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Abstract 

Predicting financial market stress has long proven to be a largely elusive goal. Advances in artificial 
intelligence and machine learning offer new possibilities to tackle this problem, given their ability to handle 
large datasets and unearth hidden nonlinear patterns. In this paper, we develop a new approach based on 
a combination of a recurrent neural network (RNN) and a large language model. Focusing on deviations 
from triangular arbitrage parity (TAP) in the Euro-Yen currency pair, our RNN produces interpretable daily 
forecasts of market dysfunction 60 business days ahead. To address the “black box” limitations of RNNs, 
our model assigns data-driven, time-varying weights to the input variables, making its decision process 
transparent. These weights serve a dual purpose. First, their evolution in and of itself provides early signals 
of latent changes in market dynamics. Second, when the network forecasts a higher probability of market 
dysfunction, these variable-specific weights help identify relevant market variables that we use to prompt 
an LLM to search for relevant information about potential market stress drivers.  
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JEL classification: G14, G15, G17 

 

  

 
1  We are grateful for the useful discussions with Tomaso Aste and team, Salih Gönüllü, Alan Moreira, and for comments received 

from seminar participants at the Journal of Banking and Finance paper development workshops on “Generative AI in Finance” 
in Dresden and in Montreal (2024), the central bank participants at the Consultative Group of Directors of Financial Stability 
workshop on AI (2024) and seminar participants at the US Commodity Futures Trading Commission (2025) and Econdat 2025 
Spring Meeting. We are grateful to Nina Rose McClure for excellent research support. Douglas was affiliated with the Bank for 
International Settlements during the period this work was developed. This paper does not necessarily represent the views of 
the Bank for International Settlements or the Central Bank of Brazil. All errors are our own. Corresponding author: 
gaston.gelos@bis.org. 



2 Harnessing artificial intelligence for monitoring financial markets 
 

Introduction 

Predicting financial market stress has long been a highly desirable yet elusive goal for researchers, 
policymakers and market participants. Despite advances in econometric modelling, anticipating episodes 
of market dysfunction remains extraordinarily challenging. The rarity of severe stress events limits the 
training data available for statistical models (Giglio et al (2016)), while the unique and often nonlinear 
transmission mechanisms across markets through which risks materialise make it difficult to identify 
common patterns across different crisis episodes (Brunnermeier and Oehmke (2013)). Traditional early 
warning systems have shown mixed success, often suffering from high false positive rates or failing to 
capture novel sources of systemic risk (Alessi and Detken (2011)). These fundamental challenges have 
motivated researchers to explore alternative approaches, including machine learning techniques that can 
process high-dimensional data and capture complex nonlinear relationships. 

Recent advances in artificial intelligence (AI) and machine learning (ML) have opened new 
possibilities for financial stability monitoring. Large language models (LLMs) excel at processing vast 
amounts of textual data, extracting relevant signals, and synthesizing complex information into actionable 
insights for supervisors and regulators. Their ability to identify patterns in economic and financial 
narratives could help detect emerging risks before they fully materialise by using LLMs.2 However, for 
LLMs to effectively support real-time risk monitoring, they must be directed to focus on the most relevant 
information, which requires knowing which market indicators and themes deserve attention at any given 
moment. 

This paper introduces a novel two-stage approach that combines recurrent neural networks 
(RNNs, Goodfellow et al (2016)) with LLMs to both forecast and explain episodes of financial market stress. 
Our method addresses a critical gap: while quantitative models can identify statistical patterns predictive 
of stress, they often cannot explain why certain indicators matter or what underlying economic narratives 
drive the risks. Conversely, while LLMs can synthesize vast amounts of textual information about market 
conditions, they need guidance on which topics and variables to prioritize. We bridge this gap by 
developing an adjusted RNN architecture that dynamically learns to weight input variables, automatically 
identifying which indicators matter most for each forecast period. These time-varying weights then serve 
as a focusing mechanism for LLMs, directing them to search for and analyse news and commentary about 
the specific variables that our model identifies as critical for impending market dysfunction episodes.3 

We apply this framework to predict stress in foreign exchange markets, focusing on deviations 
from triangular arbitrage parity (TAP) in the Euro-Yen currency pair. Specifically, we analyse daily standard 
deviations of minute-by-minute discrepancies in the parity, traded directly and indirectly with the US dollar 
as a vehicle currency. Such deviations can serve as a "canary in the coal mine" for broader market 
dysfunction, since they indicate frictions in one of the world's most liquid markets where arbitrage 
opportunities should typically be eliminated within seconds (Pasquariello (2014), Drehmann and Sushko 
(2022)). Using over one hundred daily financial variables as inputs, our RNN forecasts 20-day averages of 
TAP deviations with a 60-day horizon—essentially predicting market conditions three months ahead based 
on current information. 

Our key findings demonstrate the practical value of this integrated approach. In rigorous out-of-
sample testing covering 3.5 years of data (2021-2024), the model successfully identifies periods of 
heightened market stress, with the dynamic weights highlighting variables subsequently known to be 

 
2  See Appendix A.1 for more details. 
3  The code for the estimation and use of this adjusted RNN is planned to be made available through the BIS gingado open source 

library (Araujo (2023)).  
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associated with actual market events, including the March 2023 banking turmoil. Most importantly, when 
our RNN signals potential future dislocations and identifies which variables have surged in importance, 
we can deploy LLMs to search contemporaneous financial news and analysis for context about precisely 
these indicators. To illustrate this technique, we offer a case study showing that timestamped LLM queries 
about high-weight variables were able to uncover discussions of key drivers of financial stability episodes 
around three months before they occurred. This targeted use of LLMs—guided by our RNN's variable 
weights—transforms opaque statistical predictions into narrative explanations that policymakers can 
understand and act upon. 

