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Abstract

Why are spreads on corporate bonds so wide relative to expected losses from
default? The spread on Baa-rated bonds, for example, has been about four times
the expected loss. We suggest that the most commonly cited explanations �
taxes, liquidity and systematic di¤usive risk � are inadequate. We argue instead
that idiosyncratic default risk, or the risk of unexpected losses due to single-
name defaults in necessarily �small� credit portfolios, accounts for the major
part of spreads. Because return distributions are highly skewed, diversi�cation
would require very large portfolios. Evidence from arbitrage CDOs suggests that
such diversi�cation is not readily achievable in practice, and idiosyncratic risk
is therefore unavoidable. Taking a cue from CDO subordination structures, we
propose value-at-risk at the Aaa-rated con�dence level as a summary measure of
risk in feasible credit portfolios. We �nd evidence of a positive linear relationship
between this risk measure and spreads on corporate bonds across rating classes.
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1 Introduction

Spreads on corporate bonds tend to be many times wider than what would be implied

by expected default losses alone. These spreads are the di¤erence between yields on

corporate debt subject to default risk and government bonds free of such risk. While

credit spreads are generally understood to be compensation for credit risk, it has been

di¢ cult empirically to establish this link. From 1997 to June 2004, for example, the

average spread on Baa-rated US corporate bonds, with a duration of 5 years, was about

182 basis points (at annual rates). Yet, the average expected loss from default on Baa-

rated bonds is only 40 basis points (at annual rates). In this case, the spread was over

four times the expected loss from default. The wide gap between spreads and expected

default losses is what has come to be known as the �credit spread puzzle� (see, e.g.,

Collin-Dufresne, Goldstein and Martin (2001), Driessen (2005) and Collin-Dufresne,

Goldstein and Helwege (CDGH, 2003)).

Several studies have investigated the determinants of credit spreads or changes in

credit spreads. The �ndings in some recent papers suggest that di¤usive risk premia,

due to systematic changes in the probability of default, can help account for a portion

of spreads (Du¤ee (1999), Elton, Gruber, Agarwal and Mann (2001), Driessen (2005)).

Elton et al. also argue that the di¤erential treatment of taxes on US corporate bonds

relative to US Treasury securities can help explain spreads; for example, these authors

estimate that 73% of the spread on Aa-rated debt with 5 years to maturity is due to

taxes. Another recent strand of the literature has emphasised the impact of relatively

poor liquidity in the corporate bond market. For example, Driessen estimates that

about 20% of the spread on US corporate bonds is due to a liquidity premium. Further

evidence that liquidity premia may be a large component of credit spreads is provided

by Longsta¤, Mithal and Neis (2005), using data on credit default swaps (CDSs). How-

ever, Collin-Dufresne et al. (2001) �nd that standard indicators of both macroeconomic

conditions and liquidity can explain only a fraction of the changes in spreads. Further-

more, the studies noted above obtain their results either from regression analysis or

from estimates of reduced-form no-arbitrage models of bond prices. It is well-known

that structural models of corporate bond pricing perform as poorly, if not worse, in

explaining spreads (see, e.g., Eom, Helwege and Huang (2004) and Huang and Huang

(2003)).
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In this paper, we o¤er an explanation that has not been emphasised in the lit-

erature. We argue that idiosyncratic default risk is what accounts for much of the

di¤erence between spreads and expected losses. This risk has been overlooked because

much of the literature has assumed such risk can be diversi�ed away. Jarrow, Lando

and Yu (JLY, 2005) show that under certain conditions that permit the construction

of diversi�ed portfolios there will, conditionally, be no di¤erence between spreads and

expected losses � the default of any particular �rm will not command a risk premium.

We argue, however, that because default loss distributions are highly skewed, diversi-

�cation would require portfolios so large that they are, in fact, infeasible to construct.

Indeed, we provide evidence that even the most diversi�ed portfolios do not approach

the size for which idiosyncratic risk can be ignored. This is consistent with �jump-at-

default�, or idiosyncratic, risk being priced. The results in Driessen (2005) and Berndt,

Douglas, Du¢ e, Ferguson and Schranz (2004) indicate the presence of jump-at-default

risk premia in corporate bond and credit default swap (CDS) spreads, respectively.

If idiosyncratic risk is so important, how is such risk measured by market partici-

pants? We propose a measure of risk that is implied by the subordination structure of

arbitrage collateralized debt obligations (CDOs). Cash arbitrage CDOs convert the risk

of corporate bond portfolios into securities with di¤erent levels of risk. This conversion

essentially relies on value-at-risk (VaR) calculations. As such, we propose the VaR mea-

sure used to create the highly-rated senior tranche in a CDO � which is typically rated

Aaa � as the measure for pricing the risk in credit portfolios. This measure not only

takes account of the scope for diversi�cation in feasible portfolios, it also satis�es the

axioms for a coherent risk measure, at least for non-Aaa portfolios. We then conjecture

that once risk is measured in this way, credit spreads across di¤erent corporate bonds

will be linearly related to risk. The link between spreads and default probabilities can

then be shown to depend in a simple way on a consistent measure of risk and a market

price of risk that would apply across di¤erent corporate bonds. The use of VaR to mea-

sure risk in portfolios is, of course, long established in the risk management profession.

However, to our knowledge, no one has as yet proposed VaR as a su¢ cient statistic for

pricing credit risk.

To begin our analysis, in the �rst part of this paper we reexamine the credit spread

puzzle. Using data on option-adjusted spreads from Merrill Lynch over the period

1997-2004, we show that the puzzle may be stronger than previously documented. In
2



addition, unlike in previous studies, we show that the puzzle is present in both US

and European corporate bonds. Next, to justify why jump-at-default risk premia may

be an important component of spreads, we provide evidence on the size of open-end

corporate bond funds and arbitrage CDOs. Our �ndings suggest that even investors

who have a strong incentive to diversify construct only �small�portfolios. We then turn

our attention to arbitrage CDOs to understand how they transform risk in corporate

bond portfolios and �nd that they rely on VaR to measure risk. This motivates our

proposal for measuring risk in terms of VaR at a Aaa con�dence level. Furthermore, we

conjecture that this measure of risk leads to a linear pricing equation, and we provide

illustrative calculations that show this holds approximately across credit rating classes.

2 The Credit Spread Puzzle

One of the puzzles about credit spreads is that they are much larger than expected losses

from default; in particular, they are much larger than can presumably be accounted for

by the degree, and economic signi�cance, of co-movement between the factors a¤ect-

ing the probability of default and the utility of the typical investor. Table 1 presents

estimates of the average level of spreads in US and European corporate bonds across

rating categories and for three di¤erent levels of average duration.1 These values are

computed using option-adjusted spread (OAS) bond indices provided by Merrill Lynch.

Data for the United States starts in January 1997, and for Europe in January 1999;

both samples end in June 2004.

For US-based corporations, the spreads on Aaa debt have averaged about 50 basis

points at shorter durations and 74 basis points at a duration of about seven years.

