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Foreword 

On 28-29 March 2003, the BIS held a conference on “Monetary stability, financial stability and the 
business cycle”. This event brought together central bankers, academics and market participants to 
exchange views on this issue (see the conference programme and list of participants in this 
document). This paper was presented at the conference. Also included in this publication are the 
comments by the discussants. The views expressed are those of the author(s) and not those of the 
BIS. The opening speech at the conference by the BIS General Manager and the prepared remarks of 
the four participants on the policy panel are being published in a single volume in the BIS Papers 
series.  
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1 Introduction1

One of the often-cited virtues of a decentralised economy is the ability of the mar-

ket mechanism to aggregate the private information of the individual economic

agents. Each economic agent has a window on the world. This window is a

partial vantage point for the underlying state of the economy. But when all the

individual perspectives are brought together, one can gain a much fuller picture

of the economy. If the pooling of information is effective, and economic agents

have precise information concerning their respective sectors or geographical re-

gions, the picture that emerges for the whole economy would be a very detailed

one. When can policymakers rely on the effective pooling of information from

individual decisions?

This question is a very pertinent one for the conduct of monetary policy.

Central banks that attempt to regulate aggregate demand by adjusting interest

rates rely on timely and accurate generation of information on any potential

inßationary forces operating in the economy. The role of the central bank in this

context is of a vigilant observer of events to detect any nascent signs of pricing

pressure. Such signs can be met by prompt central bank action to head off

any inßationary forces through the use of monetary policy instruments. More

generally, these actions can be codiÞed in a more systematic framework for the

setting of nominal interest rates, for instance as part of an �inßation-forecast

targeting� regime.

However, by the nature of its task, the central bank cannot conÞne its role

merely to being a vigilant, but detached observer. Its monetary policy role

implies that it must also engage in the active shaping and inßuencing of events

(see Blinder, Goodhart, Hildebrand, Lipton and Wyplosz (2001)). For economic

agents, who are all interested parties in the future course of action of the central

bank, the signals conveyed by the central bank in its deeds and words have a ma-

terial impact on how economic decisions are arrived at. For this reason, Svensson

1We thank Andy Filardo, Marvin Goodfriend, Nobu Kiyotaki, Stephen Morris and Lars

Svensson for their comments on earlier drafts. Hyun Shin thanks the BIS for its hospitality

during his visit in the summer of 2002, when this paper was prepared. The views are those of

the authors and do not necessarily represent those of the BIS.
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(2002) and Svensson and Woodford (2003) have advocated the announcement of

the future path of the short-term policy interest rate as part of a central bank�s

overall policy of inßation-forecast targeting.

Monetary policy thus entails a dual role. As well as being a vigilant observer

of outcomes, the central bank must also be able to shape the outcomes. In an

economy with dispersed information, the central bank�s actions and the infor-

mation it releases constitute a shared benchmark in the information processing

decisions of economic agents. In particular, the central bank�s disclosures � or,

in general, any type of credible public information � become a powerful focal

point for the coordination of expectations among such agents.

Against this backdrop, this paper assesses the implications of public infor-

mation in a small-scale monetary policy model in which agents have imperfect

common knowledge on the state of the economy. We employ a model that

is standard in most respects, but one that recognises the importance of decen-

tralised information gathering and the resulting differential information in the

economy. In particular, building on recent work by Woodford (2003a), our focus

is on the pricing behaviour of monopolistically competitive Þrms with access to

both private and public information.

Our analysis proceeds in two steps. Beginning with a series of simpliÞed

examples, we show how differentially informed Þrms follow pricing rules that

suppress their own information, but instead put disporportionately large weight

on commonly shared information; that is, Þrms suppress their private information

on the underlying demand and cost conditions far more than is justiÞed when

the estimates of fundamentals are common knowledge. For reasonable values for

the strength of strategic complementarity, the aggregate price suffers substantial

information loss, and therefore ceases to be an informative signal of the underlying

demand and cost conditions.

Following up on our partial equilibrium example, we then develop a general

equilibrium model incorporating households and the central bank. A complete

monetary policy model allows us to consider the dynamic implications of the

presence of both public and private information under speciÞc monetary policies.

Our Þrst objective is to solve for a rational expectations equilibrium with a Þnite

dimensional state vector. In addition, we also wish to show whether equilibria
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exist under policies that follow simple rules, as explored in the recent monetary

policy literature. This is followed by an investigation of the equilibrium prop-

erties of the model. First, we examine how changes in the degree of strategic

complementarity and precision of public information affect the sample paths of

the price level. Second, we investigate the dynamic responses of higher-order

expectations to shocks in the underlying economic fundmentals, with particular

emphasis on the role of public signals. Third, we trace out the impact of the

relative precision of public and private signals on the volatility of macroeconomic

aggregates.

In the next section, we provide a brief overview of related literature. Section 3

provides some conceptual background by means of simpliÞed examples of pricing

under differential information. Section 4 develops a complete macroeconomic

model. Equilibrium is solved for in Section 5, while Section 6 explores some

properties of the equilibrium. Section 7 concludes. An appendix contains further

technical results.

2 Related literature

From a theoretical perspective, we have good grounds to conjecture that the �cli-

mate of opinion� as embodied in the commonly shared information in an economy

will play a disproportionate role in determining the outcome. A strand of the

macroeconomics literature begun by Townsend (1983) and Phelps (1983), and

recently developed and quantiÞed by Woodford (2003a), examines the impact

of decentralised information processing by individual agents in an environment

where their interests are intertwined. Indeed, Phelps�s paper is explicitly couched

in terms of the importance of higher-order beliefs � that is, beliefs about the

beliefs of others. For Woodford, the intertwining of interests arises from the

strategic complementarities in the pricing decisions of Þrms. In setting prices,

Þrms try to second-guess the pricing strategies of their potential competitors

for market share. Even when there are no nominal rigidities, the outcome of

navigating through the higher-order beliefs entailed by the second-guessing of

others leads Þrms to set prices that are far less sensitive to Þrms� best estimates
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of the underlying fundamentals. The implication is that average prices suffer

some impairment in serving as a barometer of the underlying cost and demand

conditions.

These results are bolstered by recent theoretical studies into the impact of

public and private information in a number of related contexts. They suggest

that there is potential for the aggregate outcome to be overly sensitive to com-

monly shared information relative to reactions that are justiÞed when all the

available information is used in a socially efficient way. Morris and Shin (2002)

note how increased precision of public information may impair social welfare in

a game of second-guessing in the manner of Keynes�s �beauty contest� that has

close formal similarities with the papers by Phelps and Woodford. Allen, Morris

and Shin (2002) note that an asset�s trading price may be a biased signal of its

true value in a rational expectations equilibrium with uncertain supply, where

the bias is toward the ex ante value of the asset.

A number of recent papers have revisited macroeconomic models with im-

perfect common knowledge by drawing on the recent modelling innovations for

dealing with differential information. In independent work, Hellwig (2002) analy-

ses the impact of public announcements in a semi-structural model with imperfect

competition. He shows that public announcements allow quicker adjustment to

fundamentals, but at the cost of greater noise. Adam (2003) considers optimal

policy in a model with imperfect common knowledge, invoking results from the

literature on information processing capacity. Bacchetta and van Wincoop (2002)

explore the impact of public information in an asset pricing context. Pearlman

and Sargent (2002) and Kasa (2000) extend the analysis of the models developed

by Townsend (1983).

There has also been growing interest in examining more deeply the underlying

rationale for imperfect common knowledge among agents. Is it possible that

agents observe only noisy signals of aggregate fundamentals? If so, why do

agents lack common knowledge? The latter question is easier to address, since

it is presumed to be self-evident that agents have access to (at least partially)

private information in the conduct of their own activities. One answer to the

Þrst question is that data on macroeconomic aggregates are subject to persistent

measurement errors. Publicly available statistics rarely provide a completely
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accurate measure of the true underlying aggregates of economic interest. BomÞm

(2001) has analysed the general equilibrium implications of measurement error

in a common knowledge rational expectations setting. A second answer is that

agents have limited information processing capabilities, along the lines of Sims

(2002). The story is as follows. Consider dividing agents� activities into two

parts: an information processing stage and a decision-making stage. Given the

vast quantity of information at their disposal, both private and public in nature,

it is conjectured that agents can only imperfectly Þlter this data into a set of

statistics upon which to base decisions. But conditional upon their information

sets, agents act optimally. A related argument is that a good deal of public

information that agents pay attention to is imperfectly Þltered by public sources,

for example, newspaper reports or commentators on television.

The existence and likely use of both public and private information suggests

that models with disparately-informed agents should take both types of signals

into account. The strong likelihood that measurement errors in some key macroe-

conomic data series or that processing errors by agents persist indeÞnitely into

the future suggests that the true state of the economy is never revealed. Com-

bining these two features in a monetary policy model is a novel contribution of

this paper.

One potential argument against the plausibility of the importance of higher-

order beliefs in agents� behaviour is the degree of complexity involved in form-

ing these beliefs (see, for instance, Svensson�s (2003a) comments on Woodford

(2003a)). If agents have only limited information processing capabilities, then

how could they be expected to form expectations about others� expectations

about others� expectations and so on? However, there is a clear distinction be-

tween the behaviours exhibited by agents and the informational constraints they

face. Agents form and act upon higher-order beliefs because it is rational for

them to do so. Invoking the well known billiard player analogy, agents act as if

they have knowledge of the workings of the economy, which in our setting requires

that they implictly second-guess others. By contrast, it is not clear how they can

act as if they have perfect common knowledge of the economy�s state. Indeed,

a differential-information rational expectations economy places less stringent re-

quirements upon agents than full information rational expectations models that
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are typical in the literature. The elegance of these latter models can be mislead-

ing regarding the enormous demands placed upon agents in both their behaviour,

which we also impose, and information processing abilities, which we relax.

3 Conceptual background

Before developing our main arguments in a dynamic general equilibrium setting,

let us introduce our conceptual building blocks by means of two simpliÞed ex-

amples in a static context � for the discrete case and the Gaussian case. Our

focus is on the equilibrium consequences of the pricing rule for Þrms that takes

the form:

pi = Eip+ ξEix (1)

where pi is the (log) price set by Þrm i, p is the (log) average price across Þrms, x

denotes the output gap (in real terms) � our �fundamental variable� � and ξ is

a constant between 0 and 1. A rigorous derivation of (1) is presented in Section

4. The operator Ei denotes the conditional expectation with respect to Þrm i�s

information set. The pricing rule given by (1) arises in the classic treatment by

Phelps (1983), and has been developed more recently by Woodford (2003a) for

an economy with imperfectly competitive Þrms.

In a discussion that has subsequently proved to be inßuential, Phelps (1983)

compared this pricing rule to the �beauty contest� game discussed in Keynes�s

General Theory (1936), in which the optimal action involves second-guessing the

choices of other players. Townsend (1983) also emphasised the importance of

higher-order expectations � that of forecasting the forecasts of others. To see

this, rewrite (1) in terms of the nominal output gap, deÞned as q ≡ x+p, yielding
pi = (1− ξ)Eip+ ξEiq. Taking the average across Þrms,

p = (1− ξ) Ēp+ ξĒq (2)

where Ē(·) is the �average expectations operator�, deÞned as Ē(·) ≡ R
Ei(·)di.

By repeated substitution,

p =
∞X
k=1

ξ (1− ξ)k−1 Ēkq (3)
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where Ēk is the k-fold iterated average expectations operator. With differential

information, the k-fold iterated average expectations do not collapse to the single

average expectation. Morris and Shin (2002) show how such a failure of the law

of iterated expectations affects the welfare consequences of decision rules of this

form, and note that increased precision of public information may be detrimental

to welfare. The size of the parameter ξ proves to be crucial in determining

the impact of differential information. In a monopolistically competitive model,

ξ reßects, among other things, the degree of competition between Þrms. The

more intense the competition � that is, the larger the elasticity of substitution

between Þrms� goods � the smaller will be ξ, and hence the more important

higher-order expectations in determining prices.

3.1 Discrete state space

Let us begin with the case when the underlying fundamental variable � the

nominal output gap q � takes on Þnitely many possible values. In addition, all

Þrms share common prior information and receive private signals of the funda-

mental during the period. More speciÞcally, no Þrm observes q perfectly, but Þrm

i observes an imperfect signal zi of q, where zi takes on Þnitely many possible

values. Each Þrm observes the realisation of its own signal, but not the signals

of other Þrms. Let us further suppose that the Þrms can be partitioned into

a Þnite number N of equally-sized subclasses, where Þrms in each subclass are

identical, and commonly known to be so. We deÞne a state ω to be an ordered

tuple:

ω ≡ (q, z1, z2, · · · , zN)

that speciÞes the outcomes of all random variables of relevance. We will denote

by Ω the state space that consists of all possible states. The state space is Þnite

given our assumptions.

There is a known prior density φ over the state space Ω that is implied by

the joint density over q and the signals zi. The prior is known to all Þrms, and

represents the commonly shared assessment of the likelihood of various outcomes.

However, once the Þrm observes its own signal zi, it makes inferences on the
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economy based on the realisation of its own signal zi. Thus, in this example

of a static economy, all Þrms begin with common knowledge, but receive private

signals before making decisions. However, this model can also be interpreted

within the context of a dynamic economy, but one where all information is fully

revealed at the end of each period. Seen from this perspective, the examples

in this section are based on the extreme opposite assumption about information

revelation compared to the macro model developed in later sections, where it is

assumed that the true state is never revealed.

