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Abstract

This paper extends the menu cost model of Gertler and Leahy (2008) by introduc-
ing a drift in the aggregate markup. Assuming that the drift is always negative and
not large, consistent with moderate and positive trend inflation, the paper analytically
characterizes firms’ value function and markup distribution. It derives explicit equa-
tions sufficient to close the model in general equilibrium, making the calculation of
impulse responses to aggregate shocks as easy as in conventional representative-agent
New Keynesian models. In addition, the paper shows two implications of the model.
First, the model replicates the empirically observed positive correlation between the
inflation rate and the frequency of price changes. Second, the model yields an explicit
equation representing the Phillips curve, with additional terms that make the inflation

rate more responsive to aggregate shocks.
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1 Introduction

Among models of price stickiness in monetary economics, menu cost models match the
evidence from empirical studies of micro prices better than conventional time-dependent
models, such as the Calvo model (Calvo (1983)). For example, menu cost models, when
combined with a firm-level idiosyncratic shock, often generate a positive correlation be-
tween the inflation rate and the frequency of firms’ price changes, as found in empirical
studies.! In pursuit of better understanding of inflation and macroeconomic dynamics, an
increasing number of researches have examined the implications of menu cost models.?
However, menu cost models are still far less popular than the time-dependent models
in macroeconomic policy analysis in general, primarily for technical reasons. The former
models feature state dependence in firms’ price setting: firms are not exogenously or ran-
domly given a chance to change price; instead, they do so if and only if their current price
(markup) is far enough from the reset value. This state dependence, while key for the em-
pirical success of menu cost models, generates non-linearity in firms’ policy rule (i.e., the
rule that firms follow in choosing whether and how much they change their prices) and a
non-trivial price (markup) distribution. Solving the non-linear optimization problem while
keeping track of such a distribution is numerically demanding. Moreover, most menu cost
models do not yield an explicit equation representing the Phillips curve, a simple relation-
ship between the inflation rate and the real marginal cost for firms, which policy analysis
often relies on.?
To address the issues, this paper extends the menu cost model of Gertler and Leahy

(2008) (GL). The key assumption of this model is that idiosyncratic shocks hit firms only

'For the studies covering the recent post-COVID period, see Montag and Villar Vallenas (2025) and
Gautier et al. (2025). Earlier studies using the data of high-inflation periods include Nakamura et al.
(2018) and Alvarez et al. (2019).

*Major studies on general properties of menu cost models include Golosov and Lucas (2007); Midrigan
(2011); Alvarez et al. (2016); Alvarez and Lippi (2022).

3Many papers in the literature define the Phillips curve equation as the relationship between inflation
rate and slacks in the economy. The Phillips curve equation in this paper instead represents the relationship
between inflation rate and the real marginal cost for firms, corresponding to the “primitive formulation”
according to Gagliardone et al. (2025). We can convert the latter equation into the former by substituting
an additional relationship between the real marginal cost and a variable representing slacks.



occasionally and follow a uniform distribution with a wide support (Assumption 1 in Section
3.1). Further assuming zero trend inflation and adopting a first-order perturbation, GL
derive a Phillips curve equation that looks identical to that in the Calvo model except
for the coefficient value on the real marginal cost. This paper instead analyzes nonlinear
dynamics of firms’ value function and markup distribution by employing two assumptions.
First, firms’ aggregate markup always decreases relative to the three markup values that
characterize firms’ policy rule, unless they are hit by an idiosyncratic shock (Assumption
2). The monotonically decreasing markup, which we call a negative drift in the markup, is
consistent with positive trend inflation and represents the steady erosion of firms’ markup
due to the monotonic increase in the aggregate nominal marginal cost. Second, the drift is
so small that the firms that have just adjusted their prices are going to keep the prices for
a long time, unless they are hit by an idiosyncratic shock (Assumption 3). Using the two
assumptions, this paper derives explicit equations sufficient to close the model in general
equilibrium. These equations make the calculation of impulse responses to aggregate shocks
as easy as in conventional representative-agent New Keynesian DSGE models. This paper
then shows two implications of the model. First, the model replicates the empirically
observed positive correlation between the inflation rate and the frequency of price changes
(see Sections 3.4 and 4.3), which is absent in the case of zero trend inflation analyzed
by GL. Second, adopting a first-order perturbation, this paper derives a simple equation
representing the Phillips curve (Section 3.3), with terms absent in the case of zero trend
inflation. The additional terms, proportional to levels and changes in the real marginal
cost, make the inflation rate more responsive to both aggregate productivity shocks and
monetary policy shocks.

Behind these results is a combination of two mechanisms: one is related to the asym-
metry of the policy rule, defined at the bottom of Section 3.1; the other originates from the
asymmetry of the markup distribution, defined at the bottom of Section 3.2.2. Both are
tightly linked to the perpetual negative drift in the aggregate markup posed by Assump-
tion 2. Specifically, the future expectation of the negative drift generates asymmetry of the

policy rule, because the firms on the verge of increasing their prices have effectively shorter



expectation horizon than those on the verge of decreasing their prices. This asymmetry re-
sults in the significant response of the gap between the upper and lower markup thresholds
to aggregate shocks, contributing to flexibility in the aggregate price index. Meanwhile,
the history of the drift that has always been negative generates asymmetry of the markup
distribution, because more firms accumulate around the lower markup threshold. Due
to the asymmetry, aggregate inflationary shocks expand the number of firms increasing
their prices by more than the decline in the number of firms decreasing their prices, again
contributing to price flexibility.

The importance of Assumption 2 clarifies the condition under which one should employ
our analysis instead of GL. Namely, our analysis becomes relevant when the trend inflation
is large enough or aggregate uncertainty is small enough that aggregate markup does not
experience a positive drift. Interestingly, even a temporary violation of the assumption
changes the dynamics in a non-linear manner: for example, for the case of a temporary large
deflationary shock examined in Section 5.2, the contribution of the asymmetric markup
distribution to inflation is dampened, making inflation less sensitive to a change in real
marginal cost for a while.

The main contribution of this paper to the vast literature of menu cost models is the
analytical characterization of a menu cost model which features a significant fluctuation
in the frequency of price changes. As mentioned above, most menu cost models with
both aggregate and idiosyncratic shocks do not allow one to analytically derive explicit
forms of the equations sufficient to close the model in general equilibrium. Two important
exceptions are Danziger (1999) and GL. However, under their settings, the frequency of
price changes is constant over time, which is inconsistent with empirical evidence during
periods of relatively high inflation. This paper instead replicates the empirical correlation
without losing the tractability by introducing the two assumptions on the markup drift.

Moreover, few theoretical analysis has shown how the state dependence of firms’ price
setting affects the Phillips curve equation. The reason is presumably the inability to derive
such simple equations from most menu cost models. While GL is again a notable exception,

their Phillips curve is identical to that in the Calvo model apart from the difference in



the value of a coefficient. On the other hand, the additional terms in our Phillips curve
equation, deriving from firms’ state-dependent price setting, contribute to higher sensitivity
of inflation to aggregate shocks.

Regarding the proposed mechanisms, this paper is closely related to Ball and Mankiw
(1994), Karadi and Reiff (2019), Alexandrov (2020), and Bunn et al. (2024). All of these
studies discuss at least one of the two mechanisms regarding how trend inflation affects
firms’ price setting. However, unlike this paper, they do not analytically characterize a fully
state-dependent model in general equilibrium: Ball and Mankiw (1994) partly introduce
time-dependent price settings for tractability; and Karadi and Reiff (2019), Alexandrov
(2020), and Bunn et al. (2024) analyze a state-dependent menu cost models in general
equilibrium using numerical techniques for heterogeneous-agent problems.? In addition,
their primary focus is on the asymmetric response to aggregate shocks when the size of the
shocks is large. While we also observe similar asymmetry by examining a large deflationary
shock in Section 5.2 and a large inflationary shock in Section 5.3, our main focus is on the
case of small aggregate shocks.

This paper complements other studies in the literature that compare menu cost models
with the Calvo model. For example, Auclert et al. (2024) show that the impulse responses
of a wide range of menu cost models can be well approximated by a response of the Calvo
model by choosing an appropriate value for the coefficient on the real marginal cost. The
value of this paper lies on the opposite end of the spectrum: it analyzes one special model
and shows how the state dependence generates a deviation of the impulse response from
the Calvo model.”

This paper is also related to another strand of studies, including Gasteiger and Gri-
maud (2023) and Blanco et al. (2024), which employ non-standard but tractable settings
in firms’ optimization problem in order to replicate the significant fluctuations in the fre-

quency of price changes. The contribution of our paper compared to theirs is to employ

“ Alexandrov (2020) also analytically characterizes a partial-equilibrium menu cost model to examine the
effect of trend inflation on monetary non-neutrality.

5The strong deviation from the Calvo model shown in this paper may not necessarily contradict with the
results of Auclert et al. (2024). In fact, they find that the approximation by the Calvo model deteriorates
when they adopt an infrequent idiosyncratic shock, as shown in the online appendix D.5.2 of their paper.
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more conventional setting following the literature of menu cost models and to show the
endogenous fluctuations in the frequency of price changes.

Finally, this paper contributes to the literature of how trend inflation affects the slope
of the Phillips curve, which is inversely related to monetary non-neutrality. As shown by
Ascari and Ropele (2007), trend inflation in the Calvo model flattens the Phillips curve,
thus enhancing monetary non-neutrality. In contrast, as shown in Karadi and Reiff (2019),
trend inflation in menu cost models reduces monetary non-neutrality due to the endogenous
fluctuation in the frequency of price changes. This paper reinforces the latter claim by
explicitly deriving the terms that steepen the slope of the Phillips curve, as far as the
aggregate uncertainty is not so large to reverse the effect of positive trend inflation on the
aggregate markup.

The rest of the paper is organized as follows. Section 2 introduces the basic building
blocks of the model. Section 3 shows the main analytical results. It derives the laws of
motion for variables sufficient to determine inflation, and adopts a first-order perturbation
to obtain an equation representing the Phillips curve. In addition, it discusses the frequency
of price changes and how it relates to the Phillips curve. Section 4 calibrates the model
and numerically calculates the impulse responses of endogenous variables to aggregate
shocks. Section 5 discusses the importance of our assumptions as well as the effects of

their violations. Section 6 concludes.

2 Model

Our model has the same building blocks as simplest New Keynesian models: household,
firms, and a central bank. The setup for the household and the central bank is conventional.
Firms face both idiosyncratic productivity shocks and aggregate uncertainty and determine

whether they pay a menu cost to adjust their prices.

2.1 Household

Time ¢ is discrete. A representative household consumes consumption bundle Cy, which

combines a range of goods C;; indexed by i € [0, 1] using constant elasticity of substitution
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e—1
(CES) function C; = < fol Cif dz’) .The household solves the cost minimization problem

given prices P;;. The result is the following demand curve for each good

Cit = Cy <PZt> ) (1

~—

Py

where the price index is naturally defined as

1
1 1-¢
Pt:< / P}fdi) : (2)
0 ?

In addition to the consumption bundle C%, the household chooses nominal short-term
bond B; and labor L;, given the price index P;, nominal wage W}, nominal interest rate ;
and lump-sum transfer from the government and firms Il;. The expected lifetime utility of
the household is given by

1—0 1+S0 t+s

o0 Cl—o’ 1

max E; Zﬁs —tts Lo, (3)
s=0

subject to the budget constraint

P,Cy + Bie™" = WLy + By_1 + 1. (4)

The first-order conditions are

C% .
BE, | Hleimm| =1 (5)
Cy
and
W, -
?t = Lfct ) (6)

where m; = In (P;/P,_1) is the inflation rate.

2.2 Firms

The setup for firms mostly follows the model of Gertler and Leahy (2008). There are an

infinite number of firms with index ¢ € [0, 1]. Each firm ¢ produces output Y;; using labor
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Figure 1: Sequence of events in the model. 1) represents the distribution for firms who
optimize their prices at time ¢, while 1} represents that of firms selling their products in
the market.

input L;; with a linear production function
Yii = Ze" Ly, (7)

where Z; is an aggregate productivity while z;; is an idiosyncratic deviation.

Figure 1 depicts the sequence of events. After entering period ¢ and aggregate produc-
tivity Z; as well as other exogenous variables are updated, a shock may hit each firm with
probability 1 — «. Firms hit by the shock either exit the market with probability 1 — 7
or remain in the market with probability 7. The latter firms experience a shift in their

idiosyncratic productivity by &;; as

Zit = zit—1 + &t (8)

where &; 4 follows an i.i.d. uniform distribution with a support [—¢/2, ¢/2] and a density
1/¢. The purpose of assuming exogenous exits by a probability (1 — «)(1 — 7) is to make
the distribution of z;; stationary even in the presence of random walk process in Equation
(8). Assuming the random walk, in turn, is for analytical tractability as it makes firms’
optimization problem essentially independent of the idiosyncratic productivity level z; ;.
Firms that do not exit the market choose whether to adjust their prices by paying a
nominal menu cost bW;e(*~D%:t. Following Golosov and Lucas (2007) and Nakamura and

Steinsson (2008), firms pay a menu cost in terms of wage to additional labor. Following



Gertler and Leahy (2008), the menu cost depends on firms’ idiosyncratic productivity level
2z with an elasticity (¢ — 1) in order to keep the firm’s optimization problem independent
with the size of each firm.%

The production function (7) implies that the real profit of a firm in each period net of
a menu cost is

S VAP | A YA i : 9
, Pt it PtZtezi’t it tPte ) ( )

where b, is equal to b if P;; # P;;—1 and zero otherwise. By taking into account the demand

(1) and using the equations Y;; = C;; and Y; = C, we rewrite the profit as
sy = ZyemsHEDse [Aeerun (e — 1) —by], (10)

where z; = log(P; 1 Zie*»t /W) is the logarithm of each firm’s markup, z; = log(P;Z; /W)
is the logarithm of aggregate markup (corresponding to a markup for firms with the price
equal to the price index and z;; = 0), and A; = (Y:/Z;)e*™ is a variable representing
the scale of firms’ profit. The markup for those firms that do not adjust their prices is
Tit = log( P 1—12Zve*t /[Wy) = i1 + zit — Zit—1 — Kt, where k; represents the growth rate
of aggregate nominal marginal cost and is defined by

WiZi 1
ZiWi1

k¢ = log =Ty — Tt + T_1. (11)

The profit in (10) suggests that we can re-scale each firm’s value by a factor Zyemrt(e=zi,

The value after re-scaling is
V(T ) = v(T4p, ) = max{vy(Tiy), max () — b}, (12)

where ), represents a set of all relevant macroeconomic variables in the past as well as
rational expectations of future macroeconomic variables as of time ¢, and the subscript ¢

on the functions v,(-) and 9;(-) is a shorthand for the dependence on ;. The Bellman

SGertler and Leahy (2008) do not assume that the menu cost is proportional to wage. It is straight-
forward to apply the main analysis of this paper to the case in which the form of the menu cost exactly
follows that assumed in their paper.



equation for the function 0;(x) is

() = Ae™ (e — 1) + aﬁEteAt“vt_H (x — Kiy1)

+(1- a)TﬂEte)‘t“HE*l)&’t“’Ut+1 (x = Kegp1 + &) (13)

where A\; 11 = log(Z41/2t) — x11+2¢ +1og(Cp% /Cp7) is the sum of the growth rate of the
scale factor and the logarithm of stochastic discount factor. The first term in Equation (13)
represents the re-scaled flow profit excluding a menu cost. The second term is the expected
value for the case in which a shock does not hit the firm in time ¢+ 1 and thus the markup
is only reduced by the drift in markup (—&¢4+1). The third term is the expected value for
the case in which a shock hits the firm without letting it exit the market, shifting firm’s
markup by (&; 141 — K¢+1). The value function does not depend on each firm’s idiosyncratic
productivity level z;; thanks to the assumed form of menu cost bWte(Efl)Zivf. The value
function and the associated optimal policy are therefore common across all firms.

New entrants arrive at the market with idiosyncratic productivity level z;; equal to
0 and markup equal to the reset markup, which we define as the markup after adjusting

price in Section 3.1. Both new entrants and survivor firms participate in the market.

2.3 Central bank

The central bank follows a standard Taylor rule
it =T+ T+ ¢o(m — 7T) + 07", (14)

where 7 is the steady-state real interest rate, 7 is the trend inflation rate, ¢, > 1 rep-
resents the degree to which the central bank stabilizes the inflation, and vj" represents a

discretionary part of monetary policy.
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2.4 Market clearing

The condition for goods market clearing is conventional:
Cr =Y. (15)

As for labor market, in addition to the usual demand for labor to make products, firms
need to hire additional workers to change their prices because menu cost is paid as a wage

to those workers. Specifically, the labor market clearing condition is

1
L; = / diL; + b/ di e(E—l)zm’ (16)
0 firms paying b

where “firms paying b” include both survivor firms changing their prices and new entrants.

3 Analysis

This section presents analytical characterizations of the firms’ problem introduced in Sec-
tion 2.2. Section 3.1 analytically derives firms’ policy rule. Section 3.2 analytically derives
the law of motion for the price index. The analysis in these two sections, together with
the conventional equations described in Section 2 and the exogenous shock process, yields
a set of equations sufficient to close the model in general equilibrium. Section 3.3 applies
a first-order perturbation to the equations to derive an equation representing the Phillips
curve. Finally, Section 3.4 discusses the frequency of price changes and how it relates to

the Phillips curve.

3.1 Firms’ policy

This section solves the optimization problem for firms defined in Equations (12) and (13).
To proceed, we guess that the policy rule is in a form conventional for menu cost models:
the value function ¥¢(x) has a maximum at the reset markup x} = argmax,p 0¢(x) and

an inaction region S; = [z, z{!], which we define by the following conditions: for Vz € Sy,

Bu(x) = () — b, (17)

11



and z; € S;. zF and 2! both satisfy (17) with equality and are distinguished by the
sign of the first derivatives: di,(zf)/dx > 0 and diy(zf')/dx < 0, assuming they exist.
Based on this guess of the policy rule, we construct an explicit form of the value function
using Equation (13). Using the value function, we derive the equations that determine
the values of the triplet (x},2F, 2). This section presents an outline of the derivation.
Appendix A shows more fundamental aspects of the policy rule, including the verification
of the inequality (17).

Based on the guess, we analyze the value function. We first rewrite Equation (12) as
ve(x) = O(z}) —b+ (0 (z) — Oe(xf) + b) I (z € St), where I (-) is an indicator function which
is equal to 1 if the condition inside the parentheses is satisfied and equal to 0 otherwise.
Putting this expression back into Equation (13), substituting the uniform density p(§) =

I(l€| = ¢/2) /¢ for & 141, and rearranging it, we obtain

Bi(@) = A (T = ) o (a4 (1= a)7e?) BB (B (@) — )
+ (1= @y [T A2 e
e O
<1 (W — T+ hRe] S q;) I (2" € Spa1) [Ur41(2”) = Dera(fyy) + O]

-+ aﬁEte)‘t“ [’l~)t+1(3§' — Ht+1) - ﬁt+1($r+1) + b] I (x — Kt4+1 € St+1) s (18)

where ¢ = (e>(5_1)¢’/2 - e_(5_1)¢/2) /¢(e — 1) is a constant.
In order to simplify the third term in Equation (18), we adopt an assumption corre-
sponding to that used by Gertler and Leahy (2008) (see the inequality (12) in their paper):

the support ¢ of the uniform distribution of idiosyncratic shock £ is wide enough.