Spreads increase signi�cantly as the rating is lowered down to Baa, and even more so

for sub-par investment grade debt, reaching as high as 398 basis points on Ba-rated

bonds with a duration of approximately two years. In addition, the term structures

are upward-sloping for the higher-rated investment grade bonds, hump-shaped for Baa-

debt and downward-sloping for the high yield segment. A qualitatively similar pattern

is observed on European corporate bonds, though the average levels of spreads are lower

than in the United States.
1The notes to the table explain the calculation of average duration.
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Table 2 reports estimates of the average intensity (i.e. instantaneous default proba-

bility) and expected loss across ratings categories. The intensity is calibrated using the

average �ve-year-ahead default rate of corporate issuers � which is an estimate of the

unconditional �ve-year default probability � based on data from Moody�s. Expected

loss is computed as the product of this default probability and a constant rate of loss in

the event of default.2 Loss given default is set equal to one minus the average recovery

rate on senior unsecured debt based on Moody�s recovery rate data. For the United

States, this value is 41.1%; for Europe, it is 18.2%. It is evident that average expected

losses are signi�cantly smaller than average spreads, which is robust across ratings and

regions.3

One useful metric for evaluating spreads is the ratio of average spread to average

expected loss � the �Spread Ratio� in Table 2. These ratios are a rough measure of

the size of risk-neutral relative to physical default probabilities, and hence they provide

evidence on the average size of risk premia associated with idiosyncratic default risk.

The very large size of these ratios suggests that such risk premia are a signi�cant

component of spreads, in both the United States and Europe. While the spread ratios

increase with credit quality, the di¤erence between spread and expected loss � the

�Spread Di¤erence�in Table 2 � declines with credit quality. This suggests that, for a

given price of risk across rating classes, the measure of risk being priced must increase

in absolute value as rating quality deteriorates. Further discussion of these statistics

and their implications for modelling credit spreads is taken up below.

Spreads also change over time. Figure 1 plots the spreads on US corporate debt

for various rating categories and durations. As shown in the graph, spreads varied

considerably over the sample period and they tended to move together across rating

categories and average duration, although the shape of the term structure (not shown

explicitly) varied through the sample period as well. In particular, in regard to our

focus on the puzzle of the large size of spreads, it is important to note that spreads

rarely fell below 30 basis points for the most highly rated (Aaa) debt or below 100 basis

points for Ba-rated debt.

2This calculation implicitly ignores correlation between default probabilities and loss given default.
3We also computed expected loss using unconditional ratings transition matrices based on data

from Moody�s starting in 1985. The results are qualitatively similar.
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2.1 A Model for Pricing Corporate Bond Portfolios

To help illustrate various issues in the remainder of the paper, we layout here a simple

framework for pricing corporate bond portfolios. We consider the class of intensity-

based copula models now common in the literature (e.g. Li (2000), Schonbucher and

Schubert (2001), Hull and White (2004)). Speci�cally, for each obligor i of a credit-

risky security, default time, � i, arrives according to a Poisson process with associated

intensity �i(t). Variation in �i(t) is assumed to be driven by a vector of Brownian

motions W (t), which may contain both common (i.e. aggregate or sector) and �rm-

speci�c factors. Correlation in default times is captured using a latent factor/copula

approach. For simplicity, we will model correlations in default times using the Gaussian

copula, which has become a standard in the market for the pricing of synthetic CDO

tranches.4 Thus, in principle, there are two potential sources of default dependence

in our model: �rst, the default probabilities across two obligors can be correlated due

to the common dependence of intensities on the risk factors W (t); second, the default

times across two obligors can also be correlated.

Suppose there are N issuers of default-risky bonds. Let Li(t) be de�ned as the

percentage loss of face value on bond i in the event of default. Throughout we will

assume that the prices of bonds are arbitrage-free, which implies the existence of a

stochastic discount factor and an associated equivalent martingale measure Q.5 Let

�(t) � Et
�
dQ
dP

�
be the density that de�nes the change of measure from the physical

probability measure P to Q. Following CDGH, we assume that the dynamics of �(t)

are governed by:
d�(t)

�(t)
= ��(t) � dW (t) +

NX
i=1

J�;i(t)dMi(t) (1)

whereMi(t) is the compensated Poisson process given by dMi(t) = d1(� i�t)��i(t)1(� i>t)dt.
As is standard in the literature, di¤usive risk is represented byW (t), with market prices

given by the vector ��(t). The presence of dMi in (1) means that the pricing kernel is

also a¤ected by the default of individual bonds; the market prices on these jump-at-

default risks are given by J�;i(t).

4From a technical perspective, any other form of copula could also be used. Investigating the

implications of alternative copulae for the results presented below is part of our ongoing research.
5In the current context where markets are incomplete, it is not guaranteed that this measure would

be unique.
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A non-zero risk premium on default jump risk is equivalent to risk-neutral intensities

being higher than their physical counterparts. To be speci�c, let �Qi (t) denote the risk-

neutral intensity under the risk-neutral measure Q. The relationship between �i and

�Qi is (see, e.g., Piazzesi (2003)):

�Qi (t) = �i(t) [1 + J�;i(t)] (2)

Thus, if J�;i = 0, then �
Q
i = �i; otherwise, �

Q
i will be larger than �i. In the case that

Et� [J�;i(t)] = v, where v is a constant, then

�Qi (t)

�i(t)
= 1 + v

or, taking unconditional expectations,

E
h
�Qi

i
E [�i]

= 1 + v (3)

2.2 Explanations of the Credit Spread Puzzle

Several explanations of the credit spread puzzle have been o¤ered in the literature.

Here we brie�y review the arguments and evidence regarding the role of taxes, liquid-

ity premia, di¤usive risk premia and jump-at-default risk premia and their e¤ects on

spreads.

2.2.1 Taxes

In the United States, corporate bonds are subject to taxes at the state level, whereas

Treasury securities are not. Since investors compare returns across instruments on

an after-tax basis, arbitrage arguments imply that the yield on corporate debt will

be higher to compensate for the payment of taxes. Maximum marginal tax rates on

corporate bonds vary roughly from 5 to 10% across states. Taking account of the

deduction of state taxes from federal tax, Elton et al (2001) use a benchmark tax

rate of 4.875% to �nd that taxes can account for 28�73% of spreads, depending upon

rating and maturity. Using a di¤erent sample and methods, Driessen (2005) �nds that

taxes may account for 34�57% of spreads. Note that, since taxes are applied to the

level of coupons or yields rather than spreads, they would tend to account for a larger

proportion of spreads in the higher-rated issuers.
6



One argument against attributing a signi�cant role to taxes is that the relevant tax

rate depends upon where the marginal investor in corporate bonds resides. Since tax

rates in some jurisdications are trivial, it is arguable that taxes have no impact at all

on spreads. If this were not the case, all else equal, it would be very pro�table on a

risk-adjusted basis for an investor to take long positions in corporate bonds simply by

residing in a low tax jurisdiction. A second argument against taxes as an explanation

of the credit spread puzzle is that there is less systematic di¤erence regarding the tax

treatment of corporate and government bonds in European countries, yet a spread

puzzle appears to be present on European corporate bonds as well.