Firm i�s information partition over Ω is generated by the equivalence relation

∼i over Ω, where ω ∼i ω0 if and only if the realisation of zi is the same at ω
and ω0. Some matrix notation is useful. Index the state space Ω by the set

{1, 2, · · · , |Ω|}. In this section we adopt the convention of denoting a random

variable f : Ω → R|Ω| as a column vector of length |Ω|, while denoting any
probability density over Ω as a row vector of the same dimension. Thus, the

prior density φ will be understood to be a row vector of length |Ω|. We will

denote by bi (k) the row vector that gives the posterior density for Þrm i at the

state indexed by k. By gathering together the conditional densities across all

states for a particular Þrm i, we can construct the matrix of posterior probabilities

for that Þrm. DeÞne the matrix Bi as the matrix whose kth row is given by Þrm

i�s posterior density at the state indexed by k. That is

Bi ≡


− bi (1) −
− bi (2) −

...
− bi (|Ω|) −


We note one important general property of this matrix. We know that the

average of the rows of Bi weighted by the prior probability of each state must be

equal to the prior density itself. This is just the consequence of the consistency

between the prior density and the posterior densities. In our matrix notation,

this means that

φ = φBi (4)

for all Þrms i. In other words, φ is a Þxed point of the mapping deÞned by

Bi. More speciÞcally, note that Bi is a stochastic matrix � it is a matrix of
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non-negative entries where each row sums to one. Hence, it is associated with

a Markov chain deÞned on the state space Ω. Then (4) implies that the prior

density φ is an invariant distribution over the states for this Markov chain. This

formalisation of differential information environments in terms of Markov chains

follows Shin and Williamson (1996) and Samet (1998).

For any random variable f : Ω→ R|Ω|, denote by Eif the conditional expec-
tation of f with respect to i�s information. Eif is itself a random variable, and

so we can denote it as a column vector whose kth component is the conditional

expectation of Þrm i at the state indexed by k. In terms of our matrix notation,

we have Eif = Bif . As well as the conditional expectation of any particular

Þrm, we will also be interested in the average expectation across all Þrms. DeÞne

Ēf as

Ēf =
1

N

NX
i=1

Eif

Ēf is the random variable whose value at state ω gives the average expectation

of f at that state. The matrix that corresponds to the average expectations

operator Ē is simply the average of the conditional belief matrices {Bi}, namely
B ≡ 1

N

PN
i=1Bi. Then, for any random variable f , the average expectation

random variable Ēf is given by the product Bf . Since Bf is itself a random

variable, we can deÞne B2f ≡ BBf as the average expectation of the average

expectation of f . Iterating further, we can deÞne Bkf as the k -th order iterated

average expectation of f . Then, the equilibrium pricing rule (1) can be expressed

in matrix form as

pi = ξBiq + (1− ξ)Bip

where pi is now a column vector whose j -th element corresponds to Þrm i �s price

in state j, and with similar redeÞnitions for p and q respectively. Taking the

average across Þrms,

p = ξBq + (1− ξ)Bp (5)
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By successive substitution, and from the fact that 0 < ξ < 1, we have

p = ξ
∞X
i=0

((1− ξ)B)kBq

= ξ (I − (1− ξ)B)−1Bq (6)

= MBq

where M = ξ (I − (1− ξ)B)−1. Thus, equilibrium average price p is given by

(6).

Let us note some comparisons between (6) and the case where all Þrms observe

the same signal, and hence where the law of iterated expectations holds. When

all Þrms observe the same signal, the k-fold iterated average expectation collapses

to the single average expectation, and we have the pricing rule:

p = Bq (7)

The difference between (6) and (7) lies in the role played by matrix M . Note

that M is a stochastic matrix since each row of the matrix ((1− ξ)B)k sums to
(1− ξ)k so that the matrix (I − (1− ξ)B)−1 =P∞

i=0 ((1− ξ)B)k has rows which
sum to 1+(1− ξ)+ (1− ξ)2+ · · · = 1/ξ. It serves the role of �adding noise� (in
the sense of Blackwell) to the average expectation of the fundamentals q. The

effect of the noise is to smooth out the variability of prices across states. Thus,

in going from (7) to (6) the average price becomes a less reliable signal of the

output gap.

The noise matrixM is a convex combination of the higher-order beliefs
©
Bk
ª
,

and higher-order expectations contain much less information than lower-order

expectations in the following sense. For any random variable f , denote by

max f the highest realisation of f , and deÞne min f analogously as the smallest

realisation of f . Then for any stochastic matrices C and D and any random

variable f ,

maxCDf ≤ maxDf

minCDf ≥ minDf

CD is a �smoother� version of D; or, equivalently, CDf is a �noisier� version of

Df . So, the higher the order of the iterated expectation, the more rounded the
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peaks and troughs of the iterated expectation across states. The importance of

the parameter ξ is now apparent. The smaller this parameter, the greater the

weighting received by the higher-order beliefs in the noise matrix M , so that the

prices are much less informative about the underlying fundamentals.

The limiting case for higher-order beliefs Bk as k becomes large is especially

noteworthy. From (4), we know that

φ = φB (8)

so that the prior density φ is an invariant distribution for the Markov chain

deÞned by the average belief matrix B. By post-mulitiplying both sides by B,

we have

φ = φB = φB2 = φB3 = · · ·
so that φ is an invariant density for Bk, for any kth order average belief operator.

Under certain regularity conditions (which we will discuss below), the sequence©
Bk
ª∞
k=1

converges to a matrix B∞ whose rows are identical, and given by the

unique stationary distribution over Ω. Since we know that the prior density φ is

an invariant distribution, we can conclude that under the regularity conditions,

all the rows of B∞ are given by φ. That is

B∞ =


− φ −
− φ −

...
− φ −

 (9)

In other words, the limiting case of higher-order beliefs Bk as k becomes large is

so noisy that all information is lost, and the average beliefs converge to the prior

density φ at every state. For any random variable f , successively higher-order

beliefs are so noisy that all peaks and troughs converge to a constant function,

where the constant is given by the prior expectation f̄ (ie the expectation of f

with respect to the prior density φ):

Bkf →


f̄
f̄
...
f̄

 as k →∞ (10)

The condition that guarantees (9) is the following.
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Condition 1 For any two states j and k, there is a positive probability of making

a transition from j to k in Þnite time.

In our context, condition 1 ensures that the matrix B corresponds to a Markov

chain that is irreducible, persistent and aperiodic. It is irreducible since all states

are accessible from all other states. For Þnite chains, this also means that all

states are visited inÞnitely often, and hence persistent. Finally, the aperiodicity

is trivial, since all diagonal entries of B are non-zero irrespective of condition 1.

We then have lemma 2, which mirrors Samet�s (1998) analogous result for the

iteration of individual beliefs.

Lemma 2 Suppose B satisÞes condition 1. Then, the prior density φ is the

unique stationary distribution, and Bk → B∞, where B∞ is the matrix whose

rows are all identical and given by φ.

Condition 1 has an interpretation in terms of the degree of information shared

between the Þrms. It corresponds to the condition that\
i

Ii = ∅ (11)

In other words, the intersection of the information sets across all Þrms is empty;

there is no signal that Þgures in the information set of all the Þrms. Another

way to phrase this is to say that there is no non-trivial event that is common

knowledge among the Þrms. The only event that is common knowledge is the

trivial event Ω, which is the whole space itself.

When the intersection
T
i Ii is non-empty, then this means that there are

signals that are observed by every Þrm. Hence, the outcomes of signals in
T
i Ii

become common knowledge among all Þrms. One such example would be an

announcement by a central bank. Information contained in
T
i Ii is thus public.

The equilibrium pricing decision of Þrms can be analysed for this more general

case in which Þrms have access to public information, as well as their private

information.

In this case, the limiting results for the higher-order average belief matrices

Bk correspond to the beliefs conditional on public signals. In order to introduce
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these ideas, let us recall the notion of an information partition for a Þrm. Let

Þrm i�s information partition be deÞned by the equivalence relation ∼i where
ω ∼i ω0 if Þrm i cannot distinguish between states ω and ω0. Denote Þrm i�s

information partition by Pi, and consider the set of all information partitions
{Pi} across Þrms. The meet of {Pi} is deÞned as the Þnest partition that is
at least as coarse as all of the partitions in {Pi}. The meet of {Pi} is thus the
greatest lower bound of all the individual partitions in the lattice over partitions

ordered by the relation �is Þner than�. The meet of {Pi} is denoted by^
i

Pi

The meet is the information partition that is generated by the public signals

� those signals that are in the information set of every Þrm, and hence in the

intersection
T
i Ii. The meet has the following property whose proof is given in

Shin and Williamson (1996).

Lemma 3 If two states ω and ω0 belong to the same element of the meet
V
iPi,

then there is positive probability of making a transition from ω to ω0 in Þnite time

in the Markov chain associated with B.

Lemma 3 extends condition 1. The idea is that the transition matrix of the

Markov chain deÞned by the average belief matrix B can be expressed in block

diagonal form:

B =


A1

A2
. . .

AJ


where each sub-matrix Aj deÞnes an irreducible Markov chain that corresponds

to an element of the meet
V
iPi.2 Furthermore, we have φ = φB∞, so that for

2In the static examples considered here, there is a simple way to view the relation between the

model with private signals only and the model with both private and public signals. Consider

the prior φ over the state space Ω in an economy with private and public signals. This can be

transformed into an equivalent economy with only private signals where the prior is given by �φ

and the state space is redeÞned to be �Ω. The new state space �Ω is a subset of Ω, where Ω/�Ω

is the set of states ruled out by the revelation of the public signal.
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any random variable f , the limit of the higher-order expectation is the conditional

expectation based on the public signals only. In other words, we have:

Theorem 4 As k →∞,

Bkf →


E (f | ∩i Ii) (ω1)
E (f | ∩i Ii) (ω2)

...

E (f | ∩i Ii) (ωN )


where E (f | ∩i Ii) (ω) is the conditional expectation of f at state ω based on public
information only.

In the appendix, we provide an alternative proof of this result that uses the

eigenvalues of the average belief matrix that bring out some additional features

of the problem. Theorem 4 implies that for small values of ξ, the dominant

inßuence in determining the average price level p is given by the set of public

signals. For example, suppose the central bank announces a forecast for the

price level, and this is a sufficient statistic for any public signals available to

Þrms. Then the equilibrium average price p will largely reßect the central bank�s

forecast regardless of the underlying cost conditions in the economy.

The argument so far has relied on a Þnite state space Ω, but it can be extended

to more general discrete spaces. Such an extension would be important for

embedding the pricing decisions in a dynamic economy. Let time be discrete,

indexed by the non-negative integers. There is a countable set of economic

variables {f1, f2, f3, · · · } that reßect the fundamentals of the economy such as
productivity, preferences and other exogenous shocks, together with all signals

observed by any economic agent of these variables. Each economic variable fk

can take on a countable number of realisations, drawn from the set Sk. The

outcome space is the product space S ≡ Qk Sk. The outcome of the economy at

time t � given by a speciÞed outcome for each of the economic variables fs � is

thus an element of S. Since each Sk is countable, so is the outcome space S.

The state space Ω is then deÞned to be the set of all sequences drawn from
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the set S. Thus, a typical state ω is given by the sequence

ω = (s0, s1, s2, · · · )
where each st is an element of the outcome space S. Thus, a state ω speciÞes the

outcome of all economic variables at every date, and so is a maximally speciÞc

description of the world over the past, present and future.

Let Ω be endowed with a prior probability measure φ. Each economic variable

fs then deÞnes a stochastic process in the usual way in terms of the sequence

(fs,0, fs,1, fs,2, · · · )
where fs,t is the random variable that maps each state ω to the outcome of the

economic variable fs at time t. The information set of agent i at date t is a

set of random variables whose outcomes are observed by Þrm i at date t. We

denote by Ii,t the information set of Þrm i at date t. The information set Ii,t
deÞnes the information partition of agent i at date t over the state space Ω. This

information partition is denoted by Pi,t. The meet of the individual partitions

at t is the Þnest partition of Ω that is at least as coarse as each of the partitions

in {Pi,t}. The meet at t is denoted by Pt. It is the partition generated by the
intersection of all information sets at date t, as in our earlier discussion. The

meet Pt represents the set of events that are common knowledge at date t.
The analysis of pricing decisions by Þrms can then be generalised to this

new setting. By construction, the state space Ω is countable. Almost all of

the notation and apparatus developed above for the Þnite Ω can then be used

in our new setting, except that we should be mindful of those rules for matrix

manipulation that are not valid for inÞnite matrices. Kemeny, Snell and Knapp

(1966) is a textbook reference for how inÞnite matrices can be used in the context

of countable state spaces.

As before, any probability measure over Ω is denoted as a row vector, while a

random variable f is denoted as a column vector. For each date t, the average

belief matrix Bt is deÞned in the natural way. The s-th row of Bt is the proba-

bility measure over Ω that represents the mean across Þrms of their conditional

beliefs over Ω at date t. Then, the average price at date t satisÞes

pt = ξBtqt + (1− ξ)Btpt (12)
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where pt is the average price at t, and qt is the date t version of the random

variable q in the static case. By successive substitution, and from the fact that

0 < ξ < 1, we can solve for pt.

pt = ξ
∞X
i=0

((1− ξ)Bt)kBqt (13)

For Þnite Ω, we wrote the sum
P∞

i=0 ((1− ξ)Bt)k as (I − (1− ξ)B)−1. How-

ever, for inÞnite matrices, the notion of an inverse is not well deÞned, and we

cannot simplify (13) any further (see Kemeny, Snell and Knapp (1966, Chapter

1)). There is also a more substantial change to our results in this more general

framework. Condition 1 is no longer sufficient for the convergence of higher-order

beliefs to the public expectation (that is, the analogue of lemma 2 fails). The

Markov chain associated with Bt must also be recurrent in the sense of every

state being visited inÞnitely often by the Markov chain. With this additional

strengthening, we can then appeal to the standard result for Markov chains on

the convergence to stationary distributions (see Karlin and Taylor (1975, p 35))

to extend theorem 4 to our more general setting.