Assumption 1 (Wide support of idiosyncratic shock) The following inequality holds

for Wt with probability 1 7:

% > max (o —2f | + kel — o — k). (19)

"Strictly speaking, in order to obtain firms’ policy rule, we only need to assume that firms expect that
the inequality holds with probability 1 in the future. The reason why we also assume that this inequality
has to hold for V¢, including past periods, is to reuse this assumption later in Section 3.2. Similar remarks
apply to Assumptions 2 and 3, too.

12



Intuitively, Assumption 1 makes it possible that even firms on the verge of decreasing their
prices at t — 1 instead increase their prices at ¢, and vice versa, if they are hit by a large
idiosyncratic shock. This assumption, together with the fact that firms’ markup x after
optimization at ¢ should satisfy x € S, ensures that the condition for the second indicator
function (z/ € Si4+1) in Equation (18) is sufficient for the condition for the first indicator

function (|2’ — z + Kky41] %).8 The latter is thus redundant, which in turn imply that the

integral is independent of x. We can therefore denote this term as A4,te(*5+1)x , where
Ay =(1- oz)TBEteAt“‘L(E*l)”t“A57t+1, (20)
o g
As, = / B (0% (5 (2) — () + )] (21)
L O

t

We next analyze the last term of Equation (18), which represents the case in which no
idiosyncratic shock hit the firm at ¢ + 1. Whether those firms can stay inside the inaction
region at t + 1 depends on the drift in firms’ aggregate markup (—k¢+1) and the dynamics

of the thresholds :ctL Jf This consideration motivates another assumption.

Assumption 2 (Monotonic drift) There exists a positive real number € > 0 such that

the following inequalities hold for ¥t with probability 1:

T+ ke — X 2 €, (22)
aF o —al ) > (23)
af +r -l 2 (24)

These inequalities imply perpetual negative drift of firms’ aggregate markup relative to

the triplet (z},x}, z{7) representing policy rule.” This assumption is a sufficient condition

8 A simple algebra confirms this statement. For example, to confirm &’ — z + key1 < ¢/2, we proceed as

x/7$+fit+l gxﬁ_l 7xf+ (% *:Eg_lJr;ctL) = %’
where the inequality is a combination of the following three inequalities: z’ < x{il, z = zF, and % >
afhy — o + ket
9The assumption concerns aggregate markup, which should not be confused with each firm’s idiosyncratic
markup. In other words, even under the assumption, each firm’s idiosyncratic markup may fluctuate around
zero by a large idiosyncratic shock.
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for positive trend inflation: in the steady-state in which (z*, x_L, :Lj{) are all time-invariant,
where the bar above each variable represents its steady-state value, these inequalities imply
k =m 2 € > 0. Outside the steady state, the inequalities imply that, for example, if a
firm has a markup exactly equal to the reset markup x}_; at period ¢ — 1 and is not hit
by an idiosyncratic shock at period t, the markup of the same firm at ¢ is definitely below
the reset markup z; due to the drift (—k;), unless it changes the price. This assumption
is the basis for the main economic mechanisms we highlight in this paper. Clearly, it is
a rather restrictive assumption, especially when trend inflation is low or the economy is
subject to considerable aggregate uncertainty that may induce positive drift in markup at
times. Later in Section 5.2, we revisit the case in which the assumption fails .

Furthermore, in order to clarify the exposition, we temporarily assume that firms per-
ceive no aggregate uncertainty. We later remove this auxiliary assumption when we instead
introduce Assumption 3.

Using these assumptions, we solve Equation (18) in a recursive manner to obtain the
value function as schematically shown in Figure 2. First, for € (—oco,zf,; + K1) U
(x4 + Ki1,00), the last term in Equation (18) is equal to zero and (z) is an explicit

function only consisting of e(=51t1)% =€ and a constant with respect to .19 Specifically,

() = 5 (@) = AT — AQ)eme + AL, (25)
where
A©) = 4, 4 A, (26)
AQ) = 4, (27)
A(O) _ 1— 1) E At+1 (5 * —b 28
30 = (a+ (1 —a)re?) BEte (Te1(2fq) = b) - (28)

10Strictly speaking, when we evaluate the third term in Equation (18) above, we assume that x € [ath, azfl]
as shown in footnote 8. For z € (mf{,x{il + Kit+1], which is outside this range, we need to confirm the

inequality —2’ 4+ = — Ker1 < % We show this inequality as follows:

L H ¢
—o' +x— k1 £ —xp + ($t+1 + Ht+1) — K1 < 9

where the second inequality derives from the combination of Assumptions 1 and 2.

14
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Figure 2: Schematic picture of the value function under the assumption of no aggregate
uncertainty.

Because Assumption 2 ensures that o < af,, + ki1, O(2f) = § )(:ct ).

Next, we shift the time index to ¢t + 1 in Equation (25) and substitute the expression
into the last term of Equation (18). Under the auxiliary assumption that firms perceive
no aggregate uncertainty, we can express 0¢(z) in an explicit form similar to Equation (25)
for Vx € [a:tLH + Kt 1, :UtL+2 + K41 + Kig2). Assumption 2 ensures that this domain of z is
not empty and covers the region of x strictly larger than zf. By repeating the recursive
substitution, the range of x for which we obtain an explicit form of #;(z) moves to the
right in the z axis, eventually covering Vo = actLH + K41 until = reaches ~Tﬁ1 + Kker1- As a
result of this recursive calculation, for Vz € [:UtLH + K41, xfil + Ki41], by implicitly defining
[ (n) .(n+1) (n)

a positive integer n by x € [z, z,""") where ;") = zF,, + Y."_| Ki1s, we obtain the

explicit form of the function v;(z) as

Bulw) = 3" (2) = AL DT — AT)eme 1 ALY, (20)
where
AV = Ay + Ay + aperrtE DR 40 (30)
Ag,? = A; + (1,86)\“14_55”114;7;_11) (31)
Ag,? =(1- a)Ts‘bﬂe’\‘“ (17t+1(mf+1) — b) + aﬁekf“A(";l). (32)
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Because this formula covers the entire range of x € [xtLH + K41, :):ﬁrl + Kt+1], we can
write ¥(x}) and ¥ (xf’) in the above form if we choose the right values of n. The piece-
wise nature of the formula, however, complicates the derivation of 2} and z{1. In fact, as
mentioned at the bottom of Appendix A.5, even the uniqueness of x} is not assured. This
motivates us to introduce another assumption, which significantly reduces the complexity

of the problem.

Assumption 3 (Slow drift) Let n be an integer variable such that the markup of firms
adjusting their prices and new entrants at period t shifts out of the inaction region at time

t +n} without being hit by an idiosyncratic shock. Then o™ < 1.

This assumption allows us to approximate the function o;(x) for Va € [xE”H), x|+ K1)
as
(@) = 507 (@) = AreEHDT - Ay e + Ay, (33)
where
Al,t = At + A47t + OéﬂEte)\t'HJr(sil)ﬂt'HA17t+1 (34)
Aoy = Ay + aB B TR Ay 4y (35)
Azy = (1 — a)1e® BEMH (Opg1(zyyy) — b) + af B Az gy (36)

Intuitively, if firms expect that the drift (—k.4s) in firms’ aggregate markup is going to be
slow for all s > 0, the size of each domain [acgn), xgnﬂ)) for Equation (29) is expected to be
small. Firms adjusting their prices and new entrants at period ¢ then expect that it will
take a long time nj to exit the inaction region, unless they are hit by an idiosyncratic shock.
Because the probability of not being hit by an idiosyncratic shock is «, the approximation
of replacing n} by oo has an error of the order of o . We ignore this error by assuming
large enough ny. Appendix G.1 explicitly confirms this argument.

Using the approximation based on the assumption, because x} € [azgnfl),xgnt)), the
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function () takes a maximum at

A
zt = log (551) + log ( A?Z) . (37)

We implicitly obtain the upper threshold of the inaction region z{ by

5> (@) = 5% () — b (38)
!>

—— <0. (39)

T=Ty

Using Equation (25), we also obtain the lower threshold =} by

0 ~| OO *
5 (@) = 5 (2}) — b (40)
~(0)
and o, >0 (41)
dx .
T=Ty

Together with Equation (20) that defines A4+ and Equation (80) in Appendix A.6 that char-
acterizes As ¢, Equations (25) and (33) to (41) completely determine the triplet (z},zF, x)
of firms’ policy rule.

It is now appropriate to reconsider the auxiliary assumption introduced above. Namely,
in order to derive Equation (29), we assume that firms perceive no aggregate uncertainty.
Without this auxiliary assumption, we cannot write the explicit form of the function o;(x)
for the whole range of x € [xtLH + Ktt1, xﬁrl + k¢41] as shown in Figure 2. However, un-
der Assumption 3, the only explicit forms of the function necessary to obtain the triplet
(z}, 2k, 2l1) are f}t(o) (z) and ﬁt(oo) (z) in Equations (25) and (33), both of which are inde-
pendent of n. In addition, Appendix A.6 shows that the derivation of the law of motion
for As; does not need this auxiliary assumption. We therefore do not need the auxiliary
assumption to obtain the triplet.!!

We conclude this section by briefly comparing the triplet (x;‘,xtL ,xfl ) with that ob-

tained by Gertler and Leahy (2008)(GL) for the case of zero trend inflation. Equations

1 Appendix A relies on the auxiliary assumption to discuss various aspects of the value function in more
detail, .
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(37) and (38) are similar to what they obtain.!? However, Equation (40) is qualitatively
different: the form of our value function around the lower threshold of the inaction region,
as depicted in Figure 2, is distinct from the value function around z} and z’, whereas
no such distinction is present in the analysis by GL. The distinction is due to the drift in
firms’ aggregate markup, which is expected to be always negative relative to the triplet
(xf, zF, 1) by Assumption 2. Intuitively, this drift makes the behavior of firms with cur-
rent markup just above z} different from other firms. The former firms rationally expect
that, unless being hit by an idiosyncratic shock, they are destined to change their prices
soon due to the drift, so they become effectively myopic. On the contrary, other firms
need to foresee far future. We term this distinction as “asymmetry of the policy rule”. We
later discuss that the asymmetry is a crucial element for one of the two mechanisms that

significantly affect inflation dynamics as well as the frequency of price changes.!?

3.2 Markup distribution and the price index

Given the triplet (z}, 2%, z/T) obtained in the previous section, we derive the law of motion

for the price index in this Section.

In general, state-dependent models are starkly different from time-dependent models
in the derivation of the price index. For example, the derivation is trivial for the time-
dependent Calvo model. The assumption of random selection of firms changing their prices
implies that the average price of those not changing their prices corresponds to the price
index of the previous period. This in turn implies that the price index at the current period
is simply a weighted average of the reset price at the current period and the price index
at the previous period, with the weight equal to the frequency of price changes. On the

contrary, we cannot resort to a similar simplification in state-dependent models. Instead,

12The only minor difference between this paper and GL is their use of second-order perturbation for
the value function around z* and first-order perturbation for the policy functions. In other words, our
expressions for 2} and ¥ are identical to those by GL if we use the same perturbation in the limit of zero
trend inflation. Section 3.3 and Appendix D.1 explicitly show that a first-order approximation similar to
that used by GL yields A4+ = A5+ = 0 both in the steady state and in the log-deviation from that.

13 A related issue of some interest is whether the value of 2 in our model converges to that of GL in the
limit of zero trend inflation. As shown in Appendix A.7, at least in a steady state, 7®) (zL) = #(°) (L) in
the limit of zero trend inflation, implying that there is no discontinuity in the value of zbetween GL and
our model.
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the very nature of state dependence and the presence of idiosyncratic shocks necessitate us
to keep track of the whole distribution of firms’ markup and their idiosyncratic productivity
level, making analytical characterization difficult.

The menu cost model in this paper is exceptional in that, despite being fully state-
dependent, it allows us to analytically characterize firms’ markup distribution. By doing
so, we explicitly derive the law of motion for the price index. This section sketches the

outline of the derivation, while Appendix B shows the details of intermediate calculations.

3.2.1 Definition of density functions

Before diving into the calculation of the price index, we define the density of firms as a
function of markup z;; and idiosyncratic productivity level z;; at two different timings
within a period, as shown in Figure 1. Namely, 1?(z,2) represents the density of firms
right before they optimize their prices, while 1} (z, 2) represents the density of firms after
optimization, thus participating in the market.

The two densities are related to each other through two master equations. On the one

hand, the transition from 1) to ¢} follows

Ui (2,2) = (1= a)(1 = 7)o (z — x7) 8(2)

L (a1} /S A (o, 2) + 9 o) (€ 5), (42)

where §(-) represents Dirac’s delta function and S§ = (—oo,zf) U (zf!,00) denotes the

region outside the inaction region.'* In this equation, the first term represents firms newly
entering the market. The second term represents the firms that adjust their prices because
they are outside the inaction region just before optimizing the price. The third term

represents the firms that do not adjust their prices.

“Dirac’s delta function satisfies the followings: §(z) = 0 for Vx # 0; and J°0_ dx 6(x) = 1. This paper
extensively uses the following basic property of the delta function: for any function f continuous around

zo, [7_ dx f(2)d(x — o) = f(wo).
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On the other hand, the master equation governing the transition from v} to 1} s

o0

1/1?+1(CC, z) = o) (T + Kiq1,2) + (1 — a)T/ dé ()Y} (x — £+ ke, 2 — &), (43)

—00

where p(§) = I (|¢| £ ¢/2) /¢ represents the probability density of an idiosyncratic shock.
The first term represents firms that are not hit by an idiosyncratic shock and therefore expe-
riences only the drift in markup (—#¢41), and the second term represents those being hit by
the idiosyncratic shock. The number of firms represented by the two density functions are
different: while the number of firms in v} (x, ), corresponding to ffooo ffooo drdz ¥} (x, 2),
is 1, the number of firms in ¥9(z,2) is {a + (1 —a)7} < 1, because the latter does not
take into account exiting firms.

We integrate out idiosyncratic productivity z and focus on the distribution of markup

x. Specifically, we define

Uy (z) = /Oo dz eEVE2) 04 2, (44)

The exponential factor e€=1(==2) ig to facilitate the calculation of the price index, which
also has this factor as shown in Equation (81) in Appendix B. Strictly speaking, this
variable does not represent a density function of firms’ markup because of this additional

e=1(z=%). we nevertheless call it “markup density” for convenience unless that

factor el
causes a confusion.!® By combining the master equations (42) and (43) and integrating
out z using Equation (44), we obtain the master equations for W;(z), shown in Equations

(86)-(94) in Appendix B.

3.2.2 Explicit calculations of the density V;(z) around the inaction region

To calculate the law of motion for price index, we need to explicitly characterize some

part of U, q(z) using the master equations (86) to (94). First, ¥;y;(x) is flat for z €

15To evaluate the frequency and size of price changes in Appendix E, we define another function
U (z),which exactly represents the density of firms as a function of markup x. The function ¥, (z) should
not be confused with ¥{(z).
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Figure 3: Schematic picture of W;;(x) around the inaction region.

[ — ¢/2 — k1, 2F — k1) U (2 — ki1, oF + ¢/2 — ki), as depicted in Figure 3:
Ui (z) = nliy, (45)

where 1 = (U-)T__ s a constant and T is defined by

a+(1—a)T)

I} = /OO dx Uy(x). (46)

—0o0

The right-hand side of Equation (45) represents the density of firms being hit by an idiosyn-
cratic shock. Assumptions 1 and 2 ensure that neither of the two flat regions are empty: for
example, for the left flat region in Figure 3, zf —ryy 1 = xﬁl —¢/2 > axfl —¢/2—ki11, where
the first inequality follows from Assumption 1 and the second follows from Assumption 2.

Next, we derive an explicit expression of W;,1(z) for x slightly below ! — k;y1. The
master equations (86)-(94) suggest that for x € [z} — ki1, 2T — kyy1] excluding the point

T = ﬁ — Kt+1,
Upi(x) = 171“%“ + aeE™VR (1 + k). (47)

The second term on the right-hand side is the contribution of firms which are not hit
by idiosyncratic shock at the beginning of time ¢ + 1 and therefore experience only a
drift. This equation suggests that we obtain closed-form expressions for W, (z) by grad-
ually lowering = from xff — kyyq: for @ € (21, — ki1 — ke 2l — Kea], Vi (z) =

1 -1 1. H H _
n (Ft+1 + aels )’erI‘t), for x € (x;1y — Key1 — Kt — Ki—1, T3y — Keg1 — Kt), Y1 (x) =
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n (Tl + aeCEDrenTl 4 q2elE=retr)Pl )0 and so on. As a result, Uy (z) increases
by a series of step functions, as depicted in Figure 3. Assumption 2 ensures that the regions
thus sequentially defined are always of finite length and therefore, after a large enough num-
ber of steps, surely reach z — #;,1. The step-wise increase in ¥y, 1(x) eventually saturates
by the rate a”H(z), where nf! (z) represents the number to steps before reaching z from
ol — k1. Assumption 3 then justifies the replacement of the finite summation of Wy ()
by infinite summation for x close enough to the lower inaction threshold.

Meanwhile, for € [z} — Ki11,2} — K1), another set of terms in a form of delta
function contributes to Wyiq(z). These terms represent firms changing their prices and
new entrants at a past period that have experienced the drift since then without being hit
by an idiosyncratic shock. The contribution of these terms, however, also diminishes by
the rate o™ ®), where n* (z) represents the number of steps before reaching x by lowering
x from zf — Key1. Assumption 3 again implies that they become negligible for x around
the lower threshold.!

These considerations suggest that for @ € (zf'—rq1, 2, ], Yiq1(z) is well approximated

by a flat density as

Uipi(m) = n (F%+1 + F?+1) ) (48)

where I'} 1 derives from an infinite sum of step functions and is expressed in a recursive

form
Iy, = ae(ET DR (T} +T7).

The first term in the parenthesis on the right-hand side of Equation (48) represents firms
being hit by an idiosyncratic shock at the beginning of period t+1. On the other hand, the

second term represents the contributions of firms that were hit by an idiosyncratic shock

16Gtrictly speaking, delta functions are infinite at a point by definition, so the statement that they become
negligible may appear confusing. However, we always evaluate the contribution of the delta functions
by taking integrals over some finite region of z, for example, through the calculation of I‘?H and l"irl.
After taking integrals, delta functions become finite, and it makes sense to discuss the magnitude of their
contributions.
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at a past period t — 7, landed inside the inaction region, and has drifted since then without
being hit by another idiosyncratic shock, eventually reaching the region x € [xF — k1, th+1]
around the lower threshold.

Importantly, we clearly see the difference between the density around the upper thresh-
old in Equation (45) and the density around the lower threshold in Equation (48). We term
the difference as the “asymmetry of the markup distribution”. The term T'? 1 reflects the
degree of the asymmetry. It derives from the history of negative drift in aggregate markup,
following Assumption 2. It is an important constituent of the second mechanism that we

highlight in this paper.