2.2.2 Liquidity Premia

Even in the United States, most corporate bonds trade in relatively thin markets. The

market for corporate debt is less mature and even less liquid in Europe. This means

that it is typically more costly to undertake transactions in these instruments than

in equities and government bonds, and investors must be compensated for this. For

example, Schultz (2001) estimates that round-trip trading costs in the US corporate

bond market are about 27 basis points. More generally, there can be uncertainty about

the liquidity (or illiquidity) of a given bond at a given time, and investors might also

require a premium to bear this risk.6 Indeed, several recent studies have argued that

liquidity premia may be the next most important component of spreads after taxes.

Driessen (2005) estimates that liquidity premia account for about 20% of spreads, with

Perraudin and Taylor (2003) obtaining even larger estimates.7

Measuring liquidity premia is tricky. Various proxy measures for the liquidity of

an instrument exist, such as turnover, number of transactions and bid-ask spreads.

However, one problem is that di¤erent theories of market liquidity sometimes give

opposite predictions for the behaviour of these variables. Moreover, at a deeper level,

it is likely that default and liquidity risk are linked together, which means it can be

di¢ cult in practice to identify separate liquidity and risk premia terms.

In terms of the corporate bond market speci�cally, many issues trade little shortly

6This is an example of liquidation risk; see Du¢ e and Ziegler (2003).
7See also Delianedis and Geske (2001), Janosi, Jarrow and Yildrim (2001) and Dignan (2003),

amongst many others.
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after issuance because of holding restrictions on key institutional investors or the incen-

tives on fund managers to construct benchmark portfolios. Yet, buy-and-hold investors

are unlikely to require a large premium for liquidity. For instance, institutional in-

vestors tend to buy and hold the stock of available Aaa-rated bonds because there are

so few �rms with this rating to begin with. As in the case of taxes, the impact of

market liquidity on the price of a given bond will depend upon the marginal investor.

If the marginal investor is a buy-and-hold investor, it is hard to see how illiquidity could

command much compensation.

Some evidence that the recent literature has overstated the role of liquidity premia in

explaining the size of spreads can be gleaned from a comparison of spreads on corporate

bonds and CDSs. The di¤erence between the CDS spread and the spread on a par

�oater bond of the same issuer is known as the default swap basis. In an idealised

case, the basis is equal to zero in the absence of arbitrage opportunities. Figure 2 plots

the basis for the majority of entities included in the Dow Jones Trac-x European High

Grade Series 2 index. As can be seen in the graph, the European basis has mostly been

positive since the CDS market became much more liquid in 2002, averaging 7.2 basis

points over the period shown. In practice, there are several reasons why the basis may

be either positive or negative and can change over time. One reason the basis might

be non-zero is due to greater liquidity in one of the instruments. However, since the

Trac-x index was based on the most actively traded entities in the CDS market, it is

unlikely that a large positive basis could arise due to a relative liquidity premium in

CDS spreads. Thus, the fact that the basis on European Trac-x names has been positive

suggests that the liquidity premium in European corporate bonds has been negligible.8

2.2.3 Di¤usive Risk Premia

How important is the di¤usive risk component in expected excess returns (or, equiva-

lently, spreads)? An answer to this requires having estimates of both the volatility of

returns (�m) and the market price of di¤usive risk (��). Table 3 reports measures of

the volatility of returns on the Merrill Lynch indices. The estimates of volatility are un-

conditional estimates of the monthly volatility of total returns (expressed as annualised

percent). Values of �� are more di¢ cult to obtain. An indirect approach to evaluating

8See Longsta¤ et al. (2005) for contrasting evidence based on CDS spreads for US �rms.
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the importance of di¤usive risk premia is to compute Sharpe ratios and judge whether

they are �reasonable�. Estimates of expected excess returns and the corresponding

Sharpe ratios are shown in Table 3 as well. Expected excess returns are calculated as

spread minus expected loss plus the (ex post) average slope of the term structure.9 As

shown in the table, the Sharpe ratios, across ratings and maturities, are roughly similar

in size to those found in the equity literature. However, it is important to point out that

the measures of volatility in Table 3 are probably upward biased. Since the estimates

are based on monthly changes in bond prices, they also incorporate factors other than

di¤usive volatility that change over time and a¤ect bond prices (e.g. the components of

idiosyncratic risk premia). Thus, the true Sharpe ratios on corporate bonds are likely

larger than what has been observed for equities.

Previous studies have also attempted to estimate what percentage of spreads can

be attributed to di¤usive risk. Elton et al. (2001) run regressions of changes in spreads

(after subtracting expected loss and tax components) on the Fama and French (1993)

risk factors. Using their results, it is possible to estimate what portion of spreads are

explained by these proxies for di¤usive risk. Depending upon maturity and rating,

the Fama-French factors can account for 19-41% of spreads. By contrast, Driessen

(2005) decomposes spreads into several components by estimating an intensity-based

no-arbitrage model using a dataset of prices on individual US corporate bonds. He

�nds that di¤usive risk accounts for a smaller portion of spreads (a maximum of 19%).

2.2.4 Jump-at-Default Risk Premia

In JYL, the assumptions required for conditional diversi�cation to hold imply that

J�;i(t) = 0 in (1). Otherwise, default events will be priced. By making some simplifying

assumptions in the pricing of corporate bonds, it is possible to obtain an estimate of

the average value of J�;i(t) using data on average spreads, default rates and recovery

rates.

Suppose wi(t) is the recovery rate on bond i in the event of default at time t.

9For the United States, the term structure slope is computed by taking the di¤erence between the

yield on the Treasury note with the relevant maturity and the 3-month Tresaury bill rate; for Europe,

yields on German bunds are used. For both economies, the yields data is for zero-coupon constant

maturity securities.
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Under Du¢ e and Singleton�s (1999) �Recovery of Market Value�(RMV) assumption

on recovery in the event of default, wi(t) = Vi(t
�; T )

h
1� LQi (t)

i
, where Vi(t�; T ) is

the price of a zero-coupon credit-risky bond just prior to default and LQi (t) is the (risk-

neutral) loss rate. In this case, the price of a zero-coupon credit-risky bond is given

by

Vi(t; T ) = E
Q
t

�
exp

�
�
Z t+T

t

�
r(s) + �Qi (s)L

Q
i (s)

�
ds

��
(4)

where r(t) is the instantaneous riskfree rate. If �Qi (s) and L
Q
i (s) are the constants �

Q
i

and LQi , then (4) becomes

Vi(t; T ) = exp
�
� (T � t)�Qi L

Q
i

�
EQt

�
exp

�
�
Z t+T

t

r(s)ds

��
(5)

The second term on the right-hand side of (5) is the price of a zero-coupon default-

free bond with the same time to maturity as the corporate bond. Thus, if Si(t) �
yi(t) � yG(t) is the spread on bond i, where yi(t) and yG(t) are the yields to maturity
on bond i and the default-free bond, respectively, (5) implies

Si(t) = �
Q
i L

Q
i

Thus,
�Qi
�i
=
Si(t)

�iL
Q
i

(6)

The denominator on the right-hand side of (6) is approximately equal to expected

loss. Thus, by (3), the Spread Ratio roughly equals 1 + �. The statistics in Table 2

suggest that v varies with rating (and maturity), and the di¤erences across ratings are

large, ranging from as high as 625 for Aaa-rated bonds! down to 2 for Ba-rated bonds

at the �ve-year maturity.