3.2 Gaussian case

Having established the intuition for the importance of higher-order beliefs, we

can now show how they can be translated into a Gaussian setting. For reasons

of space, we conÞne ourselves to the static case. Thus, let θ be a normally

distributed random variable with mean µ and variance 1/β0 representing the

fundamentals of the economy, and let agent i�s information set Ii contain signals
{x1, x2, · · · , xn}, where

xi = θ + εi

and εi is normal with mean 0 and variance 1/βi, and εi is independent of θ, as well

as other noise terms εj . Appealing to the formula for conditional expectations

for jointly normal random variables,3 agent i�s conditional expectation of θ is:

Ei (θ) = µ+ VθxV
−1
xx (x− µ) (14)

3See, for example, Searle (1971, p 47).
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where Vθx is the row vector of covariances between θ and (x1, · · · , xn), Vxx is the
covariance matrix of (x1, · · · , xn), and (x− µ) is the column vector of deviations
of each xi from its mean µ. In our case, we have

Vθx =
1
β0
[1, 1, · · · , 1]

Vxx =


1
β0
+ 1

β1

1
β0

· · · 1
β0

1
β0

1
β0
+ 1

β2
· · · 1

β0

1
β0

1
β0

. . .
...

1
β0

1
β0

· · · 1
β0
+ 1

βn


Also, it can be veriÞed by multiplication that the (i, j)-th entry of the inverse

matrix V −1xx is given by 
−βiβjPn
k=0 βk

if i 6= j
βi

³
1− βiPn

k=0 βk

´
if i = j

Thus,

VθxV
−1
xx =

1Pn
k=0 βk

[β1,β2, · · · ,βn] (15)

so that (14) is given by:

Ei (θ) =
β0µ+

Pn
k=1 βkxkPn

k=0 βk
(16)

In other words, agent i�s conditional expectation of θ is a convex combination of

the signals in his information set Ii and the prior mean µ, where the weights are
given by the relative precision of each signal.

Now, let us consider the set of all random variables in the economy. Using

superscript notation, let y0 be a vector of all public signals about the fundamen-

tals θ. This vector includes all signals in the intersection ∩iIi. The prior mean
of θ is a public signal, and so belongs to y0. Let yi be a vector of non-public

signals in i�s information set (ie signals in Ii \∩jIj). Let z be the stacked vector:

z ≡


y0

y1

...
yN

θ
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where y0 is a vector of length n1 + 1, y
i (i = 1, ..., N) are vectors of length n2

and n1 + n2 = n. Suppose that z is jointly normally distributed with covariance

matrix V . Individual i�s information set Ii consists of signals in y0 and yi, where
y0 are the signals that are shared by everyone, while yi consist of the remaining

signals in Ii. Let Eiz be i�s conditional expectation of z. From (16), and from

the fact that the noise terms εi all have mean zero, there is a stochastic matrix

Ai such that

Eiz = Aiz

The matrix Ai has entries that correspond to the weights in (15) and the weight

on the prior mean µ. The average expectation Ēz is the arithmetic average
1
N

PN
i=1Eiz =

1
N

PN
i=1Aiz. We denote:

Ēz = Az

where A ≡ 1
N

PN
i=1Ai. Individual i�s expectation about the average expectation

is given by

EiĒz = AiAz

Hence, the average expectation of the average expectation is given by

ĒĒz =

µ
1

N

NP
i=1

Ai

¶
Az = A2z

In general, the kth order iterated average expectation of z is given by Akz. Let

us partition A so that

A =

·
I 0
R Q

¸
(17)

where I is the identity matrix whose order is the number of public signals. That

is, I is the same dimension as y0. The top right-hand cell of the partitioned

matrix is the zero matrix, since the average expectation of y0 is y0 itself. In

other words, the average expectation of y0 places zero weight on any of the non-

public signals. On the other hand, note that R 6= 0, provided that the public

signals have some information value. Hence, Q is a matrix with norm strictly

less than 1, so that Qk → 0 as k →∞.
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higher-order average expectations then have the following property. First, as

the order of expectation becomes higher, more and more weight is placed on the

public signals, and less weight is placed on the non-public signals. This is so,

since

Ak =

"
I 0³Pk−1

i=0 Q
i
´
R Qk

#

and
n³Pk−1

i=0 Q
i
´
R
o∞
k=0

is a sequence whose norm is increasing in k, while
©
Qk
ª

is a sequence whose norm is decreasing in k. In the limit where k →∞, we have

Ak →
·

I 0
(
P∞

i=0Q
i)R 0

¸
=

·
I 0

(I −Q)−1R 0

¸
Thus, in the limit as k →∞, the higher-order average expectation places weight
only on the public signals. The private signals receive zero weight. We therefore

have the analogue of theorem 4, but this time for the Gaussian world.

A Markov chain interpretation can also be given, although the Markov chain

in the Gaussian example is one over signals, rather than states of the world. Each

random variable in z is associated with a state in a Markov chain, whose transition

matrix is given by A. The fact that A can be partitioned as in (17) means that

the public signals correspond to the absorbing states of the Markov chain � that

is, once the system settles on such a state, it never emerges. The private signals

and the fundamentals θ correspond to all the transient states in the chain. The

long-run probability of being in such a state is zero. The weights on the public

signals in the higher-order expectations matrix Ak thus give the probability of

having been absorbed at date k. As k becomes large, the probability of being

absorbed tends to 1.

4 A monetary policy model

We now consider the general equilibrium implications of the presence of both

public and private information in monetary policy models. Our analysis is based

on a model with standard behavioural assumptions on households and Þrms. All
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agents are rational, in the sense that they know the structure of the economy and

make optimal decisions based on their information sets. The only departure we

make from the benchmark full information rational expectations setting is the

absence of common knowledge of the state of the economy among some agents.

SpeciÞcally, as in the partial equilibrium example studied in the previous section,

we assume that Þrms receive private and public noisy signals of current shocks.

By contrast, households and the central bank are assumed to observe these shocks

perfectly. This helps keep the focus on the pricing decisions, where the presence

of strategic complementarities allows differential information to have important

dynamic effects.

In this section we describe the behaviour and information sets of households,

Þrms and the central bank, respectively. In Section 5 we characterise equilibrium,

while in Section 6 we provide some simulation results illustrating the properties

of the model.

4.1 Households

Households maximise their discounted expected utility of consumption subject to

their budget constraint. One issue that must be addressed at the outset is the

potential implications of having households possess private information. As men-

tioned above, we assume that households have full knowledge of the state. This

allows households to mitigate idiosyncractic risk in incomes through insurance

markets without greatly complicating our analysis. Households make identical

consumption choices and we avoid having to keep track of the distribution of

wealth. However, our assumption of perfect income insurance is only reasonable

if we assume that households have perfect common knowledge without introduc-

ing complications regarding costly state veriÞcation. In addition, we would need

to consider how rational expectations equilibria are established in asset markets

under differential information. Incorporating asset market issues would take us

too far astray, and divert attention from the main focus of our paper. Thus,

both for the purpose of ensuring identical consumption decisions and for the

purpose of avoiding asset market complications with differential information, we

model households as having maximally-speciÞc information sets with regard to
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all economic variables that have been realised to date.

To be more speciÞc, we will assume that at any date t, households� information

sets are identical, and include the realisations of all current and past economic

variables {f1, f2, · · · }. Thus, at date t, all households have the information set

I∗t ≡ ∪s {fs,0, fs,1, · · · , fs,t}

Households� conditional expectations operator at date t is given by

Et (·) ≡ E (·|I∗t )

At date t, households know at least as much as any other agent in the economy,

including Nature, who has chosen the latest realisations of the economic variables.

Each household z supplies labour services of one type, Ht(z, i), for Þrm i, and

seeks to maximise

E0

( ∞X
t=0

βt [u(Ct(z))− v(Ht(z, i))]
)

(18)

subject to the budget constraint

Et[δt,t+1Ξt+1] ≤ Ξt +Wt(i)Ht(z, i) + Φt − PtCt(z) (19)

Within each period, the household derives utility, u(·), from consuming the Dixit-
Stiglitz aggregate, Ct(z), deÞned as

Ct(z) ≡
·Z 1

0

Ct(z, i)
²−1
² di

¸ ²
²−1

(20)

where Ct(z, i) is household z�s consumption of product i and ² > 1 is the elasticity

of substitution between differentiated products. As ² increases, goods become

ever closer substitutes (ie Þrms have less market power), and hence the degree of

strategic complementarity increases. Supplying Ht(z, i) hours reduces welfare, as

indicated by the function v(·). We assume that labour markets are competitive
and a equal number of households supply labour of type i.

Households can insure against idiosyncratic risk in incomes (as mentioned

above) and therefore consume the identical amount given by Ct. In the budget
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constraint, Pt denotes the price index corresponding to the aggregate Ct deÞned

as

Pt ≡
·Z 1

0

Pt(i)
1−²di

¸ 1
1−²

(21)

where Pt(i) is the price of product i; Ξt denotes the nominal value of the house-

hold�s holdings of Þnancial assets at the beginning of period t;Wt(i) is the nominal

hourly wage for supplying labour of type i; Φt is the household�s share of Þrms�

proÞts, which we assume are distributed lump-sum to households, and δt,s is a

stochastic discount factor, pricing in period t assets whose payoffs are realised in

period s. We assume there exists a riskless one-period nominal bond, the gross

return on which is given by Rt ≡ (Etδt,t+1)−1. Finally, notice that we have not
assumed that housholds can insure against idiosyncratic variation in labour sup-

ply, although, in equilibrium, households who supply labour to Þrm i will work

the same amount, Ht(i).

Given the overall level of consumption, households allocate their expenditures

across goods according to

Ct(i) =

·
Pt(i)

Pt

¸−²
Ct (22)

The Þrst-order condition for determining the optimal level of consumption, given

the allocation of consumption across goods expressed in (22), is Λt = uc(Ct),

where Λt is the marginal utility of real income, and the standard Euler equation

is given by

Λt/Pt = βRtEt[Λt+1/Pt+1] (23)

A log-linear approximation of (23) around Λt = Λ̄, Rt = R̄ and Pt+1/Pt+1 = 1

results in

λt = Etλt+1 + rt − Etπt+1 (24)

where πt+1 ≡ log(Pt+1/Pt) is the inßation rate and lower case represents percent
deviation of a variable from its steady state.

Market clearing requires that Ct = Yt − Gt, where Yt is the aggregate de-
mand for output and Gt is an exogenous component of demand (eg exogenous
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government expenditures). Since Λt = uc(Yt −Gt), λt can be expressed as

λt = −σ (yt − gt) (25)

where σ ≡ ucc(C̄)C̄/uc(C̄) is the inverse of the intertemporal elasticity of substi-
tution. Substituting out for λt in (24) yields a �forward-looking IS equation�:

yt − gt = Et (yt+1 − gt+1)− σ−1 [rt −Etπt+1] (26)

It is convenient to write (26) in terms of the output gap, xt ≡ yt − ynt , where
ynt is the �natural rate of output�, the level of output that would be obtained in

a full information rational expectations equilibrium. The resulting expression is

xt = Etxt+1 − σ−1 [rt − Etπt+1 − rnt ] (27)

where rnt ≡ σEt
£¡
ynt+1 − gt+1

¢− (ynt − gt)¤ is the �natural rate of interest� (see
Woodford (2003b)). It will turn out that rnt is a sufficient summary measure

of all exogenous shocks in our model. As such, instead of specifying stochastic

processes for the more fundamental shocks, we specify a process for rnt directly.

In particular, rnt is assumed to follow a Markov process given by

rnt = ρr
n
t−1 + εt, εt

iid∼ N(0,σ2ε) (28)

Finally, the Þrst-order condition for optimal labour supply is found by equat-

ing the marginal rate of substitution of consumption for leisure with the real

wage

Wt(i)

Pt
=
vh(Ht(i))

Λt
(29)

4.2 Firms

Consider Þrst the optimal pricing decisions of Þrms, taking as given each Þrm�s

information set. Each Þrm i faces a Cobb-Douglas production technology with

constant returns to scale

Yt(i) = Kt(i)
ζ(AtHt(i))

1−ζ (30)
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where Kt(i) is the capital input of Þrm i, At denotes a labour-augmenting tech-

nology shock and 0 < ζ < 1. For simplicity, we assume that the level of the

capital stock is Þxed and equal across Þrms (ie Kt(i) = K̄). This assumption

means that the demand for each good has the same form as (22), namely

Yt(i) =

·
Pt(i)

Pt

¸−²
Yt (31)

The pricing decision by the Þrm is a static optimisation problem, where the

Þrst-order condition is given by

Eit

·
∂Πt(i)

∂Pt(i)

¸
= Eit

·
(1− ²) Yt(i)

Pt
+ ²

Yt(i)

Pt(i)

MCt(i)

Pt

¸
= 0 (32)

where Πt(i) is Þrm i�s real proÞt function andMCt(i) is its nominal marginal cost

of producing an extra unit of output. Firms� conditional expectations operator

at date t is given by

Eit (·) ≡ E
¡·|I it¢

where Iit is the information set of Þrm i (see below).

