

BIS Working Papers No 1309

Making suptech work: evidence on the key drivers of adoption

by Leonardo Gambacorta, Nico Lauridsen, Samir Kiuhan-Vásquez and Jermy Prenio

Monetary and Economic Department

November 2025

JEL classification: G28, O33, C25

Keywords: suptech, financial supervision, technology adoption, financial authorities

Dep eco inte tho	Working Papers are written by members of the Monetary and Economic partment of the Bank for International Settlements, and from time to time by other promists, and are published by the Bank. The papers are on subjects of topical erest and are technical in character. The views expressed in this publication are use of the authors and do not necessarily reflect the views of the BIS or its member atral banks.
This	s publication is available on the BIS website (www.bis.org).
©	Bank for International Settlements 2025. All rights reserved. Brief excerpts may b reproduced or translated provided the source is stated.
	N 1020-0959 (print) N 1682-7678 (online)

Making Suptech Work: Evidence on the Key Drivers of Adoption

Leonardo Gambacorta, Nico Lauridsen, Samir Kiuhan-Vásquez and Jermy Prenio*

Abstract This paper examines the institutional drivers of adopting supervisory technology (suptech) by financial authorities worldwide. Using survey data from 112 financial authorities across 97 countries from the State of SupTech Report, we analyse how organisational characteristics and strategic frameworks shape the adoption of suptech initiatives. The analysis employs a two-stage hurdle model to track adoption from proof of concept to prototype, and finally to full deployment. We find that authorities with institution-wide strategies for digital transformation, data governance, and suptech deployment use, on average, about 20 additional applications and face fewer design and implementation challenges. Furthermore, while an authority's size and institutional mandate are significant factors in initiating advanced projects, the establishment of a dedicated suptech unit is the most critical factor in increasing the number of deployed applications. Finally, we find that public cloud adoption is associated with a higher probability of implementing AI tools, while reliance on in-house development is strongly associated with early-stage AI experimentation.

JEL Codes: G28, O33, C25

Keywords: suptech, financial supervision, technology adoption, financial authorities

^{*}Leonardo Gambacorta (email: leonardo.gambacorta@bis.org) is with the Bank for International Settlements (BIS) and a research fellow of CEPR. Jermy Prenio (email:jermy.prenio@bis.org) is with the BIS. Nico Lauridsen (email: nico.lauridsen@eui.eu) is with the Florence School of Banking and Finance (FBF) at the European University Institute (EUI). Samir Kiuhan-Vásquez (email: samir.kiuhan@eui.eu) is with FBF at the EUI and the Cambridge SupTech Lab at the University of Cambridge Judge Business School. We thank Simone di Castri for helpful comments and suggestions. We are also grateful to the Cambridge SupTech Lab and Digital Transformation Solutions (DTS) for providing the data for the analysis. The views expressed in this paper are those of the authors and do not necessarily reflect those of the BIS, the EUI, or the Cambridge SupTech Lab.

1 Introduction

Financial supervision helps keep financial markets safe and stable by preventing problems such as information gaps, moral hazard, and the abuse of financial firms' market positions (Pigou, 1932; Akerlof, 1970; Stiglitz & Weiss, 1981; Jensen & Meckling, 1976). Supervisors set rules for financial institutions and make sure those rules are followed, which would be too costly and complicated for consumers to do individually (Llewellyn, 1999). As financial markets become more digital, creating rapidly growing volumes of data and information, new risks emerge, such as cyber threats and climate risks. Traditional supervision methods, designed for simpler times, struggle to keep pace.

This is where supervisory technology (suptech) plays a crucial role. Suptech refers to financial supervisors' use of advanced technologies, such as artificial intelligence (AI), including machine learning (ML), and cloud computing, to improve how they monitor the market, collect data, and detect risks. After the global financial crisis and the rise of fintech, there is a greater need for agile, data-driven, and effective supervision. Suptech helps supervisors identify emerging risks, reduce information asymmetries, and strengthen compliance. However, suptech adoption has been slow and uneven across jurisdictions and institutional types of financial authorities. Many authorities have started suptech projects, but few have fully integrated these technologies into their daily work due to barriers such as outdated IT systems, a lack of clear strategies or skilled staff, and concerns about data security.

This paper aims to bridges academic research and policy practice to investigate the factors that drive the adoption of suptech by financial supervisory authorities. To analyse this phenomenon, we use the State of Suptech Report, collected by the Cambridge SupTech Lab and Digital Transformation Solutions (DTS) in 2024. This global dataset combines information on suptech adoption with organisational characteristics and jurisdictional factors. Using a hurdle model, we examine how features such as the type of authority, the presence of a dedicated suptech unit, and the implementation of strategic frameworks for digital transformation, data governance, and suptech influence adoption across different stages of the suptech lifecycle. We also investigate the role of cloud computing as an enabling technology for developing AI-based suptech tools.

Our findings highlight that implementing institution-wide strategies for digital transfor-mation, data governance, or suptech is strongly associated with increased adoption. Indeed, financial authorities that have adopted all three strategies use, on average, 20 more suptech tools than those that have not. This highlights the significance of strategic frameworks that actively guide and allocate resources for technological innovation across all supervisory functions. Our results suggest that establishing dedicated suptech units is particularly effective in translating strategic intent into tangible progress. These units can foster technological adoption by centralising expertise, aligning innovation

with institutional objectives, and overcoming organisational inertia. Investing in cloud infrastructure is particularly crucial, as it provides the scalability and computational power needed for advanced analytics and AI-driven tools, while enabling authorities to modernise IT systems. However, cloud adoption must be carefully pursued, paying special attention to data security. Additionally, authorities should prioritise capacity building and skills development to address internal talent shortages and ensure the sustainable integration of suptech. It is also important to note that suptech deployment lags in emerging supervisory areas, such as climate/ESG, cyber risks, and digital assets.

This paper contributes to the literature by providing a clear overview of the current state of the art in global suptech (Eisenbach et al., 2022; Degryse et al., 2025; Brynjolfsson & Kazinnik, 2025). It highlights key factors that could assist financial authorities in advancing the development of new supervisory tools and transforming their organisations to enhance supervisory capacity.

The remainder of the paper is structured as follows. Section 2 links our paper with three strands of the literature: financial supervision, technology adoption, and institutional capacity. Section 3 outlines an analytical framework for suptech adoption, describing the stages of the suptech lifecycle and the main drivers of technological development. Section 4 describes the data collection process and the dataset. Section 5 details the construction of the primary variables and provides some descriptive analysis. Section 6 outlines the empirical strategy, based on hurdle models. Section 7 presents the main results, and Section 8 concludes by discussing policy implications and avenues for future research.

2 Links with existing policy and academic literature

This section examines how financial supervision is evolving through technology from an economic and policy perspective. Financial supervision is essential for addressing market failures that create risks related to prudential conduct within the financial system. These issues include externalities, asymmetric information, moral hazard, and principal-agent problems (Pigou, 1932; Akerlof, 1970; Stiglitz & Weiss, 1981; Jensen & Meckling, 1976). If left unaddressed, these distortions can undermine market integrity and stability. Financial regulations establish rules of behaviour to mitigate these risks and define acceptable outcomes for firms. Supervision complements regulation by ensuring that firms comply with these rules and intervening when their actions threaten regulatory objectives. This oversight, performed by competent authorities, helps resolve collective action problems and reinforces the financial system's stability. Llewellyn (1999) describes this as consumers delegating monitoring responsibilities to these authorities to reap the benefits of expertise and economies of scale. Otherwise, consumers would find monitoring of financial firms costly and would likely create a 'free rider' problem.

The academic literature on financial supervision in the banking sector is quite limited

due to data availability and confidentiality issues. This literature serves as our reference point for studying the suptech phenomenon and its impact on the organisational structure of financial authorities. One strand addresses the determinants of supervisory practices, focusing on the internal information flows that shape monitoring and reporting activities, which are fundamental to supervisory actions such as enforcement. Another strand examines the effects of enforcement actions on market risk-taking behaviour. Ultimately, the focus will shift to technology's impact on supervisory practices.

Supervisors' will and ability to act are essential to effective financial supervision (Adrian et al, 2023). Clarity of mandate, strong operational independence and accountability, adequate resources, and legal protection for supervisors enable this will and ability to act. These factors are captured in the first two Core Principles for Effective Banking Supervision developed by the Basel Committee on Banking Supervision (BCBS) and the Insurance Core Principles developed by the International Association of Insurance Supervisors (IAIS). These principles serve as minimum standards for banking and insurance supervision. Studies show that the supervisory architecture and governance, which determine independence and accountability, influence the effectiveness of financial supervision (Masciandaro et al., 2008; Dincer & Eichengreen, 2012).

The literature shows the impact of enforcement actions on banks' risk-taking. Stringent supervision through enforcement action and direct on-site inspections reduces banks' fragility and risk exposure (Bassett et al., 2015). Delis et al. (2019) and Deli et al. (2011, 2016) show that enforcement actions against banks can strengthen their financial stability by reducing risk-weighted assets and nonperforming loan ratios. While there is no observed increase in the level of regulatory capital, the results suggest that enforcement actions improve banks' overall health. Even supervisory scrutiny, actions that fall short of enforcement actions, reduces bank risk-taking (Degryse et al., 2025).

Financial supervisors must have a basis for conducting enforcement actions or introducing preventive measures. Supervisors' monitoring activities provide that basis, and their effectiveness depends on how authorities deploy resources, particularly the skills, processes, technologies, techniques, and tools available to them. Eisenbach et al. (2022) demonstrate that the allocation of supervisory resources scales almost proportionally with bank size. They discuss the potential benefits of technological economies of scale and scope in supervision. The deployment of supervisory resources should enable monitoring activities to provide timely and reliable information about financial institutions' condition and risk profile. Traditionally, such information was obtained from regulatory reports, public disclosures, and on-site examinations. For instance, Hirtle and Lopez (1999) show that the frequency of on-site examinations should depend on how quickly private supervisory information erodes in value. Now, supervisors also use alternative sources of information, such as market data, news articles, and social media (Alonso-Robisco et al., 2025).