3.2.3 Derivation of the law of motion for the price index

We are ready to derive the law of motion for the price index. While the details of the
derivation is presented in Appendix (from Appendix B.1 to B.5), we here sketch the outline
of the derivation. We first rewrite the price level (2) by the density 1} (r, z) and expand the
expression by using Equation (42). This leads us to two integrals (I'? and I'} in Appendix
B.1), corresponding to the contributions of firms adjusting and not adjusting their prices,
respectively. The integrals are evaluated using the master equations (86)-(94) for the
density W, (x) as well as its explicit expressions around the Ss region shown in Equations
(45), (47) and (48).

As a result of the calculations, we obtain the following equation:

eU=8re — (1 — q)Cet=2IPi 4 (a + fie— fz,tft—1> =P (49)
_ F5 ~
Ty = AL — e ™ (14T (50)
rh, ~o 7 (1T
L (e=DAH _ —(e—1)Af
fl,tE( 3 )T A+ AL - -1 (51)

—(e=1)(zy —2fy +5¢)

e—1

1—-a 1—e
f2,t = ( ¢ )T [(.ﬁUtL - a:tL_l + /it) - 6_(8_1)A£

] : (52)

L

1=T_is a constant and Af = z/f — 2 and Al = 2} — 2F are the gaps

1—7e®

where C =

between the reset markup x; and the inaction thresholds, which we call the upper gap and
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lower gap, respectively. p; and p; are defined as the logarithm of the prices P, and P/,
respectively, i.e., pf = log P and p; = log P;, where P} = W,e®t /Z; represents the reset
price for firms with idiosyncratic productivity level z; ; = 0.

Equation (49) is an intuitive representation of the law of motion for the price index, as
is clear by the comparison with the corresponding equation for the time-dependent Calvo
model. Specifically, if firms adjust their prices only when an exogenous Calvo fairy visit
them with a probability 1 — o/, Equation (2) implies that the price level would evolve as
el — (1-— o/)e(l_s)pZ + a’e(1=®)Pt=1_Tn this expression, the price level at ¢ is simply
determined by a weighted average of the contribution of (1 — o) firms changing their prices
to p; at period t and the contribution of o’ firms staying at the same price. Because of the
exogeneity of the arrival of a Calvo fairy, the average price of the latter firms is exactly
equal to the price level at ¢ — 1. For our menu cost model, Equation (49) suggests that
the price level at t is expressed by a similar weighted average of the two contributions. In
fact, if the variables fi; and f27t1~“t_1 were equal to 0 and C' were equal to 1, Equation (49)
would be identical to the law of motion in the Calvo model with the probability of Calvo
fairy arrival (1 — a)). The latter is essentially the law of motion for price level derived by
Gertler and Leahy (2008)(GL) for the case of zero trend inflation.

The important departure of our model from GL is therefore expressed by the terms
fi1,+ and f27tft,117. These terms reflect a different manifestation of the state dependence
in price setting. Specifically, f1; represents how the upper and lower gaps affect the price
index. We see this more clearly by expanding the exponential terms in Equation (51)
up to a second order: f1; ~ (1 —a)r(e — 1) ((AtL)2 - (AtH)2> /(2¢). This expression
suggests that if AF decreases or A increases, f1; becomes smaller, which translates into
higher price index p; in Equation (49) because ¢ > 1. Intuitively, this term represents
the contribution of firms being hit by an idiosyncratic shock at the beginning of current
period. These firms change their prices if and only if they land outside the inaction region,

the width of which is given by (A{{ + AtL) If the lower gap Al shrinks, after being hit by

"The value of the constant C' is mostly irrelevant for the dynamics of the model, though it affects the
steady-state aggregate markup & with respect to the reset markup z*.
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an idiosyncratic shock, more firms would land below the lower threshold and thus increase
their prices. If, on the other hand, the upper gap Afl widens, an idiosyncratic shock would
make less firms decrease their prices.

The term fg,tft_l reflects the contribution of the asymmetry of the markup distribution,
as shown in Figure 3 and discussed at the bottom of Section 3.2.2.1% Specifically, Ty1
represents the degree of the asymmetry, as is clear from the definition Iy q = I'?/T} and
Equation (48). We can translate the degree of the asymmetry into its contribution to the
number of firms increasing price by multiplying ft—l by (zf — xthl + Kt), because firms
with markup z € [zF |, 2L + k] at the end of period t — 1 slide out of the lower inaction
threshold at t. The contribution of these firms to the price index is related to AF, roughly
the size of price changes for these firms. In fact, by first-order expansion of Equation (52)

in terms of (zF — L | + k;), we see that

oy o (xF — al ) + re)(1 — e DA, (53)

consistent with this interpretation.

While this concludes the analysis of firms’ price setting in goods market, we have not
discussed another problem that requires non-trivial analysis in general equilibrium: labor
demand. Specifically, we need to evaluate the two integrals appearing on the right-hand side
of Equation (16). As shown in Appendix B.6 and B.7, evaluating the integrals introduces
additional endogenous variables and their laws of motion. Appendix C collects all of 28
equations with 28 endogenous variables to close the model in general equilibrium, apart

from exogenous shock variables and their process.'”

18 As emphasized in the discussion following Equation (44), especially in footnote 15, strictly speaking,
the function ¥, (z) does not represent the density of firms as a function of markup z. However, as shown
in Appendix E, the shape of genuine density function WY (x) looks qualitatively similar to that of ¥,(x) in
Figure 3, and the discussion here is valid even with respect to \I/S(x)

'9As shown in Equation (128), it is more convenient to rewrite the law of motion for the price index (49)
in terms of the markup x: by using p; — p: = x} — x+, because the price index p; and the reset price p; are
not stationary in the presence of trend inflation.
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3.3 Phillips curve

The set of equations shown in the previous sections allow us to derive an explicit and
intuitive equation representing the Phillips curve.

To do this, we adopt standard log-linearizion or linearization of each endogenous vari-
able around the steady-state value, and denote the steady-state value by a bar and the
deviation from it by a hat on top of the variable. More specifically, the variables expressed in
lower-case letters (such as o} and #;) and the two gaps (A and A}) are linearized around
their steady states —for example, xj = z* + Zf—, while the other variables, expressed in
upper-case letters such as A; and Iy, are log-linearized, i.e., 4; = Ae® ~ A (14 a).

We also adopt two additional approximations. First, trend inflation rate 7 is so small
that we ignore any term that represents the interaction of a log-deviation and 7: for
example, e V7q, ~ d,. Clearly, once this approximation is imposed, we can no longer
discuss some of the non-linear effects of trend inflation on actual inflation dynamics; such
analysis is to be conducted in the full model without (log-)linearization. Secondly, we
assume that the steady-state values of the upper and lower gaps, A” = 21 — z* and AL =
z* — zl, are also small enough to justify a first-order approximation when interacted with
a deviation: for example, eaALAtL ~ (1 + 5AL) AtL Note that the hierarchy AL AH > 7
presumed in the two approximations is consistent with Assumption 3. The steady-state
values of these variables based on the calibration of our baseline model, shown in Section
4.1, are consistent with the hierarchy: AY =3.5x1072, A =24x1072, and 7 = 1.7x1073
(corresponding to 2 % annual inflation).

While Appendix D shows the details of the derivation, we briefly sketch the outline.
First, under the above approximations, A4; is negligible compared with A; in Equations

(26) and (34). This implies that the upper gap is constant within our approximations:
Afl ~ 0. (54)

However, as discussed at the bottom of Section 3.1, the asymmetry of the policy rule

implies that firms around the lower threshold behave rather differently. These firms ratio-
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nally expect that, unless being hit by an idiosyncratic shock, they are destined to change
their prices soon due to the negative drift, regardless of the exact size of the shock. This
expectation dampens the response of 27 to aggregate external shocks. In fact, our approx-

imations yield £ ~ 0, which in turn implies
AF ~ zr. (55)

Using the expressions for the dynamics of the gaps Afl and AtL , we rewrite Equations

(51) and (52) as

A 11—« ~HA < LA L

fem U oy (CAMAN L AR (- @) - Dadf. (60

form (1= a) (e = 1) Gk, (57)
where the constant ¢; is defined as ¢; = 7A”/$. Substituting these expressions into

Equation (49) and combining it with Equations (34), (35), and (37), while ignoring A4,

we obtain the Phillips curve equation:

. . . l—a, .
7y & BEy1 + Aemicy + TC (mey — afEmci1)

+ C (ATﬁ,Ct - aBEtAﬂict+1) 5 (58)

where mc; = —I; represents the log-deviation of aggregate real marginal cost from the
steady state, and Amc; = mc; — micq—1 is a shorthand of the change in real marginal cost
from the previous period. The constant \. = (1—a)(1—af)/« is the same as the coefficient
attached to the real marginal cost in a hypothetical Calvo model with the probability of
price adjustment equal to (1 — «). The constant ¢ is defined as ( = (1 /(1 — ¢1)-

While the first two terms on the right-hand side is identical to what Gertler and
Leahy (2008)(GL) obtain for the case of zero trend inflation, the third and forth terms
are new. The third term, proportional to the current and future levels of real marginal
cost (me; — afEymciy1), primarily derives from fl,t and therefore measures how the gaps

Al and AF affect the price index. Because of the asymmetry of the policy rule, the
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response of AtL to shocks is approximated by the response of reset markup z;. The lat-
ter by definition can be decomposed into the relative reset price and a negative of the
real marginal cost as &} = (p; — py) — mic;.2Y If we ignore the former term, the negative
dependence on the real marginal cost contributes to the narrowing of the lower gap AtL
against an aggregate inflationary shock, effectively enhancing the price flexibility and thus
steepening the slope of the Phillips curve. Meanwhile, the forth term, proportional to the
current and future changes in the aggregate real marginal cost (Amic; — aSEAmicit1), is
related to fgﬂg, which arises due to the asymmetry of the markup distribution. Equation
(57) shows that f27t is proportional to the growth rate of the nominal marginal cost Ay,
which can be decomposed into the inflation rate and the change in the real marginal cost
as ke = 7y + Amee. If we ignore the former term, the latter term generates an extra con-
tribution to inflation, especially when the real marginal cost abruptly changes from the
previous period.

The two terms that we ignore in the discussion in the previous paragraph, i.e., the
contribution of relative reset price in Z} and the contribution of inflation rate in &, offset
each other. This statement becomes clear by an explicit calculation of the contributions
of fl,t and fgjt to the price index. Namely, by substituting Equations (56) and (57) into

Equation (49) after log-linearization, we obtain

iy 3 ~ 1 N ~ ~
pr— (1 —a)p; —apr1 ~ 1 <f2,tF - fl,t)

R R R R «
~(1—-a)q [(Pt — Pr—1 + mcg —mep—1) 1=

J— B, — -
o (Pt Dt mCt)

~GH{pr— (1 —a)p; —api—1} + (1 — a)mcy + alAnic] . (59)

The curly bracket on the right-hand side is identical to the left-hand side. It therefore

simply scales the contribution of the real marginal costs, and the price index is directly

20We here slightly abuse a notation of log-deviation to make the expression more intuitive: because
the logarithms of price level p: and reset price level p; are not stationary due to the trend inflation,
strictly speaking, the deviation of these variables with respect to steady-state values does not make sense.
However, if we define a new variable representing the logarithm of relative reset price ¢; =p; — pt, which
is stationary, then ¢; is well-defined. We therefore interpret (p; — p:) as a shorthand of ¢;. A similar
comment applies to the expression {p: — (1 — @)p; — apr—1} in Equation (59): This expression should be
regarded as {af: — (1 — @)drf }-
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affected by Clc

e [(1 — a)mic, + aAnic], which enters the Phillips curve equation (58).

The negative coeflicients attached to the expectation terms inside the parentheses of
the new terms in Equation (58) do not imply that future expected positive value (or future
expected positive growth) of real marginal cost pushes down current inflation. To see this,
we consider the contribution of the third term for the case in which the real marginal cost
remains at the steady state at the current period ¢ but is expected to increase at t + 1:
Eymicir1 > 0. Equation (58) at ¢t 4 1 suggests that the inflation rate 7411 is pushed up by
the third term by %Cmctﬂ > 0. This contribution also affects the current inflation rate
7 through the inflation expectation E;@ i1, resulting in the net effect of marginal cost
tomorrow as 1?TO‘C B(1—«a)Emiciy1 > 0. The additional term is thus always inflationary as
long as Fymic,+1 > 0, and the apparent negative coefficient is to be offset by the contribution
through the inflation expectation. Similarly, the forth term is always inflationary as long
as ErAmeiy > 0.

We conclude this section by emphasizing that the coefficients attached to the new terms
in Equation (58) are not small. In fact, according to the calibration of parameters discussed
in Section 4.1, the coefficient on the third term leO‘C = 0.027 is similar to that on the second
term A, = 0.027, and the coefficient on the forth term ¢ = 0.16 is much larger than that.

The size of the coefficients on the additional terms suggest their significant impact on the

dynamics of inflation, which we quantitatively investigate in Section 4.

3.4 Frequency of price changes

Finally, we consider the frequency of price changes, the variable of interest in many em-
pirical studies in the literature. We can derive the laws of motion for a few variables to
fully characterize the frequency/size of price increases/decreases. While the details of the
calculation are presented in Appendix E, the expression for the frequency of price changes,
which is the sum of the frequency of price increases and that of price decreases, is

(60)

AH +AtL] —|—a7-$tL —ak +/£t.
¢ ¢

fro=(1-a)r [1 -

Intuitively, the two terms on the right-hand side reflect the same economic mechanisms
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as the terms f;; and fz,tf +—1 in the law of motion of price index (49). The first term on the
right-hand side, which is closely related to fi, represents the contribution of firms being
hit by an idiosyncratic shock at period t. These firms change their prices if and only if they
are pushed outside the inaction region, the width of which is (A + Af). While this term
is present even in the case of zero trend inflation analyzed by Gertler and Leahy (2008),
it is constant within their perturbation. In contrast, in our model, this term significantly
responds to aggregate shocks because the asymmetry of the policy rule induces significant
fluctuations in the gap Al, as argued in Section 3.3.

The second term, on the other hand, reflects the term f27tft,1 in Equation (49). It
represents those firms that were hit by an idiosyncratic shock at a past period and have
kept drifting downward since then under Assumption 2 without being hit by another id-
iosyncratic shock, eventually crossing the lower threshold at period ¢. The history of the
negative drift results in the asymmetry of markup distribution. When an aggregate in-
flationary shock pushes up real marginal cost at period ¢, because of the asymmetry, the
number of firms raising price expands by more than the decline in the number of firms
lowering price, leading to the net increase in the total frequency of price changes.

The dynamics of the frequency of price changes in Equation (60) is thus closely related
to the additional terms in the Phillips curve (58). In fact, by applying the same linear

approximations introduced in Section 3.3 to Equation (60), we obtain

frt%% —(1—a)AL + aiy
T - . . .
~ 5 {pe — (1 — a)p; — ape—1} + (1 — a)micy + aAmic]
T 1 . )
~ 210G (1 — a)micy + aAmc], (61)

where the second approximate equality is by a rearrangement similar to the derivation of
Equation (59), and the third approximate equality directly follows from the same equation.
Clearly, the frequency of price changes moves in tandem with the additional terms in the
Phillips curve (58): both depend on the level and change in the aggregate real marginal

cost.
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4 Numerical exercise

In the previous sections, we obtain all the explicit equations to close the model in general
equilibrium, which are listed in Appendix C. In this section, we use these equations to
numerically calculate impulse response of endogenous variables against aggregate shocks.
The numerical exercise is as easy as in conventional representative-agent DSGE models, as
long as the shock does not cause a violation of any of the assumptions 1-3. Of particular
interest is the response of most important macroeconomic variables, such as inflation rate
and output, as well as empirically relevant quantities, especially the frequency of price
changes.

Section 4.1 calibrates model parameters, explain the solution method and describe the
shock process. Section 4.2 shows the results of the simulations for inflation and output.

Section 4.3 shows the results for the frequency and size of price changes.

4.1 Calibration, solution method, and the specification of shocks

For parameters not specific to the firms’ price setting, we borrow standard values for the
United States from the literature. The unit of time period is a month and the discount
factor is equal to B = 0.96'/12. The inverse Frisch elasticity in the baseline model is set at
@ = 1, though some of the exercises below also adopt ¢ = 0, which corresponds to the case
of inelastic labor supply. We choose the elasticity of substitution between differentiated
goods € = 4 following Nakamura and Steinsson (2008). The coefficient for inflation in the
Taylor rule ¢, = 1.5. The inflation rate 7 in the steady state for the calibration is set to
the average monthly inflation rate 0.212% for the 1998-2005 period in the United States,
while the rest of the numerical exercise employs @ = 0.167%, corresponding to 2% annual
inflation.

For the parameters «, 7, ¢ and b that are important for firms’ price setting, we calibrate
the values such that the steady-state values of selected endogenous variables in the model
match the empirical estimates for the period 1998-2005 in Nakamura and Steinsson (2008)
and Zbaracki et al. (2004). Three out of the four calibration conditions are straight-

forward: the steady-state value of the frequency of price changes fr plus exogenous market
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exit rate (1 — a)(1 — 7) is matched to the frequency of price changes excluding sales and
including substitution in data, 11.8%; the average absolute size of price changes (f rtszt 4
fr-sz7)/fr is equal to 8.5%, where f_r+ (fr™) represents the steady-state value of the
frequency of price increases (decreases) and §z™ ($27) represents the steady-state value of
the absolute size of price increases (decreases); and the size of the menu cost as a share
of sales adjusted for the frequency of price changes, b x fr/Y, is equal to 0.04%.2! The
remaining one condition, which concerns the frequency of price changes fr in Equation
(60), requires somewhat non-trivial considerations. Specifically, as shown in Bils (2009),
when firms discontinue an old model and introduce a new one, some of the price difference
between the two models are not justified by a quality difference: it includes a price change
as a result of firms’ price setting. We therefore cannot regard all of the substitutions in
the data of Nakamura and Steinsson (2008) as exogenous exit in our model. Given the
difficulty of quantifying this effect in data, we assume that a half of product substitutions
is exogenous and the other half reflects price changes. This assumption suggests that we
regard a simple average of the frequency of price changes excluding substitutions (9.9%
shown in Table 1 of Nakamura and Steinsson (2008)) and that including substitutions
(11.8%) as the frequency of price changes in the model fr. This assumption, albeit rough,
is consistent with the share of non-comparable item substitutions among total substitutions
(about 0.5) in Appendix Table Al of Bils and Klenow (2004). Table 1 shows the summary
of the calibration.

We solve the model by a standard deterministic simulation, in which the economy is in
the steady state for ¢ < 0, is hit by an exogenous shock at ¢ = 1 which none of the agents
expect ex ante, and never experiences a shock again, which the agents correctly anticipate.??
The method has two major advantages in the context of this paper. First, strictly speaking,
many equations obtained in Section 3 are not applicable to the case in which any of the

three inequalities in Assumption 2 is violated even for a single period. Stochastic solution

21'We include only the physical menu costs and exclude other costs associated with price adjustment, such
as managerial and customer costs, all of which are measured by Zbaracki et al. (2004). If we included all
of these costs, the parameter b would become too large to yield real solutions.