Rearranging (32) yields

Eit

·
Pt(i)

Pt
− ²

²− 1
MCt(i)

Pt

¸
= 0 (33)

Thus, the Þrm chooses its price such that its expected relative price is a constant

markup over expected real marginal cost. In a situation of complete common

knowledge, equation (33) reduces to the familiar condition that Þrms set their

price equal to a Þxed mark-up over marginal cost.

A log-linear approximation of (33) around Pt(i)/Pt = 1 and St(i) ≡MCt(i)/Pt =
(²− 1)/² gives

Eit [�pt(i)− st(i)] = 0 (34)

where �pt(i) ≡ log(Pt(i)/Pt).
Since real marginal cost is equal to the ratio of the real wage to the marginal

product of labour, and in equilibrium the real wage must also equal the marginal
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rate of substitution, as given in (29), a log-linear approximation of real marginal

cost can be expressed as

st(i) = ωyt(i)− (ν + 1)at − λt (35)

where ν ≡ vhh(H̄)H̄/vh(H̄) is the inverse of the Frisch elasticity of labour supply
and ω ≡

³
ν+ζ
1−ζ
´
. Substituting (25) into (35) and rearranging gives

st(i) = (ω + σ) (yt − ynt )− ω²�pt(i)

where ynt , deÞned above as the natural rate of output, is given by

ynt ≡
1

(ω + σ)
[(ν + 1)at + σgt] (36)

We can now substitute the expression for marginal cost, given by (35), into

the Þrst-order condition for pricing, (34), to yield

pt(i) = E
i
tpt + ξE

i
txt (37)

where ξ ≡ (ω + σ)/(1 + ω²). This equation is analogous to (1). Averaging (37)
across Þrms gives

pt = Ētpt + ξĒtxt (38)

where the average expectations operator, Ēt (�) ≡
R 1
0
Eit (�) di, is the average

expectation across Þrms.

Next, consider the information sets of Þrms. The underlying sources of ag-

gregate disturbances are the demand shock gt and the productivity shock at,

which enter the model through the natural rate of interest rnt . To simplify mat-

ters, we assume that each Þrm observes one private and one public signal of rnt .

SpeciÞcally, Þrm i�s information set is given by

Iit ≡ {rns (i), rns (P )}ts=0
where rnt (i) and r

n
t (P ) are the private and public signals, respectively, of r

n
t . The

conditional distribution of each signal, given rnt , is assumed to be normal with

mean rnt and constant variance; namely,

rnt (i) = r
n
t + vt(i), vt(i)

iid∼ N(0, σ2v) (39)
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rnt (P ) = r
n
t + ηt, ηt

iid∼ N(0, σ2η) (40)

The innovations in (28) and (39)-(40) are assumed to be independent of each

other at all leads and lags.

Other plausible assumptions on Þrms� information sets could also be incor-

porated into our framework. For example, one alternative approach would be to

have Þrms obtain signals of endogenous variables directly, instead of the under-

lying fundamental shocks. For instance, Þrm i might observe a private signal of

the price level such as pSt (i) = pt + e
p
t (i). We could also allow Þrms to observe

all of the variables involved in their own production activities, such as their own

output, hours hired and wages paid. In the current setup, if Þrms can observe

their own output and hours employed when making pricing decisions, then they

can infer without error the value of the technology shock At (or equivalently, at)

from the production function (30). However, Þrms would still not be able to infer

the exact value of gt, and hence r
n
t .

4.3 Monetary policy

A large literature has developed recently examining the properties of different

monetary policies. One approach taken has been to solve for optimal policy,

where the central bank maximises a measure of expected discounted utility of

the representative agent (see, eg, Rotemberg and Woodford (1997)).4 An alter-

native approach is to specify the conduct of policy directly in terms of a (Þxed)

instrument rule. The type of instrument rule typically studied is an interest rate

reaction function due to the fact that most central banks conduct monetary pol-

icy in practice by setting a target for a short-term nominal interest rate. Yet

another approach, and the one followed in this paper, is to specify a targeting

rule for the central bank. A targeting rule is a relation, analogous to a Þrst-order

condition, to be satisifed between some combination of the endogenous and ex-

ogenous variables in the model. Svensson (2003b) and Svensson and Woodford

(2003) provide a general characterisation of targeting rules and describe their

4In other work (Amato and Shin (2003b)), we consider optimal monetary policy in a model

similar to the one presented here.

26



merits.5

One advantage of employing a targeting rule is that it provides a transparent

description of what monetary policy aims to achieve. In this paper, we consider

targeting rules of the form

pt + λxt = δr
n
t (41)

Targeting rules expressed in terms of the price level, similar to (41), have been

shown to have desirable welfare properties in sticky-price models. For instance,

Svensson (1999) and Vestin (1999), among others, have demonstrated that when

the central bank is unable to commit to its future actions, a price-level target-

ing rule performs better than an inßation-targeting rule even if society�s welfare

directly depends upon inßation but not the price level.

It should be noted, however, that (41) does not tell the central bank how to

set the level of the short-term nominal rate on a period-by-period basis. This

would require Þnding an instrument rule that is consistent with obtaining the

relationship (41) in equilibrium subject to the behavioural equations (27) and

(38). In fact, for a given model describing the behaviour of the private sector,

there may be several interest rate rules consistent with the targeting rule (41).

As an example, in the next section we will illustrate that an instrument rule of a

common form can implement (41) in an equilibrium.

One important additional assumption we make is that the central bank has

the same information set as households.6 This means that policymakers observe,

among other things, the current price level and output without error. The

reason for assuming that the central bank observes the state perfectly is, once

again, to keep our focus on the impact of differential information on Þrms� pricing

behaviour and its macroeconomic consequences.

5Additional assumptions may also be required to characterise policy depending upon which

approach is taken. For example, there are different notions of optimality that are linked to the

treatment of the time-consistency problem (see, eg, Giannoni and Woodford (2002)).
6Recall that households� information sets are maximally speciÞc with regard to all random

variables realised to date.
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5 General equilibrium

The complete model is given by the behavioural equations (27) and (38); the

central bank�s targeting rule (41); the process for the natural rate of interest

(28); and the processes for the signals (39)-(40). In this section, we set up the

model in state-space form, solve for the stochastic process followed by the state

and then determine the equilibrium of the price level, output gap and the interest

rate. In the next section, we illustrate some of the properties of the model.

The Þrst step in solving the model is to describe the state space and determine

the stochastic process followed by the state. In the present model, the state,

denoted by Xt, is given by

Xt ≡
·
θt
ψt

¸
(42)

where θt is a vector of exogenous variables and ψt is deÞned as

ψt ≡
∞X
k=1

ξλ (1− ξλ)k−1 Ēkt (θt) (43)

where ξλ ≡ ξ/λ and Ēkt (�) is the k -th order average expectations operator. The
exogenous state variables are

θt ≡
·
rnt
ηt

¸
which follows a Markov process given by

θt = Bθt−1 + but (44)

where

B ≡
·
ρ 0
0 0

¸
, b ≡ I2

ut ≡
·
εt
ηt

¸
, ut

iid∼ N(0,Ωu)

Ωu ≡
·
σ2ε 0
0 σ2η

¸
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In and 0n denote the n× n identity and null matrices, respectively.7
Each Þrm observes the vector of variables

ysigt (i) ≡
·
rnt (i)
rnt (P )

¸
In terms of Xt, y

sig
t (i) can be expressed as

ysigt (i) = ZXt + zvt(i) (45)

where

Z ≡ £ Z1 02
¤
, Z1 ≡

·
1 0
1 1

¸
, z ≡

·
1
0

¸
and the process for vt(i) is given in (39).

Lemma 5 Given equations (44) and (45), the state Xt, deÞned in (42), follows

the Markov process given by

Xt =MXt−1 +mut (46)

where

M ≡
 B 02

G H

 ,m ≡
 b

h

 ,
and the matrices G, H and h are given in equations (60), (64) and (62), respec-

tively.

Proof. See Appendix A.2.

It is now straightforward to Þnd the equilibrium processes of pt and xt as a

function of the state Xt. Substituting (41) into (38) yields

pt = (1− ξλ) Ētpt + δξλĒtrnt
7We have started to recycle notation here. However, in the following, the appropriate

reference object should be clear.
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Solving this expression by repeated substitution (as in Section 2), we get

pt = δ
∞X
k=1

ξλ (1− ξλ)k−1 Ēkt rnt (47)

= δe03Xt (48)

where ei is the 4x1 unit vector with 1 in the i -th position. Substituting (48) into

(41) implies that

xt =
δ

λ
(e1 − e3)0Xt (49)

We can also determine the process followed by rt as a function of the state Xt.

Using the solutions for pt and xt in (48)-(49) and the stochastic process for Xt

given by (46), the solution for rt can be found by rearranging (27) and making

the appropriate substitutions. This gives

rt = σEt (xt+1 − xt) + Et (pt+1 − pt) + rnt
=

µ
[M 0 − I]

·
σδ

λ
(e1 − e3) + δe3

¸
+ e1

¶0
Xt (50)

While equation (50) describes how the interest rate should respond to the

state Xt, it is not necessarily a description of how policy should be implemented.

In other words, (50) does not have to be the instrument rule followed by the

central bank in determining the appropriate level of its policy rate target on a

period-by-period basis. In fact, a policy of setting interest rates directly according

to (50) may have some undesirable consequences. For instance, in the special case

of full information in models of the type considered here, it is well known that

rules that specify the interest rate to be a function solely of exogenous variables

lead to indeterminancy of equilibrium (eg Woodford (2003b)).

For now, it is informative to show that the targeting rule (41), and the re-

sulting equilibrium characterised by (48)-(50), can be implemented by a simple

instrument rule. Taylor�s (1993) rule (and its generalisations) is a well-known

example. Here we show that a rule where the short-term nominal interest rate

responds only to the price level and output gap is consistent with the equilibrium

relation (41). SpeciÞcally, we consider an instrument rule of the form

rt = αppt + αxxt (51)
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The main difference between (51) and the Taylor rule is the inclusion of the price

level instead of the inßation rate.8

Lemma 6 The targeting rule (41) and the resulting equilibrium processes for pt,

xt and rt given in (48)-(50) can be implemented by an instrument rule of the

form (51).

Proof. See Appendix A.3.

6 Model properties

Here we examine several features of the model presented above. Before pro-

ceeding, we must choose values for the parameters. These are given in Table 1.

Our choices for the preference and technology parameters fall within the range

of values typically used in the literature. The parameters governing the process

of rnt can be rationalised on the basis of estimates provided in Rotemberg and

Woodford (1997) (see Woodford (1999) for further discussion). The variances

of the noise terms in the signals have been chosen somewhat arbitrarily because

there is not much evidence to draw upon in these cases. In the baseline, as well

as the alternatives considered below, the variance of the noise terms (0.2% each)

has been chosen to be much smaller than the variance of the fundamental rnt

(set equal to 1%). Introspection would suggest that measurement and Þltering

errors are typically smaller in magnitude than variability in the fundamentals of

the economy; whether this is true in actual economies, however, remains to be

determined. Finally, regarding monetary policy, we set both λ and δ equal to one.

This implies that the central bank aims for the nominal output gap, deÞned as

pt + xt, to ßuctuate one-for-one with the natural rate of interest. This is similar

to nominal GDP targeting, except that account is taken of ßuctuations in the

natural rate of output.

Before proceeding, however, it is worth noting that perfect stabilisation of

the price level and the output gap is actually feasible in the current version of

8In addition, the coefficients αp and αx will be determined as a function of the model�s

structural parameters and the parameters of the targeting rule (41).
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our model. This can be seen by setting δ = 0 in the targeting rule (41), and

hence the solutions for pt, xt and rt in (48)-(50). If we also assume that the

natural rate of output is the efficient level of output (ie resulting from a subsidy

to Þrms to eliminate the distortion due to monopolistic competition and thereby

raise steady-state output), then perfect stabilisation would correspond to the Þrst-

best equilibrium. While this is an interesting property of the model, we view it as

not being very relevant for the purposes of understanding how monetary policy

can work in actual economies. The reason is that complete stabilisation can

only be achieved under our assumption that the central bank perfectly observes

current and past values of the state. In the more realistic setting where the

central bank also obtains only noisy signals of fundamentals, this equilibrium is

no longer feasible. The virtue of the current analysis is its relative simplicity in

demonstrating the basic properties of a differential information economy.

6.1 Changing weights on higher-order beliefs

Recall that one of the key parameters of the model is ξ, which, being the nu-

merator of ξλ, determines in part the relative weight attached to higher-order

expectations in the pricing relation (47). Among other things, ξ depends in-

versely upon the elasticity of substitution, ². Thus, an increase in ², which

increases the coordination motive among Þrms and produces a smaller steady-

state markup, gives a more prominent role to higher-order beliefs by lowering

ξ.9 One feature of the macro model we wish to highlight is the implication of

changing ξ on the sample paths of the output gap and the price level. We do this

by altering the value of ², since it enters the model only through ξ.

The results of one such experiment are shown in Figure 1. Each panel of

the Þgure plots one sample realisation (time series) of the price level against the

output gap using the same randomly drawn sample of shocks. The cases in

the panels are distinguished by their treatment of ² and the relative precision of

the public signal, deÞned as 1/σ2η. The data in the left-hand side panels have

9As already noted by Woodford (2003a), such changes are more critical in the current setting

than in standard sticky-price models, where an increase in competition lowers the elasticity of

inßation to the output gap, but no more.
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been generated under a steady-state markup of 25%, whereas the right-hand side

panels correspond to a markup of 5%. In addition, the top panels report cases

with high-precision public signals (1/σ2η = 10%), whereas the lower panels are

based on low-precision public signals (1/σ2η = 5%). The plots suggest that,

conditional on the output gap, an increase in competition (lower markup) or a

decline in the precision of the public signal spreads out prices. This is most

evident in the lower right panel, where prices depend relatively more on higher-

order expectations (due to lower ξ), which in turn are adversely affected by noisier

information (less precise public signals).