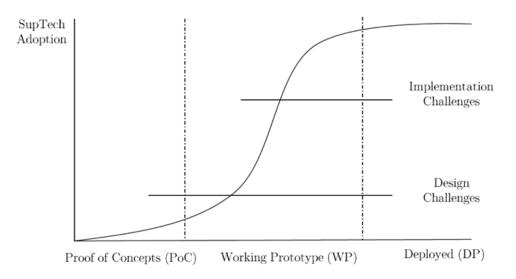
Financial authorities are constantly improving their monitoring activities to enhance

the quality and timeliness of information and improve the insights available to them. This involves continuously developing supervisory staff capacity (Crisanto et al., 2022), using new technologies to enhance regulatory reporting and data collection (Crisanto et al., 2020), and upgrading IT infrastructure and data architecture (di Castri et al., 2019). Authorities have also explored, developed, and deployed new technologies to benefit from advances in data analytics (Coelho et al., 2019; Beerman et al., 2021; Garcia Ocampo et al., 2022). For example, supervisors increasingly use ML to analyse large volumes of structured and unstructured data. In this context, Brynjolfsson & Kazinnik (2025) propose a comprehensive framework to understand how AI, especially large language models (LLMs), can enhance supervisory authorities' strategic and operational capabilities. AI tools can transform supervisory workflows by improving data collection, speeding up signal extraction, and enabling more accurate and timely risk assessments. Empirical analysis indicates that these tools could enhance a significant portion of supervisory tasks, particularly those involving analytical and decision-making functions. However, this transformation requires investment in data infrastructure, workforce upskilling, and robust governance mechanisms to manage the risks of integrating AI into supervisory processes.

The term "suptech", short for supervisory technology, was coined by the Monetary Authority of Singapore in 2017 to describe its strategic adoption of financial technology. A dual objective drove the initiative: to enhance the effectiveness of its supervisory processes while simultaneously reducing the compliance burden imposed on regulated firms (Menon, 2017). Broeders and Prenio (2018) later formalised the term with the now widely used definition of suptech: supervisory authorities' use of innovative technologies to support supervision. The emphasis on innovative technologies is crucial, as it positions suptech as the supervisory equivalent of fintech in the private sector. This distinguishes it from the more "legacy-based" systems supervisors have long used, and instead refers specifically to modern tools involving AI/ML and big data (di Castri et al., 2019). Supervisory authorities worldwide are actively pursuing suptech initiatives to address common supervision challenges, such as the growing complexity of risks and limited supervisory capacity (Prenio et al., 2024). Global adoption of suptech is expanding rapidly, with 171 financial authorities across 107 countries reporting live implementations by 2024, up from just 54 agencies in 2022 (Barasa et al., 2025). However, only a few authorities have reported that suptech has become integral to their supervisory processes (Prenio, 2024). Several factors affect the success of suptech initiatives. Strong board and senior management support is key, as this shapes resource allocation. Support from top management also enables the development of institution-wide strategies for suptech adoption and the governance arrangements needed to implement them.

3 An analytical framework for Suptech adoption

Suptech adoption has been heterogeneous across countries and different types of organisatio -ns. In this broad institutional context, this paper seeks to answer the research question: what are the key drivers that facilitate the adoption of suptech by financial authorities? To study the factors and mechanisms behind the adoption of suptech, we take a micro approach, looking at the lifecycle of technological development. This perspective allows for a more granular understanding of how institutional dynamics, resource availability, and strategic policy frameworks affect the trajectory of suptech implementation.


Figure 1 illustrates financial authorities' lifecycle of suptech adoption, mapped along a typical technology diffusion curve within the organisation. It distinguishes three levels of suptech activity: Proof of Concept (PoC), which explores the technical feasibility of a proposed tool or application; Working Prototype (WP), where a functional model demonstrates a tool's design, features, and user interface; and Deployed Solutions (DP), indicating fully implemented and operational tools/applications within supervisory processes. The figure highlights how design challenges dominate the early stages, while implementation challenges become more significant as tools move toward full deployment.

Suptech adoption typically begins at the PoC stage, where authorities face feasibility challenges such as technological constraints, data availability, legal constraints, and internal capacity limitations. PoCs are primarily used to identify potential application areas, assess possible efficiency gains within organisational processes, and evaluate the resources needed to scale solutions. As solutions evolve from WPs to DPs, adoption accelerates significantly. However, implementation challenges, such as data quality, shortages of personnel with adequate technical skills, and budget constraints, become more prominent and often represent the primary barriers to suptech adoption (Barasa et al., 2024).¹

Several regulatory bodies are transitioning from isolated pilot projects to comprehensive strategies that provide a unified vision and institutional coherence. By embedding digital initiatives within broader governance structures, financial authorities can enhance operational consistency, support workforce development, and ensure technological alignment to overcome challenges such as cultural inertia, siloed operations, fragmented data systems, and limited technical capacity. Digital transformation, data governance, and suptech strategies thus represent three distinct yet interdependent pillars of modern supervisory practice. Each contributes uniquely to the development of effective, technology-enabled oversight.

¹To analyse the mechanisms underlying the institutional factors that drive the adoption of suptech by financial authorities, we consider several dimensions: i) idiosyncratic characteristics (i.e., size and type of the financial authority, the country where they operate), ii) the adoption of strategic frameworks for enabling innovation, iii) organisational models for designing, developing, and deploying applications and iv) the presence of complementary technologies that help scale adoption.

Figure 1: Suptech lifecycle

As described in Barasa et al. (2024), the journey toward effective suptech adoption is built upon three distinct yet interdependent strategic pillars. First, an institution-wide digital transformation strategy provides a roadmap for modernising operations, infrastructure, and workforce capabilities, integrating technology, data, and human capital under a unified institutional vision. It often serves as an umbrella framework for suptech and data governance strategies, fostering agility and coherence in response to evolving market and technological conditions. Second, an institution-wide data governance strategy establishes protocols for data management, quality, security, and ethical use across all functions, supporting AI-readiness and suptech deployment through robust architecture and stewardship frameworks. Overseen by senior data leaders, the data governance strategy promotes interoperability and safeguards privacy and fairness. Third, a suptech strategy provides structured plans for harnessing new technologies to enhance supervisory efficiency and effectiveness. Prenio (2024) argues that a successful suptech strategy covering experimentation, development, and deployment-related issues is more likely to succeed. By outlining how tools will be rolled out, building user skills, and ensuring seamless integration with existing supervisory systems, these strategies can overcome common barriers to adoption.

The interaction among these strategic elements is synergistic: i) digital transformation removes technological, structural, and cultural barriers to innovation; ii) data governance ensures high-integrity inputs; and iii) suptech delivers measurable improvements, reinforcing the case for continued reform. Together, they form a reinforcing cycle that supports resilient, scalable, and future-ready supervisory innovation. Financial authorities may pursue different strategic approaches: a standalone suptech strategy with a clear roadmap for integrating advanced technologies into supervisory operations; embedding suptech within broader institutional strategies for data governance or digital transformation. A

data governance strategy, for example, may focus on managing institutional data effectively while enabling advanced analytics for supervisory purposes. These strategies are not mutually exclusive but complementary, offering multiple viable pathways for financial authorities to support innovation and institutional development.

To translate high-level strategies into deployed applications, financial authorities tend to adopt an operational model for managing innovation. This model reflects organisational constraints and directly influences the management of resources, skills, and procurement. We focus on three approaches: A decentralised model is the most common, where individual business units develop solutions; this approach offers flexibility and domain-specific relevance but can limit scalability and lead to redundancies if not supported by proper suptech strategies (Beerman et al, 2021). A centralised hub model places ownership of all initiatives within a single unit (e.g., a dedicated suptech unit or IT unit) to ensure standardisation and alignment with institutional goals. A hybrid "hub-and-spoke" model balances central oversight with departmental expertise by allowing each supervision unit to experiment and develop suptech applications it needs, supported by the central hub.

Finally, we examine the role of cloud computing in deploying suptech tools, particularly AI-based ones. Cloud services offer the flexibility, scalability, and computing power required for real-time analytics, forecasting, and automated supervisory functions. Around one-third of financial authorities currently use hybrid and public cloud services, indicating that adoption remains cautious due to concerns about data privacy, cybersecurity, and data sovereignty (Barasa et al., 2024). Reluctance to change legacy IT infrastructures, fragmented data architectures, and bureaucratic constraints also impede the effective adoption of AI, even though cloud-based architectures - particularly data lakes and schema-on-read models - offer a promising path toward unified, real-time access to diverse data sources across institutional silos. Despite these trade-offs, the growing need for scalable infrastructure is expected to accelerate cloud adoption as authorities strive to balance security, compliance, and performance while modernising supervisory, policy, and analytical functions (Araujo et al., 2025; Kazinnik & Brynjolfsson, 2025; Prenio, 2025).

4 Data, variables, and descriptive analysis

Data sources. The econometric analysis in this paper draws on anonymised data from the Cambridge SupTech Lab and DTS's State of SupTech Survey 2024 ². This survey, typically completed by senior staff in financial authorities worldwide, is a comprehensive, multi-dimensional tool designed to provide a global overview of suptech adoption and

²The data used in this analysis were provided exclusively for research purposes in aggregated form, in accordance with the confidentiality terms established with State of SupTech Survey participants. No individual or institution-level responses were shared or disclosed, and all analyses were conducted in a manner that preserves the anonymity and integrity of participating authorities.

implementation. The analysis is based on responses from 112 financial authorities across 97 countries and six continents, ensuring a diverse and globally representative sample. The participants include central banks, banking, insurance, securities, capital markets regulators, and other financial supervisory bodies. Around two-thirds of the respondents are from emerging markets and developing economies, ensuring all perspectives from regions often underrepresented in global discussions on financial supervision modernisation. The 56-question survey includes a mix of multiple-choice, matrix-style, and open-ended questions, many of which are conditional on earlier responses.

