.19 [-1.46, -0.95] [-1.28, -1.10]
corr=18% 1.95 0.21 1.94 [1.57, 2.38] [1.81, 2.08]
corr=24% 3.50 0.30 3.49 [2.94, 4.12] [3.30, 3.70]

Note: Summary statistics for the simulated portfolios underpinning Table 3. The column entitled “95%

interval” reports the 2.5th and 97.5th percentiles of the statistics specified in the particular row heading.

The column entitled “50% interval” reports the corresponding 25th and 75th percentiles. In all calculations,

LGDi follows a symmetric triangular distribution between 0 and 1.
1 Based on Moody’s KMV estimates of PDs and asset return correlations and a Monte Carlo procedure for

calculating the probability distribution of default losses. 2 Four sources of deviation from the target capital

level; a negative sign implies underestimation. The sum of the target capital level and the four deviations

equals the shortcut capital level. Each deviation is based on the assumptions underlying previous deviations

plus one additional assumption. 3 For the multi-factor effect, the correlation matrix underpinning the

target capital level is approximated under the assumption that there is a single common factor. 4 For

the granularity effect, there is the additional assumption that the number of firms is infinite. 5 For the

correlation dispersion effect, the additional assumption is that the loadings on the single common factor are

the same across exposures. 6 For the correlation level effect, the additional assumption imposes a different,

shortcut, level on the constant pairwise correlation.
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Table 5: Explaining calibration-driven capital discrepancies

Regression 1 Regression 2

Large Small Pooled Large Small Pooled
portfolio portfolio sample portfolio portfolio sample

constant 3.01 3.00 3.29 2.58 2.40 2.46
(65.6) (53.0) (111.6) (129.6) (84.0) (159.8)

average corr -0.24 -0.23 -0.24 -0.28 -0.26 -0.27
(34.8) (31.5) (48.8) (95.6) (74.4) (114.5)

std dev of loading coefficients 0.037 0.022 0.010 0.031 0.029 0.028
(7.5) (4.8) (3.1) (14.6) (13.9) (19.9)

average PD 0.21 0.19 0.19
(86.2) (61.6) (94.2)

corr(PD, loading coefficient) -0.018 -0.019 -0.019
(80.5) (79.5) (113.9)

adjusted R2 0.39 0.33 0.56 0.89 0.86 0.91

Note: t-statistics in parentheses. The regression is based on 3,000 simulations for each portfolio size. The

dependent variable equals shortcut capital (based on asset return correlation of 12%) minus target capital,

net of the granularity and multi-factor effects (see Table 4). Loading coefficients are estimated under a

one-common-factor approximation of the correlation structure of asset returns. The last regressor equals the

Kendall rank correlation between PDs and loading coefficients.
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Table 6: Impact of estimation errors (in per cent)

A. Sample average of pairwise correlations
N=100 N=200 N=500 N=1000

T=60 9.72 [6.5, 13.3] 9.67 [6.4, 13.3] 9.64 [6.6, 13.0] 9.63 [6.9, 12.7]
T=120 9.77 [7.4, 12.4] 9.77 [7.6, 12.1] 9.76 [7.6, 12.1] 9.72 [7.7, 12.0]
T=300 9.75 [8.3, 11.3] 9.79 [8.3, 11.3] 9.74 [8.4, 11.2] 9.77 [8.4, 11.25]

B. Sample standard deviation of loading coefficients
N=100 N=200 N=500 N=1000

T=60 12.11 [10.3, 14.1] 11.84 [10.5, 13.2] 11.65 [10.8, 12.5] 11.58 [10.8, 12.2]
T=120 8.50 [7.4, 9.8] 8.34 [7.5, 9.1] 8.17 [7.6, 8.8] 8.13 [7.7, 8.6]
T=300 5.35 [4.6, 6.2] 5.24 [4.7, 5.7] 5.16 [4.8, 5.5] 5.12 [4.9, 5.4]

C. Estimated capital, based on one-factor loading structure
N=100 N=200 N=500 N=1000

T=60 3.87 [2.8, 5.1] 3.83 [2.8, 5.0] 3.80 [2.8, 4.9] 3.79 [2.9, 4.8]
T=120 3.59 [2.9, 4.4] 3.58 [2.9, 4.4] 3.56 [2.9, 4.3] 3.54 [2.9, 4.3]
T=300 3.41 [3.0, 3.9] 3.42 [3.0, 3.9] 3.40 [3.0, 3.9] 3.41 [3.0, 3.9]
benchmark 3.31 3.31 3.31 3.31

Note: Results are based on 1000 simulations of the asset returns of N firms over T months, with the true

pairwise correlation, PD and LGD fixed at 9.78%, 1% and 50%, respectively. Each cell contains the mean

and the 95% confidence interval of: the average of sample pairwise correlations (panel A); the standard

deviation of the loading coefficients in a one-factor approximation (panel B); and the implied capital buffer

(panel C).
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Table 7: Alternative distributional assumptions

Degrees of Capital measure2 Mean kurtosis3 Median kurtosis3

freedom1 (in per cent) mean 95% interval mean 95% interval

(3, 3) 6.17 7.83 [7.30, 8.27] 5.54 [5.11, 6.54]
(4, 4) 4.59 5.72 [5.47, 5.92] 4.43 [4.25, 4.59]
(5, 5) 4.03 4.79 [4.64, 4.93] 3.96 [3.85, 4.06]
(6, 6) 3.81 4.31 [4.19, 4.40] 3.70 [3.63, 3.78]
(7, 7) 3.67 4.02 [3.93, 4.10] 3.55 [3.49, 3.60]
(8, 8) 3.59 3.83 [3.76, 3.89] 3.44 [3.39, 3.49]
(9, 9) 3.53 3.70 [3.64, 3.75] 3.36 [3.32, 3.40]
(10, 10) 3.49 3.60 [3.55, 3.65] 3.30 [3.26, 3.34]
(∞, ∞) 3.31 3.00 [2.99, 3.01] 2.89 [2.88, 2.90]

1 The degrees of freedom of the Student-t distribution of asset returns’ common and idiosyncratic factors,

respectively. The last row refers to a Gaussian specification. 2 Obtained by applying the general ASRF

formula (equation 4) to a homogeneous portfolio, in which PD=1% and LGD=50% for each exposure and

asset return correlations equal 9.78% for each pair of exposures. The default boundary for such exposures

is calculated on the basis of 10 million simulations. 3 The means and the 95% confidence intervals (based

on 10,000 Monte Carlo simulations) of the estimators of the cross-sectional mean and median of the kurtosis

when: (i) the marginal Student-t distributions of the common and idiosyncratic factors have the degrees

of freedom specified in the row heading and asset return correlations equal 9.78%; (ii) the available data

comprise time series of 59 returns for 10,891 firms.
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