These scatter plots intimate the potential degradation of the information value

of price as a signal of the output gap. For economies that have relatively noisy

public signals and a high degree of competition, prices convey poor quality infor-

mation about the underlying output gap.

6.2 Impulse responses of higher-order beliefs

One way to illustrate the dynamic impact of differential information is to plot

the impulse responses of higher-order beliefs of the fundamentals. In particular,

recalling that the aggregate price level is given by the inÞnite weighted sum

of k -th order average expectations of rnt , we wish to examine the evolution of

random variables such as Ēkt (θt). To compute the impulse responses of Ē
k
t (θt)

to innovations in θt, we Þrst must determine its law of motion. DeÞne

Ψ
(k)
t ≡


Ēkt (θt)
Ēk−1t (θt)

...
Ēt (θt)
θt

 (52)

The following lemma gives the stochastic process followed by Ψ
(k)
t .

Lemma 7 The (k+1)-dimensional vector of sequential higher-order beliefs Ψ
(k)
t ,

deÞned in (52), follows the Markov process given by

Ψ
(k)
t = B(k)Ψ

(k)
t−1 + b(k)ut
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where B(k) and b(k) are given in (90) and (91), respectively.

Proof. See Appendix A.4.

Figure 2 shows the responses of the Þrst eight orders of average expectations

of rnt with respect to a cumulative one-percent deviation in r
n
t from zero (recall

that all variables are expressed as deviations from steady state). The solid line

shows the path followed by rnt itself. The other lines show the responses of the

Þrst-order (solid with circles) through eighth-order (solid with asterisks) average

expectations. It is evident that higher-order expectations respond more sluggishly

to the shock, with virtually no initial response in expectations as low as order four

(solid with square). The discrepancy between Ēkt (r
n
t ) and r

n
t is also monotonically

increasing in k in each period after the shock.

Similar to Figure 2, Figure 3 shows the responses of Ēkt (r
n
t ) to an innovation

in the noise of the public signal (ie ηt). For clarity, expectations for k = 1, 2, 4, 8

are only plotted. In the period of the shock, only the response of the Þrst-

order average expectation is much different than zero. Thus, even though a

larger weight is given to the public signal as the order of expectation increases,

this is more than outweighed by the dampening effect of the presence of public

information on higher-order expectations. In addition, notice that there is a

delay in the peak response in expectations of order higher than one, with the

delay increasing in k.

Lastly, Figure 4 compares the responses of higher-order expectations to a

shock in rnt in the current model with public information (solid lines with symbols,

as in Figure 2) to the responses in an analogous model without public signals

(dashed lines with symbols). Again, the plain solid line is the path of rnt . For low

orders (k = 1 or k = 2), the dynamic response in expectations in the presence

of public signals is always closer to rnt than in the model without public signals.

Note that in this experiment the public signal always equals the true value of rnt

(ie the noise term in the public signal is assumed to be zero at all times). Thus,

this Þgure demonstrates the beneÞcial effect of public information in aligning low-

order average expectations closer to the fundamental. However, the relative initial

reponse of expectations of a higher order (k = 4 or k = 8) is the opposite. The

larger weight agents place on the public signal in these cases is not sufficient to
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counterbalance the relatively more sluggish adjustment of expectations overall in

the presence of public information. Nonetheless, the response of Ēkt (r
n
t ) converges

to rnt more quickly when there is public information (see also Hellwig (2002)).

This effect is largely due to the higher persistence imparted to rnt compared to

the noise in the public signal, ηt.

6.3 Volatility and the quality of public information

We next demonstrate that more precise public information does not necessarily

lead to lower volatility among endogenous variables. This result is evident in

Figure 5. This Þgure plots values of the variances of the endogenous variables as

a function of the precision of the public signal. In each panel, the solid line is

the case when Þrms� private signals have relatively high precision (1/σ2v = 10%),

whereas the dashed line is the case when these signals have relatively low precision

(1/σ2v = 2%). The Þgure demonstrates that increases in the precision of the

public signal can result in a higher variance of the price level (and inßation).

In particular, the lowest values for these variances are achieved under the least

precise public signal. The fact that similar effects are evident in both cases (solid

and dashed lines) suggests that these results are robust across a wide range of

values for the precision of the private signal.

Figure 5 illustrates one key effect of public information. From the results

in Section 3, recall that more precise public signals get a higher weight in both

individuals� and average k -fold expectations. A higher weight on a common

(public) signal necessarily means that individuals� expectations are distributed

more closely together around the public signal. However, this can lead to greater

volatility in the aggregate if the public signal is not very precise relative to private

information. Since higher-order beliefs play a direct role only in Þrms� pricing

decisions, it is perhaps not surprising that these effects largely pertain to price

level and, by extension, inßation outcomes; note that the change in the variance

of the output gap and interest rate is small, both relatively and absolutely. These

results are reßective of the Þnding by Morris and Shin (2002), extended here to a

dynamic macroeconomic setting, that more precise public information does not

necessarily lead to better welfare outcomes. Importantly, this is not predicated
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on inefficiencies that arise due to poor information available to the central bank.

On the contrary, the central bank operates with full information on the state of

the economy in our model.

7 Conclusions

An economy with diverse private information has features that are not always

well captured in representative individual models where all agents share the same

information. The most distinctive of these features is the relatively greater im-

pact of common, shared information at the expense of private information. The

source of the greater impact of public information lies in the strategic complemen-

tarity of the price setting behaviour of Þrms, and the impact of public information

is greater for those economies where price competition is more Þerce.

The observation that public signals have a disproportionately large impact in

games with coordination elements is not new, but our contribution has been to

demonstrate how the theoretical results can be embedded in a standard macroe-

conomic model that is rich enough to engage in questions of signiÞcance for policy

purposes. Moreover, our discussion of the conceptual background in Section 3

has been motivated by the need to unravel the main mechanisms at work. By

developing the argument by means of a series of simple examples, our intention

has been to convey the main intuitions, and so show that the results do not rely

in sensitive ways on speciÞc functional forms or distributional assumptions.

In illustrating the basic effects of the presence of both public and private in-

formation in a complete macroeconomic model, we have made several simplifying

assumptions, such as the fact that consumers and the central bank are fully in-

formed. At the cost of some additional complexity, we can extend our model to

contexts where agents observe noisy signals of the endogenous variables directly

and the central bank has less than perfect information as well (see Amato and

Shin (2003a)). Nevertheless, the results in this paper reveal that the impact of

public information in differential information economies is large, and shifts in the

precision of public signals can have signiÞcant effects on observable variables that

enter into calculations of welfare.
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A Proofs

A.1 Alternative proof of theorem 4

An alternative proof of theorem 4 can be given in terms of the eigenvalues and

eigenvectors of the average belief matrix. Let there be n states in Ω, and denote

by pij the (i, j)-th entry of B. For the moment, we will assume that pij > 0 for

all i, j. We�ll return to comment on how the result generalises. Suppose there

are N agents. Since pij is the average conditional probability of state j at state

i, we have

pij =
1

N
(p1 (j|i) + p2 (j|i) + · · ·+ pn (j|i))

where pk (j|i) is the k-th agent�s conditional probability of state j at state i. Let
S(i, j) be the subset of individuals for whom states i and j belong to the same

element of their information partition. Clearly, S (i, j) = S (j, i). Denote by

Pk (i) the ex ante probability of the cell of individual k�s partition that contains

state i. Then,

pij =
1

N

X
k∈S(i,j)

pj
Pk (i)

=
pj

P (i, j)

where P (i, j) is deÞned as 1
P (i,j)

≡ 1
N

P
k∈S(i,j)

1
Pk(i)

. Note thatP
k∈S(i,j)

1

Pk (i)
=

P
k∈S(j,i)

1

Pk (i)
=

P
k∈S(j,i)

1

Pk (j)

so that P (i, j) = P (j, i). Thus, the matrix B can be written as

B ≡


p1

P (1,1)
p2

P (1,2)
· · · pn

P (1,n)
p1

P (2,1)
p2

P (2,2)
· · · pn

P (2,n)
...

...
. . .

p1
P (n,1)

p2
P (n,2)

· · · pn
P (n,n)


where pi is the ex ante probability of state i. We can show thatB is diagonalisable

and has real-valued eigenvalues. To see this, deÞne two matrices D and A. D

is the diagonal matrix deÞned as:

D =


√
p1 √

p2
. . . √

pn
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A is a symmetric matrix deÞned as

B =


p1

P (1,1)

√
p1p2

P (1,2)
· · ·

√
p1pn

P (1,n)√
p2p1

P (2,1)
p2

P (2,2)

√
p2pn

P (2,n)
...

. . .√
pnp1

P (n,1)

√
pnp2

P (n,2)
pn

P (n,n)


It can be veriÞed that B = D−1AD. Since A is a symmetric matrix, it is

diagonalisable and has real-valued eigenvalues λ1,λ2, · · · ,λn, and there is an
orthogonal matrix E whose columns are the eigenvectors of A. In other words,

A = EΛE0 where

Λ =


λ1

λ2
. . .

λn


and where E 0 is the transpose of E. Thus,

B = D−1AD = D−1EΛE0D = CΛC−1

where C = D−1E. Thus, B is diagonalisable, has real-valued eigenvalues, and

whose eigenvectors are given by the columns of C. The matrix C of eigenvectors

can be derived as follows. Since the rows of B sum to one, we know that the

vector

u =

 1...
1


satisÞes u = Bu. Thus, u is the eigenvector that corresponds to the eigenvalue

1, which is the largest eigenvalue of B. From this, we have

u = Bu = D−1ADu

so that Du = ADu. In other words, Du is the eigenvector corresponding to the

eigenvalue 1 in A. Du is the column vector
√
p1
...√
pn
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Thus, the orthogonal matrix E of eigenvectors of B has the form:

E =


√
p1 · · ·√
p2 · · ·

...
...√

pn · · ·


and

E−1 = E0 =


√
p1

√
p2 · · · √

pn

...
...

...


From this, and from (7), we can write the matrix of eigenvectors C as follows.

C =


1
...

...
...

1 c2 c3 cn
...
...

... · · · ...
1



C−1 =


p1 p2 p3 · · · pn
p1c21 p2c22 p3c23 · · · pnc2n
...

...
...

p1cn1 p2cn2 p3cn3 · · · pncnn


where ck is the kth eigenvector of B, and where ckj is the jth entry of ck. Bringing

all the elements together, we have:

Lemma 8 The matrix B of average conditional beliefs satisÞes

B =


1
...

...

1 c2 cn
...
... · · · ...

1




1

λ2
. . .

λn




p1 p2 · · · pn

p1c21 p2c22 · · · pnc2n
...

...
...

p1cn1 p2cn2 · · · pncnn


Let f be a random variable, expressed as a column vector conformable with

B. Then,

C−1f =


p1 p2 · · · pn
p1c21 p2c22 · · · pnc2n
...

...
...

p1cn1 p2cn2 · · · pncnn



f1
f2
...
fn

 =


E (f)
E (c2f)
...

E (cnf)
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where E (.) is the expectations operator with respect to public information only

(ie with respect to the ex ante probabilities p1, p2, · · · , pn). E (ckf) denotes the
expectation of the state by state product of ck and f . Since B

k = CΛkC−1, we

can write

Bkf = CΛkC−1f

=


1 c21 c31 cn1
1 c22 c32 cn2
...
...

...
. . .

...
1 c2n c3n cnn




E (f)
λk2E (c2f)

...
λknE (cnf)



=


E (f) +

Pn
j=2 λ

k
j cj1E (ckf)

E (f) +
Pn

j=2 λ
k
j cj2E (ckf)

...
E (f) +

Pn
j=2 λ

k
j cjnE (ckf)

→

E (f)
E (f)
...

E (f)

 as k →∞

since λj < 1 for j ≥ 2. Thus, theorem 4 holds when matrix B has positive entries
for all i and j. When B has zero entries, we know that there is some t such that

the power matrix Bt has entries that are all strictly positive. This is due to the

ergodicity of the Markov chain. When the meet of the individual partitions is

non-trivial, then there are as many unit eigenvalues as there are elements in the

meet. So, the above analysis would apply to each element of the meet.

A.2 Proof of lemma 5

Recall that Xt is deÞned as

Xt ≡
·
θt
ψt

¸
(53)

where θt is a vector of variables that are exogenous with respect to pt, yt and rt,

and ψt is deÞned as

ψt ≡
∞X
k=1

ξλ (1− ξλ)k−1 Ēkt (θt) (54)

θt is governed by the process

θt = Bθt−1 + but (55)
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for known matrices B and b and where ut ∼ N(0,Ωu) is a vector of iid random
variables.

The state-space model is completed by specifying the observation equation.

Let ysigt (i) be the nyx1 vector of variables observed by Þrm i at date t. The

observation equation is

ysigt (i) = ZXt + zvt(i)

for known matrices Z ≡ [Z1 0nyxn] and z, where 0kxl is the null matrix of

dimension kxl, and vt(i) ∼ N(0, σ2v) is independently and identically distributed
across time and Þrms. These assumptions, and the law of large numbers, imply

that
R 1
0
vt(i)di = 0.

Our method follows the steps of, but also generalises, the proof in Woodford

(2003a). For now assume (to be conÞrmed later) that the state, Xt, is given by

the process

Xt =MXt−1 +mut (56)

where

M ≡
·
B 02
G H

¸
,m ≡

·
b
h

¸
and the matrices G, H and h are yet to be determined. When there is no

ambiguity, the subscript will be omitted from In and 0n.