The survey was conducted in two parts. The first mandatory section collects essential data on the suptech landscape, including strategies or roadmaps for data governance, digital transformation, and suptech. It also explores the number and types of suptech applications, the organisational models supporting their development, and the challenges encountered during design and implementation. This section further identifies the supervisory areas where suptech is applied, such as AML, consumer protection, digital assets, and climate risk supervision, along with questions on the effectiveness of tools, funding sources, and the enabling technologies and data science methods used in supervisory processes. The optional second section allows respondents to provide more detailed insights into governance structures, data management practices, collaborative efforts, and strategic plans. It includes questions on the level of AI and generative AI adoption, ethical frameworks, Environmental, Social, and Governance (ESG) oversight, and challenges in using both structured and unstructured data. It also covers the agency's internal capacity-building efforts, available skill sets, and collaboration with peer authorities. The two-tier approach of the survey enables us to capture the institutional characteristics of financial authorities, the extent of suptech adoption, and the maturity of tools across their lifecycle.

To better understand the institutional conditions underpinning suptech activity, the survey includes questions on: (1) the existence of formally implemented strategies for data governance, digital transformation, or suptech; (2) the organisational model for innovation (i.e. decentralised, centralised, or hub-and-spoke); (3) the technological and data foundations (e.g. whether the authority has implemented cloud services); (4) reported challenges, including public procurement barriers, legal uncertainty, and internal skill shortages; and (5) collaboration with external providers such as vendors. The size of each authority was measured using scraped employment data from the official's LinkedIn profile and cross-checked with institutional sources. Finally, this authority-level dataset was merged with IMF cross-country indicators on financial development, supervisory independence, and state capacity. We use two broad-based indices that Svirydzenka (2016) created for financial development, providing a more comprehensive measure than traditional indicators. In particular, we use different decomposition indices that capture

the development of financial institutions and financial markets at a more granular level.³ Specifically, we consider measures for these decomposed indices, including depth, access, and efficiency. Merging the dataset with IMF indices reduces the sample to 112 financial authorities, as data for some smaller jurisdictions are unavailable in the IMF indices.

Variable description: To measure adoption, our main variables are counts of suptech use cases developed by each authority at three stages of the technological lifecycle: PoC, WP, and DP. This approach distinguishes between early-stage experimentation and full operational integration. The count variables are constructed from 104 predefined use cases (See Appendix, table A4) across 13 supervisory areas. For each use case, respondents report the stage of development. $Y_{is} \in \{0,1,2,\ldots,104\}$ denotes the number of areas where authority i has a suptech project at the maturity stage $s \in \{\text{PoC,WP,DP}\}$. The 13 supervisory areas are further grouped into four broader categories: (i) financial stability oversight and prudential supervision, (ii) licensing and compliance, (iii) supervision of emerging risks, and (iv) consumer protection and conduct supervision. This structure allows for detailed analysis of suptech adoption both across and within supervisory domains and development stages.

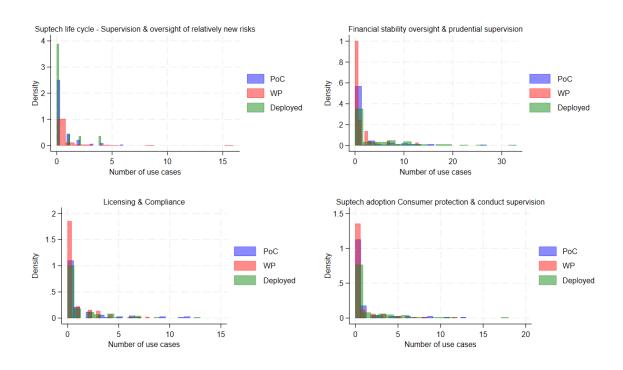
Figure 2 illustrates the distribution of suptech tools across the three stages of development over the suptech lifecycle. These distributions provide a preliminary overview of suptech maturity and reveal salient patterns in its diffusion across supervisory areas. Across all three stages, the distributions are distinctly right-skewed, with a pronounced spike at zero, indicating that many authorities report no suptech activity. The combination of excess zeros and skewed count distributions highlights the need for an empirical approach to distinguish between the decision to adopt suptech and the extent of implementation. To address these features, our econometric analysis will employ a hurdle model, which separately estimates: (i) the probability that an authority adopts at least one suptech tool; and (ii) the number of tools adopted, conditional on adoption. This methodology is well-suited to our data structure and will be discussed in detail in the next section.

Figure 3 shows the distribution of the suptech activity variables, PoC, WP, and DP, across the four main supervisory areas, clustered into four categories. Although the histograms reveal some similarities across the distributions, suggesting a degree of

³The Financial Development Index by Svirydzenka (2016) captures the multidimensional nature of financial systems through two main components, Financial Institutions (FI) and Financial Markets (FM), each decomposed into Depth (FID/FMD), Access (FIA/FMA), and Efficiency (FIE/FME). The FI index reflects the development of banks, insurers, and other financial intermediaries, while the FM index measures the development of stock and bond markets. Within Financial Institutions, Depth (FID) includes private-sector credit, pension fund assets, mutual fund assets, and insurance premiums to GDP; Access (FIA) captures bank branches and ATMs per 100,000 adults; and Efficiency (FIE) comprises net interest margin, lending–deposit spread, non-interest income to total income, overhead costs to total assets, return on assets, and return on equity. Within Financial Markets, Depth (FMD) covers stock market capitalization, stocks traded, and international and total debt securities of governments, financial, and nonfinancial corporations to GDP; Access (FMA) measures the share of market capitalization outside the top 10 companies and the total number of debt issuers (domestic and external, financial and nonfinancial); and Efficiency (FME) is represented by the stock market turnover ratio (stocks traded to capitalization).

PoC WP Deployed

Number of use cases


Figure 2: Distribution of Suptech Activity - All use cases

Source: Cambridge SupTech Lab and DTS, authors' calculations.

consistency in suptech activity across supervisory categories, their differing modes and dispersion point to notable variation in adoption intensity and progression. Suptech deployment is most advanced in financial stability oversight and prudential supervision, which records the highest incidence of deployed tools.

By contrast, the supervision of emerging risks - including climate and environmental risks, cyber threats, and risks related to digital assets - shows relatively few instances of full deployment, indicating slower technological integration despite their growing importance. This may reflect limited data availability in these areas. The licensing and compliance category exhibits a more uniform distribution across PoC, WP, and DP stages, suggesting a relatively balanced development trajectory. In contrast, consumer protection and conduct supervision remain concentrated in the PoC and WP stages, with comparatively limited evidence of deployment. This pattern reflects ongoing experimentation and tool development in this area and highlights slower progression toward full operational integration.

Figure 3: Distribution of Suptech Activity across Supervisory Categories

Source: Cambridge SupTech Lab and DTS, authors' calculations.

Table 1 summarises descriptive statistics for the variables used in the empirical analysis. The final sample comprises 112 supervisory authorities that submitted the survey by March 2025, after manually excluding implausible outliers and observations missing from the IMF database. Dependent variables reveal substantial heterogeneity: the average number of PoC initiatives is 4.65 (SD = 8.035, max = 35), suggesting widespread early-stage experimentation alongside a subset of highly active adopters. WPs exhibit a lower average (mean = 2.795, SD = 5.166, max = 32), while DPs show the highest mean and significant variation (mean = 6.929, SD = 10.029, max = 45). The variable Challenges is a count variable that captures the number of challenges faced by the financial authority during the design and implementation of a suptech project, along with its relevant decomposition. It averages 7.830 (SD = 4.640), with dispersion underscoring divergent institutional capacities. The type of supervisory authorities in the sample is distributed as follows: Standalone Banking Supervisors at 49.1%, Central Banks at 30.4%. The remaining 20.5% fall under the category of Other Supervisory Authorities, which includes sector-specific authorities like security and financial market or insurance entities. The sample distribution is geographically concentrated in Latin America, the Caribbean (LAC), Europe, and Central Asia (ECA) regions, accounting for 30.4% and 29.5% of the sample respondents, respectively. Other regions, such as East Asia and Pacific (EAP), Middle East and North Africa (MENA), South Asia (SA), and Sub-Saharan Africa (SSA), have smaller

representation, and North America (NA) represents 3.6% of the sample.

The data on organisational models reveal that the IT-Centred model is the most prevalent, adopted by 40.2% of the authorities. The Hub & Spoke model is also common, used by 28.6% of the authorities. The Centralised Hub model is less frequent at 17%, while 14.3% of the authorities report using other organisational models. These figures provide preliminary insight into the different governance and operational structures supervisory authorities have to manage suptech initiatives.

Independent variables capture organisational and technological characteristics. The number of employees is, on average, 336.86. Measured as the natural logarithm, as in the regressions, it averages 5.818 with a range between 3.401 and 9.903. Looking more deeply at the institutional characteristics of authorities, 51% have a dedicated suptech unit, while 26% have a suptech strategy. The percentage of authorities with data governance is 35% and digital transformation strategies in place are 34%. Furthermore, the sub-sample analysis collected through the optional questions shows limited adoption of more advanced technologies. While 40% of the authorities have implemented private cloud solutions, only 11% use public cloud infrastructure. Similarly, AI deployment has a mean of only 6.6%, but this number increases to 41% if initial phases of AI exploration are included.

Data on suptech sourcing models show that a hybrid approach is the most common strategy among authorities with at least one active or developing suptech application. Over half of these authorities report using a mix of both in-house development and external vendors. An in-house approach, where tools are built internally, is the second most prevalent strategy, adopted by 31% of the authorities. Finally, relying exclusively on external solutions, such as hiring vendors or purchasing software, is the least common method, used by only 15% of the sample.

Two key insights summarise this preliminary data analysis. First, the right-skewed distributions of PoC, WP, and DP variables, with means far below the median, are consistent with the hurdle model's assumption of zero-inflated count processes, where initiation and scale are distinct decisions. Second, limited adoption of enabling infrastructures, such as cloud computing and AI, and relatively few formal strategies, suggest institutional and technological barriers may constrain suptech implementation. This heterogeneity motivates our empirical approach, which explicitly models the dual decision structure of adoption.