Alternative estimates of v have also appeared in the literature recently. Driessen

(2005) obtains estimates of v ranging from one to �ve. This is based on the ratio of his

estimates of average risk-neutral intensities to the average historical one-year default

probability on the universe of investment grade �rms rated by Moody�s. Furthermore,

Driessen �nds that anywhere from 10 to 37% of spreads can be accounted for by jump-

at-default risk. In other work, Berndt et al. (2004) estimate v to be slightly larger

than one using data on CDS spreads and EDFs from Moody�s KMV to proxy for

physical intensities. CDGH argue that jump-at-default risk premia can only account
10



for a negligible portion of the spread on US investment-grade bonds. They reach their

conclusions by assuming that: (a) di¤usive risk is (relatively) high; and (b) investors can

form large portfolios (e.g. about 1000 corporate bonds). Speci�cally, their estimates of

excess returns and di¤usive volatility are 2.7% and 8%, respectively, and they assume

that the (modi�ed) instantaneous Sharpe ratio is 0.3. This implies that non-di¤usive

risk premia � in their context, the sum of jump-at-default and contagion risk premia

� accounts for only 27% of excess returns. Furthermore, their calibration implies that

the jump-at-default risk premium is only 0.003%.

2.2.5 Size of Feasible Portfolios

Ultimately, jump-at-default risk premia will only be a signi�cant portion of spreads if

credit portfolios only have exposures to a small number of names in practice. A key

question, then, is: how large are corporate bond portfolios that investors can actually

hold? One way to determine the feasible size of corporate bond portfolios is to look at

the size and composition of the Merrill Lynch indices themselves. In the US indices,

there were a total of 752 investment grade issuers on 4 August 2004, although the vast

majority of these are rated A and Baa.10 Notably, there are only 30 and 50 �rms with

a Aaa and Aa rating, respectively. The fact that these numbers are decreasing with

credit quality is consistent with larger spread ratios for higher ratings categories and

an idiosyncratic risk premium being an increasingly important component of spreads

for higher rated �rms.

In reality, there are few investors, if any, who hold the universe of �rms in the Merrill

Lynch indices (or, for that matter, indices from other dealers, e.g. Lehman Brothers).

Instead, it is perhaps more appropriate to examine the structure of open-end corporate

bond funds. Table 4 reports summary measures on the �ve largest investment grade

and �ve largest high yield funds domiciled in the United States (chosen by assets),

which have at least 70% of their portfolio invested in corporate bonds. The values in

the table were determined on 24 August 2004. Focusing on investment grade funds, the

largest is Vanguard Intermediate-Term Investment, which is composed of 385 distinct

issuers; the other top four funds have 130-204 names in them. Notice, however, that

10The Merrill Lynch indices are rebalanced on a monthly basis, so the number of issues and issuers

included in the indices may change over time.
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the number of corporate bond issuers could be much smaller. As shown in the table,

only 81.35% of the Vanguard fund, for example, is corporate bonds. If we were to pool

the top �ve funds, the total number of distinct issuers would be 685, but, again, the

holdings corresponding to each of these are not necessarily corporate bonds.

While the sizes of bond indices and bond funds seem to suggest that credit portfolios

can gain exposures to as many as 700 distinct issuers, many of the securities underlying

these products are not very liquid. In reality, an investor trying to construct their own

corporate portfolio may �nd it very di¢ cult to achieve a similar level of diversi�cation

with those securities that are actively traded. Arguably a better place to look for the

portfolios of marginal investors is the market for collateralised debt obligations (CDOs),

particularly arbitrage CDOs, since this has been a faster growing segment of the credit

market. Arbitrage CDOs are vehicles for securitisation that rely on lower-rated debt

securities as collateral and issue several tranches of notes as liabilities, the bulk of which

are typically Aaa-rated securities. Arbitrage CDOs o¤er interesting insights for our

purposes because they are structured precisely to exploit credit spreads that are wide

relative to expected losses, and their success depends on how well they can diversify

default risk. The extent to which they do diversify would then be evidence of what

kinds of portfolios are attainable in practice.

Table 5 contains statistics on the collateral pools of cash arbitrage CDOs, based on

data fromMoody�s CDO indices. Most important for our purposes is the diversity score,

which is intended to measure the size of the collateral pool in terms of the equivalent

number of obligors with independent default times (i.e. it strips out the e¤ects of

correlations). Across the number of deals reported by Moody�s, the mean diversity score

is 50.69 and the maximum is 64. Moreover, the long ramp-up periods typically required

for assembling the collateral pool suggest that the average-sized portfolio actually being

held at any given time by investors could be signi�cantly smaller than the �nal size of

the portfolio.

3 Lessons from Arbitrage CDOs

Arbitrage CDOs not only provide evidence on the size and structure of corporate bond

portfolios. The risk structure of the liabilities of CDOs sheds light on the pricing

12



of credit risk itself. This section discusses how the risk of CDO collateral pools is

determined. The next section discusses implications for pricing.

As mentioned above, arbitrage CDOs are particularly interesting for our purposes

because they are structured precisely to exploit credit spreads that are wide relative to

expected losses. Indeed, CDO managers have been described as �seekers of spread�,

and issuance of arbitrage CDOs tends to rise when credit spreads are wide.11 One way

to interpret the term �arbitrage�in �arbitrage CDOs�is to think of CDO managers as

essentially pursuing a strategy of arbitrage between physical and risk-neutral intensities.

We will show that the success of this strategy depends on how well the CDO structure

diversi�es default risk. In the previous section, we reported evidence that the collateral

pools of arbitrage CDOs are small in size, around 50-100 names. In this section, we will

infer from the subordination structure of arbitrage CDOs what extent diversi�cation is

attainable in practice, and, as a corollary, what amount of idiosyncratic risk is faced by

holders of feasible corporate bond portfolios.

At the same time, the fact that CDOs are able to transform debt collateral of

various credit ratings into a set of tranched securities, with the most senior tranche

almost always being a highly-rated note with a Aaa rating, suggests that the credit

market has developed a common yardstick for measuring credit risk that applies across

the di¤erent ratings of debt.