Now consider the Þrm�s problem of estimating the state, Xt, using the Kalman

Þlter. Given the assumptions made so far, the Kalman Þlter produces minimum

mean squared error estimates of the state for the log-linearised version of the

model. Assume that a time-invariant Þlter exists that is also independent of

i, with the Kalman gain denoted by K. Let Xt|s(i) ≡ EisXt. Combining the

prediction and updating equations from the Kalman Þlter for Þrm i gives

Xt|t(i) =MXt−1|t−1(i) +K
¡
ysigt (i)− ZMXt−1|t−1(i)

¢
(57)

Averaging across i and rearranging gives

Xt|t = (I −KZ)MXt−1|t−1 +KZXt
= (I −KZ)MXt−1|t−1 +KZMXt−1 +KZmut
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DeÞning Ξ ≡ [ξλI (1− ξλ)I] and �K ≡ ΞK, Þrst notice that ψt = ΞXt|t, and
thus (1− ξλ)ψt−1|t−1 = ψt−1 − ξλθt−1|t−1. This implies

ψt = (Ξ− �KZ)MXt−1|t−1 + �KZMXt−1 + �KZmut (58)

and

Xt−1|t−1 = ϕ1ψt−1 + ϕ2θt−1|t−1 (59)

where ϕ1 ≡ [0 1
1−ξλ I]

0 and ϕ2 ≡ [I − ξλ
1−ξλ I]

0. Substituting (59) into (58) and

expanding gives

ψt = �KZ1Bθt−1 +
1

(1− ξλ)
�Ξ2ψt−1

+

·
�Ξ1 − ξλ

(1− ξλ)
�Ξ2

¸
θt−1|t−1 + �KZ1but

where �Ξ1 ≡
³
ξλI − �KZ1

´
B + (1− ξλ)G and �Ξ2 ≡ (1− ξλ)H.

If Xt is governed by (56), then it must be the case that

G = �KZ1B (60)

H =
1

1− ξλ
�Ξ2 (61)

h = �KZ1b (62)

�Ξ1 =
ξλ

1− ξλ
�Ξ2 (63)

The solutions for G and h are given directly by (60) and (62), respectively.

By the deÞnition of �Ξ2, it can be seen that (61) is satisÞed. Finally, the solution

for H is obtained by substituting the result for G into (63):

H =
³
I − �KZ1

´
B (64)

The last step is to determine the value of K, or equivalently, �K. Under the

above assumptions, we have (see Harvey (1989))

�K = ΞΣZ 0F−1 (65)

where

Σ ≡ var
¡
Xt −Xt|t−1(i)

¢
=MVM 0 +mΩum0 (66)

V ≡ var
¡
Xt −Xt|t(i)

¢
= Σ−ΣZ 0F−1ZΣ (67)

F ≡ var
¡
ysigt (i)− ZXt|t−1(i)

¢
= ZΣZ 0 + σ2vzz

0 (68)
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Substituting (67)-(68) into (66), we obtain a Riccati equation:

Σ =M
³
Σ− ΣZ 0 ¡ZΣZ 0 + σ2vzz0¢−1 ZΣ´M 0 +mΩum0 (69)

It is possible to solve (69) explicitly for Σ. In fact, if we partition Σ as

Σ =

·
Σ11 Σ21
Σ21 Σ22

¸
it can be seen from (65) and the deÞnition of Z that we need only determine Σ11

and Σ21 to obtain the solution for �K. As it turns out, Σ11 and Σ21 can be solved

for recursively without having to solve for Σ22 as well.

We begin by isolating the upper-left block of equations in (66):

Σ11 = BV11B
0 + Ωu (70)

where

V11 ≡ Σ11 − Σ11Z 01
¡
Z1Σ11Z

0
1 + σ

2
vzz

0¢−1 Z1Σ11
Notice that (70) is a set of three equations that involves only the elements of Σ11.

Let σij denote the (i, j)-th element of Σ11. Thus, by the deÞnition of B, we have·
σ11 σ21
σ21 σ22

¸
= ρ2

·
v11 0
0 0

¸
+

·
σ2ε 0
0 σ2η

¸
(71)

where v11 is the (1, 1) element of the matrix V11. It is immediate from (71) that

σ21 = 0

σ22 = σ
2
η

σ11 = ρ2v11 + σ
2
ε

= ρ2

Ã
σ11 −

¡
σ2η + σ

2
v

¢
σ211¡

σ2η + σ
2
v

¢
σ11 + σ2ησ

2
v

!
+ σ2ε (72)

Rewriting (72), we get¡
σ2η + σ

2
v

¢
σ211 −

¡
σ2ε
£
σ2η + σ

2
v

¤− £1− ρ2¤σ2ησ2v¢σ11 − σ2εσ2ησ2v = 0
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which is a quadratic equation in σ11 that has two real roots, one positive and one

negative. Since σ11 is a variance, its solution must be the positive root, which is

given by

σ11 =
σ2ε
2
− 1− ρ

2

2

σ2ησ
2
v£

σ2η + σ
2
v

¤ +
vuutÃσ2ε

2
− 1− ρ

2

2

σ2ησ
2
v£

σ2η + σ
2
v

¤!2 + σ2ε σ2ησ
2
v£

σ2η + σ
2
v

¤
The second step is to solve for Σ21. From the lower-left block of equations in

(66), we see that Σ21 depends only upon the elements of Σ11 (and other known

parameters):

Σ21 = (GΣ11 +HΣ21)
¡
I − Z 01F−1Z1Σ11

¢
B0 + hΩu (73)

Let sij denote the (i, j)-th element of Σ21. Again, by the deÞnition of B, we have·
s12
s22

¸
= hΩuē2

= σ2η

·
�K12

�K22

¸
where �Kij is the (i, j)-th element of �K. Since F does not depend on Σ21, it

is evident from (65) that there is a linear relationship between �K and Σ21. In

particular, �K12 is a linear function of only s11 and s12; similarly, �K22 is a linear

function of only s21 and s22. We can therefore obtain expressions for s12 and s22

as linear functions of s11 and s21, respectively; namely,·
s12
s22

¸
=
ξλσ

2
η

1− κ2Σ11Z
0
1F

−1ē2 +
κ1

1− κ2

·
s11
s21

¸
(74)

where

κ1 ≡ (1− ξλ) σ2ηē0F−1ē2,κ2 ≡ (1− ξλ) σ2ηē02F−1ē2

ē ≡ [1 1]0 and ēi is the 2x1 unit vector with 1 in the i -th position.

It remains to solve for s11 and s21. Expanding (73), it turns out that the

upper-left equation involves only s11 and �k1 ≡ �K11 + �K12. Noting again (65), it

can be seen that �k1 is a linear function of s11 and s12:

�k1 = ξλē
0
1Σ11Z

0
1F

−1ē+ (1− ξλ) ē0F−1ēs11 + (1− ξλ) ē0F−1ē2s12 (75)
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By (74), we can substitute out for s12 in (75) to obtain

�k1 = χ1 + χ0s11 (76)

where

χ1 ≡ ξλē01Σ11Z 01F−1
·
ē+

κ1
1− κ2 ē2

¸
,χ0 ≡ (1− ξλ) ē0F−1

·
ē+

κ1
1− κ2 ē2

¸
Thus, the upper-left equation of (73) can be written as a quadratic equation in

either �k1 or s11, which does not depend, in particular, upon s21. In terms of �k1,

this equation is

$2
�k21 +$1

�k1 +$0 = 0

where

$0 ≡ σ11

µ
χ1
χ0

·
ē0F−1ē+

κ1
1− κ2 ē

0F−1ē2

¸
− ξλσ

2
η

1− κ2
£
ē0F−1ē2

¤ £
ē01Σ11Z

0
1F

−1ē2
¤¶

−χ1
χ0

µ
1− 1

ρ2

¶
$1 ≡ − 1

ρ2

µ
1

χ0
− σ2ε

¶
+ σ11

µ
1 +

ξλσ
2
η

1− κ2
£
ē0F−1ē2

¤ £
ē01Σ11Z

0
1F

−1ē2
¤¶
+
1 + χ1
χ0

−
·
σ211 +

σ11
χ0
(1 + χ1)

¸
ē0F−1ē− 1

χ0

κ1
1− κ2 [σ11 (1 + χ1)] ē

0F−1ē2

$2 ≡ 1

χ0

·
σ11

µ
ē0F−1ē+

κ1
1− κ2 ē

0F−1ē2

¶
− 1
¸

It is difficult to simplify the expressions for $0, $1 and $2 much further. The

roots of �k1 can be determined numerically for given values of the parameters.

Given a solution for �k1, we can then Þnd the value of s11 using (76).

Under the range of values for the parameters in the simulations in Section

6, �k1 has two real roots, one positive and one negative. The fact that �k1 is a

linear combination of Kalman gains does not, by itself, rule out either of these

roots. However, a restriction can be placed upon the chosen root if we wish Xt to

be stationary � which is desirable since we have assumed that θt is stationary.

Recalling the solutions for M and m, we have

[rnt − ψ1t] = ρ
³
1− �k1

´
[rnt − ψ1t] +

³
1− �k1

´
εt + �K12ηt
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where ψ1t is the Þrst element of ψt. Since r
n
t itself is assumed to be stationary,

rnt −ψ1t is stationary if and only if
¯̄̄
ρ
³
1− �k1

´¯̄̄
< 1. If we assume that 0 < ρ < 1,

this condition simpliÞes to

1− 1
ρ
< �k1 < 1 +

1

ρ

For the parameter values considered, only the positive root falls within this range,

therefore, this is the one that is selected.

Finally, analogous to �k1, �k2 ≡ �K21 + �K22 is a linear function of s21:

�k2 = ξλē
0
2Σ11Z

0
1F

−1ē+ (1− ξλ) ē0F−1ēs21 + (1− ξλ) ē0F−1ē2s22 (77)

= χ2 + χ0s21 (78)

where

χ2 ≡ ξλē02Σ11Z 01F−1
·
ē+

κ1
1− κ2 ē2

¸
Thus, the lower-left equation of (73) is linear in s21 as a function of s11, s12 and

other known parameters. The solution is

s21 =
ϑχ2

1− ϑχ0
where

ϑ ≡ σ2ε + ρ2
¡
[σ11 − s11]

£
1− σ11ē0F−1ē

¤
+ σ11s12ē

0F−1ē2
¢

A.3 Proof of lemma 6

Substituting (51) into (27), we get

xt = µ1Etxt+1 − µ1σ−1 [(αp + 1)pt − Etpt+1 − rnt ] (79)

If we assume, for now, that (51) can implement the targeting rule (41), (48) can

be used as an equilibrium solution for the price level in terms of the state Xt.

Substituting for pt in (79), solving forward, and computing expectations of Xt
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from (46), we obtain

xt = µ1Etxt+1 − µ1σ−1φ0Xt
= −µ1σ−1φ0

∞X
i=0

µi1EtXt+i

= −µ1σ−1φ0
∞X
i=0

(µ1M)
iXt

= −µ1σ−1φ0(I − µ1M)−1Xt (80)

where 0 < µ1 ≡ (σ−1 + 1)−1 < 1 and

φ ≡ δ [(αp + 1)I −M 0] e3 − e1 (81)

and assuming that N ≡ (I − µ1M)−1 is nonsingular.
If the instrument rule (51) is to be consistent with the targeting rule (41), it

must be the case that the equilibrium processes for xt given in (49) and (80) are

consistent with each other. This requires

δ

λ
(e1 − e3) = −µ1σ−1N 0φ (82)

Thus, it remains to be shown whether (82) holds for some value of αp. First,

notice that because M is block lower diagonal, N is also block lower diagonal:

N =

·
N11 0
N21 N22

¸
Partition φ accordingly as

φ =

· − (δG0 + I) ē1
[(αp + 1)I −H 0] ē1

¸
Expanding the right-hand side of (82), the Þrst two equalities require

δ

λ
ē1 = −µ1σ−1 (N 0

21 [(αp + 1)I −H 0]−N 0
11 [δG

0 + I]) ē1 (83)

whereas the last two require

δ

λ
ē1 = µ1σ

−1N 0
22 ((αp + 1)I −H 0) ē1 (84)

Equating (83) and (84), we have

N 0
22 ((αp + 1)I −H 0) ē1 = − (N 0

21 [(αp + 1)I −H 0]−N 0
11 [δG

0 + I]) ē1 (85)

47



which is a system of two equations in one unknown, αp. Rearranging (85) gives

(αp + 1)C
0
1ē1 = C

0
2ē1 (86)

where

C1 ≡ N21 +N22, C2 ≡ H [N21 +N22] + [δG+ I]N11
By the deÞnitions of B and M , N11 is diagonal. Noting (60) and (64), it can

be seen that Gē2 = Hē2 = 02, which implies that N22 is lower diagonal. Taken

together, these results imply that the two equalities in (86) are satisÞed if C1,11 6=
0, where Cij is the (i,j)-th element of matrix C, since in (86) both sides of the

second equality are zero and a solution for αp can be obtained from the Þrst

equality and is given by:

αp =
C2,11
C1,11

− 1 (87)

A.4 Proof of lemma 7

Recall that Ψ
(k)
t is deÞned as

Ψ
(k)
t ≡


Ēkt (θt)
Ēk−1t (θt)

...
Ēt (θt)
θt

 (88)

Proceeding in a similar way as in the proof of Lemma 5, we begin by conjecturing

the form of a state-space model in terms of Ψ
(k)
t and the observable vector ysigt (i).