Table 1: Summary Statistics

Variable	Obs.	Mean	Std. Dev.	Min.	Max.
Suptech life cycl					
Proof-of-Concept Working Prototype Deployed Solution Size (In employees) Suptech Unit	112 112 112 112 112	4.652 2.795 6.929 5.818 0.509	8.035 5.166 10.029 1.288 0.502	0 0 0 3.401 0	35 32 45 9.903
Agency type					
Standalone Banking Supervisors Central Banks Other Supervisory Authorities	112 112 112	0.491 0.304 0.205	0.502 0.462 0.406	0 0 0	1 1 1
IMF income classification					
Advanced Economies (AEs) Emerging and Developing (EMDEs)	112 112	0.321 0.679	$0.469 \\ 0.469$	0	1 1
World regions ¹					
EAP ECA LAC MENA NA SA SSA	112 112 112 112 112 112 112	0.107 0.295 0.304 0.062 0.036 0.071 0.125	0.311 0.458 0.462 0.243 0.186 0.259 0.332	0 0 0 0 0 0	1 1 1 1 1 1
Cloud type					
No Cloud Public Private Hybrid	45 45 45 45	0.289 0.111 0.400 0.200	0.458 0.318 0.495 0.405	0 0 0	1 1 1 1
Sourcing (buy vs build)					
In-House Hybrid External	70 70 70	0.314 0.543 0.143	0.468 0.502 0.352	0 0 0	1 1 1
Organisational models					
IT-Centred Centralised Hub Hub & Spoke Other organisational models	112 112 112 112	0.402 0.170 0.286 0.143	0.492 0.377 0.454 0.351	0 0 0 0	1 1 1 1
Strategies					
Data Governance Digital Transformation Suptech	112 112 112	0.348 0.339 0.259	$0.479 \\ 0.476 \\ 0.440$	0 0 0	1 1 1
Challenges					
Challenges Design Implementation	112 112 112	7.830 3.205 4.625	$4.640 \\ 2.019 \\ 2.774$	0 0 0	20 9 12
AI					
AI AI early-stage AI deployed	76 76 76	0.408 0.342 0.066	0.495 0.478 0.250	0 0 0	1 1 1
IMF indices ²					
Financial institutions depth (FID) Financial institutions access (FIA) Financial institutions' efficiency (FIE) Financial markets depth (FMD) Financial markets access (FMA) Financial markets efficiency (FME)	112 112 112 112 112 112	0.475 0.398 0.594 0.328 0.254 0.195	0.193 0.212 0.090 0.280 0.295 0.301	0.081 0.014 0.225 0.019 0	0.959 0.864 0.799 1 1

 $^{^{1}}$ Economies are classified following the World Bank definition. 2 Based on Svirydzenka (2016).

5 Empirical strategy

This study employs a hurdle model, a specialised count data regression framework, to analyse suptech adoption, a context characterised by excessive zero observations and overdispersion, where the variance exceeds the mean (Cragg, 1971; Mullahy, 1986). Hurdle models are well-suited to situations where the outcome is frequently zero (e.g., no adoption) yet exhibits meaningful variation among positive values. Compared to zero-inflated models, they offer greater flexibility in capturing both excess zeros and the conditional distribution of non-zero observations (Gurmu, 1999; Feng, 2021). This approach is particularly appropriate for suptech data, where many authorities report no adoption, as shown in Figure 2. The model comprises two distinct steps. The first step employs a binary logistic regression to estimate the probability of crossing a hurdle or threshold (i.e., transitioning from non-adoption to adoption). Here, the dependent variable is binary, distinguishing zeros (no adoption) from positive counts (adoption). Conditional on crossing this hurdle, the second step estimates the intensity of adoption using a zero-truncated negative binomial model, which accounts for overdispersion in positive counts while explicitly excluding zeros. This two-step approach disentangles the decision to adopt suptech tools from the subsequent decision on how many tools to adopt, offering nuanced insights into the adoption process.

The hurdle model's statistical appropriateness is further underscored by its alignment with institutional dynamics of suptech adoption. Initial adoption often reflects a discrete institutional choice, while subsequent tool adoption may depend on heterogeneous resource constraints, regulatory needs, technological capacities, and factors captured by the truncated count model. By addressing excess zeros and overdispersion, the framework mitigates bias in parameter estimates that could arise under standard Poisson or negative binomial specifications, thereby enhancing empirical reliability.

The formal hurdle model for suptech adoption based on the previous specification of our main independent variables, let $Y_{is} \in \{0, 1, 2, ..., 104\}$ denote the number of areas where a suptech project has been developed by the supervisory authority i, at the maturity stage $s \in \{\text{PoC,WP,DP}\}$. The hurdle model decomposes the outcome distribution into two steps:

$$\Pr(Y_i^s = y) = \begin{cases} \pi_i^s, & \text{if } y = 0\\ (1 - \pi_i^s) \cdot \frac{f(y; \mu_i^s; \alpha^s)}{1 - f(0; \mu_i^s; \alpha^s)}, & \text{if } y > 0 \end{cases}$$
 (1)

where π_i^s is the probability of observing a structural zero, $f(y; \mu_i^s, \alpha^s)$ is the negative binomial probability mass function, $\mu_i^s = \exp(Z_i \gamma^s)$ is the expected count, α^s is the overdispersion parameter estimated from the data.

The first step models the probability that an authority undertakes any suptech project

in a specific supervisory area using a logistic regression:

$$\Pr(Y_{is} > 0) = \frac{\exp(X_i \beta_s)}{1 + \exp(X_i \beta_s)}$$
(2)

The first step of the hurdle model remains consistent across specifications. The selection of variables in this step is based on the assumption that they are exogenous and not influenced by suptech adoption. Specifically, the model includes variables that describe the characteristics of the supervisory authority, as well as the financial development context of each jurisdiction and broader regional features. The regression model of the first step is represented by the following logit specification, structured as follows:

$$Y_{i,c}^{0,1} = g_1 \text{Size}_i + g_2 \text{Authority Type}_i + g_3 \text{Region}_c + g_4 \text{IMF Indices}_c + \varepsilon_{i,c}$$
 (3)

where i is the supervisory authority in country c, Size is measured as the natural logarithm of the number of employees, Authority Type is a categorical variable for the type of authority, with central banks as the point of comparison. Region is a vector of regional dummies based on the World Bank classification, with EAP as the reference category. IMF Indices captures financial development indicators for cross-country variation in financial system characteristics. A more comprehensive description of all variables is provided in the Appendix, Table A3.

The second step employs zero-truncated negative binomial models, conditional on $Y_{is} > 0$. It estimates the number of areas where suptech projects are being developed, using the same explanatory variables from the first step, supplemented by additional characteristics relevant to suptech within supervisory agencies. The model is specified as follows:

$$Y_{i,c}^{s} = r_{1} \operatorname{Size}_{i} + r_{2} \operatorname{Authority} \operatorname{Type}_{i} + r_{3} \operatorname{Strategies}_{i} + r_{4} \operatorname{Organisation}_{i} + r_{5} \operatorname{Suptech} \operatorname{Unit}_{i} + r_{6} \operatorname{Economic} \operatorname{Development}_{c} + r_{7} \operatorname{Region}_{c} + r_{8} \operatorname{IMF} \operatorname{Indices}_{c} + \varepsilon_{i,c}$$
 (4)

where, for each authority i in country c, Organisation is a categorical variable capturing the organisational model adopted for developing suptech tools, distinguishing between decentralised (reference), centralised hub, hybrid hub-and-spoke, and other specified arrangements. Suptech Unit is a dummy variable equal to 1 if the authority has a dedicated suptech unit, and 0 otherwise. Economic Development is a vector of economic development dummies that distinguishes between advanced and developing countries. Strategies is a vector of dummy variables indicating whether the authority has adopted a suptech strategy, a data governance strategy, or a digital transformation strategy.

We further extend the empirical analysis in equation (4) to examine factors mediating

the challenges a financial authority faces in adopting and developing suptech tools. The new dependent variable is constructed by counting the number of design and implementation challenges reported in the complete survey classification (see Table A2 in the Appendix). Unlike PoC, WP, and DP variables, its distribution is not markedly right-skewed toward zero. This allows us to apply a standard Poisson count model to estimate the second step of the hurdle model. This additional analysis will further assess how strategic frameworks influence the adoption of suptech by examining how structured implementation approaches can reduce barriers to technological development.

The final part of our analysis examines the relationship between AI project activity, cloud technologies, and sourcing models adopted by the authority to develop suptech applications. To this end, we compute a linear probability model where our independent variables have a different specification and decomposition of the AI measure by the stage of maturity. First, we use an aggregate specification, $Y_i = 1$, that is, a binary variable that captures any level of maturity in using AI tools, ranging from initial exploration and research to pilot projects with limited deployment, to fully deployed AI-based suptech tools by authority i. We then decompose this aggregate measure into two components. The first captures early-stage AI engagement, defined as initial exploration, research, and pilot projects with limited deployment. The second isolates cases of full deployment, identifying authorities that have operationalised AI-based suptech tools. In detail, the model specification is:

 $Y_i = \begin{cases} 1 & \text{if authority } i \text{ has any AI-based SupTech tools (from early-stage to full deployed);} \\ 0 & \text{otherwise.} \end{cases}$

$$\Pr(Y_i = 1 \mid X_i) = X_i'\beta + \varepsilon_i \tag{5}$$

where:

$$X_i' = [\text{CloudType}_i, \text{SourceModel}_i, \text{Controls}_i]$$

The X_i' includes three types of variables for each authority i. CloudType is a categorical variable that distinguishes between private, public, and hybrid models. These cloud-type indicators allow us to test whether specific deployment environments are more conducive to AI experimentation and uptake. SourceModel is a set of dummies designed to capture how AI tools are developed, acquired, or created through a hybrid approach in collaboration with consultants or external providers, whether in-house, procured from external vendors, or developed through a combination of these methods. Additionally, the model includes the same Controls used in previous regressions, capturing the institutional and organisational characteristics of the financial authority, regions and financial development.