3.1 An Arbitrage Strategy?

To understand the strategy of arbitrage CDOs, consider how a CDO manager might

employ a collateral pool of Baa-rated bonds. The estimates in Table 2 suggest that

such bonds would each have a physical default intensity of 0.7% a year and a recovery

rate of 41%. In this case, the expected loss will amount to 40 basis points in annual

terms. Suppose also that the credit spread paid on these bonds is 180 basis points.

If the collateral pool is perfectly diversi�ed, the CDO manager will not need to be

concerned about unexpected losses from default (abstracting from di¤usive risk). By

setting aside 0.4% of the collateral pool to cover expected losses, the amount of the

remaining collateral will constitute a portfolio that has minimal default risk. The

manager can then issue Aaa-rated bonds against this essentially risk-free portfolio. In

11See BIS (2004), pp. 119-120.
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this example, it is the spread di¤erential between Baa-rated and Aaa-rated bonds minus

the proportion of over-collateralisation. Here, the 0.4% over-collateralization will just

equal the losses from default. If the spread on Aaa-rated bonds is 70 basis points, the

arbitrage gain will be 70 basis points (110 basis points for the spread di¤erential and

40 basis points for over-collateralisation). For what is an essentially riskless arbitrage

strategy, this is certainly an extraordinarily large gain.

In practice, of course, we cannot expect such arbitrage opportunities to be readily

available. What prevents CDO managers from consistently making such large gains?

The short answer is that there are no perfectly diversi�ed collateral pools and the

manager must therefore face idiosyncratic risk in the form of unexpected losses from

default. The arbitrage strategy is not truly riskless.12 To illustrate this point, Table

6 shows the liabilities structure of a typical CDO � the Diamond Investment Grade

CDO, Ltd. I � as well as market-wide averages, based on data from JP Morgan

Chase. The collateral in this particular CDO is a mix of di¤erent types, but is mainly

composed of Baa bonds. The total number of names in the collateral pool is 136.

However, the diversity score assigned by Moody�s suggests that the possibility of default

correlations would make the e¤ective number of independent obligors closer to 60 (the

role of correlations will be discussed further below). The loss distribution for a portfolio

of 60 independent obligors assigns a signi�cant probability to large unexpected losses,

and the portfolio is therefore not well diversi�ed. This particular CDO issued notes in

four tranches, with the senior Aaa tranche amounting to 83% of the total face value. The

�equity�portion of 4% plus the mezzanine tranches of 13% represent the subordination

required to protect the Aaa tranche from losses from defaults in the collateral pool.

Since the expected loss is small, most of the required subordination represents coverage

for unexpected losses. Hence, the proportion of subordination is a measure of the

idiosyncratic risk stemming from the limited degree of diversi�cation.

12Conversations with practitioners suggest that one of the main appeals of CDOs is that investors

value the portfolio expertise implicitly o¤ered by the CDO manager. This is yet another reason to

expect we should observe large CDO collateral pools in reality. CDO managers arguably earn pro�ts by

also exploiting liquidity premia in corporate bonds, i.e. by being more e¢ cient at assembling collateral

than the typical investor.
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4 Pricing Risk in Credit Portfolios

To explain credit spreads, we need to specify a mapping between physical and risk-

neutral default intensities. This mapping will entail a risk measure, such that greater

risk leads to a wider spread. In this section, we will propose a risk measure for credit

portfolios and investigate whether this measure can lead to a positive linear relationship

between risk and return.

4.1 Measuring Risk

In portfolio analysis, the most common measure of risk is the volatility of returns,

or, equivalently, the variance of returns. The advantage of this measure is that it is

easy to compute. However, volatility su¤ers from the problem that it gives the same

weight to the �upside�as to the �downside.�Hence, in general, it is contrary to our

intuition about risk, which is about �bad�things happening. Nonetheless, if investment

returns were symmetrically distributed, volatility would be a good summary statistic

for the downside. In the case of credit portfolios, however, investment returns are

not symmetrically distributed. For such portfolios, the possibility of large losses from

default gives us return distributions that are negatively skewed, and here volatility

would be inappropriate as a measure of risk.

How would we capture the downside risk of a credit portfolio? One alternative is to

turn to the family of fairly complicated statistics known as lower partial moments. An

example of these is expected shortfall, which measures the expected loss on a portfolio

conditional on losses having passed some threshold in the tail of the loss distribution.13

Among risk managers, the most widely used measure by far is a much simpler one called

value-at-risk (VaR), which is the amount of loss that is exceeded at a given con�dence

level. Indeed we �nd that this measure is increasingly becoming the standard for

measuring risk in credit portfolios.14 It is from this particular risk measure that we will

draw implications for pricing.

13Expected shortfall has been investigated by Artzner et al. (1999), O�Kane and Schloegl (2002)

and Albanese and Lawi (2003), among others.
14Other studies to examine VaR as a portfolio risk measure include Alexander and Baptista (2003)

in the case of equities and O�Kane and Schloegl (2002) and Albanese and Lawi (2003) in the case of

credit.
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Before we turn to pricing, however, we would like to comment on two objections

that have been leveled against VaR as a measure of risk. The �rst is that the choice

of con�dence level is arbitrary. Should it be 99% or 99.95%? Di¤erent risk managers

would choose di¤erent con�dence levels. The second objection is that, in general, VaR is

not a coherent risk measure. As de�ned by Artzner, Delbaen, Eber and Heath (1999), a

measure m(X) is coherent if it satis�es four axioms: (a) homogeneity: for any number

c > 0, m(cX) = cm(X); (b) monotonicity: m(X) � m(Y ) if X � Y ; (c) risk-free

condition: m(X + k) = m(X)� k, for constant k; and, (d) subadditivity: for any two
payo¤s, X and Y , m(X + Y ) � m(X) +m(Y ). In general, VaR satis�es the �rst three
axioms but not subadditivity.15 This last axiom is important: unless a risk measure is

subadditive, it will not recognize the advantage of diversi�cation.16

Participants in credit markets seem to have found a way around these objections.

With regard to the objection of arbitrariness, the rise of CDOs has led to a convergence

of VaR con�dence levels to the one that is consistent with the survival probability of

Aaa credits. This con�dence level is implicit in the subordination structures of CDOs.