We then determine the stochastic process of Ψ
(k)
t by solving each Þrm�s optimal

Þltering problem and averaging across Þrms. Accordingly, for now assume (to be

conÞrmed later) that the state Ψ(k)t follows the Markov process

Ψ
(k)
t = B(k)Ψ

(k)
t−1 + b(k)ut (89)

where

B(k) ≡


Bk,k Bk,k−1 · · · Bk,1 Bk,0
0n Bk−1,k−1 · · · Bk−1,1 Bk−1,0

0n 0n
. . .

...
...

...
...

. . . B1,1 B1,0
0n 0n · · · 0n B0,0

 (90)
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b(k) ≡


bk
bk−1
...
b1
b0

 (91)

B0,0 ≡ B, b0 ≡ b (92)

The state-space model is completed by specifying the observation equation. This

is given by

ysigt (i) = ZΨΨ
(k)
t + zvt(i)

where

ZΨ ≡ [0nyxnk Z1]

We wish to determine the matrices Bi,j and bi in terms of known parameters of

the model.

As before, assume that a time-invariant Þlter exists that is also independent

of i, with the Kalman gain denoted by KΨ ≡
£
K 0
k+1K

0
k · · ·K 0

1

¤0
. Let Ψ

(k)
t|s (i) ≡

EisΨ
(k)
t . The updating equation from the Kalman Þlter for Þrm i is

Ψ(k)t|t (i) = B(k)Ψ
(k)
t−1|t−1(i) +KΨ

³
ysigt (i)− ZΨB(k)Ψ(k)t−1|t−1(i)

´
Averaging across i and rearranging gives

Ψ
(k)
t|t = B(k)Ψ

(k)
t−1|t−1 +KΨZΨ

³
Ψ
(k)
t −B(k)Ψ(k)t−1|t−1

´
= B(k)Ψ

(k)
t−1|t−1 +KΨZ1

¡
θt −Bθt−1|t−1

¢
(93)

The Þrst n equations of the system (93) can be written as

Ēk+1t (θt) =
kX
i=0

Bk,iĒ
i+1
t−1 (θt) +Kk+1Z1

¡
θt −Bθt−1|t−1

¢
=

kX
i=1

Bk,iĒ
i+1
t−1 (θt) + (Bk,0 −Kk+1Z1B) Ēt−1 (θt)

+Kk+1Z1Bθt−1 +Kk+1Z1but (94)
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Yet, the conjectured law of motion for Ēk+1t (θt) implied by (89) is

Ēk+1t (θt) =
k+1X
i=0

Bk+1,iĒ
i
t−1 (θt) + bk+1ut (95)

Thus, the law of motion for Ēkt (θt) can be obtained by Þrst matching coefficients

in (94) and (95), to get

Bk+1,0 = Kk+1Z1B

Bk+1,1 = Bk,0 −Kk+1Z1B

Bk+1,i = Bk,i−1, i = 2, 3, . . . , k + 1

bk+1 = Kk+1Z1b

and, in turn, noting that these equalities imply

Bk,0 = KkZ1B (96)

Bk,i = (Kk−i −Kk+1−i)Z1B, 1 ≤ i < k (97)

Bk,k =
¡
Z−11 −K1

¢
Z1B (98)

bk = KkZ1b (99)

These arguments also apply to lower-order expectations to obtain analogous ex-

pressions for Bi,j (i = 1, 2, . . . , k − 1; j = 0, 1, . . . , k − 1; i ≥ j) and bi (i =

1, 2, . . . , k − 1).
The elements of KΨ remain to be determined. As before, the assumption that

a time-invariant Þlter exists means

KΨ = ΣΨZ
0
ΨF

−1
Ψ (100)

where

ΣΨ ≡ var
³
Ψ
(k)
t −Ψ(k)t|t−1(i)

´
= B(k)VΨB

0
(k) + b(k)Ωub

0
(k) (101)

VΨ ≡ var
³
Ψ
(k)
t −Ψ(k)t|t (i)

´
= ΣΨ −ΣΨZ 0ΨF−1Ψ ZΨΣΨ (102)

FΨ ≡ var
³
ysigt (i)− ZΨΨ(k)t|t−1(i)

´
= ZΨΣΨZ

0
Ψ + σ

2
vzz

0 (103)

By the deÞnition of ZΨ, (100) implies that

Kk+1 = Σk,0Z
0
1F

−1 (104)
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where

Σk,0 ≡ cov(
£
Ēkt θt − Eit−1

¡
Ēkt θt

¢¤
,
£
θt − Eit−1 (θt)

¤
)

and Σ0,0 ≡ Σ11. Substituting (102) and (103) into (101), we obtain a Riccati

equation for ΣΨ:

ΣΨ = B(k)

³
ΣΨ −ΣΨZ 0Ψ

¡
ZΨΣΨZ

0
Ψ + σ

2
vzz

0¢−1 ZΨΣΨ´B0(k) + b(k)Ωub0(k) (105)

This last equation can be simpliÞed and partitioned to yield an expression for

Σk,0:

Σk,0 =
kX
i=0

Bk,iΣi,0
¡
B −Σ11Z 01F−1Z1

¢0
+ bkΩub

0 (106)

Notice that (106) cannot be directly recursively solved for Σk,0 (given Σ11)

because the matrices {Bk,i} and {bk} themselves are functions of {Kk}, which,
in turn, are functions of {Σk,0}. Instead, we can invert (104) to get an expression
for Σk,0 in terms of Kk+1 (and Σ11) and substitute this and (96)-(99) into (106)

to obtain a recursive set of equations for Kk in terms of known parameters. The

resulting set of equations has the form:

Kk+1 = D1Kk+1D2 +D3 (107)

where

D1 ≡ Z 01F
−1 ¡B −Σ11Z 01F−1Z1B¢

D2 ≡ F (Z 01)
−1A0 − Z1Σ11

D3 ≡ D3 (Kk,Kk−1, . . . , K1)

≡ Z 01F
−1
"
KkZ1BΣ11 +

k−1X
i=1

(Kk−i −Kk+1−i)Z1BKi+1F (Z
0
1)
−1
#
·£

B −Σ11Z 01F−1Z1
¤0
+KkZ1bΩub

0

Both D1 and D2 are functions of known parameters. Applying the vec(·) operator
to (107), and rearranging, the unique solution of the elements of Kk+1 (k ≥ 1)

can be found recursively from

vec(Kk+1) =
£
In·ny − (D0

2 ⊗D1)
¤−1

vec(D3 (Kk, Kk−1, . . . , K1))
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Table 1

Baseline calibrated parameters

Preferences and technology
σ 2
ζ 0.3
ν 2
² 11

Markup 10%
Natural rate of interest
ρ 0.8
σ2ε (1− ρ2)%/quarter

var(rnt ) 1%/quarter
Signals

σ2v 0.2%/quarter
σ2η 0.2%/quarter
Monetary policy

λ 1
δ 1
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Figure 1

Effects of changing the markup and precision of public signals:

sample realisations of the output gap and price level
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Notes: Each panel plots one sample realisation of the price level against the
output gap. The same sample of randomly drawn shocks is used in each panel
when simulating the time paths of the endogenous variables. Data is constructed
for 1100 periods, but the Þrst 100 observations are dropped to minimise the
inßuence of initial values. The price level and output gap are in percentages.
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Figure 2
Impulse responses of higher-order expectations of natural rate of interest:

shock to natural rate of interest
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Notes: The Þgure shows the impulse responses of higher-order expectations of the
natural rate of interest (in percentages) with respect to a one-standard deviation
innovation in the natural rate of interest. The solid line is the path followed by
the natural rate of interest, while the other lines correspond to successively higher
orders k of expectations, from k = 1 (o) to k = 8 (*).
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Figure 3
Impulse responses of higher-order expectations of natural rate of interest:

shock to public signal
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Notes: The Þgure shows the impulse responses of higher-order expectations of the
natural rate of interest (in percentages) with respect to a one-standard deviation
innovation in the shock to the public signal. The solid line is the path followed
by the public signal shock, while the other lines correspond to higher-order ex-
pectations: k = 1 (o), k = 2 (x), k = 4 (¤) and k = 8 (*).
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Figure 4
Impulse responses of higher-order expectations of natural rate of interest:

effects of public information
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Notes: The Þgure shows the impulse responses of higher-order expectations of the
natural rate of interest (in percentages) with respect to a one-standard deviation
innovation in the natural rate of interest. The solid line is the path followed by
the natural rate of interest. The solid lines with symbols represent the case when
there are both public and private signals present, while the dashed lines are the
case of private signals only. The lines distinguished by symbols, whether solid or
dashed, correspond to different degrees of higher-order expectations: k = 1 (o),
k = 2 (x), k = 4 (¤) and k = 8 (*).

60



Figure 5
Variances of endogenous variables with respect to precision of public signal
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Notes: The Þgure plots the variances of endogenous variables with respect to the
precision of the innovation in the public signal. The precision of the private signal
is set equal to 10 percent (solid line) or 2 percent (dashed line). Inßation and
the interest rate are expressed in annualised percentages, while the price level,
output gap and precision of signal innovations are in percentages.
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Discussion of “Public and private information in monetary policy 
models”, by Jeffery D Amato and Hyun Song Shin 

Marvin Goodfriend1 

Broadly speaking, modern central banks aim to facilitate the functioning of a market economy with 
minimal direct interference in the decision-making of households and firms. For the most part, central 
bankers used to think that the best way to do so was to operate in secret and out of the limelight.2 
More recently, central bankers have come to appreciate the importance of transparency in connection 
with the emphasis on price stability. Today’s central bankers recognise that building credibility for the 
commitment to price stability is the best way to maximise the power of monetary policy to stabilise the 
macroeconomy over the business cycle. Advocates of inflation targeting emphasise that transparency 
rather than secrecy regarding the procedures and objectives of monetary policy is the best way to 
build that credibility.3  

The paper by Amato and Shin recognises that central banks must actively shape and influence events 
to facilitate the functioning of the macroeconomy. However, they take their analysis in a different 
direction. They point out a fundamental tension in central banking. A central bank needs to react to 
data in order to manage interest rate policy. Yet it distorts the very data from which it seeks guidance 
in the process of influencing behaviour through public pronouncements of its objectives and its views 
on the fundamental state of the economy.  

In other words, Amato and Shin show that a central bank’s assessment of the underlying state of the 
economy may be reflected in aggregate behaviour in a way that causes the data generated by agents 
to obscure the fundamentals. There is a problem even if a central bank’s views of the aggregate state 
are accurate. Of course, the problem is worse when the central bank’s views are wrong. Either way, 
public announcements by the central bank become a powerful focal point for coordination of private 
agents.  

The point is very interesting and potentially important. Let me give two examples of how I think Amato 
and Shin’s tension has worked in practice. First, consider the low inflation period in the 1950s to the 
mid-1960s in the United States. At the time, the Fed’s denial of any persistent inflationary potential 
may have succeeded in holding down actual and expected inflation somewhat. Households and firms 
probably held back on wage and price pressures for a while because they were confident that the low 
inflation equilibrium would be maintained. As a result, the economy operated at a higher level of real 
economic activity for a while than was ultimately sustainable.  

In terms of Amato and Shin, the Fed’s insistence that inflation was not a threat probably distorted 
behaviour in a way that seemed to confirm the belief that trend inflation would remain low. This may 
have been one reason why monetary policy was insufficiently pre-emptive in the early stages of the 
Great Inflation. 

A similar dynamic may have been operating after the Fed restored credibility for low inflation in the late 
1990s. Here again, in retrospect, the economy can be seen to have operated for a few years at levels 
that were not sustainable. One reason may have been that the Fed’s credibility for low inflation made 
wage and price setters confident that the low inflation equilibrium would be maintained. In this case, 
the unsustainability did not precipitate an outbreak of inflation. It resulted instead in extreme asset 
price fluctuations, excessive consumption growth, and an unsustainable investment boom. The 
distorted behaviour helped to delay a tightening of monetary policy that might have avoided much of 

                                                      
1 Senior Vice President and Policy Advisor, Federal Reserve Bank of Richmond. The views expressed are those of the author 

and not necessarily those of the Federal Reserve Bank of Richmond, the Federal Reserve System or the BIS. 
2 See, for instance, Goodfriend (1986).  
3 See, for instance, Bernanke and Mishkin (1997) and Svensson (1999).  
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the cyclical instability. Although, clearly other factors such as the terrorist attack on the World Trade 
Center contributed to the 2001 recession. 

The paper explores the fundamental tension identified by Amato and Shin in a monopolistically 
competitive macro model in which the nominal pricing decisions of individual firms depend on their 
own demand and cost conditions, and on the strategic complementarity among the pricing decisions of 
firms in the aggregate. Monopolistically competitive firms must guess the pricing decisions of their 
potential competitors in order to choose a nominal price that achieves their desired relative price. This, 
in turn, means that each firm must take into account its beliefs about the beliefs of other firms about 
pricing, and so on in a potentially infinite recursion.  

The main point of the paper is that such concerns lead firms to set prices that are potentially far less 
sensitive to their best direct (idiosyncratic) estimates of the underlying fundamentals. In the limit, 
Amato and Shin show that firms will set prices conditional only on information known in common about 
the underlying fundamentals, whether that common information is accurate or not.  

In the formal model used to study this issue in the paper, firms receive both private and public noisy 
signals of two current shocks, an aggregate demand and a productivity shock. Households and the 
central bank are assumed to observe the two underlying shocks perfectly. The labour market is 
perfectly competitive. And nominal prices and wages are perfectly flexible.  