6 Results

This section presents the results of our empirical analysis, starting with the baseline hurdle model that focuses on idiosyncratic organisational characteristics. Table 2 reports the marginal effect estimates from our model. Columns (1), (3), and (5) show the results for the first step (the logit model), which captures the likelihood of an authority initiating at least one suptech project at the PoC, WP, and DP stages, respectively. Columns (2), (4), and (6) report the corresponding estimates from the second step (the count model), which estimates the number of suptech tools adopted, conditional on having at least one.

Table 2: Baseline results

	Panel	A: PoC	Panel	B: WP	Panel	C: DP
Variables	(1) Logit	(2) Count	(3) Logit	(4) Count	(5) Logit	(6) Count
Size	0.0415 (0.0514)	-0.5591 (1.0376)	0.0874* (0.0458)	1.1887 (0.7525)	-0.0071 (0.0480)	0.0755 (1.1699)
Other Supervisory Authorities	-0.0538 (0.1207)	-3.0038 (2.2470)	$0.1026 \\ (0.1177)$	0.8859 (1.3633)	0.1234 (0.1220)	$1.5172 \\ (2.4809)$
Standalone Banking Supervisor	$0.2162 \\ (0.1345)$	3.2880 (3.3554)	$0.2465* \\ (0.1335)$	2.7439 (1.9755)	$0.2337* \\ (0.1323)$	$4.5168 \\ (3.5554)$
Centralised Hub		-2.0102 (2.5246)		-2.1591 (1.7342)		$1.8158 \\ (3.4438)$
Hub & Spoke		-3.5086* (1.9554)		-1.4639 (1.4570)		-0.4054 (2.3130)
Other org. model		$10.3785 \\ (13.1780)$		-2.0345 (1.8210)		-3.6580 (2.7938)
Suptech unit		3.8027** (1.8571)		0.8988 (0.8961)		6.5262*** (2.0389)
EMDEs		-0.7636 (2.2174)		-2.3609* (1.3144)		-0.8798 (3.2594)
Regional controls	Yes	Yes	Yes	Yes	Yes	Yes
IMF Indicators	Yes	Yes	Yes	Yes	Yes	Yes
Economic dev. controls	No	Yes	No	Yes	No	Yes
Observations Pseudo R2	$112 \\ 0.165$	$112 \\ 0.165$	112 0.199	112 0.199	$112 \\ 0.128$	112 0.128

Note: The table presents the marginal effect results from the baseline specification of the hurdle model, as specified in equation (3). Columns (1), (3), and (5) report the marginal effects of the probability model of surpassing the zero threshold. These coefficients indicate the likelihood of initiating a PoC, WP, or DP project. Columns (2), (4), and (6) present the marginal effects of the hurdle counting model specified in equation (4). The different specifications of models include controls for: IMF indices: FID, FIA, FIE, FMD, FMA, FME; regional area dummies: EAP, ECA, LAC, MENA, NA, SA, and SSA; Economic development dummies: ADs and EMDEs. Robust standard errors are reported in parentheses. Statistical significance is denoted as *** p < 0.01, ** p < 0.05, * p < 0.1.

A key finding is that the size of a financial authority is a significant factor in the early stages of development, specifically for WP. A larger authority is more likely to initiate projects at the prototype stage. However, size does not show a statistically significant

effect on the number of tools developed once the adoption process has begun. The type of financial authority is also a critical determinant. Standalone banking supervisors are significantly more likely than central banks (the reference category) to initiate suptech projects that reach the more advanced WP and deployment stages. In contrast to central banks, the supervision function in authorities that are standalone banking supervisors does not have to compete with other functions for resources. Compared to authorities that are classified as "Other Supervisory Authorities", standalone banking supervisors also tend to have more resources, may have more flexibility in how they deploy these resources and may be less constrained by public procurement rules than supervisory authorities attached to government ministries.

Regarding the organisational models for development, adopting a Hub & Spoke model is associated with significantly fewer projects in the initial PoC stage compared to a fully decentralised approach. The evidence highlights that there is no significant difference in the organisational models for suptech development, regardless of the unique characteristics of each authority and its IT infrastructure configuration. Moreover, the most crucial organisational driver is the presence of a dedicated suptech unit, which suggests centralisation. Authorities with a dedicated unit have, on average, 3.8 more PoC tools and 6.5 more deployed tools than those without one. These highly significant results underscore that a formal allocation of resources and expertise is a powerful enabler for starting and, most importantly, successfully deploying suptech applications. Furthermore, the analysis shows that authorities in EMDEs tend to have a significantly lower number of suptech tools in the WP stage than those in advanced economies, holding other factors constant.

The second part of our analysis investigates the impact of strategic frameworks on the suptech lifecycle. Building on the baseline model, we examine the individual effects of having a suptech, data governance, or digital transformation strategy and their possible interactions. The first three columns of Table 3 present the results from the hurdle model specification described in equation (4). Looking at the individual phases of the suptech lifecycle, the estimates for the PoC phase in column (1) show a positive and significant effect of adopting the suptech strategy, with almost seven applications, but a negative and significant effect is detected for deployed solutions (column 3). This suggests that having a suptech strategy is esentinal for initiating the planning and development of tools to improve supervisory processes. This also confirms the findings in Prenio (2024) that suptech strategies tend to focus too much on experimentation at the expense of actual implementation.

Table 3: Role of Strategies

	Panel	A: SupTech li	fe cycle	Par	nel B: Challen	ges
Variables	(1) PoC	(2) WP	(3) DP	(4) All	(5) Design	(6) Implement.
Data Governance (DG)	3.3402	0.2920	-8.1191***	-0.0922	-0.0811	-0.0991
	(3.2639)	(1.5323)	(3.0923)	(0.1949)	(0.1875)	(0.2066)
Suptech Strategy (SS)	6.9472*	-1.4176	-8.3290*	0.1322	0.3481*	-0.0188
	(4.0660)	(2.0975)	(4.7885)	(0.1762)	(0.2062)	(0.1778)
Data Transformation (DT)	2.0089	-0.5593	-9.4392*	-0.0822	-0.0026	-0.1359
	(2.9608)	(1.3078)	(5.4451)	(0.2033)	(0.2490)	(0.1817)
$DG \times SS$	-9.0255	-0.2456	15.4170***	0.2053	0.0030	0.3458
	(6.4135)	(2.2596)	(5.9392)	(0.3253)	(0.3302)	(0.3416)
DG x DT	-8.7055*	-3.1271	16.4407**	0.5186	0.4282	0.5804*
	(5.0754)	(2.7840)	(7.0643)	(0.3283)	(0.3630)	(0.3236)
$SS \times DT$	-11.7870*	-0.3591	16.9943**	0.2323	-0.0062	0.3945
	(6.1222)	(2.7013)	(7.4905)	(0.3690)	(0.3832)	(0.3812)
$DT \times SS \times DG$	-13.3499*	-0.6751	24.2895***	-1.4302**	-1.1591**	-1.6169***
	(7.0110)	(2.6297)	(8.1856)	(0.5570)	(0.5664)	(0.5819)
Authority characteristics	Yes	Yes	Yes	Yes	Yes	Yes
IMF Indices	Yes	Yes	Yes	Yes	Yes	Yes
Regional controls	Yes	Yes	Yes	Yes	Yes	Yes
Observations	112	112	112	112	112	112
Pseudo R2	0.187	0.221	0.155	0.10	0.0842	0.1051

Note: The table from column (1) to (3) shows the marginal effects from the hurdle counting model in equation (4), which are estimated separately for three types of suptech activity. In these model specifications, we included several interactions among the strategy dummies related to strategies (Digital Transformation, Suptech and Data Governance Strategy). Columns (4) to (6) report the results of the estimation of the Poisson model with both aggregate and disaggregated challenge independent variables, following the same specifications presented in the previous part of the table. The different specifications of estimation models include controls for: authority-specific characteristics that include: suptech unit, size, organisational models (IT-centred centralised hub, hub & spoke, other org. model), agency type (standalone banking supervisors, central banks and other supervisory authorities), the IMF indices: FID, FIA, FIE, FMD, FMA, FME; regional area dummies: EAP, ECA, LAC, MENA, NA, SA, and SSA; Economic development dummies: ADs and EMDEs. Robust standard errors are reported in parentheses. Statistical significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

The analysis also reveals that when strategies are combined, the effect becomes negative on PoC. The interaction terms for combinations are all negative and statistically significant. This suggests that while a focused suptech strategy helps kickstart early-stage experimentation, authorities implementing multiple, more complex strategic frameworks simultaneously may initiate fewer PoC projects, possibly because their efforts are directed towards more mature applications. For the Working Prototype stage, none of the individual strategies or their interactions show a statistically significant effect on the number of projects. This indicates that these high-level strategies do not significantly explain the variation in the number of projects in the intermediate development phase.

In contrast, the results for deployed solutions offer the strongest and most significant insights. Individually, each of the three strategies (DG, DT and SS) is associated with a significantly lower number of deployed applications. This suggests that implementing any single strategy in isolation is insufficient for achieving full deployment. The key finding is

the powerful synergistic effect when strategies are combined. All two-way interactions (DG x SS, DG x DT, SS x DT) and the triple interaction (DT x SS x DG) have large, positive, and highly statistically significant coefficients. For instance, authorities implementing all three strategies see an increase of approximately 24.3 deployed tools, which is significant at the p<0.01 level. This provides strong evidence that successful, large-scale suptech deployment is not driven by any single plan but by a comprehensive and integrated strategic approach that combines data, technology, and institutional transformation.