While there are variations in the way credit rating agencies assess CDO structures, the

basic idea is the same. To properly protect the Aaa tranches, which form the largest

part of the structures, the combined size of the subordination tranches is set equal to

the VaR of the collateral pool at the con�dence level of the Aaa survival probability.17

Hence, the choice of con�dence level is no longer arbitrary. Conveniently enough, in

settling on a common VaR con�dence level, CDOmanagers have also found a solution to

15Du¢ e and Singleton (2003) provide the following example of how a VaR risk measure violates

subadditivity. Suppose X and Y are independently and identically distributed payo¤s on two loans,

each of which pays 100 with probability 0.994 and otherwise pays zero. The VaR risk measure at the

99% con�dence level then gives m(X) = m(Y ) = 0. Yet, when we consider a portfolio that combines

half of each loan, we obtain m(X=2+Y=2) = 50. The risk measure deems the more diversi�ed portfolio

to be riskier.
16In addition, as noted by Yamai and Yoshiba (2005), VaR does not take account of losses greater

than the VaR level, which may occur during periods of market stress.
17Strictly speaking, this VaR approach in deciding subordination corresponds to the PD approach

in the way Standard & Poor�s and Fitch assign ratings; for descriptions of these methodologies, see

Standard & Poor�s (2002) and Bund, Neugebauer, Gill, Hrvatin, Zelter and Schiavetta (2003), respec-

tively. An expected shortfall approach corresponds more closely to the way Moody�s assigns ratings

(see Yoshizawa and Witt (2003)).
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the problem of coherence. The Aaa survival probability implies a rather high con�dence

level � in our estimates, this is e¤ectively a con�dence level of 99.999% at the one-year

horizon. At a con�dence level this high, the VaR risk measure will be subadditive for

any two portfolios consisting of lower rated names.

Hence, we propose to measure credit risk based on the VaR of a credit portfolio at

the con�dence level of the Aaa survival probability. So that the risk measure properly

takes account of the size of the portfolio, we specify it as the ratio:

!Aaa(N; �; �) �
V aRAaa (N; �; �)

N
(7)

For purposes of illustration, we construct portfolios of equal-sized bonds for each of N

names with the same default intensity � and a common pairwise default time correlation

�.

In the case of CDOs, the amount of subordination is e¤ectively determined by

rating agencies: they calculate the amount that will be su¢ cient to protect the higher

rated tranches against defaults in the collateral pool at probabilities consistent with the

ratings of those tranches. If, for simplicity, we assume zero recovery from default, then

the required overcollateralization for a collateral pool consisting of N equally weighted

names is given by:

k� � min k s:t: 1� FB(N; k; �i; �) � �Aaa (8)

where FB(N; k; �i; �) is the cumulative distribution for k defaults out of the N bonds,

�i is the default intensity for each individual name in the collateral pool and �Aaa is

the default intensity for the highly-rated senior tranche (for all practical purposes, the

Aaa tranche).

As an illustration, assume that default intensities are independent across the N

bonds in the collateral pool. Then FB will be a cumulative binomial distribution.18

Figure 3 shows the required overcollateralization in proportion to the size of the port-

folio, for each of three di¤erent values of �i: one corresponding to a Ba-rated pool, one

to Baa-rated pool and one to an A-rated pool. The higher the default intensity of the

collateral pool, the higher k�=N will be. Moreover, this ratio is a declining function of

18This procedure for calculating the loss distribution is called the Binomial Expansion Method, which

has been used by Moody�s as part of its methodology for rating several types of CDO structures. See

Cifuentes and O�Connor (1996) for further details.
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the number of names in the collateral pool. Although not shown in the �gure, it can

be surmised that as N gets very large, the ratio approaches from above the di¤erence

in probabilities, �i � �Aaa.19

The relationship between risk and diversi�cation is clearly evident in Figure 3. The

�gure shows that the bigger the collateral pool, the smaller the overcollateralization

ratio and the smaller the risk faced by the CDO manager. The fact that the over-

collateralization ratio continues to decline with the size of the collateral pool means

that arbitrage gains also increase. The CDO manager clearly has a strong incentive

to increase the size of the collateral pool or, more precisely, the number of indepen-

dent names in the pool. In spite of this incentive, however, the typical arbitrage CDO

structured on investment grade assets contains only about 100 names in its collateral

pool, resulting in an average diversity score of only about 51 names (Table 5). In the

case of high-yield collateral, the average diversity score is only 42 names. Only a few

CDOs have had more than 200 names. Conversations with market participants suggest

that it can take many months for a CDO manager to assemble the collateral for a

given structure. It appears that beyond a few benchmark bonds, the cost of searching

for additional names rises sharply, and at some point it simply becomes infeasible to

construct a more diversi�ed portfolio. Hence, full diversi�cation is not achieved even

by those investors who would have the most to gain.20

An important point to note is that k� is just the VaR of the collateral portfolio

with the con�dence level set at FB(N; k; �i; �) = 1 � �Aaa: k� = V aRAaa (N; �i; �).

In other words, the con�dence level is speci�ed to be such that the tail probability

1 � FB(N; k; �i; �) is the Aaa default intensity. The ratio !Aaa in (7) can then be
interpreted as a measure of the risk of a portfolio with N equally weighted names,

19Strictly speaking, the overcollateralisation ratio does not uniformly decline with respect to N .

This is because k� increases with N in discrete steps. That is, when k� increases by one, say, as the

portfolio size increases from N to N + 1, it will be the case that, since k� < N , !Aaa(N + 1; �i; �) =

k�+1
N+1 >

k�

N = !Aaa(N;�i; �). More generally, for loss given default L < 1, !Aaa(N + 1; �i; �) may or

may not be larger than !Aaa(N;�i; �) when the critical value k� changes. In practice, an adjustment

for this type of granularity would be needed to make VaR, as a proportion of portfolio size, a monotone

decreasing function of N .
20Other factors, such as moral hazard, might also limit pro�t opportunities (see, e.g., Du¢ e and

Singleton (2003)).
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each of which has a default intensity �i, and where the dependence of !Aaa on �Aaa is

implicit from the constraint in (8). In Table 7, we report calculations of !Aaa(N; �i; �)

based on di¤erent values for N , our estimates of �i for various credit ratings and

di¤erent assumptions about default time correlations. As was evident in Figure 3, the

calculations show that !Aaa(N; �i; �) tends to decline with N and to rise with �i. They

also show that !Aaa(N; �i; �) rises with default correlation � (systematic risk adds to

risk). Figure 4 illustrates this in more detail. Given �i, a higher � increases the required

over-collateralisation ratio at every value of N . Moreover, as N increases, the required

over-collateralisation ratio becomes relatively larger for high versus small values of �.

4.2 Linear Pricing

We now investigate whether our measure of risk can explain credit spreads. In partic-

ular, we attempt to explain average spreads for each of four rating classes � namely,

Aa, A, Baa and Ba � but doing so only relative to Aaa spreads. We will assume

that Aaa spreads themselves are explained adequately by tax, liquidity and systematic

risk. In our calculations, we match default intensities to credit ratings so that we can

measure risk in portfolios for each rating. In measuring risk, we also allow the size of

the portfolio and the default correlations within the portfolio to vary. Speci�cally, we

examine whether
SP (i)(t)� SAaa(t)
!Aaa(Ni; �i; �i)

=
SP (j)(t)� SAaa(t)
!Aaa(Nj; �j; �j)

� J (9)

holds for credit portfolios P (i) and P (j), i 6= j, where SP (i)(t) is the spread on portfolio
P (i) and SAaa(t) is the spread on a benchmark Aaa-rated portfolio. In (9), we specify

spreads as di¤erentials relative to Aaa spreads, using the typical rating of the senior

tranche in a CDO as a measure of risk in the benchmark portfolio. This also has the

advantage of netting out the possible e¤ects of taxes and any liquidity risk premia in

corporate bonds (assuming these premia are constant across ratings).