It is useful to note that the macro model utilised by Amato and Shin may be characterised as a 
monopolistically competitive real business cycle model with perfectly flexible prices and wages. 
Equivalently, for the full information case, the equilibrium resembles the flexible price, perfectly 
competitive labour market version of Blanchard and Kyotaki’s monopolistically competitive macro 
model.4 In this case, firms choose their product price to maintain the constant profit-maximising 
markup at all times. The size of the markup then acts like a tax that governs how far equilibrium 
aggregate employment falls below the level that would be attained in a perfectly competitive macro 
model.  

With this insight in hand, we can consider what optimal monetary policy might look like in Amato and 
Shin’s model where the central bank and households are fully informed but the firms are not. If firms 
are imperfectly informed, then they can no longer be counted upon to set prices to maintain the 
constant profit maximising markup. Presumably, the all-knowing central bank could see any pricing 
errors in this flexible price environment and offset them with monetary policy. In other words, optimal 
monetary policy would stabilise the markup to reproduce the full information, flexible price outcome.5  

However, when Amato and Shin analyse monetary policy in their model, they use a kind of ad hoc 
Taylor rule. They should also discuss the extent to which the complications for macroeconomic 
stabilisation due to the information problems they highlight could be overcome if the central bank were 
allowed to behave optimally with imperfect information. I will return to this point shortly.  

The main surprising finding of the analysis of the flexible price macro model is that when “firms 
observe fairly precise private signals of aggregate shocks, the mere presence of the public signal, 
interpreted as a signal with precision greater than zero, actually makes inflation more volatile”.6 This is 
seen in the top right-hand panel of Figure 2. Note, however, in the bottom left-hand panel that a more 
precise public signal always reduces the volatility of real output.  

Amato and Shin suggest that these results mean that more precise public information does not 
necessarily lead to better welfare outcomes. They emphasise that this finding cannot be attributed to 
poor information available to the central bank, since it is given full information in the analysis.  

One can question their findings on two counts. First, smoothing the volatility of output is not 
necessarily the right metric for assessing welfare. According to the discussion above, maintaining 
markup constancy is a better one, since it produces the outcomes of a real business cycle model with 
perfectly flexible wages and prices. With markup constancy, employment could be relatively stable 
even if output were highly volatile due to volatile productivity shocks.  

                                                      
4 See Blanchard and Kiyotaki (1987).  
5 See Goodfriend (2002b).  
6 See page 32 of the paper.  
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Second, although the central bank is given full information, it is forced to operate with a suboptimal 
Taylor rule. More precise public information might improve welfare if the central bank were allowed to 
pursue monetary policy optimally. 

One can question whether the conditions necessary to create the possibility that public information can 
be harmful are likely to be met. By its very nature, a private signal is not likely to be very informative 
about aggregates because it will reflect a relatively small part of the economy. On the other hand, 
private information gets aggregated over the entire economy. To make their argument more 
persuasive, Amato and Shin should explain in an intuitive quantitative way whether the precision of 
private information necessary for public information to be harmful is likely to be attained in practice.  

Assuming that the above condition is met, what would the authors have us believe about the 
government’s information policy? In any case, the government would need to continue to collect 
aggregate data to make monetary and fiscal policy. Leaks would be inevitable if such data were not 
made public officially. Moreover, private groups would continue to collect and disseminate data on 
various sectors of the economy. Surveys would continue to be collected to improve the understanding 
of fundamentals. Financial market prices would continue to provide valuable public information. All 
these sources of information would provide noisy public signals of the underlying aggregate state of 
the economy. Such common information would be valued and utilised by individual firms and 
households even if its use has negative consequences for social welfare as Amato and Shin suggest. 

Actually, given that the government cannot suppress noisy common signals of the aggregate state of 
the economy, Amato and Shin’s findings suggest that the government might actually increase social 
welfare by improving the precision of the public signals! This conclusion seems possible if it is 
infeasible to suppress common signals, and the economy inevitably operates to the right of the 
maximum of the curve in the left-hand panel of Figure 2.  

Thus, the second best information policy might actually be just the opposite of the infeasible first best. 
If it were impossible to eliminate the common public information, then the next best thing to do might 
be to devote more resources to reducing the measurement error and improving the coverage and 
accuracy in our national statistics. In other words, the findings of Amato and Shin could be interpreted 
as favouring either greater opacity or greater transparency depending on the circumstances.  

Amato and Shin compare the data generating implications of their flexible price, imperfect information 
model to those of a sticky price model without information imperfections. An interesting and important 
extension of their work would be to analyse a single model incorporating sticky prices and the kind of 
information processing that they emphasise in this paper. It would seem that the information 
imperfections that Amato and Shin are concerned about might matter less in a sticky price model, 
especially if strict inflation targeting were close to the optimum policy.  

Amato and Shin conjecture that a central bank could do harm by targeting inflation too strictly in the 
short run. The reason is that doing so degrades the private information in inflation as a signal of the 
output gap.7 This is an important point, and it should be taken seriously. Clearly, the credibility that the 
Fed acquired for price stability since the mid-1990s has helped to stabilise the inflation rate in spite of 
fairly large swings in the output gap since then. In fact, that is to be expected of successful explicit or 
implicit inflation targeting.8 

In some ways, interest rate policy decisions are more difficult to make in the absence of cyclically 
volatile inflation. On the other hand, waiting for inflation to trigger interest rate policy actions created 
destabilising go/stop monetary policy when it was tried in the 1960s and 1970s.9 The go/stop 
experience suggests that the benefits to firmly anchoring inflation and inflation expectations over the 
business cycle are well worth the loss of inflation as a guide for interest rate policy actions.10  

                                                      
7 Borio and Lowe (2002) call this the “paradox of credibility”.  
8 See Goodfriend (2003).  
9 See Goodfriend (1997).  
10 See Goodfriend (2003).  
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It will not be easy for central banks to learn to utilise signals other than inflation to guide interest rate 
policy. For instance, the Fed’s policy problems in the late 1990s make that clear.11 But with time, 
central banks will no doubt improve their ability to manage interest rate policy in a world of price 
stability. 
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Discussion of �Public and private information in monetary policy models�, by

Jeffery D Amato and Hyun Song Shin1

Lars E O Svensson2

Jeff Amato and Hyun Shin have produced a very Þne paper (Amato and Shin (2003)).

It is a pleasure to discuss it. The main message is that central bank information may have

bad consequences. It could degrade the information value of private signals, and it could

increase the volatility of inßation. This makes the paper something of an anti-transparency

paper, a somewhat rare thing in this age of central banking transparency. However, I do not

believe that the anti-transparency ßavour stands up to scrutiny. Indeed, I will argue that

the paper�s main result can rather be interpreted as a pro-transparency one.

The paper discusses difficult issues with the help of a very elegant and powerful frame-

work, modelling differential information with the help of Markov chains and related matrix

algebra. First, the authors provide a simple static example of their analysis. Then they

provide a more elaborate intertemporal model of a New Keynesian model of a monetary

economy.

In the simple example, a typical Þrm i (i = 1, 2, ...,N) sets the (log) price pi of its product

according to

pi = E
ip+ ξEi(y − ȳ),(1)

where Ei denotes the Þrm�s expectation or estimate conditional on its private information;

p ≡ 1
N

PN
i=1 pi denotes the aggregate (log) price level; ξ (0 < ξ < 1) is a parameter; and y− ȳ

denotes the output gap, the difference between (log) output, y, and (log) potential output,

ȳ. This pricing equation can be rewritten as

pi ≡ (1− ξ)Eip+ ξEi(p+ y − ȳ),

where p+ y− ȳ can be interpreted as (log) nominal GDP adjusted for potential output. By
taking the average of this equation, we get

p = (1− ξ)Ēp+ ξĒ(p+ y − ȳ),
1These comments borrow a few points from my comments on Woodford (2003) in Svensson (2003a). I

thank Kathleen Hurley for editorial and secretarial assistance. The views expressed are those of the author

and not of the BIS.
2Princeton University.
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where Ē[·] ≡ Ē1[·] = 1
N

PN
i=1 E

i[·] denotes the average (Þrst-order) expectations operator.
Since 0 < ξ < 1, by recursive substitution of the term Ēp, we can write the average price

equation as

p = ξ

∞X
k=1

(1− ξ)k−1Ēk(p + y − ȳ),(2)

where Ēk denotes kth-order average expectations deÞned as

Ēk[·] ≡ 1

N

NX
i=1

Ei
£
Ēk−1[·]¤ (k ≥ 2).

Equation (2) shows that the average price level depends on an inÞnite sum of higher-order

expectations of nominal GDP adjusted for the output gap, with the weight on higher-order

expectations being larger, the smaller the parameter ξ. The smaller the parameter ξ, the

stronger the strategic complimentarity of the individual Þrms� pricing decisions.

The paper shows that, if there is public information, higher-order expectations converge

to public expectations,

Ēk[·]→ Ē[·|Public information] (k →∞).

The paper then shows that the outcome depends on the relative precision of private and

public information. When private precision is good, introducing bad public information may

increase the volatility of inßation in the New Keynesian model. If the precision of public

information improves, however, the volatility of inßation falls, as seen in Figures 2 and 3 of

the paper.

Indeed, I believe that it is this latter result that makes the paper a pro-transparency

paper. In the real world, there is already considerable public information, for instance, data

and forecasts published by various government agencies and private forecasters. Since there

is already public information, the results of the paper indicate that central banks should

provide as good additional public information as possible, to improve the precision of the

public information. Looked at this way, the results of this paper become pro-transparency

rather than anti-transparency.

The parameter ξ is crucial for the relative importance of public information (recall that

a lower ξ implies more weight on higher-order expectations). The paper shows how ξ is

determined in a rather complex way in the New Keynesian model. However, ξ could also

depend on monetary policy. This can be illustrated in the simple example above. Suppose
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that monetary policy results in a targeting rule of the form

p+ λ(y − ȳ) = q,(3)

where λ ≥ 0 is a parameter related to the monetary policy regime and q is some exogenous
error term. The case λ = 0 could be interpreted as strict price level targeting, λ > 0 could be

interpreted as ßexible price-level targeting, λ = 1 could be interpreted as a kind of nominal

GDP targeting (where nominal GDP is adjusted for potential output), and λ→∞ could be

interpreted as strict output gap targeting.

We can use equation (3) to eliminate the output gap in equation (1). This results in the

new pricing equation

pi = (1− �ξ)Eip+ �ξq,

where the new parameter, �ξ, is given by

�ξ ≡ ξ

λ
.

If λ > ξ, we have �ξ < 1, and we can still do the recursive substitution leading to equation

(2), where �ξ replaces ξ and the higher-order expectations refer to q rather than p + y − ȳ.
Thus, λ affects the size of �ξ for given ξ, and thereby the relative weight on higher-order

expectations. However, if λ < ξ, we have the �ξ > 1, and the recursive substitution no longer

makes sense. Indeed, Þrms� individual price setting decisions are then no longer strategic

complements but strategic substitutes.

What order k of Þrms� expectations are sensible? How rational and sophisticated are

the Þrms? In principle, one could Þnd out via the surveys of inßation expectations that

many central banks undertake these days. One could ask questions of the following form

to individual Þrms: (1) What do you think the average price level is? (2) What do you

think other Þrms think the average price level is? (3) What do you think other Þrms think

other Þrms think the average price level is?; and so forth. These questions are obviously

constructed such that averaging the responses to the kth question gives the kth-order average

expectations. It would be very interesting to see whether Þrms could give sensible answers

to higher-order questions. I would certainly have to think a while myself before answering

such questions, and I am not sure how many high-order questions I would have an answer

to.

One possibility is that agents would display bounded rationality and simplify the forma-

tion of higher-order expectations. Two alternatives immediately present themselves. One is
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that higher-order expectations beyond some Þxed order K are set equal to the Kth-order

expectations, Ēk[·] = ĒK[·] for k > K. Another is that higher-order expectations beyond

some Þxed order K are set equal to a constant expectations operator, for instance, the ex-

pectations conditional on the public information, Ēk[·] = Ē[·|Public information] for k > K.
Clearly, these two alternatives have very different consequences. The Þrst would reduce the

weight on public information; the second would increase that weight. It is not clear that one

case is more plausible than the other.

These comments indicate that there remain quite a few interesting issues for future

research, and I very much hope the authors will address them in their future research.

Finally, let me voice a complaint on the conference version of this otherwise so Þne paper.

The authors present a model in which they model Þrms� pricing and households� consumption

not as following ad hoc rules of behaviour but those of rational and goal-directed agents; ie,

by specifying objectives and constraints and then deriving optimal Þrst-order conditions that

describe private sector behaviour with a structural relation. But when the authors model

monetary policy, they don�t follow the same healthy principles of analysis. Instead, they

model the central bank as following an ad hoc reaction function, an instrument rule, either

a Taylor rule or a so-called forecast-based instrument rule. There is no reason to believe

that such an ad hoc reaction function would be structural. As I have argued elsewhere, for

instance, in Svensson (2003b), good central banks are at least as goal-directed and rational as

the average household and Þrm (and they certainly employ more PhDs). Therefore, it makes

a lot of sense to model good monetary policy as optimising, by using optimal targeting rules

instead of ad hoc instrument rules. Indeed, Charles Bean�s paper at this conference, Bean

(2003), shows very pedagogically how this can be done and how helpful such an approach

is in sorting out some common confusion about the role of asset prices regarding objectives

and responses in monetary policy.

As stated above, the previous comment applies to the conference version of the paper.

The post-conference version of June 2003 has abandoned the ad hoc reaction function and

instead models inßation targeting as implementing a targeting rule similar to the form (3).

Needless to say, I welcome this change. The optimal policy is further examined in another

paper of the authors.
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