The results in columns (4) to (6) are derived from a Poisson count model and examine the relationship between the number of challenges authorities face and their strategic frameworks. Column (4), which considers the total number of challenges, shows that most individual strategies and two-way interactions do not have a statistically significant effect. However, the triple interaction term (DT x SS x DG) is negative and highly significant, indicating that authorities implementing all three strategies report, on average, 1.43 fewer challenges overall. This finding is further clarified by decomposing the challenges. In column (5), focusing on Design Challenges, having a standalone Suptech Strategy (SS) is associated with a slight increase in reported challenges. Nevertheless, the triple interaction term (DT x SS x DG) is negative and significant, suggesting that having all three strategies in place reduces, on average, of 1.16 design-related challenges. The most relevant effect is in column (6), which looks at Implementation Challenges. The triple interaction term (DT x SS x DG) is again negative and highly significant, showing that authorities with all three strategies report 1.62 fewer implementation challenges. This provides strong evidence that while individual strategies may have a limited impact, a comprehensive and integrated strategic approach is instrumental in mitigating the most critical barriers that arise during the deployment and scaling of suptech solutions.

Table 4 shows results from a linear probability model exploring correlations between an authority's infrastructure choices and its AI adoption. The first three columns present the results for the baseline linear probability model, indicating that the presence of a dedicated Suptech Unit significantly increases the likelihood of AI use overall, corroborating our previous findings. In contrast, the efficiency of financial institutions is strongly linked to both overall AI adoption and early-stage experimentation. This suggests that supervisors operating within more efficient financial systems are better positioned to explore AI applications. However, this effect becomes less significant once AI is fully deployed, as organisational size emerges as a more relevant factor. Larger authorities are more capable of transitioning from experimentation to operational use, highlighting the importance of resource capacity in sustaining and scaling AI projects.

Table 4: The Effect of Cloud and Sourcing Models on AI Adoption

	Р	anel A: AI Mod	els	Pa	nel B: Cloud Mo	odels	Pane	el C: Sourcing M	Iodels
VARIABLES	(1) AI	(2) AI early stage	(3) AI deployed	(4) AI	(5) AI early stage	(6) AI deployed	(7) AI	(8) AI early stage	(9) AI deployed
Suptech Unit	0.2562** (0.1141)	0.1820 (0.1122)	0.0741 (0.0550)	0.0844 (0.2005)	0.1318 (0.2308)	-0.0474 (0.0938)	0.0781 (0.2215)	-0.0508 (0.2065)	0.1289 (0.1006)
Size	0.0533 (0.0673)	-0.0243 (0.0666)	0.0776* (0.0418)	0.0816 (0.0945)	-0.0667 (0.1237)	0.1483* (0.0763)	$0.1040 \\ (0.0956)$	-0.1652 (0.1147)	0.2692** (0.1067)
FID	0.5632 (0.3932)	0.5264 (0.4011)	0.0367 (0.1374)	0.5274 (0.4039)	0.5389 (0.5751)	-0.0115 (0.2697)	0.0480 (0.3897)	-0.4349 (0.5450)	0.4828 (0.3521)
FIA	-0.4212 (0.3529)	-0.3735 (0.3394)	-0.0477 (0.1543)	0.4091 (0.4850)	-0.0839 (0.5773)	0.4930 (0.2974)	-0.3404 (0.6605)	0.1029 (0.5606)	-0.4433 (0.4023)
FIE	1.5626** (0.6229)	1.0306* (0.5796)	0.5320 (0.3541)	2.4457** (0.9290)	1.4024 (1.2137)	1.0433* (0.5545)	$1.4547 \\ (1.2828)$	-0.1806 (1.2320)	1.6353** (0.6809)
FMD	0.2433 (0.5215)	0.6226 (0.5071)	-0.3793 (0.2829)	-0.4894 (0.4696)	0.3642 (0.7484)	-0.8535* (0.4412)	0.0971 (0.7172)	1.6426** (0.7030)	-1.5455*** (0.4068)
FMA	-0.0333 (0.2917)	0.0539 (0.2921)	-0.0872 (0.0924)	-0.1865 (0.4249)	-0.0193 (0.5278)	-0.1672 (0.2214)	-0.2889 (0.4499)	-0.3087 (0.4389)	0.0198 (0.2508)
FME	-0.3237 (0.3999)	-0.7291 (0.4370)	0.4053 (0.2710)	-0.1094 (0.4036)	-0.6966 (0.5867)	0.5872** (0.2843)	-0.4083 (0.4469)	-0.6812 (0.5286)	0.2730 (0.3470)
Public Cloud				0.4685* (0.2527)	0.1741 (0.3008)	0.2944* (0.1446)			
Private Cloud				0.0601 (0.1728)	-0.0088 (0.1949)	0.0689 (0.1087)			
Hybrid Cloud				0.2998 (0.1942)	0.1767 (0.2614)	0.1231 (0.1447)			
Sourcing model: Hybrid							-0.1920 (0.1445)	-0.3303* (0.1733)	0.1383 (0.1284)
Sourcing model: External							-0.6184** (0.2348)	-0.7571*** (0.2359)	0.1387 (0.1473)
Org. models Controls Regional controls Economic dev. control	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
Observations R2	76 0.420	76 0.361	76 0.320	45 0.607	45 0.380	45 0.587	36 0.534	36 0.606	36 0.600

Note: The table shows the results from the linear probability model from equation (5). The different specifications of models include: authority-specific characteristics that include: suptech unit, size, organisational models (IT-centred centralised hub, hub & spoke, other org. model), agency type (standalone banking supervisors, central banks and other supervisory authorities); The cloud type dummies specification: Public, Private and Hybrid; The sourcing model dummies variables: Hybrid External and In-house; The IMF indices: FID, FIA, FIE, FMD, FMA, FME; regional area dummies: EAP, ECA, LAC, MENA, NA, SA, and SSA; Economic development dummies: ADs and EMDEs. Robust standard errors are reported in parentheses. Statistical significance: *** p < 0.01, *** p < 0.05, *** p < 0.1.

Columns (3) to (6) examine the role of cloud infrastructure, using authorities with no cloud adoption as the reference group. The findings suggest that adopting a public cloud is associated with a 46.85% higher probability of having AI suptech tools at any stage of maturity compared to having no cloud infrastructure. This result remains significant for the implementation phase, with 29.44% of a higher probability of adopting AI tools, compared to having no cloud infrastructure. Leveraging public cloud computing services can boost authorities' implementation of AI and machine learning models, which demand significant computational power and data storage that is often difficult for individual authorities to own and maintain.

The last three columns (7) to (9) explore the correlation between the authority's sourcing model and its AI adoption. We consider the purely internal (in-house) approach (not reported) as the baseline for comparison. The results show a strong negative correlation between authorities relying exclusively on the external sourcing model and AI adoption. Specifically, an external-only approach is associated with a 61.8 per cent lower probability of any AI adoption and a 75.1 per cent lower probability of being in the AI exploration stage, compared to authorities that develop their solutions in-house. This finding likely reflects the challenges financial authorities face with external vendors, such as limited transparency and the "black box" nature of proprietary AI tools, which can hinder adoption relative to trusted and customised in-house solutions.

7 Conclusions

This paper presents the first cross-country analysis of suptech adoption by financial supervisory authorities. It is based on a novel two-level dataset with 97 use cases across 13 supervisory areas and organisational characteristics from 112 authorities. Using hurdle models to address the distributional features of the data distribution, we explore the factors that influence both the likelihood of adoption and the intensity of implementation of suptech, emerging technologies designed to enhance supervisory capacity. Our findings contribute to the growing body of literature (Eisenbach et al., 2022; Degryse et al., 2025; Brynjolfsson & Kazinnik, 2025) by identifying key drivers of suptech adoption, such as organisational features, strategic frameworks, and enabling technologies.

We show that while the size of a financial authority and having supervision as the sole mandate are significant factors in the decision to initiate more advanced projects, the single most powerful predictor for increasing the number of deployed tools is the establishment of a dedicated suptech unit. Furthermore, our results provide strong evidence for the powerful synergistic effect of strategic frameworks. Implementing any single strategy for data, digital transformation, or suptech in isolation is insufficient for large-scale deployment. However, authorities that adopt an integrated approach with all three strategies deploy significantly more applications and report fewer implementation and design challenges,

indicating that these frameworks are instrumental in reducing operational frictions. Our findings also highlight that having public cloud infrastructure correlates with higher AI implementation, while in-house development capabilities are strongly associated with early-stage AI exploration.

These insights highlight that suptech is not a discrete IT initiative but a transformative endeavour. From a policy perspective, our findings suggest that success requires: first, embedding suptech within an integrated institutional strategy that combines data, technology, and transformation to maximise tool deployment and minimise challenges. Second, technical progress must be supported by dedicated organisational structures, such as suptech units, to translate plans into practice. Third, authorities should focus on the full integration of suptech into supervisory workflows to ensure tools are used effectively. As supervisors seek to modernise their oversight functions, success will depend on access to new tools and their ability to govern, scale, and sustain innovation.