Ideally, we would like to test (9) by confronting it with a large number of cross-

sectional observations on spreads and estimates of physical default intensities, along

with estimates of N and �. Estimates of the average values of �i across ratings classes

are provided in Table 2. The analysis above helped shed some light on the typical size

of corporate bond portfolios; namely, N is likely around 100-200, but values as low as 50

or as great as 500 are also possible. Finally, a consensus value of � has not yet emerged
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in the profession, though estimates between 0 and 0.3 have been obtained in several

studies. In the face of uncertainty regarding values of N and �, we can assess whether

(9) matches the stylized facts on spreads and physical intensities across rating classes

for a range of plausible values of N and �. Table 8 reports our calculations of risk

premia (where we adjust expected losses for average recovery rates). Figures 5a-c plot

the di¤erential risk premia against our calculations of risk in terms of !Aaa(N; �i; �) for

di¤erent values of N and �. (9) implies that the observations will fall on a straight line

drawn from the origin. In Figures 5a-c, it appears that an assumed asset correlation of

� = 0:3, with N = 50 or N = 100, results in the straightest lines.

Table 8 con�rms this notion. The table reports J in (9) for di¤erent rating classes

and di¤erent assumptions about portfolio size and correlation. For each set of assump-

tions, the table also reports the mean and standard deviation of the ratios. An assumed

asset correlation of 0.30 and portfolio size of 50 results in the lowest standard deviation.

However, the standard deviation for an assumed asset correlation of 0.30 and portfolio

size of 100 is not very di¤erent. The estimated market price of risk is 136 basis points

for the smaller portfolio and 150 basis points for the bigger one. A correlation of 0.30

and corporate bond portfolios of 50 and 100 names in size are not implausible. Hence,

these calculations suggest that (9) �ts the stylized facts about average spreads and

default intensities across ratings.

5 Conclusions

We have argued that feasible portfolios in credit markets are not nearly large enough for

investors to diversify away idiosyncratic jump risk. A good candidate for the portfolio of

the marginal investor in credit markets is an arbitrage CDO. This class of instruments

has been among the fastest growing segments of the market, and CDO managers have

a strong incentive to diversify. Nonetheless, actual arbitrage CDOs typically make do

with no more than 250 names in their collateral pool, even for synthetic structures.

With just this number of names and with the skewness in return distributions induced

by the possibility of default, any such portfolio would not be diversi�ed. In other words,

idiosyncratic jump risk � or what risk managers often call the risk of unexpected losses

� would remain signi�cant.
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If idiosyncratic jump risk is the risk that investors in credit markets worry about,

how would we measure it? We believe that market participants are implicitly already

converging on a common risk measure. The subordination structures of CDOs rely,

essentially, on a VaRmeasure � more speci�cally, VaR at the con�dence level consistent

with the survival probability of Aaa-rated instruments. For all practical purposes, a

con�dence level this high would make the VaR risk measure a coherent one. The speci�c

risk measure we propose is the ratio of this particular VaR to the size of the portfolio in

question. We call this risk measure �omega�. This measure takes account of portfolio

size in the right way: risk declines as the portfolio gets larger. The risk measure also

captures the e¤ect of default correlations on the risk of unexpected losses.

If indeed omega was the risk measure driving credit markets, then it should explain

credit spreads. To test the plausibility of this idea, we conduct a pricing exercise by

calculating omega for portfolios of di¤erent sizes, di¤erent credit ratings and di¤erent

default correlations. We also compute (for investors who hold these portfolios to matu-

rity) expected excess returns based on average spreads and expected losses from default,

using portfolios of Aaa-rated bonds as a benchmark. We �nd that for portfolio sizes

typical for arbitrage CDOs and for reasonable assumptions about default correlations,

the relationship between omega and di¤erential excess returns is positive and approx-

imately linear. We take this result as suggestive evidence that the risk of unexpected

losses as measured by omega adequately explains corporate spreads.
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Table 1

Average Corporate Bond Spreads

(in basis points)

Duration (years)
Rating 2 5 7

United States
Aaa 47.9 70.1 74.0
Aa 56.5 80.7 86.4
A 83.8 108.1 114.0
Baa 161.3 181.5 176.1
Ba 398.3 338.5 317.0

Europe
Aaa 24.3 33.7 37.0
Aa 34.7 49.5 55.1
A 58.0 83.1 89.9
Baa 127.5 132.9 157.9

Notes: Sample averages of Merrill Lynch�s corporate bond option-adjusted spread in-
dices over the periods January 1997 - July 2004 (United States) and January 1999 -
July 2004 (Europe). "Duration" is the average duration (rounded to nearest integer) of
bonds in the indices as of July 2004 (Merrill Lynch provides index spreads by maturity
buckets); durations of 2, 5 and 7 years correspond to maturity buckets 1-3, 5-7 and 7-10
years, respectively.
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Table 2
Default Probabilities, Expected Loss and Spreads

5-Year Horizon
(in basis points, except for spread ratio)

5-year Excess

Default Exp. Spread Spread Return

Rating Prob. Intensity Loss Spread Ratio Di¤erence vs. Aaa

United States

Aaa 0.5 0.1 0.1 70.1 625.4 70 -

Aa 8.0 1.6 0.9 80.7 55.4 79.8 9.8

A 52.9 10.6 6.2 108.1 13.2 101.9 41.9

Baa 340.4 69.3 40.1 181.5 4.1 141.4 71.4

Ba 1255.3 268.3 147.9 338.5 2.2 190.6 120.6

Europe

Aaa 0.4 0.1 0.1 33.7 209.4 33.6 -

Aa 5.0 1.0 0.6 49.5 35.1 48.9 15.3

A 58.3 11.7 6.9 83.1 6.7 76.2 42.6

Baa 454.1 92.9 53.5 132.9 1.6 79.4 45.8

Notes: See the text for details on computations. Sources: Merrill Lynch, Moody�s.
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Table 3
Expected Excess Returns, Volatility and the Sharpe Ratio

Duration (years)

2 5 7

Excess Sharpe Excess Sharpe Excess Sharpe

Rating Return Vol Ratio Return Vol Ratio Return Vol Ratio

United States

Aaa 1.07 1.71 0.63 2.01 5.03 0.40 2.33 6.11 0.38

Aa 1.15 1.73 0.66 2.10 4.92 0.43 2.44 5.96 0.41

A 1.37 1.65 0.83 2.32 4.75 0.49 2.67 5.81 0.46

Baa 1.81 2.15 0.84 2.72 4.72 0.58 2.95 5.62 0.52

Ba 3.10 5.80 0.53 3.21 5.64 0.57 3.28 7.19 0.46

Europe

Aaa 0.58 1.31 0.45 1.34 3.35 0.40 1.70 4.22 0.40

Aa 0.68 1.30 0.52 1.49 3.39 0.44 1.87 4.20 0.45

A 0.85 1.43 0.60 1.76 3.48 0.51 2.16 4.05 0.53

Baa 1.08 1.76 0.61 1.80 3.28 0.55 2.37 6.00 0.40
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Table 4
Composition of Largest US Open-end Corporate Bond Funds