22We use Dynare with Matlab for the simulation throughout this paper. For Dynare, see Adjemian et al.
(2024).
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Table 1: Parameter values for the calibrated baseline model

f  Discount factor (monthly) 0.961/12

Inverse Frisch elasticity of labor supply

¢  Elasticity of substitution for goods

¢r Coefficient for inflation in the Taylor rule

a  Probability that an idiosyncratic shock does not hit a firm
Probability that a firm stays in the market conditional on an idiosyncratic shock
Support for the uniform distribution of an idiosyncratic shock

b  Size of a menu cost

1
4
1.5
0.86
0.93
0.28

0.0038

methods with Gaussian support of aggregate shocks, while most popular in the literature,
may by chance fail to comply with this restrictive assumption over repeated simulations
to obtain reliable simulated impulse response. In a deterministic simulation, on the other
hand, we only need to run a single simulation, which significantly reduces the chance that
the assumption is violated, and we easily confirm whether the assumption is strictly satisfied
by checking the inequalities over the entire simulation period. The second advantage of
the deterministic simulation is that it can incorporate potential deterministic non-linearity
of the model. That said, in practice, our experience suggests (not shown in the paper)
that when the shocks are not too large, the impulse response obtained by the deterministic
simulation is almost identical to that obtained by first-, second-, or third-order stochastic
simulation, as far as it adopts pruning for second- and third-order perturbations. As we
gradually increase the size of the shocks, we often see that stochastic simulations fail to
obtain the solution before the deterministic one fails.

As for the aggregate shocks, we consider a negative productivity shock and an ac-
commodative monetary policy shock. The negative productivity shock 7 affects firms’
productivity by a standard AR(1) process: log Z; = p*log Z;—1 — €}, where we choose the
coefficient p® = 0.8, which roughly corresponds to quarterly persistence 0.5. Similarly, the
accommodative monetary policy shock e} affects the discretionary part of the monetary
policy rule, shown in Equation (14), as v{* = p"v"; — €}*, where p™ = 0.8. We choose

the sign of these shocks to be inflationary, which many countries experienced in the post-
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COVID period. The choice is also motivated by the concern that if we use opposite shocks,
Assumption 2 may fail to hold unless the shock is small. We separately discuss the case of

a dis-inflationary shock in Section 5.2.

4.2 Inflation and output

We numerically calculate the impulse response of key macroeconomic variables to aggregate
shocks in our menu cost model to better understand its characteristics. For this purpose,
we consider four models. The first model, which we call the “main” model, is our full menu
cost model, with all the equations listed in Appendix C and all the parameters calibrated as
in Table 4.1. The second model is a “PC” model, in which Equation (128) in the “main”
model, representing the law of motion for price index, is replaced by the Phillips curve
(PC) equation (58). The third model, which we call the “PC-ILS” model, is identical to
the “PC” model except that the inverse Frisch elasticity ¢ is set to 0 instead of 1, implying
inelastic labor supply (ILS). Finally, the forth model, which we call the “quasi-Calvo”
model, is an alternative model which modifies the “PC” model in the following way: (A)
the third and forth terms in Equation (58) are ignored; and (B) inelastic labor supply is
again assumed as ¢ = 0. The name derives from the observation that the Phillips curve
equation is identical to that for the Calvo model except for the value of the coefficient A..
This model corresponds to what Gertler and Leahy (2008) (GL) derive for the case of zero
trend inflation.??

The reason why the “quasi-Calvo” model also assumes inelastic labor supply in (B) is
because of the non-trivial expression of labor demand on the right-hand side of Equation
(16), which we rewrite in a more explicit form in Equations (105) and (108) in Appendix.
Since GL did not use similar equations, we do not take into account the labor demand in
the “quasi-Calvo” model. The modification (B) serves this purpose by making the labor

demand equation (16) irrelevant for the dynamics of the rest of the variable. This in turn

238trictly speaking, GL additionally assumes a structure of islands in which households can supply labor
only locally. This introduces real rigidity, which significantly affects the slope of the Phillips curve, as
discussed in Woodford (2003). While such effect may be quantitatively important for monetary non-
neutrality, we do not introduce such a setting because it is not directly relevant for our discussion.
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motivates us to employ the “PC-ILS” model because of the better comparability with the
“quasi-Calvo” model than the other models: the “PC-ILS” and “quasi-Calvo” models are
different only in the third and forth terms in the Phillips curve (58) .

Figure 4 (a) and (b) show the impulse response of inflation and output, respectively, to a
1% negative productivity shock. While all the models show, as are standard, an increase in
inflation and a decrease in output, several observations are noteworthy. First, the response
of the “PC” model, despite being derived using non-trivial approximations described at the
top of Section 3.3, closely matches with the response of the “main” model. This assures
that the Phillips curve equation (58) succinctly summarizes the inflation dynamics of our
full menu cost model. Secondly, the comparison between the “PC” model and the “PC-
ILS” model suggests that labor supply elasticity amplifies the response to the shock, as is
also well established in the literature: for example, see Woodford (2003).

The third observation is that, unlike the “quasi-Calvo” model, the first three models
—“main”, “PC”, and “PC-ILS” models —all exhibit a sharp spike in inflation and a sharp
negative spike in output around the onset of the shock. By construction, the third and
forth terms on the right-hand side of the Phillips curve equation (58) are the reason for the
difference between the “PC-ILS” model and the “quasi-Calvo” model. A natural question
is how each of the two new terms impacts the response of inflation. To answer this question,
we eliminate the inflation expectation term from the Phillips curve (58) by substituting

the inflation rate forward:

o0 o0
. . -« . .
Ty = Ae Z BT Eymiciqr + 5 CZ BT Ey (mci1r — affmcipri1)
7=0 7=0
o0
+¢Y BTE (Amicy i, — aBAniciiiy).

=0
We call the first term on the right-hand side “Calvo term”, the second “f; term” and
the third “f; term”. Figure 4 (c) shows this decomposition of inflation rate for the “PC-
ILS” model in addition to the inflation response for the “quasi-Calvo” model. We see
that the contribution of the “Calvo” term is similar to the full response of inflation for

the “quasi-Calvo” model. This is consistent with the observation that, as shown in the
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Figure 4: Impulse response of selected endogenous variables to a negative productivity
shock of 1%, with AR(1) persistence 0.8. The panel (a) shows the response of monthly
inflation rate. The panel (b) shows the response of output expressed as a log-deviation
from the steady-state value. The panel (c) shows the contribution of each term in the
Phillips curve, defined in the text, to the response of inflation for the “PC-ILS” model, in
addition to the response of inflation for the “quasi-Calvo” model. The panel (d) shows the
response of (log-) real marginal cost expressed as a deviation from the steady-state values.
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panel (d), the dynamics of real marginal cost for the “PC-ILS” model is similar to that for
the “quasi-Calvo” model. Meanwhile, the response of inflation for the “PC-ILS” model is
significantly affected by the other two terms as well. For the case of AR(1) shock adopted
in this exercise, both of the two terms push up the response of inflation at ¢ = 1, thereby
generating the sharp spike, with the contribution of the “fs term” somewhat stronger. For
t 2 2, the net effect of the two terms is much smaller as the two contributions offset each
other: while the “f; term” keeps pushing up inflation, the contribution of the “fs term”
turns negative because the change in real marginal cost becomes negative as shown in panel
(d).

Figure 5 shows a similar exercise for the case of an accommodative monetary policy
shock of 25 basis points. The implications of the panels (a), (c) and (d) are similar to the
case of negative productivity shock discussed above: the “PC” model is still a good ap-
proximation to the “main” model; labor supply elasticity amplifies the response of inflation
to the shock; our menu cost model, unlike the “quasi-Calvo” model, shows a sharp spike in
inflation at t = 1, which derives from both “f; term” and “fs term”, with the latter effect
somewhat stronger; and for ¢t = 2, the two contributions offset each other, making the net
effect smaller. The implication for the panel (b), which shows the response of output, is
rather different from the case of negative productivity shock. Specifically, against an ac-
commodative monetary policy shock, the output response becomes smaller for the model in
which the shock generates a larger impact on inflation. This is due to the selection effect,
well-known in the literature such as Golosov and Lucas (2007): against a monetary shock,
firms are not randomly selected to change price, but they do so because the difference
between their price and the reset price is large. This effect lowers the degree of monetary
non-neutrality while making the price more flexible, as seen from the comparison between

the “quasi-Calvo” model and the “PC-ILS” model.

4.3 Frequency and size of price changes

Figure 6 shows the response of frequency and size of price changes against the same negative

productivity shock as in Figure 4. The panel (a) shows that the total frequency (“fr;”)
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Figure 5: Impulse response of selected endogenous variables to an accommodative monetary
policy shock of 25 basis points, with AR(1) persistence 0.8. The panel (a) shows the
response of monthly inflation rate. The panel (b) shows the response of output expressed
as a log-deviation from the steady-state value. The panel (c¢) shows the contribution of
each term in the Phillips curve, defined in the text, to the response of inflation for the
“PC-ILS” model, in addition to the response of inflation for the “quasi-Calvo” model. The
panel (d) shows the response of (log-) real marginal cost expressed as a deviation from the

steady-state values.
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Figure 6: Impulse response of the frequency and size of price changes to a negative pro-
ductivity shock of 1%, with AR(1) persistence 0.8. The panel (a) shows the response of
total frequency (fr¢), frequency of price increases (fr;") and that of price decreases (fr;,)
as well as the linear approximation of the total frequency (fr + f r,) according to Equation
(61). The panel (b) shows the response of absolute size of price increases (sz;") and that
of price decreases (sz; ).

significantly responds to the shock. Such a response is absent not only in the Calvo
model by assumption, but also in the GL model. Meanwhile, the response of the total
frequency is well approximated by the dotted line (“fr + f r,”), which represents the linear
combination of the level and change in the real marginal cost on the right-hand side of
Equation (61). This clearly confirms that the underlying mechanisms for the responsiveness
of the frequency are the same as the extra terms in the Phillips curve (58), as discussed in
Section 3.4.

Underlying the developments of the total frequency are the movements of the frequency
of price increases (“fr,””) and that of price decreases (“fr; ”). While the former responds
strongly to the shock, the response of the latter is comparatively muted. This contrast is
qualitatively consistent with many empirical observations, including Nakamura and Steins-
son (2008), Montag and Villar Vallenas (2025) and Gautier et al. (2025).

The absolute size of price increases and decreases, as shown in the panel (b) of Figure 6,
declines after shocks, albeit by much less than the increase in the frequency of price changes.
The relatively small responses of the absolute size of price changes are also consistent with
the above-mentioned empirical studies. In addition, some studies, such as Karadi and Reiff

(2019), find small declines in the absolute size against a relatively large inflationary shock.
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We omit the impulse response of the frequency and size of price changes against an
accommodative monetary policy shock, because the implications are similar to the case of

negative productivity shock in Figure 5.

5 Discussion

5.1 Positive trend inflation and our two mechanisms

As discussed for the Phillips curve in Section 3.3 and for the frequency of price changes
in Section 3.4, two mechanisms are behind the qualitative difference of our analysis from
that by GL under zero trend inflation. One of the two is associated with the term f;; and
the other is associated with f27tft_1 in Equation (49). Both mechanisms are essentially
due to the interaction of state-dependent price setting with Assumption 2. Namely, the
first mechanism derives from the future expectation on negative drift in aggregate markup,
which generates the asymmetry of the policy rule. The second mechanism, on the other
hand, derives from the history of the negative drift, which generates the asymmetry of the
markup distribution.

These two mechanisms imply that positive trend inflation is not sufficient for our re-
sults. Rather, Assumption 2, which is stronger than assuming positive trend inflation, is
necessary. Namely, even in the presence of positive trend inflation, if the aggregate uncer-
tainty often invalidate the assumption and makes the drift in the aggregate markup turn
positive, neither the firms’ policy rule nor the markup distribution would exhibit similar
asymmetry.

A natural question that follows from this argument would be what happens if Assump-

tion 2 is violated. This is the topic of the next section.

5.2 Temporary positive drift

One of the most serious limitations in this paper’s analysis is Assumption 2, which im-
plies permanently negative drift in aggregate markup relative to the triplet (x},z}, /7).

This may be a small concern when the aggregate shocks are inflationary as in the exer-
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cises in Section 4. In addition, because k; = T + 7 + Anic;, we can analyze the cases
of dis-inflationary shocks in the same way as long as the shocks are so small that the
inequality |7, + Amc;| < 7 always holds. However, when trend inflation is low enough
or dis-inflationary shocks are large enough to invalidate the inequalities in Assumption 2,
both the derivation of the triplet (z},zF, 2) in Section 3.1 and the derivation of the law
of motion of price index in Section 3.2 would generally fail.

While it is not possible to analytically characterize inflation dynamics in general without
this assumption, there is a case that allows us to perform some analysis: an unexpected
once-and-for-all violation of all the inequalities in Assumption 2. Specifically, we consider
the following setup. The economy is in the steady state for ¢ < 0 and is hit by an unexpected
temporary deflationary shock at ¢ = 1 such that all the inequalities in Assumption 2 are
violated at ¢ = 1. For ¢t = 2, all the inequalities in Assumption 2 resumes, which firms
correctly anticipate as of t = 1. This case, though arguably special, serves us to develop
intuitions on what happens to the price index and inflation under a temporary deflationary
shock.

An advantage of this setting is that the temporary failure of Assumption 2 does not
invalidate the derivation of the triplet (z},z}, zf!). Because firms do not expect the shock
as of t = 0, the triplet at ¢t = 0 is the same as their steady-state values. At ¢t = 1, because
Assumption 2 is only used to deal with the expectation terms in Equation (18), all the
arguments in Section 3.1 to characterize the triplet are unaffected. The only part of our
analysis that needs revision is the derivation of price index in Section 3.2.

While Appendix F explains the details, we show primary findings. At period t = 1,

L . H

when firms’ drift relative to the triplet (z}, z;’, z;") becomes positive, the law of motion for

the price index in Equation (49) is replaced by

1= — (1 — a)Cell=9Pi 1 (Oé + fii=1— f;t:lf;{:O) ell=omo, (62)
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where

f;r = qelsHm (63)
1— (s—l)(th_l—zf—m) 1
fho= Ul ol eear (6)
¢ e—1
Most importantly, because M~ o< o ~ f, the effect of the term f;t:l, which is
24,25

roughly proportional to k1, is dampened relative to the effect of fo; in Equation (49).
Intuitively, when Assumption 2 is valid, the effect of the drift on the price index derives
from those firms that are pushed down through the lower threshold, where firms have
accumulated due to the history of the negative drift. In contrast, at ¢ = 1, the drift affects
the price index via the firms that are pushed up through the upper threshold, where such
accumulation has not taken place. This effectively lowers the sensitivity of inflation to a
change in the real marginal cost.

Equally interesting are the subsequent periods ¢ = 2. At ¢ = 2, all the inequalities in
Assumption 2 again hold. However, as shown schematically in Figure 9 in Appendix F, the
positive drift at ¢ = 1 has moved the entire distribution upwards, shifting the accumulated
firms as of ¢ = 0 away from the lower threshold. In fact, while fo; again appears in the law
of motion for price index as in Equation (49), it is multiplied by a factor significantly less
than T at t = 2. This implies that the sensitivity of inflation to the recovery in the real
marginal cost remains lower. The reduced sensitivity lasts until the accumulated firms as
of t = 0 entirely return to the region in which firms are pushed out of the lower threshold.
In other words, the sensitivity of inflation to the size of shock is dampened not only at the
period of positive drift ¢ = 1 but also during the recovery period, until the negative drift

in markup for ¢ 2 2 completely offset the effect of the positive drift at ¢ = 1.

24This argument ignores several other channels for simplicity. First, A% < A% which also tends to lower
the response of the price level to the shock in k1. On the other hand, the response of (w{{ — xfil) to the

shock in f;r’t may be more subtle. However, the effect of k: tends to quantitatively dominate at the onset
of a shock t = 1.

2To derive Equation (62), we assume that the deflationary shock is not too large that the following
inequality is satisfied: #7 — & — & < k1 < % — 1. If the shock is so large that k1 < 7 — &k — off,

then the term corresponding to fI:O becomes somewhat larger, making the sensitivity of inflation to the

deflationary shock higher, though still lower than the normal value '~ -
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These non-linear responses to a deflationary shock clearly demonstrates the importance
of Assumption 2. Namely, the assumption is not just a sufficient condition to make the
model tractable; it is so deeply connected to the dynamics of our model that even a

temporary violation of the assumption immediately results in non-linearity.

5.3 Correction associated with large drift

Another important assumption that we adopt throughout our analysis is Assumption 3.
The assumption implies that the drift in aggregate markup is not so large that firms
remain inside the inaction region for an extended period after they adjust their prices,
unless they are hit by an idiosyncratic shock. This assumption allows us to employ certain
approximations both in Section 3.1 and in Section 3.2, making the analysis tractable. The
approximations based on this assumption are reasonably good in our calibrated model
in Section 4: for example, the period n* in Assumption 3 in the steady state is about
Al /7 ~ 21.2, implying o ~ 0.039,which is small enough to be ignored compared to
other factors of order 1. Appendix G confirms this argument by explicitly calculating the
errors associated with the approximation.

Very large shocks may, however, significantly deteriorate the approximations, possibly
making some of the corrections important. One such correction is the contribution of the
delta functions that we ignore to derive Equation (48). Intuitively, it derives from the
firms that change their prices or enter the market at a past period tg = —n* 4+ 1 < 0, have
drifted since then without being hit by an idiosyncratic shock, and eventually cross the
lower threshold at ¢ = 1 solely by the drift. For concreteness, suppose that the economy
is in the steady state for ¢ < 0 and is hit by an unexpected once-and-for-all aggregate
inflationary shock at t = 1. If k1 = k1 — 7 is small enough to allow only one delta function
to cross the lower threshold at t = 1, as shown in Appendix G.2, the contribution of the

delta function to the price index is approximately

AH L AL\,
*) Q" (R + 21) . (65)

(1—a)c<1—7
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By comparing it to the direct contribution of the term fg,t, given by

Al
OéT?K,t, (66)

the coefficient for the hat variables in the former expression is about 7.6% of the latter,
suggesting that ignoring the former is not a big issue. However, if the inflationary shock at
t = 1 is large and the ratio of x; to & is significantly larger than 1, multiple delta functions,
deriving from firms that change their prices or enter the market at multiple past periods,
may cross the lower threshold at once at ¢ = 1. The correction would then be large: for
example, if three delta functions cross the border at ¢ = 1, this makes the ratio of the
contribution to the expression (66) about 27%, which is not negligible.?® This argument

suggests the existence of another non-linearity in our model.