References

- [1] Adrian, T., Moretti, M., Carvalho, A., Chon, H. K., Seal, K., Melo, F., & Surti, J. (2023). Good supervision: Lessons from the field. *IMF Working Paper*, 6. https://doi.org/10.5089/9798400253782.001
- [2] Aghion, P., & Tirole, J. (1997). Formal and real authority in organizations. *Journal of Political Economy*, 105(1), 1–29. https://www.jstor.org/stable/2138869
- [3] Akerlof, G. A. (1970). The market for "lemons": Quality uncertainty and the market mechanism. *Quarterly Journal of Economics*, 84(3), 488–500. https://doi.org/10.2307/1879431
- [4] Alonso-Robisco, A., Azqueta-Gavaldón, A., Carbó, J. M., González, J. L., Hernández, A. I., Herrera, J. L., Quintana, J., & Tarancón, J. (2025). Empowering financial supervision: A SupTech experiment using machine learning in an early warning system. Banco de España Occasional Paper, 2504. https://doi.org/10.53479/39320
- [5] Araujo, D., Schmidt, R., Sirello, O., Tissot, B., & Villarreal, R. (2025). Governance and implementation of artificial intelligence in central banks. *IFC Report*, 18. Bank for International Settlements. https://www.bis.org/ifc/publ/ifc_report_18.pdf
- [6] Barasa, M., di Castri, S., Grasser, M., Kiuhan-Vásquez, S., Letsiou, K., & Sousa Faria, L. (2024). State of SupTech Report 2024. Cambridge SupTech Lab and Digital Transformation Solutions. https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 5518142
- [7] Basel Committee on Banking Supervision (BCBS). (2024). Core principles for effective banking supervision. Bank for International Settlements. https://www.bis.org/bcbs/publ/d573.pdf
- [8] Bassett, W. F., Lee, S. J., & Spiller, T. P. (2015). Estimating changes in supervisory standards and their economic effects. *Journal of Banking and Finance*, 60, 21–43. https://doi.org/10.1016/j.jbankfin.2015.07.010
- [9] Beerman, K., Prenio, J., & Zamil, R. (2021). Suptech tools for prudential supervision and their use during the pandemic. FSI Insights on Policy Implementation, 37. Bank for International Settlements. https://www.bis.org/fsi/publ/insights37.pdf
- [10] Broeders, D., & Prenio, J. (2018). Innovative technology in financial supervision (SupTech): The experience of early users. FSI Insights on Policy Implementation, 9. Bank for International Settlements. https://www.bis.org/fsi/publ/insights9.pdf

- [11] Brynjolfsson, E., & Kazinnik, S. (2025). AI and the Fed. National Bureau of Economic Research Working Paper, 33998. https://www.nber.org/papers/w33998
- [12] di Castri, S., Grasser, M., Mestanza, J., & Ongwae, J. (2022). State of SupTech Report 2022. Cambridge SupTech Lab and Digital Transformation Solutions. https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 4322943
- [13] Cragg, J. G. (1971). Some statistical models for limited dependent variables with application to the demand for durable goods. *Econometrica*, 39(5), 829–844. https://doi.org/10.2307/1909582
- [14] Crisanto, J. C., Prenio, J., & Singh, M. (2022). Emerging sound practices on supervisory capacity development. FSI Insights on Policy Implementation, 46. Bank for International Settlements. https://www.bis.org/fsi/publ/insights46.pdf
- [15] Coelho, R., De Simoni, M., & Prenio, J. (2019). Suptech applications for anti-money laundering. FSI Insights on Policy Implementation, 18. Bank for International Settlements. https://www.bis.org/fsi/publ/insights18.pdf
- [16] Degryse, H., Huylebroek, C., & Van Doornik, B. F. N. (2025). The disciplining effect of bank supervision: Evidence from SupTech. *BIS Working Papers*, 1256. Bank for International Settlements. https://www.bis.org/publ/work1256.pdf
- [17] Deli, Y. D., Delis, M. D., Hasan, I., & Liu, L. (2019). Enforcement of banking regulation and the cost of borrowing. *Journal of Banking and Finance*, 101, 147–160. https://doi.org/10.1016/j.jbankfin.2019.01.016
- [18] Delis, M. D., & Staikouras, P. K. (2011). Supervisory effectiveness and bank risk. Review of Finance, 15(3), 511–543. https://doi.org/10.1093/rof/rfq035
- [19] Delis, M. D., Staikouras, P. K., & Tsoumas, C. (2016). Formal enforcement actions and bank behavior. *Management Science*, 63(4), 959–987. https://doi.org/10.1287/mnsc.2015.2343
- [20] Dincer, N. N., & Eichengreen, B. (2012). The architecture and governance of financial supervision: Sources and implications. *International Finance*, 15(3), 309–325. https://doi.org/10.1111/j.1468-2362.2013.12002.x
- [21] di Castri, S., Hohl, S., & Kulenkampff, A. (2019). The SupTech generations. FSI Insights on Policy Implementation, 19. Bank for International Settlements. https://www.bis.org/fsi/publ/insights19.pdf
- [22] Eisenbach, T. M., Lucca, D. O., & Townsend, R. M. (2022). Resource allocation in bank supervision: Trade-offs and outcomes. *Journal of Finance*, 77(3), 1685–1736. https://doi.org/10.1111/jofi.13127

- [23] Feng, C. X. (2021). A comparison of zero-inflated and hurdle models for modelling zero-inflated count data. *Journal of Statistical Distributions and Applications*. https://doi.org/10.1186/s40488-021-00121-4
- [24] Financial Stability Board. (2017). Financial stability implications from fintech: Supervisory and regulatory issues that merit authorities' attention. https://www.fsb.org/uploads/R270617.pdf
- [25] Garcia Ocampo, D., Lehmets, A., Pandey, M., & Prenio, J. (2022). Suptech in insurance supervision. FSI Insights on Policy Implementation, 47. Bank for International Settlements. https://www.bis.org/fsi/publ/insights58.pdf
- [26] Gurmu, S. (1999). Generalized hurdle count data regression models. *Economics Letters*, 58(3), 263–268. https://doi.org/10.1016/S0165-1765(97)00295-4
- [27] Hirtle, B. J., & Lopez, J. A. (1999). Supervisory information and the frequency of bank examinations. *Economic Policy Review*, 5(1), 1–19.
- [28] Hirtle, B. J., Kovner, A., & Plosser, M. (2020). The impact of supervision on bank performance. *Journal of Finance*, 75(5), 2765–2808. https://doi.org/10.1111/jofi.12964
- [29] International Association of Insurance Supervisors (IAIS). (2024). Insurance core principles and common framework for the supervision of internationally active insurance groups.
- [30] Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. *Journal of Financial Economics*, 3(4), 305–360. https://doi.org/10.1016/0304-405X(76)90026-X
- [31] Llewellyn, D. T. (1999). The economic rationale for financial regulation. *Occasional Paper Series No. 1*. Financial Services Authority.
- [32] Masciandaro, D., Quintyn, M., & Taylor, M. W. (2008). Inside and outside the central bank: Independence and accountability in financial supervision: Trends and determinants. European Journal of Political Economy, 24(4), 833–848. https://doi.org/10.1016/j.ejpoleco.2008.02.003
- [33] Menon, R. (2017). Singapore fintech journey 2.0. Remarks at the Singapore Fintech Festival, Singapore, November. https://www.mas.gov.sg/news/speeches/2017/singapore-fintech-journey-2
- J. Specification [34] Mullahy, (1986).and testing of some modified Journalcount data models. Econometrics, 33(3),341 - 365.https://doi.org/10.1016/0304-4076(86)90002-3

- [35] Pigou, A. C. (1932). The economics of welfare. London: Macmillan.
- [36] Prenio, J. (2024). Peering through the hype: Assessing SupTech tools' transition from experimentation to supervision. FSI Insights, 58. Bank for International Settlements. https://www.bis.org/fsi/publ/insights58.pdf
- [37] Prenio, J. (2025). Starting with the basics: A stocktake of GenAI applications in supervision. FSI Briefs, 26. Bank for International Settlements. https://www.bis.org/fsi/fsibriefs26.pdf
- [38] Prenio, J., Pustelnikov, A., & Yeo, J. (2024). Building a more diverse SupTech ecosystem: Findings from surveys of financial authorities and SupTech vendors. *FSI Briefs*, 23. Bank for International Settlements.
- [39] Stiglitz, J. E., & Weiss, A. (1981). Credit rationing in markets with imperfect information. American Economic Review, 71(3), 393–410. https://www.jstor.org/stable/1802787
- [40] Svirydzenka, K. (2016). Introducing a new broad-based index of financial development. *IMF Working Paper*, 16/5. International Monetary Fund. https://doi.org/10.5089/9781513583709.001

Appendix

Table A1: Aggregated Supervisory Areas

Aggregated Categories	Supervisory Areas
Financial stability oversight and prudential supervision	Prudential supervision of banks and non-bank deposit-taking institutions Insurance supervision Capital markets, securities and investment instruments oversight Payments oversight
Licensing and compliance	Licensing Compliance assistance Anti-money laundering & combating the financing of terrorism and proliferation financing
Supervision and oversight of relatively new risks	Climate and environmental risks supervision Cyber risk supervision Digital assets and cryptocurrencies oversight
Consumer protection & conduct supervision	Competition monitoring Consumer protection and market conduct supervision Financial inclusion and gender monitoring

Table A2: List of challenges codified in the survey

Type of challenges	Challenges
Design	Increases time to production
	Creating an environment where all perspectives can be expressed and heard
	Aligning agency culture to support design thinking efforts
	Attracting or retaining quality talent
	Lack of internal product design skills and knowledge required to facilitate
	Limited ability for knowledge or data sharing across teams
	Resource-intensive (e.g., high costs, significant time investment)
Implementation	Collaboration challenges (e.g., issues in stakeholder coordination)
	Legal or regulatory barriers
	Quality of solutions (e.g., not meeting needs, poor functionality)
	Flexibility of solutions (e.g., lack of customisation options)
	Cost-related issues (e.g., over-budget, ongoing maintenance costs)
	Vendor understanding of needs (e.g., vendors not fully understanding agency requirements)
	Vendor lock-in (e.g., dependency on a single vendor for updates and support)
	Procurement process
	Black box (solutions are understood in terms of inputs and outputs, but the internal
	workings are not understandable)

Table A3: Variables description

Variables	Description
SupTech life cycle	
РоС	A count variable that captures the number of suptech areas in which an authority
	has projects at the proof of concept stage.
WP	A count variable that captures the number of suptech areas where an authority has
	projects at the working prototype stage.
DP	A count variable that captures the number of suptech areas where an authority has
	projects at the deployed stage.
Challenges	
All	A count variable that captures the number of challenges faced by the financial
	authority during the design and implementation of a suptech project.
Design	A count variable that captures the number of challenges faced by the financial
	authority during the design stage of a suptech project.
Implementation	A count variable that captures the number of challenges faced by the financial
	authority during the implementation stage of a suptech project.
AI	
AI	A dummy variable that takes the value of one if the authority has any level of
	maturity in AI SupTech applications. Otherwise, it is zero.
AI deployed	A dummy variable that takes the value of one if the authority has fully deployed
	SupTech applications based on AI. Otherwise, it is zero.