No. of No. of % in Rating

Fund Name Size Issues Issuers Corporates Duration Mode

Investment Grade

Vanguard IT Investment 4339 533 385 81.35 4.9 Baa

Janus Flexible Income 1166 265 162 72.14 4.6 Baa

Aim Income 807 444 204 76.67 3.8 Aaa

Columbia Income 547 254 191 93.04 4.9 Baa

Strong Corporate 540 203 130 94.26 6.4 Baa

Total (unique) - 1501 685 - - -

High Yield

American High-Income Trust 8991 780 363 90.84 4.6 B

Vanguard High Yield 8855 403 250 94.3 3.6 B

PIMCO High Yield 6700 495 219 81.66 4.2 B

MainStay High Yield 4710 463 261 81.97 4.4 B

Fidelity Capital and Income 4207 508 253 86.99 4.7 B

Total (unique) - 1932 831 - - -

Notes: Figures as of 24 August 2004. This table reports the top �ve investment grade
and high yield funds from a pool of open-end funds that invest at least 70 per cent
on corporate bonds, are domiciled in the United States and have at least USD 300
million worth of assets (fund size in millions of USD). Duration is computed as the
average across securities. "Ratings Mode" is the mode of the ratings distribution of
fund securities based on the Bloomberg composite ratings. Source: Bloomberg.
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Table 5
Composition of Collateral Pools

in Cash Arbitrage CDOs

80th 20th Standard

Mean Max Percentile Percentile Min Deviation

Investment Grade CDOs

Diversity Score 50.69 64 56.5 45 34.1 7.26

Average Rating Ba1 Baa2 Baa3 Ba2 Ba3 -

Average Maturity 5.78 8.26 6.71 4.63 3.47 1.14

High Yield CDOs

Diversity Score 42.44 71.8 55.7 30.88 1 14.67

Average Rating B3 Ba1 B2 Caa1 Ca-C -

Average Maturity 4.82 7.99 5.78 3.91 1.12 1.12

Notes: Statistics are cross-sectional averages across CDO deals based on underlying
collateral. "Average Rating" is converted from the Adjusted Moody�s Rating Factor.
"Average Maturity" is a weighted average, in years. Source: Moody�s.
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Table 6
Tranche Sizes in Cash Arbitrage CDOs

Market Averages
Investment Grade High Yield

Tranche Size ($MM) Portion (%) Size ($MM) Portion (%)
Senior 383.08 81.2 239.50 66.6

Mezzanine 52.97 11.2 69.47 19.3
Equity 35.87 7.6 50.44 14.0
Total 471.92 100 359.41 100

Example: Diamond Investment Grade CDO, Ltd. I
Tranche Size ($MM) Portion (%)
Senior 415 83

Mezzanine 65 13
Equity 20 4
Total 500 100

Notes: "Size" and "Portion" are averages, at issuance. Market-wide data covers the
period 1987-2004. Source: JPMorgan Chase.
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Table 7
Value-at-Risk

Aaa-rated Con�dence Level, 5-Year Horizon

Collateral Portfolio Size
Rating 50 100 500 1000

Correlation = 0
Aa 4 3 1 0.6
A 8 5 2.2 1.6
Baa 16 12 7 5.9
Ba 34 27 18.6 16.8

Correlation = 0.1
Aa 6 4 1.8 1.6
A 12 9 6 5.4
Baa 30 25 20.2 19.3
Ba 56 50 44.6 43.4

Correlation = 0.3
Aa 8 7 4.6 4.2
A 22 19 15.4 14.7
Baa 52 48 43.6 42.6
Ba 82 79 74.2 73.5

Notes: As a percentage of portfolio size.

31



Table 8
Excess Returns versus Value-at-Risk

Aaa-rated Con�dence Level, 5-Year Horizon

Portfolio Size
Rating 50 100 500 1000

Correlation = 0
Aa 236 315 945 1575
A 397 635 1443 1984
Baa 450 600 1029 1221
Ba 340 428 622 688
Mean 356 495 1010 1367

Standard Deviation 92 150 338 550
Correlation = 0.1

Aa 157 236 525 591
A 265 353 529 588
Baa 240 288 357 373
Ba 207 231 259 266
Mean 217 277 418 455

Standard Deviation 47 57 133 162
Correlation = 0.3

Aa 118 135 205 225
A 144 167 206 216
Baa 139 150 165 169
Ba 141 146 156 157
Mean 136 150 183 192

Standard Deviation 12 13 26 34

Notes: Excess return is calculated as spread minus AAA-spread, after adjusting for
expected loss (in basis points).
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Figure 1
US Corporate Bond Spreads
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Notes: Option-adjusted spread indices on US corporate bonds from Merrill Lynch (in
basis points).
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Figure 2
European Credit Default Swap Basis

Sep02 Jan03 May03 Aug03 Dec03 Apr04
-5

0

5

10

15

20

25

30

35

40

Notes: Default swap basis is de�ned as CDS spread minus asset swap spread (in ba-
sis points). Calculated based on entities in Trac-x European investment grade index.
Source: JP Morgan Chase.
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Figure 3
Required Subordination Ratio in an Arbitrage CDO
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Figure 4
Required Subordination Ratio in an Arbitrage CDO:

E¤ects of Correlation
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Figure 5a
Excess Returns vs. VaR
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Figure 5b
Excess Returns vs. VaR
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Figure 5c
Excess Returns vs. VaR

Aaa-rated Con�dence Level, 5-Year Horizon
Correlation = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

VaR (as % of portfolio)

Ex
ce

ss
 re

tu
rn

 (i
n 

bp
)

N = 50
N = 100
N = 500
N = 1000

39


	The Pricing of Unexpected Credit Losses
	Foreword
	Conference programme
	Abstract
	1 Introduction
	2 The Credit Spread Puzzle
	2.1 A Model for Pricing Corporate Bond Portfolios
	2.2 Explanations of the Credit Spread Puzzle
	2.2.1 Taxes
	2.2.2 Liquidity Premia
	2.2.3 Diffusive Risk Premia
	2.2.4 Jump-at-Default Risk Premia
	2.2.5 Size of Feasible Portfolios


	3 Lessons from Arbitrage CDOs
	3.1 An Arbitrage Strategy?

	4 Pricing Risk in Credit Portfolios
	4.1 Measuring Risk
	4.2 Linear Pricing

	5 Conclusions
	References