6 Conclusion

This paper shows that introducing a drift in the aggregate markup to the menu model of
Gertler and Leahy (2008) gives rise to a qualitatively new behavior, including significant
fluctuations in the frequency of price changes and an extra responsiveness of inflation
to aggregate shocks. Importantly, while being fully state-dependent, the model is still
analytically tractable and yields an intuitive Phillips curve equation. It is thus suitable
for policy analysis, such as the economic projection and simulations by central banks,
especially when inflationary shocks are of particular concern.

Our main results originate from the interaction of state-dependent price setting with
Assumption 2, regarding the perpetual negative drift in the aggregate markup. The as-
sumption is necessarily stronger than just imposing a positive trend inflation. In other
words, the inflation dynamics are qualitatively different if and only if the trend inflation
is large enough or aggregate uncertainty is small enough that aggregate markup does not
experience a positive drift. As far as the drift is negative and not large, the model is

well approximated by a linear Phillips curve. Meanwhile, the violation of the assumptions

*The contribution is estimated by multiplying the contribution of (65) by a factor (14 1/a+1/a?),
which is larger than 3 because a < 1.
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immediately generates a non-linear behavior.

While this paper only analyzes a particular model, the proposed mechanisms, being
intuitive and generic, may exist in a wider range of menu cost models. To confirm this
is an important research agenda. Another issue of interest is to measure the quantitative
importance of the mechanisms in empirical data.

Meanwhile, the model is still so simple that it does not capture a variety of features
found in empirical studies, such as temporary sales (see, for example, Midrigan (2011)),
seasonality in the frequency of price changes (e.g., Nakamura and Steinsson (2008)), infla-
tion inertia (e.g., Nimark (2008)), and the effect of multi-sector output-input linkages (e.g.,
Rubbo (2023)). Incorporating these features without losing the tractability would further

expand the applicability of the model in policy analysis.
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Appendix

A Details of firms’ policy rule

This Appendix presents details regarding firms’ policy rule derived in Section 3.1. Specif-
ically, we first show the continuity of the value function o;(x), which has explicit forms
shown in Equations (25) and (29). Next, we discuss the behavior of first derivatives, which
are discontinuous at domain boundaries. Based on these basic properties of the value func-
tion and an additional assumption 4 introduced below, we prove the inequality (17), which
we guess but do not verify in the main text. Finally, we briefly discuss the existence and
uniqueness of the the triplet (z}, =, zf7).

Throughout this Appendix, we rely on the auxiliary assumption, introduced temporarily
in the main text, that firms perceive no aggregate uncertainty.?”

In addition, throughout this paper, we use basic properties of the functions of the

(

following form, with which 27tn) for an arbitrary non-negative integer n conforms:
f(z) = A1eTsTT — Ay + 43,

where the parameters Aj, As and Aj are positive and € > 1. Figure 7 shows the schematic
shape of this function: it is continuous and infinitely differentiable; it has a single peak at
z* = log (af—l> + log (ff) and is increasing (decreasing) for x < z* (z > x*). We tend to
focus on the region x € [z¥, 7] defined by two values, ¥ and 2!, which both satisfy the

equation f(x) = f(a*) — b for some small positive parameter b.

2TClearly, without this auxiliary assumption, the value function in Equation (29) does not make sense.
As of this writing, we do not know how to construct the value function while fully taking into account the
effect of uncertainty. However, this may not be as restrictive as it may look. The properties of the value
function investigated in this Appendix, such as the continuity and the inequality (17), are all independent
of any particular realization of future macroeconomic variables as long as Assumptions 1 to 3 are respected.
It therefore follows that we can average over all realizations of future macroeconomic variables to show the
same properties in more general cases if those properties are preserved by taking averages.
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Figure 7: Schematic picture of the function f(z).

A.1 Continuity of the value function

In this section, we establish continuity of the value function, which may not look trivial

due to the piece-wise construction of Equation (29).

Because the continuity is obvious in the interior value z for each domain x € [mgn) ; xEnH)),

we only need to examine the continuity at domain boundaries. There are two cases to con-
sider separately: the lower boundaries of each domain at a:gn) forn=1,..., Ny, where N;

(Nt) (Nt+1))

is implicitly defined by (:Utfil + K1) € [z, ; and the upper boundary of the

right-most domain :rﬂl + Kir1. We examine the continuity at xtn) by evaluating

6(”) (x(”)) _ ~(n-1) (chn))

Uy

= (AL — ALY e (4~ aG ) e 1 (A - A (o7

In order to evaluate the right-hand side, we use the definitions of Agtlt), Agft), and A:()Z) in
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Equations (30)-(32). For example,

)~ AT — et (A7) A0)

Lt+1 1t+1
n— n—1 T —1)K¢ar 1 0

=...=(af) 13270 Pr +(e= Dk (A§’2+n_1 _ Ag,t)-m—l)

_ (alB>’n€Z:—L:1[)\t+7'+(5—1)ﬁt+‘r]A§?t)+n’ (68)

(0)

where we also use the definition of Aj; in Equation (26) for the last equality. Similarly,

Agjt) . Ag;—l) _ (aﬁ)neZTrL:l[)\t+T+Eﬁt+T]Ag?t)+n’ (69)
A:(’:Lt) . Agz—l) _ (aﬁ)neZZq Atr [A§)02+n _ 5t+n(l‘:+n) +bl. (70)

By substituting Equations (68)-(70) into (67) and using the definition of a:,gn) =af, +
>on_ | Ktts, we obtain
~(n n ~(n—1 n
o (") o )
= (aﬂ)n622:1 Atgr |:A§?t)+ne(—a+l)xf+n — Ag?2+n€_8xf+" + Af(%(,)t)—i-n — Dty (.73:_,'_”) + b]

—0, (71)

which establishes the continuity, where the last equality follows from Equation (40).
Next, we examine the continuity at the upper boundary xfil + K¢y1. Before doing this,

we establish the following property of the domains. Namely, for Vt and n=1,..., N,

v e [, af") = (2 = renr) € 27, 5. (72)
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It is straight-forward to verify this property as

n n+1
n n+1 L L
x € [xg ),l‘g )) = ., + ZHHS So <o, + ZHHS
s=1 s=1
n n+1
— gk < L
Tn + Kits =T — K4l < Tyhpypr + Ktts
s=2 s=2
n—1 n
— L < L
Tihi4n—1 T Btts'+1 =T — K41 < Tyhq4p T Rits'+1
s'=1 s'=1
(n=1) _(n)
= r K1 € [Ty, T)-

Note that we slightly generalize the notation of xtn) by defining CL‘EO) =zl Forn =1,
Z’;,;ll K11 18 interpreted as 0.

The continuity of the value function at a:{il + Ki41 is verified by

~(V, (0
Ut( t)(xgrl + K1) — Ut( )($g1 + K1)

= (AP — AQ)) eCeEtitnen) — (A% - AQ)) et 4 (AFT) — A())

= aeer A VeCe et — Al Vemerth LAY — 5 (afi0) 4+ )

where the second equality is obtained by using Equations (26)-(28) and (30)-(32). Because
of (72), 2l € [ngi_l), a:g’i)) This suggest that

~(N, ~(0
5 (@l + re) = 50 (@l + o)

= afe ! [ (fl)) — g (2} ) + ]

—0 (73)
by the definition of #, which prove the continuity.

A.2 Analysis of first derivative

Due to the piece-wise nature of the value function, the first derivative of the function is
discontinuous at domain boundaries. It is therefore useful to analyze the characteristics

of the first derivative. Similarly to the analysis of continuity in the previous section,
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this section considers two different cases for the boundaries: the lower boundaries of each
domain at xgn) for n = 1,...,N¢; and the upper boundary of the right-most domain
:Etlfrl + Kty

The calculation closely follows that of the continuity presented in the previous section.

Namely, for the lower boundaries,

n n— —et+1)z{™ n n— )
(e 1) (AF) = ALY el g (A - A e

= (ap)"eXr=1 2t [(—5 + 1)A§?2+n6(7€+1)x5+” 1A

L
—€x
2,t+ne H_n]

= (aB)eX=r=127 (i), (2f4,)] > 0, (74)

where the last inequality is from (41). This implies that in the vicinity of boundaries, the
value function is always convex. At the same time, the degree of discontinuity becomes
small by a factor (3)" as n becomes large, and under Assumption 3, for z € [z}, 2/ | +k41]
the discontinuity is negligible.

For the upper boundary at xfil + K¢+1, the calculation is again similar to the previous

section.

~(0 ~(N,
“fF )/(xﬁl + Kig1) — Ut( t),(ﬂﬁgﬂ + Kiy1)

= (e +1) (AT} — AL)) et g (A0~ AL)) ettty

= _aﬁeAtH {(—E + 1)Ag{¥ﬁ;l)e(*5+1)$g—1 + 514%{:2;11)67”5-1] 7

= —afe [T, (xy)] > 0, (75)

where the last inequality is from (39). Again, in the vicinity of the boundary, the value
function is convex. In contrast to the boundaries at x,(fn) for large enough n, however, the

discontinuity at xfil + K41 is not negligible.
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A.3 Additional assumption to prove the inequality (17)

We now introduce another assumption. To do this, we expand the domain of the function

f)t(o) (x), introduced in Equation (25), to the entire z € R.

Assumption 4 (Technical assumption for the proof of the inequality (17)) Let xfl ©
(0)

be a variable that satisfies ﬁﬁo) (:Uf(o)) = @go) (zF) and dq;;

< 0. Then
H(0)

T=Ty

2HO S g, (76)

This assumption does not have a clear economic interpretation but for a technical require-
ment that we use in the proof of the inequality (17) in Appendix A.4. In our numerical
exercise, we confirm that the assumption holds throughout the simulation period.

While we have not succeeded in rigorously deriving the inequality (76) from other
assumptions or proving the inequality (17) without the above assumption, we speculate that

the inequality (17) is likely to hold in most calibrations of the model as far as Assumption

3 is a good approximation. To see this, we consider two equations: ﬁt(oo) (1) = 17,50) (J:f{(o))

and f)t(oo)(a:g_l + Kiy1) = 17750)(56{11 + Kt+1). The former equation is from the definition of

xH(O) and Equations (38) and (40), while the latter derives from the continuity shown in
t q ’ Yy

Equation (73). Assumption 3 suggests that z/1; + ki1 — 2f!, the relative drift in firms’

markup, is much smaller than the upper gap A7 = 2 — z}. This roughly means that the

two equations hold at z close to 2} and thus far from z}, implying 2} < xf(o).

Somewhat more formally, by expanding the former equation ﬁgoo)(:nf{ ) = fit(o) (xtH (0)) up

to a first order around (1, 4+ k¢11), we see that the left-hand side is f)t(oo) (zf ) + ki)

q}t(o")’(x{il + k1) (@l — 2l — Kyy1), while the right-hand side is 17,50) (x4 ki)

o

(0 o
vt( )(xﬁrl + Kiy1), we rewrite it as

+
+

='L'tli1 + ntH)(fnf{(O) — mﬁrl — Kt+1). By using the latter equation f)t(oo) (xg_l + Kep1) =

w_ om0 H H
e B 1 (:Et_H + Kip1 — oy ) ;
Ut

where the derivatives are also evaluated at (:cgrl + k¢11). The ratio of the two derivatives
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is roughly about 1/(1 — af3) according to Equation (75), leading to

v _H(O af

(xg-l + K1 — qu) .

The factor 1f‘§ 3 is typically not so large: for example, in our calibration presented in
Section 4.1, af/(1 — af) ~ 5.6. This implies that the distance of xtH(O) from zf! is within
6 periods of the relative drift in firms’ markup.

We now suppose that the inequality (76) does not hold, therefore x} = xtH @ 1t would
then follow that the upper gap Afl = xl{{ —x} is narrower than 6 periods of the drift. When
trend inflation is not too large, the lower gap A} has to be of similar order to the upper
gap A1 so AF should be similarly narrow, in contradiction to Assumption 3. This rough

evaluation, albeit not mathematically rigorous, supports the argument that the inequality

(76) is likely to hold.

A.4 Proof for the inequality (17)

(o0

Under Assumption 3, for Vz € [z}, xfil + Kt+1), ) (x) is a good approximation for the
value function. Because Assumption 2 ensures ﬂsf{ < xﬁrl + K¢y1, it follows that the
inequality (17) holds for the upper half of the inaction region [z}, z!T]. We therefore need
to show the inequality only for the lower half of the inaction region [zF, z}]. To do this, we
instead show the inequality (17) for Vz € [z}, :Egr(lo )], which covers the range of our interest
[F, 2}] because of Assumption 4.

Before we dive into the proof, we remember that the function 17150) (x), when its domain

is expanded to the entire z € R, satisfies the following inequality

zeloh,a V) = 50 @) 2 50 () = 50 («]'V). (77)

We are now ready for the proof. For Vz € [x£0)7 xgl)), where :cgo) =z}, the inequality

is trivial from the inequality (77) because v;(z) = 17,50) (x) in this range.?® For the rest of

the range, the proof is based on induction. Suppose the inequality holds for arbitrary t

28 As defined around Equation (29) in the main text, mim =, + > or Keys forn=1,2,... Ng.
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(n—1)

and Vz € [z, ,wgn)). We evaluate 0y(x) — 6150) (x) for Vx € [a:,ﬁ"),m,ﬁ”“)) as

Ti(z) — 0 ()
= 01" (2) — 5" ()
n 0 — T n —ex n 0
= (Al - af)) e=r0e — (Af) — A)) e+ (A7) — A))

_ alBeAt.H [Aﬁ;ll)e(—a—i-l)(x—mH) _ Agft;ll)e—a(x—nprl) +Ai(’>7,;-11) — B () + b .

The third equality is based on Equations (26)-(28) and (30)-(32). Using the proposition

expressed in (72), we obtain
Bu(@) = " (2) = B[S (@ — Kep) = B afi) +8] 20,

where the induction hypothesis is used for the last inequality. We therefore see that as

H(O)]

long as = € [zf, 2, "], the inequality (77) suggests that

w(z) 2 50 (x) 2 80 («F) = %u(x}) — b, (78)

which concludes the proof.

A.5 Existence and uniqueness of the triplet (z},zF, z¥)

This section discusses the existence and uniqueness of the triplet (z7, $tL, xf ). First, these

properties are obvious for the reset markup x; defined in Equation (37), because A;; > 0
(00)

and As; > 0 ensures that the function v, ’(x) has a unique maximum at z}, as shown
schematically in Figure 7.2 In addition, ﬁt(oo)(:v) is monotonically decreasing (increasing)
in x for x larger (smaller) than x;}. This ensures the existence and uniqueness of the upper
threshold ! defined by the implicit equation (38) and the negative first derivative (39) as
long as b > 0 is not too large.

Next, we consider the lower threshold a:tL Using z} obtained above, we can uniquely

specify the function 27250) (z) as in Equation (25) and define x¥ by the implicit equation (40)

29 A4+ > 0 because of Equations (20) and (21) and the inequality (17). This immediately implies A; ; > 0.
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and the positive first derivative (41). Given the existence of ), it must be unique because
the shape of 17t(0) (x) is similar to what is depicted in Figure 7.

Finally, we comment on the uniqueness of the triplet for the case without Assumption
3. To consider this case, we remember from Section A.2 above that, as = increases, the
first derivative of the value function o:(z) discontinuously increases at every boundary,
making the value function convex in the vicinity of the boundary. This means that there
can be multiple values of =}, each belonging to different domain, that give a maximum for

the function ¥¢(x). This possibility makes firms’ optimization problem significantly more

complicated, which in turn highlights the importance of our Assumption 3.

A.6 Derivation of the equation for A;;

The equations shown in Section 3.1 in the main text are sufficient to characterize firms’
policy represented by the triplet (z}, 2, 2), with one exception. Namely, we need to
analyze the integral in Equation (21).

For the analysis, we first rewrite Equation (18) using Ag?t), Ag?t) and Ag?g defined in

Equation (25).

) = AL Al A

+ ozﬁEte)‘t“ [ﬁt+1($ — 5t+1) — ﬁt+1(f73:+1) + b] I (:L‘ — Rt+1 S St+1) . (79)
Using this expression of the value function,

= dw (e—D)a [~ .
Asy = / el [ (a) ~ ) +

H _ L _—xf —zl (e—DxH _ (e—1)xl
0 x g)—€e “t +e 7t 0 S e t e t
= AT A (A§) = () +0) D
Hiﬁj5
A+1+(e—1)Ke41 i i dixl (e—1)z’ [~ N~ * /
+ afEe . e (D141 (2) — Dpga(2741) + 0] I (2 € Seqa) -
Ty —Rt+1
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The integral in the last term is evaluated as

t TRt d(L‘ ~ *
/L ele= 1! [Ut-i-l( ") — Opr1(ziyg) + b] I (93/ € St‘i‘l)

Ty —Kipl

JUt+1 $t+1 (a— )/ , B .
/ / [Ut+1(x ) — Uep1 () + b]
zl —Kt41

t+1

wfhy dx’ P _ .
= A5,t+1 - / — elee [Ut+1($,) - Ut+1(l‘t+1) + b] )

F_Ht+1 ¢

where Assumption 2 is used for the first equality. For the evaluation of the last integral,
we remember that due to Assumption 3, 0;(x) is well approximated by Equation (33) for
the region [zf7 — k¢p1, 2f1 ] close to the upper threshold.

To sum up, we obtain the equation to determine As; as

H _ L _ —xH —IL (Efl)IH _ (E*l)l‘l’
0)T xT 0 e Tt 4+ e Mt 0 _ . e ! e I
sy = AR AR (A ) ) T,
+ aﬁEte/\t+1+(5*1)l€t+1 As i1
xt}{i‘l B :L‘I{{ + K-/t+1 _eixg'l + e*$f+ﬁt+1
Al i1 — Ao
¢ 6
(e=Dahy _ gle=D)(@f —kig1)
€ e
A — * b .
+ (g1 = B (o) +b) ¢ —1) }]

By using the definitions of 2}/ and =} in Equations (38) and (40), the above equation is

rewritten as

;Ufl — :L‘tL e(a 1)( _'rt) - 1

¢ ple—1)

Asa = A}

’ ,t

24 ¢ ¢>(€ -1

+ afEtntE DR | gL

¢ ple —1)
1+ e.rﬁrl—l‘fl-l—lipﬁl 1— 6—(6—1)(Ig1—a}{{+ﬁt+1)
; IR 0

—(e— H _ .H
A i —afl F R 1—e (=D (@1 =z +ret1)
— A1

L H
+ Agjpre” i {
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A.7 The gaps of the inaction region in the limit of zero trend inflation

in a steady state

Equations (38) and (40) in the main text suggest that there is an intrinsic asymmetry
between lower and upper thresholds, as discussed at the bottom of Section 3.1. This
Appendix shows that the asymmetry vanishes in the limit of zero trend inflation at least in a
steady state, thereby confirming the intuition that the asymmetry derives from Assumption
2, which is consistent with positive trend inflation.

In a steady state with zero trend inflation, A\;11 = k441 = 0. These conditions signifi-

cantly simplifies Equations (28) and (34)-(36) as

Substituting these equations into Equation (40), we obtain
(1= aB) el — (1= aB) Ape™=" + (a4 (1= a)7=?) B (3(a*) — b) = (3*) — .