C	J
1	೨

Variables	Description
AI Early Stage	A dummy variable that takes the value of one if the authority's SupTech applications
	are based on AI pilot projects with limited deployment or are in the initial
	exploration and research phase. Otherwise, it is zero.
Cloud	
Cloud	A dummy variable that takes the value of one if the authority has adopted any
	cloud type: private, hybrid, or public. Otherwise, it is zero.
Public Cloud	A dummy variable that takes the value of one if the authority has adopted a public
	cloud solution. Otherwise, it is zero.
Hybrid Cloud	A dummy variable that takes the value of one if the authority has adopted a hybrid
	cloud solution. Otherwise, it is zero.
Private Cloud	A dummy variable that takes the value of one if the authority has adopted a private
	cloud solution. Otherwise, it is zero.
Agency characteristics	
Ln(size)	Natural logarithm of an estimation of the employee size of the supervisory authority.
Suptech Unit	A dummy variable that takes the value of one if the authority has a dedicated unit
	Otherwise, it is zero.
Suptech Strategy	A dummy variable that takes the value of one if the authority has a Suptech Strategy
	Otherwise, it is zero.
Digital Transformation Strategy	A dummy variable that takes the value of one if the authority has a Digital
	Transformation Strategy. Otherwise, it is zero.
Data Governance Strategy	A dummy variable that takes the value of one if the authority has a Data Governance
	Strategy. Otherwise, it is zero.

	٥
· .	3

Variables	Description
IT-Centred	A dummy variable that takes the value of one if the authority organises suptech
	through an IT-Centred model. Otherwise, it is zero.
Centralised Hub	A dummy variable that takes the value of one if the authority organises suptech
	through a Central Hub model. Otherwise, it is zero.
Hub & Spoke	A dummy variable that takes the value of one if the authority organises suptech
	through a Hub-and-Spoke model. Otherwise, it is zero.
Other organisational models	A dummy variable that takes the value of one if the authority uses other
	organisational models. Otherwise, it is zero.
Other Supervisory Authority	A dummy variable that takes the value of one if the authority is not a Central Bank
	nor a Standalone Banking Supervisor. Otherwise, it is zero.
Central Bank	A dummy variable that takes the value of one if the authority is a Central Bank.
	Otherwise, it is zero.
Standalone Banking Supervisor	A dummy variable that takes the value of one if the authority is a Standalone
	Banking Supervisor or integrated financial supervisor. Otherwise, it is zero.
Development: In-house	A dummy variable that takes the value of one if the suptech tool is developed
	without external collaboration. Otherwise, it is zero.
Development: Hybrid	A dummy variable that takes the value of one if the suptech tool is developed
	collaboratively with external contributors. Otherwise, it is zero.
Development: External	A dummy variable that takes the value of one if external providers develop the
	SupTech tool. Otherwise, it is zero.
IMF indices	
Financial institutions depth	IMF Financial Development Index on financial institutions depth.
Financial institutions access	IMF Financial Development Index on financial institutions access.

c	•
	_

Variables	Description	
Financial institutions efficiency	IMF Financial Development Index on financial institutions efficiency.	
Financial markets depth	IMF Financial Development Index on financial markets depth.	
Financial markets access	IMF Financial Development Index on financial markets access.	
Financial markets efficiency	IMF Financial Development Index on financial markets efficiency.	
IMF income classification		
Advanced Economies	A dummy variable that takes the value of one if the country is an advanced economy.	
	Otherwise, it is zero.	
Emerging & Developing Economies	A dummy variable that takes the value of one if the country is in emerging and	
	developing economies. Otherwise, it is zero.	
World Bank regions		
EAP	A dummy variable that takes the value of one if the country is in East Asia Pacific.	
	Otherwise, it is zero.	
ECA	A dummy variable that takes the value of one if the country is in Europe and	
	Central Asia. Otherwise, it is zero.	
LAC	A dummy variable that takes the value of one if the country is in Latin America	
	and the Caribbean. Otherwise, it is zero.	
MENA	A dummy variable that takes the value of one if the country is in Middle East and	
	North Africa. Otherwise, it is zero.	
NA	A dummy variable that takes the value of one if the country is in North America.	
	Otherwise, it is zero.	
SA	A dummy variable that takes the value of one if the country is in South Asia.	
	Otherwise, it is zero.	

Variables	Description	
SSA	A dummy variable that takes the value of one if the country is in Sub-Saharan Africa. Otherwise, it is zero.	

1. Financial stability oversight and prudential supervision

1.1 Prudential Supervision of Banks and Non-Bank Deposit Taking Institutions

Data handling (managing regulatory data)

Automated validation of the integrity and quality of periodic information

Analysis of interdepartmental data

Cross-entity analytics

Dynamic diagnostic & early warning systems

Monitoring of sectorial credit behavior

Monitoring of variations of credit categories across banks

Detection of investment patterns

Review of creditworthiness of borrowers

Risk-based supervision tools

Automated analysis of CCPs and infrastructures

Onsite examination

Stress testing

Scenario analysis

Peer group identification and classification

Fit and proper assessment

Other

1.2 Insurance Supervision

Continued on next page

Data handling

Automated compliance auditing

Filing and review of ORSAs

Automated validation of incoming data

Stress testing

Registration/authorization of stakeholders

Fit and proper assessment

Filing/approval of offerings

Risk assessment of licensees

Onsite examination

Other

1.3 Capital Market, Securities, and Investment Instruments Supervision

Extract insights from financial advice documents

Data handling

Identify poor market disclosure

Identify insider trading

Identify market manipulation

Onsite inspection

Prioritization of risks

Other

1.4 Payments Oversight

Real-time volumes and values analysis

Monitor network performance

RTGS stress testing

Other

2. Licensing and compliance

2.1 Licensing

Continued on next page

Automated guidance for applications

Automated processing of applications

Other

2.2 Compliance Assistance

Automated aggregate tables

Automated compliance auditing

Automated guidance

Machine-readable regulations

Real-time transaction monitoring

Other

2.3 Anti-Money Laundering, CFT and PF Supervision

Examination and investigation support

Data analytics on misconduct

Data on derisking

Examination of policies and training

KYC and entity matching

Metadata on AML/CFT/PF reports

Onsite examination

Suspicious activity detection

DNFBP supervision

Other

3. Supervision and oversight of relatively new risks

3.1 Climate and Environmental Risks Supervision

Collection and analysis of sustainable finance data

Disclosure assessment

Monitoring green market dynamics

Stress testing and scenario analysis

Portfolio analysis

Other

3.2 Cyber Risk Supervision

Vulnerability and penetration testing

Audit trail analysis

Compliance monitoring (CISO, policies, MFA)

Onsite inspection

Other

3.3 Digital Assets and Cryptocurrencies Oversight

Automated compliance auditing

Automated validation of incoming data

Cross-jurisdictional intelligence sharing

Data handling

VASP supervision cooperation

On-chain analysis

Registration and licensing of VASPs

Other

4. Consumer protection & conduct supervision

4.1 Competition Monitoring

Monitor competition dynamics

Monitor rates and fees

Other

4.2 Consumer Protection and Market Conduct Supervision

Continued on next page

Alternative dispute resolution

Complaints data analysis

Consumer fraud detection

Credit bureau checks

Algorithmic bias detection

Misconduct risk indicators

Complaints handling support

Predatory pricing identification

Misleading disclosure checks

Onsite examination

Real-time complaints monitoring

Sentiment analysis (web/social media)

Terms & conditions validation

Other

4.3 Financial Inclusion and Gender Monitoring

Consumer satisfaction analysis

Simplified CDD analysis

Geographical trend mapping

Real-time monitoring of inclusion targets

Sex-disaggregated data analysis

Financial literacy and education

Gender disaggregated data analysis

Other

Previous volumes in this series

1308 November 2025	Environmental factors and capital flows to emerging markets	Jose Aurazo, Rafael Guerra, Pablo Tomasini, Alexandre Tombini and Christian Upper
1307 November 2025	When is less more? Bank arrangements for liquidity vs central bank support	Viral V Acharya, Raghuram Rajan and Zhi Quan (Bill) Shu
1306 November 2025	Big techs, credit, and digital money	Markus K Brunnermeier and Jonathan Payne
1305 November 2025	The asymmetric and heterogeneous pass- through of input prices to firms' expectations and decisions	Fiorella De Fiore, Marco Jacopo Lombardi and Giacomo Mangiante
1304 November 2025	The life experience of central bankers and monetary policy decisions: a cross-country dataset	Carlos Madeira
1303 November 2025	FX debt and optimal exchange rate hedging	Laura Alfaro, Julián Caballero and Bryan Hardy
1302 November 2025	Consumer preferences for a digital euro: insights from a discrete choice experiment in Austria	Helmut Elsinger, Helmut Stix and Martin Summer
1301 November 2025	Competing digital monies	Jon Frost, Jean-Charles Rochet, Hyun Song Shin and Marianne Verdier
1300 October 2025	The aggregate costs of uninsurable business risk	Corina Boar, Denis Gorea and Virgiliu Midrigan
1299 October 2025	Mapping the space of central bankers' ideas	Taejin Park, Fernando Perez-Cruz and Hyun Song Shin
1298 October 2025	Exploring household adoption and usage of generative Al: new evidence from Italy	Leonardo Gambacorta, Tullio Jappelli and Tommaso Oliviero
1297 October 2025	The BIS multisector model: a multi-country environment for macroeconomic analysis	Matthias Burgert, Giulio Cornelli, Burcu Erik, Benoit Mojon, Daniel Rees and Matthias Rottner
1296 October 2025	Predicting the payment preference for CBDC: a discrete choice experiment	Syngjoo Choi, Bongseop Kim, Young-Sik Kim, Ohik Kwon and Soeun Park

All volumes are available on our website www.bis.org.