On the other hand, using Equation (33), we rewrite

(1—a)re?B

O(a*) — b= A=t — Apemer" 4 1—ap

—
<
—

x*) —b) — b.
By removing o(x*) — b from these two expressions, we obtain
Ale(_5+1)$i — AQe_Ex_L = Aw(_s*’l)“{* — Aze_sg;* —b.

This last expression is rewritten as

5 (zL) = 5% (z%) — b,
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implying that zlis determined in a similar way as zHin Equation (38). In other words,
there is no asymmetry between 2L and 27 in the limit of zero trend inflation in a steady

state .

B Details of analysis on markup distribution

This Appendix shows intermediate calculations for the derivation of markup distribution

and price level as outlined in Section 3.2.

B.1 Definitions of key variables

We start from the price level in Equation (2). Using the definition of firm-level markup

:Ei,t = log(B,tZtezi»t/Wt),

1 Liw, e
log P, = T log [/0 <Z:e‘”i’t_zi’t> di]

1 1
—log 2 4 ~log [ / e<51><Zi»tfi«t>dz’] :
0

By rearranging this equation, we obtain

Pz 1 1
z; = log Itht = T log/o e(e=D(zii—mit) g;
1 o oo
—1_: log dw/ dz e DEDpl (2 7). (81)

To proceed further, we define a few key variables to rewrite the integral in the right-hand

side of Equation (81). Specifically, we define the following variables.

I? = / dz [ dx 6(5_1)(2_“;:)1#?(1‘, z) = dz " DE=2D g, (1) (82)
—o0 Sy S¢

= [ de [ do VD) = [ dowita) (33)
—00 St St

r} E/ dz/ dr e NEE Y0 (2 2) :/ dz e DE=2D Y, (1) (84)
—00 St St

I'? and '} are the contributions of firms adjusting and not adjusting their prices, respec-

tively, to the aggregate markup in Equation (81). In fact, by substituting Equation (42)
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Table 2: Notation of each term in the law of motion of W11 (z).

term W ® | © O ® ®
behavior in t new entrants | changing price | not changing price
&i+1 shock Yes No Yes No Yes No

into (81) and combining it with the above definitions, we obtain

Tt =
1—¢

log ((1 —a)(1 —7)e DT 412 4 F?) :

I'} does not have a clear economic meaning but is defined for later convenience.

B.2 Master equations for the density V,(x)

(85)

We next derive the law of motion for W, (x) using the law of motion for v (x, z), which is

obtained by simply combining Equation (42) with (43).

It is clearer to consider each term separately, because otherwise the equation would

become too lengthy to write. As shown in Table 2, we categorize each term appearing in

the law of motion for W;;(z) by (A)-(F). For example, the term (A) represents those firms

which newly enter the market at ¢ and are subsequently hit by an idiosyncratic shock at

the beginning of ¢ + 1. Similarly, the term (F) represents those firms which do not change

their prices at ¢ and do not experience an idiosyncratic shock at the beginning of £+ 1. We

obtain the expression for each of \Ilgf)l () to o) (z) as follows.

t+1
(A):

[e.e]

ey (,2) = (1 - a)T/ dg p(§)(1 — a)(1 = 7)0 (x = & + Kpp1 — a7) (2 = §)

—00

=(1l-a)t(l—a)(I=7)p(x+ ker1 —27) 0 (2 — . — K1 + ))

(1—a)r

:(1—a)(l—T)&(z—x—HHl—i-xf)I<|x+/ﬁt+1—x;‘| < q25>

P
:%ﬂmz/ dz D)0 ()
—o0

(1—a)r

= (1—a)(1 —7)elE V=) <|$ + kg1 — x| < 2) :

¢
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Yy (2, 2) = a(l — @)(1 = 7)8 (& + ka1 — 27) 8(2)
> 0) = [z 0 Dz

=a(l—a)(1 —7)8 (z + ki1 — xf) eEDHe=7), (87)
(C):

WD (2,2) = (1 - a)r / 4 p(€)5 (2 — € + 1 — ) / da’ 4 (o, 2 — )
S§

—00

:(1—0&)Tp($+lit+1—xz<)/ da’ ) (¢/,2 — & — Kep1 + 37)
¢

11—«
:wf (‘x—i—mﬂ—fcf!ég)/ dz’ 4} (¢, 2 = 2 = ki1 + 27)
S¢

- \Ijt—i-l / dz e(e 1)(2— x)w (c )( )

N <Z5a)T (\x + K1 — x| = ¢> / da’ D e mr) g, (o)
t
(1—a)r

=~ C 01 (o 4 s =il <

l\D‘S\[\D

) elE= D2, (88)

c

WD) (2, 2) = 06 (z + Rpgr — ) / da' ) (', 2)
D (z—z D)
\I/§+%( )—/ dz e~ )wg(rl (z,2)
= ad (x + K41 — xf) / da’ eE=D@E +r =) g, (1)

= b (z + Ky — at) eETDRT2, (89)
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(E):

o

%Z)?g)(% z)=(1- a)T/ dé p(EY(x — &+ Kyy1,2 — I (x — €+ Kyp1 € Sp)

= ) (2) = / dz DDy 0B ()

= (1_(;()7-6(6—1)%-5-1/ daz’ \I/t({L'I)I Ox T o — x/} < 95) I (:L‘, c St) ’

(90)

where ' = x — € + kyy1. Because Assumptions 1 and 2 ensure ¢/2 > a2 — 2F, the

multiplication of the two indicator functions in the above equation is non-zero for the
following three cases, depending on how the wide support of the uniform shock covers the
inaction region.
(E1) : For x € [zf — ¢/2 — kyy1, 2 — ¢/2 — ki),
1— $+Ht+1+%
\I’(El)(x) — ( 05)7'6(5—1)mt+1 / dr’ \I’t(.’E/). (91)
x

t+1 ¢ L
t

(E2) : For x € [zl — ¢/2 — kis1,2F + ¢/2 — ki),

(1 — a)Te(s—l)Ht+1 / dx/ \I’t($/)
¢ St

_ (- —qba)Te(sl)mng (92)

W) (z) =

(E3) : For x € (v} 4+ ¢/2 — kiy1, 2l 4+ /2 — kiya],
=H
\I’(EB)(QZ) — (1 - a)Te(E—l)Ht+1/ ¢ dﬂf/ \Ijt(I/). (93)

t+1
¢ +Ht+1_%

ngg) (2,2) = aP(z + K1, 2)] (T + K1 € Sp)
= \Ilg:i (z) = / dz 6(5*1)(Z*w)¢?$1’) (,2)

= ae(a_l)“”llllt(x + k1) (2 + K1 € 5). (94)
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Figure 8: Schematic figure showing the ranges in which each of \I»'Efl) (z) is not zero, where

X=AB,C,D,E1,E2,E3,F.
We use these master equations to calculate various integrals. For example, to derive
the expression for I'} defined in Equation (46) in the main text, we integrate each term

(A) to (F) above and obtain:
Tl = (a+ (1 —a)r)eE D [(1 —a)(1—7)e VT 412 413 (95)

Finally, it is convenient to summarize the range of each term in ¥;y;(x) along the x
axis. Namely, each term has a different range in which it is not zero, as shown in Figure 8.
For example, to derive the expression for W, q(x) for z € [z — ¢/2 — Kep1, 2F — K1) U
(xfl — ki1, 2F + ¢/2 — Kya1], this figure shows that we only need to consider the terms
(A), (C) and (E2). By summing these three terms and using Equation (95), we obtain
Equation (45) in the main text. Similarly, we obtain Equation (47) by adding the terms

(A), (C), (E2) and (F).

B.3 Calculation of [*_dz e~ V"V, ()

Next, we show that ffooo dx e(a_l)x\lft(x) is a constant, which we denote by C’. This
implies that we only need to calculate I'} to obtain I'?, as Equations (82) and (84) lead to

the equality
I? = e~ Neig/ 1k (96)
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Similarly to the evaluation of I'}, we obtain the integral at ¢ + 1 by adding up the contri-
bution of each term (A)-(F).

/ dx 6(8 I)I\IjtJrl Z / dx 68 I)I\IJ( ) ( )

=Ato F

(a +(1—a)re ) [(1 —a)(l—71)+ ele— D)zt (Ff + Ff)}

(a+ 170175@5) [(1@)(17’)+/

—00

oo

dx e(a_l)m\I’t(x)] ,

(97)

where 7 is a constant defined by

6(5_1)§ — e—(t’;‘—l)%

¢ple —1)

c®

Equation (97) is a simple first-order recurrence relation for the integral on the left-hand
side, and no term or factor on the right-hand side other than the lag of the left-hand-side
integral depends on time. It therefore follows that the integral itself is a constant with
respect to time ¢ and is equal to

(a+(1- a)T&“d)) (1—a)(1-7)
1—(a+(1—a)re?)

/ dz D", (z) = C' = (98)

It is noteworthy that we can establish the fact that this integral is constant in a more

intuitive way. Specifically, by using the definition of ¥;(z) in Equation (44),

/ dx e(sl)xlﬂt(m)—/ dz 6(61)Z/ dx Y (z, 2).

The integral over x in the right-hand side represents a density function of firms in terms of
the productivity level z. Because the shock process z is exogenous, this density function,

after reaching a stationary distribution, does not depend on macroeconomic variables and
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is thus constant over time.3°

B.4 Evaluation of I'} ,, '}, |, and I'} ,

Next, we calculate I}, | and T'}, ;, again using the master equations (86)-(94) as well as
Equations (45), (47) and (48) in the main text. To evaluate the integral for T'}, |, we

proceed as

3 it ofly ofiy efl —Ke1
Iy = /L dr Wi (x) = / —/ —I—/ do Uyyq(x). (99)
xT

t4+1 :U{_I_Ht+1 QJtL—’ftH $zL_’ft+1

We evaluate this expression by using Equation (45) for the first integral inside the parenthe-
sis, Equation (48) for the second integral, and Equation (47) together with the contribution
of delta functions at x = z} — k441 shown in Equations (87) and (89) for the third integral,

respectively. After some rearrangement,

LT a4+ (1—a)r 10) b1
(-7 Ty — )+ K I
a+(1—a)r 10) t+1

+ aeleDren [(1 —a)(1 - 7)e~ED L2 73]

1 xw{il — xtLJrl 1
- 1 —q)r—t Ly
a+(1_a)7_ Ol+( CM)T ¢ t+1
(- zh —af 4 ke s 100
o+ (1 _ OZ)T ¢ t+1» ( )

where we use Equation (95) for the second equality.

39This line of arguments, while standard in the literature of macroeconomic models with heterogeneous
agents, uses an assumption that firms’ density does not exhibit any fluctuation. This is not a trivial
assumption. In other scientific field, for example in statistical mechanics used to study many-body physical
systems or chemical systems in finite temperatures, such a fluctuation is fundamentally importance. Nirei
and Scheinkman (2024) is an exception that studies such a fluctuation in finite number of firms in a menu
cost model. The effect of the fluctuations in firms’ number on our menu cost model, while beyond the scope
of this paper, is an important future research topic.
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Similarly, we obtain the expression for I'} 1 as

4 2 1 *
Iipr = / da & DET)Wy 4 ()
x

L
t+1

xﬁl thJrl xfl—ﬁ)t+1
(e=)(z—z} y)
= - + dz e =+ (),
ol -k rl—rip1 rF—rip1

(1 _ a)T 6(6_1)(:5&1_36:“) — 6(5_1)(%{11_@“) )

= T
a+(1—a)r p(e —1) t+1
B (1 _ Oé)T 6(5_1)($f+1_x:+1) — 6(5_1)(I75L_“t+1_@+1) I‘5
a+(1—a)r pe —1) i+

1 e D@Ei—ziy) [(1 —a)(1—7)e"Eb 2 e

(1 _ Ot)T 6(5_1)(35&1_752;1) — 6(5_1)(335“_1’:“) 1

- T
ot d-ar D) b
(1—a)r e D i —ziy) _ pe—D)(af —ri1—2]y) .
Cat(1-a)r Pe —1) t+1

+ae”EDTA [(1 - a)(1—7) + O],

where we use Equation (96) for the last equality. Using this expression and Equation (96),

T2
we obtain I'f, ; as

7, = CleE i — Tl
_ (1 _ O[)T 6(5*1)(905-1*1:-5-1) _ 6(5*1)(9554_1*95:4-1) I‘l
a+(1—a)r ple —1) t+1

_ (eD(ef—aip) _ ge=D(af —re1—z7,,)
(I1—a)T e e

5
+ a+(1—a)r ple —1) Ttn

+[C'1 - @) —a(l —a)(1 —7)] e”EDTEn, (101)

B.5 Derivation of the law of motion for the price index (49)

By substituting Equations (100) and (101) into (95) and defining I'; and I} as Iy =

ee=V@i—rer )L | /(a4 (1 — @)7) and T, = I7,,/T}{, 1, we obtain the law of motion for I’y

67



as

Fl
I, =ele D) L
a+(1—a)r
=(1—a)(1—7)+eE% (17 4TF)
1—-7
—(l—-a)——
( a)l 4

i 6(5*1)93Z‘I‘t1 [ (1 — CE)T { H I3 6(571)($£{fo) — 6(571)(:”571:) }

a—i—(l—a)Ta o) K e—1

(1 — Oé)’]' I I @(571)(11{475’3:) _ 6(571)(xt1;1*$?+ﬁt) I\?
T s Ty — Xyt Ke— 1 F—tl

=(1-a)C+ (a + fie— f2,tft71) el D@i—aiiFrmp, ). (102)

The auxiliary variables ft, fi1+ and fo; and a constant C' are defined by

= F? 1 1 * * Ft—l ~
I' = +1 ae(e_ Yai—zy_q+re) 2 =1 1+Ty (103)
r! T
t+1 t
 (1-a) ele=DAT _ —(e-1)Af
fl,t:TT A,{{-FAtL— 1
L L
_(1-qa) Copyar 1 — e Em D@ ey )
for = e (xF — 2k | + k) — e EDA —
1—71
C=-——
1—7e®’

where Af = 2/l — 2 and A} =2 — 2F.
The variable I'; thus defined represents the gap between the aggregate price index and
the reset price. By combining the definition of I'; with Equations (85) and (95), after

rearranging, we obtain
I, = e(‘ﬁ—l)(z)’{—pt)7 (104)

where the lower case letters on the right-hand side represent the logarithm of prices P, and
Py, ie., p; = log P/ and p; = log P, respectively, where P} = W;et /Z; represents the
reset price for firms with idiosyncratic log-productivity level z; ; = 0.

By substituting Equation (104) and an equality =y — x}_; + k¢ = p} — pj_, into (102)
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and (103), we obtain Equation (49):

e(l—f)l’t — (1 — Q)Ce(l—f)il’f + (a + th _ f2,tft—l) e(l—E)Pt—l

[; = qele=Dm (1 + ft_1> .

B.6 Labor demand for production

This Appendix derives the expression for the first term of the right-hand side in Equa-
tion (16). Using Equations (1) and (7) as well as the definitions of the markup z;; =
log(P; +Zie*:t /W) and aggregate markup ¢ = log(P;Z: /W),

1 }/;f 1
/ di Liy = —e*" / di eE=Dzit p—eTip
0

Zy 0
= At/ dz/ dz Vel (2, 2),

[e.e]

where we also use the definition of A; = Y;e®*t /Z;. By substituting Equation (42) into this

equation, we obtain
1 * *
/ di Liy = Ay [(1 —a)(1 - 7)e S e 4 F?] , (105)
0
where I'? is defined in Equation (82) and I'¢ is defined as
ré E/ dx e "Wy (x).
St

For the closed-form expression for I'y, we substitute the definitions of I'; = ele=1)(x} _"“t“)FtI 1/ (ot

(1—a)7) and I, = I'?,,/Tt,, into Equation (101) and obtain

eV (@l —ap) _ (e 1)(aF )

Pt2 = —(]_ — a)Te(Efl)(Ktix:—l)Ft_l [

P(e — 1)
eV (@b —a7) _ ple=1)(af—ai—r1) _
- Iy
pe —1)
+ 01— a)—a(l —a)(1 —7)] e Ve, (106)

On the other hand, we evaluate I'{ .1 in a similar way to r} 1. Specifically, following
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the strategy to derive Equation (100),

6 xfj—l th+1 271{%_"‘“%1 .
NS - + dx e * Wy (x)
ofl—kiqq zl—ki zl—ki

_ (1—a)r —e i 4 e 1 (-7 —e T 4 e TR s
+(1—a)r b Hoa 4 (1—a)r b t+1
+al(l—a)(l- r)e(f_l)(”t+1—xf)e—miﬂ%tﬂ + e(a—l)mﬂe—meHF?

Ty —Rt4+1
+ eE=Dret1 / dr e "W (x + /it+1)]

Tf—Kip1

H L L L
€T x x Ty +kK 1
« —e t+1 + e t4+1 —e t+1 4 e t t+1
= (1 — Oé)? e(a 1)(Kt+1 Z‘t)It [ t

¢ - ¢

+ ettt [(1 —a)(1—7)e " e 7 +T¢). (107)

B.7 Labor demand for menu cost

This Appendix derives the expression for the second term of the right-hand side in Equation
(16). In order to evaluate this integral, we realize that the number of firms paying the menu
cost b corresponds to the first and second terms on the right-hand side of Equation (42).

The rest of the calculation is straight-forward:

/ di ez
firms paying b
/ dz/ dx ee1)? [( )1 —7)8 (x — 22) 6(z) + 6 (& — x:)/

(1—a)(1—7)+ e D22 (108)

c

dz'vp) (95/, z)]

where we can use Equation (106) to explicitly obtain I'Z.

C Equations to solve the model in general equilibrium

This Appendix collects all the equations for numerical calculations of our baseline menu

cost model for convenience.
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Euler equation (5):

BE, g;jeit”m] =1 (109)
t
Labor supply curve (6):
V]Ztt = LfCY. (110)
Aggregate markup:
2 = log (%VZ;)' (111)

A macroeconomic variable determining the scale of firms’ profit:

Ay = (Vi) Z))es™. (112)

Growth rate of a factor scaling the value function plus stochastic discount factor:

Z C. 4
At+1 = log ( tZ+1> — T4p1 + 3¢ + log (di}) : (113)
t t

Growth rate of nominal marginal cost, as defined in Equation (11):

K41 = T41 — Ti41 + Tt (114)

Coeflicients of the value function around the lower inaction threshold:

AY) = A+ Ay (115)
AD) = A, (116)

A:(s?t) = (a +(1- Oé)T&d)) BEeMt+ [

Ay — Ay e i + Agyy — bl (117)

Coefficients of the value function around the region between the reset markup and the
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upper inaction threshold:

Al,t = Ag(,)t) + aﬁEte)\t+l+(6_1)Ht+lAl’H_l (118)
A2,t = Aé?t) + aﬁEte)‘t+1+E“t+1A27t+1 (119)

o (-aTe? (o)
Cat (1 —a)re?” 3

€ 4121‘,
* _1 ) .
xry = 1og ( 1) + 10g ( 1’t> (121)

Upper and lower thresholds defined in Equations (38)-(41), as well as the definitions of

Agjt + aﬁEte)‘t+1A3,t+1. (120)

Reset markup:

the gaps A and Al

Ay emetDel Ay ool 4 Ay = Ay eToTIT Ay e 4 gy — b (122)
AL eletDat _ AD)ement 4 AT) = Ay etV Ay e 4 Ay — b (123)
A = gH _ g (124)

st. Al >0
ALl =zf — 2k (125)

(0)
A A
L 2.t 2,t
s.t. Ay >log <A1t> — log <A(O)>
: 1
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Other variables to determine policy rule:

A4,t _ (1 B Oé)TﬁEte)\Hl—He_l)RHlA5,t+1;

A5t = AEO,? A + A7 B et DAT+AD) _ 1]
’ ’ ¢ Pe —1)
A0t e~ (AFHAL) 41 le-D(@Af Al g
e t[ s IRIEEY ]

+ aﬁEte)\t+1+(6*1)Nt+1 As i1

¢ ¢ple —1)

(e H _ .H
A ol — ol bk 1— e @R ol )
— Alt+1

1 4 et R (D@~ thep)

+ AQ,t-s-l@_xﬁH —
) p(e —1)

(126)

] o

The law of motion for price stickiness (49), rewritten by using p; — p; = =} — zs:

1-— <a + fie— f2,tft71) ele=Dm
(1-a)C

ple=D(@—a}) _

Auxiliary variables for the law of motion for price stickiness:

L elenAl €<51>A£]

e—1

jarl— e~ (E=D) (@}~ +51)
t

T [(xf’ —xl ) - e (-1 p—
Taylor rule Equation (14):
1y :f—|—7_1'—|—¢ﬂ-(71't—77[')+’0?.

Goods market clearing shown in Equation (15):

Cy =Y.
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(128)

(129)

(130)

(131)

(132)

(133)



Labor market clearing of Equation (16), combined with the expressions for labor de-

mand in Equations (105) and (108):

Ly = A [(1 —a)(l—7)e 5% 4 e T2 4 F?}

+bk1—aﬂlfﬂ+f@4hﬁﬂ, (134)

where auxiliary variables in the above equation are

(e-DAF _ o—(e-DAF
T2 = —(1 — a)refDlE—at-1) | £
P=—(1-a) i
ef(afl)AtL - e—(a—l)(xf—iﬂf,1+ﬁt+Af’,l)~
¢(e —1) -
+[C'(1—a) —a(l —a)(l —71)] e EDai, (135)
and
. _ —AH AL . AL T* _$*+Ht+l+AL ~
F?+1 =(1— O[)Te(e—l)(mﬂ—gn,g)e—gctJr1 [ e t+:b—|—e 1 —emth +e t; t t Ft]

T et !(1 —a)(1—T)e T 4 eIy 4 TY. (136)

There are therefore 28 equations and 28 unknown endogenous variables: Cy, i, 7,
Wt/Pn Ly, x4, Y3, Ag, Att1s it Ag?t), Aé?), A;(g?t)7 Al,ta A2,t7 As,t, A47t7 As,t, 1‘?7 l’{{,
o, A AL fie, for, ft, 'y, T'ss. Together with exogenous shock process for Z; or
vy", discussed in Section 4.1, and initial conditions, we can completely characterize the

dynamics of the general equilibrium.

D Details of the Phillips curve

This Appendix shows details of the steps to derive the Phillips curve equation (58) from
the equations listed in Appendix C. The derivation is organized as follows. Section D.1
shows that, under the approximations introduced at the beginning of Section 3.3, A4; and

As i are small both in the steady state and in log-deviation, which allows us to ignore these
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terms in the following discussions. Sections D.2 and D.3 evaluate upper and lower gaps,
A,{{ and A{J, respectively, which are important to analyze fl,t and fg,t. Finally, Section

D.4 derives Equation (58).

D.1 Evaluation of As;

We evaluate the steady-state values of the variables in Equation (127) with respect to
/_150). First, we observe that the second and third terms inside the expectation F; on the
right-hand side are small. For the second term, we see that, using kK = 7,
_ A
1(0)
A

7 o1- e_(e_l)”] 1 [fr 1— e (D7

6 ole—1) | T1—aBeD7 |6 e 1)

where the first equality derives from Equation (118), and the second is based on the Taylor

expansion of the terms inside the square bracket. Similarly, for the third term,

Ay _u|—1+e™ 1—e VT o1 A zu|-1+e" 1—e DT

@6 6 dle—1) ]_ e Agme o le—1) ]
e—1 1 LA | —l4e™ 11— DT
e 1- aﬁe(ffl)ﬁe TR ]
=0 (%),

where the first equality uses Equations (121) and (124).
Secondly, we examine the first two terms of the right-hand side of Equation (127) in the

steady state. Adopting the notation A = (AH + AL) /2 for simplicity and using similar
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equations as above,

Ago) oA e2e-DA _ 4 Ago) o [—e A L1 ele12A g
—_ s | T (&
AO [ ele—-1) | 4D ¢ o(c —1)
_ % B e26E-1A _q B (1 B aﬁe”) 726_1”*+AL _e2A +1 e2e-1A _q
o o1 | ©) o oc— 1)
_ 2A 62(8_1)A —1 . (1 n aﬁeeﬂ') ﬁg -1 AL | —€ 24 + 1 62(8_1)A —1
o -1 A0 e o oe—1)
_ % _ e2e=1A _ 1] 1 —afe™ e—1 xr|—e 28 11 elem12A g
| Pe —1) 1—afels—b7 ¢ ¢ p(e —1)

-0 ((a)*AF),

where we obtain the last expression by the first-order expansion of A and AL. This
evaluation suggests that As in Equation (127) and hence A4 in Equation (126) are much
smaller than /_lgo), justifying the approximation f_lgo) ~ A in Equation (115). The steady-
state values of these variables based on the calibration of our baseline model are consistent
with the evaluations: A = 1.6 and Ay, = 1.7 x 10~

Next, we move on to show that the log-deviation of the variable As;, expressed as as ¢,
is also so small that we can ignore under our approximations introduced at the beginning

of Section 3.3. We first observe that the second and third terms inside the expectation F;

on the right-hand side of Equation (127) are small:

Ay (14 a1,41)

¢ ¢le — 1)

F+afly —af vhgr 1—e VT (1—(e—1) (@, -2 + /%m))] ~0

. _GH .
Ay (1 +agpe1)e™ (1— $£{t+1)

y —1+e™ (142, — 2 + ki) 1= eTEVT(1—(e—1) (3, — 2 + /%t+1))] ~0

¢ ple —1)

respectively, where we use the approximation to ignore the interaction terms of log-deviation
variables with 7.

Secondly, we examine the first two terms of the right-hand side of Equation (127) in
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their log-linearized form. Using the notation A; = <AtH + Af) /2,

Ph S (142 DAY -1
o p(e — 1)

1(0) - 2(e-1)A N
~ SS —l-A;) <2A— c | 1)&&?2—{—2(1—@2(51)A> Ay
Ago) —7*4+A 2A D2 1 ~(0) L —2A _ 2(e—1)AY A
_76 1—e -7 (a27t—:ct)+2(e —e )At

7(0) (0) _ R
~SS —4 Aqls(e —-1)— Adz)ex*JrA el AN

7(0) 10 /14 _ .
~SS —4 Aqls(e—l)—A; <€ 6 1j1> A e| AA,

2
~ 88 —4(e —1)=L [(1 afel Uﬁ) — (1 —ape’) €AL} AA
¢

~ S5,

where SS denotes steady-state values, and Equations (118), (119) and (121) in the steady
state are used. The last (approximate) equality follows because the log-deviation term is
@) <ALAAt>. To sum up, we can safely ignore as; and hence a4 .

In the following discussion in Appendix D, we therefore ignore A4; altogether and use

the equality Ag?g ~ A; instead of Equation (115).

D.2 Derivation of A7 ~ 0

We next log-linearize Equation (122), replicated below, to obtain Afl :

Al,t6(75+1)(x§+A{{) _ A27t675(z;+Af{) + Ay, = 1417256(—6—1—1):5;5k _ A27t€—€xz + Az —b.
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After removing Asz; from both sides, the right-hand side of the above equation is log-

linearized as

AT U payy — (e —1)@)) — Age™™ (1 + gy —eif) — b
13
e—1

=SS + A2€—sf* |: CALLt - d?,t:| s (137)

where Equation (121) in the steady state is used to derived the equality. The left-hand

side is similarly log-linearized as

AjelmetD(+AM) (1 Y —(e—1) <:i:,f I Af)) _ Ayec(z+ar) <1 Fagg e <x;‘ n Af))

=SS + A2e—ai‘* l:g_ele(—a-i-l)AH&Lt o e_EAHdQ’t — (e(—s—i-l)AH . G_EAH> (i’? + AtH):|

~ SS + AQG_EJ_C* |: c 1&1775 — &Q’t — & (6(_6+1)AH — €_€AH) Af] N

where the first equality derives from Equation (121) in the steady state and the second is
obtained from the approximation A (1 +eAH ) as well as the same equation (121)
expressed in the log-deviation: &} = ao; — a1+ By combining the right-hand side with the

left-hand side, we obtain the relation Afl ~ 0.

D.3 Derivation of Al ~ i}

Similarly to the previous section D.2, we log-linearize Equation (123), replicated below, to

obtain Af:
AV el=etDat _ ADemeat 1 AL) = Ay el Ay e 4 Ay, — b

The right-hand side is similar to the case of Equation (122), shown in Equation (137)

above:

SS + Aye =" [ 101t — CAl2,t] + Azaz.
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On the other hand, the left-hand side is

A0S (1460 - (- 1)3t)
AP (10— eat) + AP (1400)

~ S5 + (1 o)Ay [ leDAFG(0) _ 2Ak50)

where we use Equations (118), (119) and (121) as well as the approximation that the trend

inflation is small. Put together,

(1 _ OZB)E (6(6—1)51:’ _ eEAL> i{l ~ (1 — aﬁ) |:€i1€(8_1)ALdg?2 — esAL&g?t)]

g . A & T oA 7(0) A (0
_ |: ait — a27t:| — f_lg (A3a3,t - A;(; )ai(%,t))

e—1

(0)

We now consider the terms proportional to a;; and a1 in Equation (138). Using

Equation (118), these terms are rewritten as

~ (1= ap) (93 —1) 0 — apBr (A + (e = Dt +aren ) |

~ 7.0 € - . e .
~ (1—af)e Lagﬂ? — afE; (6 — 1)\t+1 + ERgt1 + P 1a17t+1> .

(0)

Similarly, using Equation (119), the terms proportional to d2,t and ao; become

- (1- aﬂ)eaAL&g’)t) +aoy
~ (1= aB) (=" + 1)l + aBE, (M + s + )

~—(1- aﬂ)gALdé?t) + aBE; <;\t+1 +efer1 + @2,t+1)
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By combining these terms and using @, ; ~ a; = ay,, established in Section D.1, we have

apE <_5— —1

a1 + fl2,t+1> .

Next, we consider remaining terms related to as; and &g?g in Equation (138). To make
the exposition clearer, we define V; = ALte(_EH)x; - Ag,te_”f + A3 — . It then follows

that Equation (117) in a log-linearized form becomes
Aéo)&gt = (a +(1- Oé)TEd)) BV E, (5\,5+1 + @t+1> .
Similarly, Equation (120) in a log-linearized form is
Azazy ~ (1 — a)7e?BVE, <;\t+1 + 77t+1> + aBA3E; (5\t+1 + dg,t+1> .

The remaining terms in Equation (138) are therefore rearranged as

Tk ok

ex B ~ o ) - i )
_€A2 <A35L3,t - Aéo)&g?t)) ~ _eAQ afEy [(A3 — V) Atp1 + Azaz i1 — Vﬁt—i—l}

e T e e .
~ - 1212 afBE; [(As — V) Apy1 — Age™ <5 — 0 aQ,tH)]
e . . ex* _ A
~ afE; 1,441 — G241 | — —=—afEL (A3 — V) Mg,
e—1 A2

where we use the definition of V; in a log-linearized and rearranged form (Equation (137)
apart from A3a,) for the second approximate equality.

By putting back all the terms, we rewrite Equation (138) as

1A ALY . 1 - . .
(1—-ap)e (6’(6 nak _ 6’EAL) if ~ afBE | — At41 — Q1,441 + G2,14+1
e—1 e—1
e . . ez” _ A
+aBE; a1441 — G241 | — ——afE (A3 — V) A
e—1 AQ
=% V - A3 ]. N
= e _ — Eiiiq. 139
af <e 1 5—1) tAL+1 (139)

To evaluate the importance of the term on the right-hand side, we combine the definition
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of V; with Equation (122) in the steady state as

‘7:/—116(—54—1)(55*—&—5}’) _AQG—a(:?:*—s—AH) T A,

=% ‘7 — Ag 1 Al =k AH AH 1
T _ o _ 2l .z (—e+1)AH — —eA® 4
° Ao e—1 A2€ c € c—1
— € e(—z—:—&—l)AH o G—EAH - 1
e—1 e—1
~0

up to the first order in A¥ where we use Equation (121) in the steady state.

(139) therefore reduces to

which immediately implies

D.4 Derivation of the Phillips curve equation

Equation

We first linearize fi; and f; in Equations (130) and (131). The steady-state values of the

two terms are rewritten as

flz P
(1-a)

¢

]EQ’RJ T(e’:‘—l)ﬁ'AL.

These values are clearly much smaller than « in Equation (128), so we ignore them.

The linearized deviations from the steady state of these terms are not negligible, how-

ever. After straight-forward calculations, we obtain

fl,t ~

f2,t ~

Given the evaluations of A, Al and ! in Sections D.2 and D.3, we simplify the expres-
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sions as

~ (1—04)7(5_1)AL;%;:(1—04)(5—1)@55:,

T(e—1) Al = (1 —a)(e—1) ke,

f2,t ~ (

where we define the constants by ¢(; = 7A*/¢. In addition, Equation (129) in the steady

state is approximately written as

5 aelE=D7T B

1—qeE=D7 1 —qa

We substitute these expressions and the definition of k; in Equation (114) into log-linearized

Equation (128). After some rearrangement, we obtain

V@)1 4 (e — 1) (& — 3})].

1—(a+f1,t—f2,tr (1+ (= — 1)7)

(1-a)C
1

—=(e—-1)(2 —2f) = 1-a (fl,t — f2,tf> -

. P 1 L@ C1
T X T, xr
L T T L N

~
~

(e =17y

(3 — #e_1). (140)

On the other hand, Equation (37) representing the optimal policy suggests that
Tf = agy — g, (141)
while Equations (34) and (35) suggest that
are ~ (1 — aB)a + aBE (A1 + (€ — i + d1e11), (142)

and

agy ~ (1 —af)a + aBEy(Ai1 + hiyr + ag,t41)- (143)
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By subtracting (142) from (143) and substituting (141) and (114) into it, we obtain
Ty ~ af BT — Bee1 + T+ 314q). (144)
Finally, by combining Equation (140) with (144) and using mc, = —, we obtain

7y & BE R + Aemicy
l—a G
a 1-G

Cl (ATﬂCt — aﬁEtAmCt+1) .
1-G

(mey — aBEymciy1)

+

By defining ¢ = (1/(1 — (1),we obtain the Phillips curve in Equation (58).
It is interesting to see, though not discussed in the main text, that we can rewrite the
above Phillips curve equation in another form. Namely, it is easy to show that the inflation

rate is decomposed into two contributions as 7; ~ 71 + 72: The former term is
14 = BET1 41 + Ae (1 + Q) micy,

representing a conventional, though steeper, Calvo-like Phillips curve; and the latter term
is

ot = CAMcy,
representing an instantaneous effect of a change in the real marginal cost. The asymmetry
in policy rule primarily steepens the the slope of the Phillips curve through the former

term 714, while the impact of the asymmetry in markup distribution primarily generates

the latter term 79 ;.

E Derivation of frequency and size of price adjustment

The set of equations used to solve the general equilibrium New Keynesian model in this
paper, shown in Appendix C, does not directly use frequency or size of price adjustment.

However, empirical studies using micro data of prices typically measure these variables. It is
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therefore of interest to derive the expression for these variables in our model. Moreover, the

calibration of key parameters shown in Section 4.1 uses the expressions for these variables.

E.1 Frequency of price adjustment

To proceed, we first define firms’ density function U9(z) as
W(x) = / dz Y (z, 2). (145)

—00

The frequency of price adjustment, denoted by fry, is related to the density ¥9(z) as

fre = /S ) dx U (x), (146)

where Sf = (—o00,zf) U (2}, 00) is the region outside the inaction region S;. In addition,

we define the frequency of not adjusting price fr{ as

fri = [ dr v (147)

which is related to fr; by fr{ = a+ (1 — a) 7 — frs, excluding the frequency of firm exits
(I—a)(l—m7).

We derive master equations for the density ¥9(x) from Equations (42) and (43), in a
way similar to the master equations for ¥;(x) in Appendix B.2. It is convenient to use the

same notation (A)-(F) as ¥;(x) shown in Table 2.

(A):
0@ = CS 0 -0 (Jo w5l < 5)). (148)

(B):
U (2) = a(l — ) (1 = 7)8 (z + ki1 — 7). (149)
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1 _
Q@) = L (o -1 £ 5) [ 0t
S
_ =), (\x T by — ] S ¢> fri. (150)
10) 2
(D):
W () = ad o+ wepr —ap) [ d W)
S¢
= ad (x4 Kip1 — xf) fre. (151)

(E1) : For z € [z} — ¢/2 — kpp1, 21 — /2 — Kep1),

[
B 1—a)r [THet+1t3
W) = B [T i, (152)

t

(E2) : For x € [zl — ¢/2 — kyr1,2F + ¢/2 — K1),

1 _
W) = U [ i)

- (1;)0‘)71"@0. (153)

(E3) : For x € (zf + ¢/2 — kiy1, 2 + ¢/2 — ki1],

H
1 _ T
PO (g = L Q)7 / t dr' UY(a"). (154)
¢ $+Ht+1—§
(F):
O(F) .y — g0
U () = oWy (2 4 keg1) I (24 K1 € ). (155)

Because each term of ¥9(z) is non-zero in the exactly same region as the corresponding

term of W, (x) shown in Figure 8, we see that for z € [2ff — ¢/2 — ki1, 2F — Kep1) U (2 —
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Kit1, TF 4+ ¢/2 — kit

oI
‘I’t+1( T) = Z ‘I’tJ(rl)
I=A,C,E2

(1 )T (1—-a)r

oajr, Uz
¢ ¢
- M (156)
¢ )

1-—a)(1—-7)+

i.e., the density is constant. For = € [z — kyi1, 2 — Ky11] excluding at © = 2} — kg1,

W)= Y @)

I=A,C,E2,F

= (1—¢Oé)7' —+ O[\I/g (I‘ —+ Kt-i-l) . (157)

Following an argument similar to that used to derive Equation (48), we obtain that, under

Assumptions 2 and 3, for Vo € [2F — ki1, xtLH],

xpgﬂ(:ﬂ):(ljﬁ <1+ 1?@). (158)

These expressions suggest that ¥9(z) is qualitatively similar to W;(x): both look like the
schematic picture in Figure 3. Using the expressions for ¥9(x), we explicitly evaluate f Ti

in a similar way to I'},;in Equation (100):

c 275.1 0
friqn = /L dx ‘I’t+1(93)
X

t+1

oy T wfl —Kep1 0
= / —/ +/ do i, ()
e —rkip1 Jaf—rp1 Jaf—rin
(1—a)r  y L (l-a)r a | L
= T (T — 1) — T 6 1-a (i — o + Keen)

+ —Kt41
+a/ dr U9 (z + Kiy1)

L
Ty —Kt4+1

+a(l-—a)(l—71)+afr

H L L L
x —x x — Ty + K
—a+(1-a)r ( A S 2 A 2 S W t“) . (159)

¢ l-a ¢
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By shifting a time index ¢ by one period backward and using fry = a+ (1 — a) 7 — fr{, we

obtain Equation (60) in the main text:

_ AT+ AY AtL] P e Sl (160)

fri=0—-a)r [1 5 5

Next, we consider the frequency of price increases and price decreases. The frequency
of price increases at period t + 1, represented by frzjrl, corresponds to the number of firms
with markup below x}, ; before price adjustment. We therefore obtain the expression f 7“;:1
by using the master equations (148)-(155) for W9 (x) together with Figure 8:

L
i1
frin= [ do 0l

—00
H

sz+1 %L—fwrl Ty —%—nm 0
- L + H_¢ + L_9 dr \Ijt (1:)
Ty —Rt+1 Ty _§_Rt+1 Ty _§_Rt+1

th+1 1— af—kir1 1—
:/ dx(a)7—<1+a)_|_/ dxﬂ
th*Ht+1 ¢) ]' -« 1’{{7%7.‘{14,1 d)

H

w=gomn (11— a)r

+/ dr LT (0 a1 =)+ fr
$:—%—fit+1 ¢
Z{{_g_"it—o—l 1— 1’+9+f$t+1

—i—/ ’ dx (04)7'/ ’ dz’ Wo(a'),
P S ¢ b

where the first term in the last expression is from Equation (158), the second term is from
(156), the third term is from the sum of (148) and (150), and the forth term is from (152).
By explicitly evaluating the integrals in the first, second and third terms and changing the

order of integrals in the forth term, we obtain

1 Al wfiy — of + ki
fri,==(1-a)r—-(1-a)r— +ar
i, —xf+ kK 1—a)r
+(1—Oé)7' t+1 (; t+1 ( ¢ ) 7t17 (161)

where v/ = [ dv (2} — ) W ().
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Similarly, the frequency of price decreases fr,,; is obtained as

Jri = / dzx \Ilg(a:)

H
t+1

ﬂﬁtL-l—%—NtJrl $€{+%_Ht+l 0
/ +/ dz V3 (z)
:L’{il $£+§—fit+1

o+ g e (1—a)r
:/ dy LT
x

T

a8 ¢
$I+Q—Ht+1 1 _
S e T - 4
$£‘+%—Hz+1 (b
of +§ ki1 1— il
+/ ’ dx (O[)T/ da’ WY(z'),
of 4§ —ri41 ¢ otrii1—2

where the first term in the last expression is from Equation (156), the second term is from
the sum of (148) and (150), and the third term is from (154). By explicitly evaluating
the integrals in the first and second terms and changing the order of integrals in the third

term, we obtain

_ 1 A
frt-&-l 2( )T — ( a)T P
* _ * 1 _
— (1 - a)r :'Z e (Z)O‘)T%l. (162)

Finally, we evaluate 7} in a way similar to the evaluation of I'} in Equation (100).

x{j_l
’Yt1+1 = /L dx (wt+1 - x) ‘I’?H(ﬂf)
X

t+1

H L H
. . Tiy1 Tit1 Ty —htt+1
=T fri — - + dr 2V 41 (x)
o~k rl—kip1 rF—kip1

H L L L
=xi4 |la+ (1 —a)r (xtJrl ; Tit1 : i‘awt+1 95(; +f€t+1>]
xH ZEL
—/ e (1—a)7$+/ W (1—a)r a
:vtLJrl ¢ th*HtJrl l -« ¢)
o —ri1
- / dr axW) (x + Kiy1)

—af(l =)l =7)+ fri (a7 — K1)
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After simplifying the expression, we obtain a recursive relation for 7} as

’Yt1+1 =y +o (95?+1 —xy + Ht+1)
(AF)? - (AR
—(1—a)r 5%
(l‘tL+1 - 93tL + ”tJrl) (93:-1-1 —xf + K1+ AtL+1 + Af)

—ar 2% . (163)

E.2 Size of price adjustment

We denote the absolute size of price increases and decreases as sz;" and sz; , respectively.
The derivation of these quantities is similar to that of frequency (fr; and fr; ) described

above. Namely, for the frequency of price increases,

T
frtilsztil = / dx ($t+1 - x) ‘1’?+1($)
—00
L
+ * it 0
= th+1%+1 - dr xWy (). (164)
—0oQ

The integral on the right-hand side is evaluated as

¢

"’”tL+1 0 ItL+1 ol —kip x{{*§*ﬁt+l 0
dr x¥;, (v) = + + dx 2V} (x)
—0o0 :L‘ffﬂt+1 1‘{{7%7!{14,1 thfgferl

.ZL+1 1 _ $tL*Kt+l 1 _
:/t dmx( a)7'<1+ a >—|—/ dmxﬂ
If*l{t+1 ¢ -« xtH,Q,,{t_H ¢

2
H_¢

Ty Ty TR 1—oa)7
+/ do 29T 11 )1 = 1) + o]
(E:—%—Hz+1 qb
afl - % -k 1— a+Ltriq
—I—/ : dx m(a)T/ ’ dz’ W0(z").
wF—2 ki ¢ ok

After some calculations, it is simplified as

2
ak L \2 _ (.L 2 (zf4) —($?—*—Ht+1)
/o:l dz xW},, (z) = ot S gjbt e +(l-a)r 2¢ :
+(1—a)7lt2—(1—a)7 1—1—@ '
2 2 ¢ f)/tﬂ
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where 77 = fSt dz [(mf)Q - xﬂ UY(x). Substituting this expression into Equation (164)

and rearranging terms, we obtain

(tf12)” — (e — pu41)”

e S
friisziy = frigi — ot

2¢
2
1 (xtL—',-l)2 - (xf - % - Ht+1)
—(1-a)r %
—(1- a)T;i +(1-a)r (; + 'it(;l) ~ (165)

By similar calculations for sz, ;, we obtain

2
(m? + % — m+1) - (:c,fjfrl)2

friaszon = —fripe + (1 —a)7 2%
2
7, 1 Kep
—(1- a)Tﬁ —(1—a)r (2 - (;) v (166)

The average size of price adjustment sz, is obtained by taking the sum of the above two

expressions as

ot ot — e
Jriviszeer = friszi ) + friszi

L \2 L 2
_ ($t+1) - (xt - ”Hl)
= (fri‘rl - th+1) Ty — QT 2
. 2 . 2 2 2
- a) (xt +§- ’ft+1) - (xt -5- “t+1) = (2h1)” = (2810)
Q)T 2¢
V¢ 2k41 4
—(1— a)TE +(1—a)r 5 Ve - (167)
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Finally, we evaluate v? in a similar way as v} shown in Equation (163).
w2
Ver1 = /dm [(%H) _952} Uy (x)

N2 s e oy T afl —Kep1
= (31) " frig — o -/, T/, dx Uiy (z)
Ty —Rt+1 Ty —Rt+1 Ty —Rt+1

H L L L
= (a7 )2 a+(l—a)r (xtﬂ ~ Tt a T I +“t+1>]
- t+1 - - 1
xﬁ#l xt+1 0% xz
- dx(l—aT— x (1 —a)r —
$£’+1 —fit+1 -« Cb
w1 2,0
—/ dx ax*V; (x + Kiy1)
oF—FKit1

(1 —a)(l —7) + fre (x} — 1)’

After simplifying the expression, we obtain a recursive relation for 77 as

* 2 * 2
’Yt2+1 = CWtZ - 204"5154—1%51 +a |:(xt+1) — (zf — Kt41) }

(O (Bh)

- (1 —a)rziy, 5 (At+1) (At—i-l)

—a)r 3
)2 i — T+ K Lar (xtLH)S — (af - /‘ﬂt+1)3'

¢ 3¢

—art (274, (168)

While the right-hand side of Equation (167) is complex, the largest contribution comes
from the third term. In fact, in the limit of zero trend inflation and in a steady state, we can
significantly simplifies the expression. In this case, x| —af + ki1 = 2} — 2] + Kis1 = 0.
Moreover, the result shown in Appendix A.7 suggests that the difference between AL and
AH is small and vanishes if we resort to second-order approximation. These considerations
imply that all the terms except for the third term are either zero or small. By ignoring the

difference between AL and AH and denoting both by A, the third term in Equation (167)

becomes




On the other hand, Equation (160) suggests fr = (1 — a)7 (1 — 2A/¢) in the limit of zero

trend inflation in a steady state. It therefore follows that

+

N

Il
NP
2o | D>

which corresponds to the expression derived by Gertler and Leahy (2008).

F Details of analysis on deflation

This Appendix considers the case of deflation outlined in Section 5.2 in detail.

Given the setting of one-period positive drift proposed in the main text, the only part
of our analysis that needs revision is the derivation of price index in Section 3.2. More
specifically, we reconsider the evaluation of the density W;(z) around the inaction region

shown in Section 3.2.2 and the calculation of the integrals I'} and '} in Appendix B.4.

F.1 Periodt=1

First, we consider the period ¢t = 1, when all the inequalities in Assumption 2 fail.
At this period, the markup density ¥q(z) is still given by Figure 3: the density is flat
in the regions z € [z — ¢/2 — k1,71 — k1) U (27 — K1, 2% + ¢/2 — k1] and increases in

H _ /4:1) until x reaches (a’cL — m). This is

the step-wise manner as x decreases from (f
because the shape of the density function ¥;(z) is determined by the past developments
up to t = 0, when the economy stayed in the steady state. The only effect of the violation
of Assumption 2 is that the thresholds 21 and i’ are set to the left of the boundaries of

the flat region (:EL — /ﬂ) and (:EH — /-11), respectively. This implies that the evaluation of

the integral for I'}_; in Equation (99) should be replaced by
H L H

ZL‘{I T —R1 T —K1 T —K1
ri’:/L dx Wi(x) = —/H +/L +/L dz Wi (z),
x x x T —K1

1 1 1

where we use ;1 (z) =n (Tf,, + ae(a_l)"““lftl), shown in the discussion below Equation
(46), for the first integral inside the parenthesis, Equation (45) for the second integral, and

Equation (47) together with the contribution of delta functions at x = z* — k; for the third
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integral, respectively.?! The evaluation of the integral F?‘t:)l is similar. By proceeding in
an entirely analogous manner to Appendixes B.4 and B.5, we obtain the law of motion for

price index (62) in the main text.

F.2 Periodst =2

Next, we consider the period ¢t = 2. This time, all the inequalities in Assumption 2 again
hold, implying that we can evaluate the integrals T'}_, and I't_, by applying a strategy
similar to Equation (99). However, the positive drift at ¢ = 1 has moved the entire
distribution to the right, making the resulting distribution Wy(z) qualitatively different
from that shown in Figure 3: instead, as depicted in Figure 9, the accumulated firms as
of t = 0 is now somewhat away from x¥ — ko, the lower threshold as of t = 1 minus the
drift at t = 2. Between them lies a region of not-so-large density. More specifically, for

z € [zl — Ko, al — k1 — K2),

Uy(z) = nF,}Zz + 046(5_1)“2\1/1(30 + K2)

=1 (Ftl:2 + ae(e_l)HQF%ﬂ) ) (169)

where the first equality derive from Equation (47) and the second equality is due to Equa-
tion (45), because (z + k2) € [v¥, 2L — k1) lies in the flat region in Figure 3 for Wy (z).
Suppose x% lies inside this range, i.e., x% € [aclL — Hg,l'g — K1 — k2). Then to evaluate
the integral I'}_,, we use Equation (169) instead of Equation (48) to evaluate the second
integral inside the parenthesis on the right-hand side of Equation (99). The evaluation of
the integral T'f_, is similarly modified. It then follows that the law of motion for price

index ¢t = 2 becomes

e17EP2 = (1 — a)Cell =92 4 (oz + fii=2 — fz,t:2ﬁ:1> ell=elpr, (170)

31The evaluation of the first integral inside the parenthesis depends on where exactly zi! is located. If
¥ < (EH —R—k1, T —k1], which we here assume for simplicity, then we can evaluate the integral with ¥, (x)
entirely on the first step; however, if the deflationary shock is so large that = € (iH —2k—kK1, T —R— k1],

—H _ ~H _ =H =

then we need to further split the integral as [y ™" dz U1 (z) = ( TR T '“) dx ¥1(z), where
1 1

the two integrals inside the parenthesis correspond to the first and the second step. In the latter case, the

sensitivity of inflation to the deflationary shock becomes somewhat larger than that in the former case.
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Figure 9: Schematic picture of Wo(x) around the inaction region after a positive drift in
firms’ markup at t = 1.

where f‘:{zl is common to period ¢ = 1 and is defined in Equation (63). Because It o<
T ~ f, this law of motion clearly implies that the sensitivity of inflation to the change
in the nominal marginal cost at period t = 2 is dampened as in period ¢t = 1.

The behavior at t = 3 depends on how much the negative drift (—k2) at period ¢t = 2
has offset the positive drift (—k1). If, as assumed above, 2% € [z — ko, 2f — k1 — K2), then
there is still a gap between the accumulated firms and the lower threshold at period ¢t = 2
minus the drift at ¢ = 3, again implying a reduced sensitivity of inflation to the change in
nominal marginal cost. On the other hand, if ko is large enough that x% = acg — K1 — Ko,
the behavior at period ¢t = 3 is the same as in Section 3.2, and the law of motion of price
index is given by Equation (49). In other words, the sensitivity of inflation recovers to the

pre-shock level only after the cumulative negative drift in markup for ¢ = 2 completely

offset the positive drift at ¢ = 1.

G Details on the validity of Assumption 3

This Appendix evaluates the accuracy of the approximation based on Assumption 3. Be-
cause the assumption is used both for the derivation of firms’ policy triplet (z},zF, z7) in
Section 3.1 and for the evaluation of a part of firms’ markup distribution in Section 3.2.2,

these are treated in Appendix G.1 and G.2, respectively.
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G.1 Correction to the reset markup

This section explicitly confirms that the error in the approximation regarding zj based

on Assumption 3 is of order o, thus is not large for our calibrated model in Section 4.

More specifically, by defining x: ) = log (E%l) +log <j%:§> for an arbitrary non-negative
integer n, we evaluate the difference between z} and z; tn:). For this evaluation, we use
the first-order perturbation introduced in the derivation of the Phillips curve in Section
3.3. We also adopts the auxiliary assumption of no aggregate uncertainty, introduced in
the discussion preceding Equation (25).

We first consider the steady state. Equation (30) implies

an) _ g q(n—1 1_(043)n+1 A
A" = A+ aBAS >:--.:71_a5 A,

where we ignore both the trend inflation 7 and A4, following the discussion in Section 3.3.

Similarly, Equation (31) implies

1(n < —(n— 1_ n+17

Next, we consider the log-linearization of the corresponding variables using the steady-

state values above. For example, from Equation (30), we obtain

(n) _  Ll—af L—(af)" [1 . \(n—1)
o = T AT oy [+ e DR+ alY]
Similarly, log-linearizing Equation (31) yields
~(n) l—af 1 - (O‘ﬁ)n

— 3 - ~(n—1)
Qo = Wﬂt + QBW [)\t-i-l +ERt41 + a2,t+1} . (172)
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From Equations (171) and (172) together with the definition of z; (n), we obtain

Ty = d2,t — Ay
1— (af)" 0
= 00y b [+ 0
A ()
= ... = SZ:;(Q/B) Wﬁﬁ_s,

where the third equality follows from the recursive substitution based on the second equal-
*(n)

ity. Similarly, 7 = lim,, o 2, is rewritten as

s A A
Ty = a2t —aig

= af [Re1 + 274

== Z (afB)” Fiys-
s=1

A straight-forward rearrangement of these expressions yield

sy _ (@B .-

A%k ~AKk(T n

Ty — Ty 1 — ozﬁ n+1 Z — (aB)?) kitts + (af) Z aB)® Riynts-
s=1

Clearly, both of the two terms on the right-hand side is of order (a)", making these terms

very small for n = nf large enough by Assumption 3.

G.2 Correction to the markup distribution

Similarly to Appendix G.1, this Appendix explicitly calculates the leading correction asso-
ciated with the approximation used to obtain the law of motion for price index (49). This
correction is associated with the delta functions shown schematically in Figure 3, corre-
sponding to the firms that change their prices or enter the market at a past period, have
drifted since then without being hit by an idiosyncratic shock, and eventually cross the

lower inaction threshold.3?As in Section 5.3, to represents the period at which these firms

32 Another correction is due to the incomplete saturation of the step functions. This correction is how-
ever significantly smaller than the correction due to the delta functions because the former is of order
AL AH = AL /=
a((A"+AT)/R) while the latter is of order al2" /).
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change their prices or enter the market. We then follow their contribution to the density in
subsequent periods, which we denote by 5(t0)\Ilt(x), excluding those hit by an idiosyncratic
shock.

At the next period ¢ = to + 1, the relevant contributions are (B) and (D) in Table 2, so
5(t0)\1}t0+1(x) = |:(1 — a)(]_ _ T)ef(sfl)x% -+ Fl%()i| 6 (l’ + K/tO‘i‘l — J"Z}) 6(5—1)Kt0+1'
At subsequent periods, we use Equation (47) to keep track of the contribution, and obtain
n
510G, o (2) = aeE=D Ziz frgrs [(1 —a)(l— 7_)6*(5*1)11&0 + Ffo] ) (az + Z Ktgt+s — J:IO) .
s=1

When these firms cross the lower threshold and therefore change their prices at ¢t = tg+n*,

the following inequality has to be satisfied:

n
L * L
xt()-i-n*—l — Kig+n* é xto - E Ktgts < xto—i—n*'
s=1

It then follows that the evaluation of the integrals I'} | .. and 't | .., discussed in Appendix
B.4, needs to take into account the term 60 W, | .- (z) in this range. For example, the

contribution of this density to the former integral, which we denote by 5(t0)F§’O Ly 18
5(tO)F§’O+n* = —a" e ) 2o Reg+s [(1 —a)(l - T)e_(a_l)ﬁo + Fth} .
Similarly, the correction of the integral Ffo 1+ becomes

5(to)r§0+n* — " [(1 —a)(1- T)e—(a—l)xio + FtQO} 6(571)<1f07x20+n*>'

The rest is analogous to the calculation of price index in Appendix B.5. With the help of
log-linear approximation introduced in Section 3.3, we obtain the expression (65) in the

main text.
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