The rest of the paper is organised along the following structure: the next section provides context 
for our work. Section 3 describes the data and Section 4 presents the methodology we use. Section 5 
presents the results and the last section concludes. 

2. Background and contribution 

2.1 Market dysfunctions 

Several types of market frictions have been incorporated in newer asset pricing theories, eg intermediary 
asset pricing (He and Krishnamurthy (2013, 2018)). Such frictions can persist and eventually lead to 
significant market distortions and fully-fledged dislocations. Pasquariello (2014) conducts a 
comprehensive study of such dislocations across foreign exchange, interest rate, and equity markets. He 
shows that these dislocations significantly increase in proximity of financial stress episodes, such as the 
Asian crisis in 1997, the LTCM episode in 1998, and the global financial crisis in 2008. Aldasoro et al (2022a) 
provide summary measures of market conditions (capturing impairments to price formation and the 
breakdown of no-arbitrage conditions) for three key market segments: the US Treasury and US money 
markets, and the foreign exchange market centered around the US dollar. 

One reason behind such mispricing can be low market liquidity. However, significant reductions 
in liquidity are, in themselves, indicative of markets not functioning efficiently and orderly. In some 
instances, the trading process can completely break down, leading to what are termed "liquidity black 
holes" (Persaud (2003)): episodes where the trading process becomes destabilising rather than stabilising. 
Brunnermeier and Pedersen (2009) model how the interaction of funding liquidity and market liquidity can 
yield downward liquidity spirals. Similarly, Tirole (2011) argues that these episodes can occur due to either 
adverse selection or to shortages of financial capability in financial intermediaries.4 Furthermore, lack of 
liquidity may be the precursor to episodes of dysfunction down the road.  

2.2 Existing literature on forecasting market dysfunctions 

A substantial body of literature has focused on understanding the potential drivers of market dysfunctions, 
financial stress and financial crises (Fouliard et al (2021)). The approaches taken vary depending on the 
specific question asked. One focus has been on distinguishing between tranquil and stressed regimes. 
Another one has been on identifying variables that help forecast periods of dysfunction or low liquidity. 
Studies have largely centred on stock markets, where data has been most readily available. But over the 
past two decades, this research has expanded to include other markets—especially government bonds 
and foreign exchange—and to highlight the commonality of liquidity across them. 
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Markov (regime) switching models (Hamilton (1989)) are the most widely used tool to model the 
transition between tranquil and stressed periods. Regime switching models estimate two types of 
parameters: the variables of interest in each of the regimes and the probability of switching from one 
regime to the other. While in the early incarnations of these models such switching probabilities were 
fixed, more recent developments have incorporated time-varying ones. Guidolin (2011) provides a 
summary of the available literature and highlights the ability of these methods to forecast regime changes.  
However, the focus has been mostly on low-frequency data, typically at quarterly or monthly frequency.  

In contrast, a vast literature describes forecasting dysfunction or lack of liquidity directly. It largely 
focuses on stock markets, where most of the data have historically been available. Karolyi et al (2012) 
examine liquidity commonality in stock markets across countries and over time and highlight that demand 
factors, and in particular correlated investor flows (mainly mutual funds), are more important for stock 
market liquidity. Pástor and Stambaugh (2003) and Acharya and Pedersen (2005) show that investors 
demand a premium for bearing liquidity risk. But the determinants of liquidity are not related simply to a 
single asset class. For example, Chordia et al (2005) analyse the interaction between liquidity in sovereign 
bonds and in stocks in the United States. They find that changes in volatility and liquidity within and across 
asset classes are associated with future liquidity levels, suggesting both market interconnections and an 
autoregressive component in liquidity determination. Similarly, Aldasoro et al (2025) find that market 
conditions in the US Treasury, US money markets and the foreign exchange market can help account for 
future tail realisations of those market conditions.  

Foreign exchange markets have been studied significantly less than other markets. Karnaukh et 
al (2015) and Ranaldo and Santucci de Magistris (2022) are among the most comprehensive studies of 
liquidity determinants in foreign exchange markets. Both papers emphasize that liquidity deteriorates 
when intermediaries are less able to respond to shocks, whether due to operational reasons (eg, reduced 
liquidity outside London hours and during holidays) or risk management issues (eg, higher funding costs 
or volatility). They find economically significant effects: a one standard deviation increase in the VIX is 
associated with a 17% rise in liquidity costs in foreign exchange markets. Additionally, currencies more 
exposed to systemic risk experience higher liquidity commonality. A key finding is the high degree of 
liquidity commonality across foreign exchange, bond, and stock markets, with liquidity in one market 
deteriorating when it is lower in another. Gradojević et al (2020) look more specifically at currency TAP 
deviations at an ultra-high frequency definition (less than one second) and find that a denoised version 
can be forecasted at that frequency.  

In a recent study, Aliyev et al (2024) examine the resilience of liquidity in foreign exchange, 
sovereign bond, and stock markets over the past 25 years across various geographical areas. They find 
that while the mean and standard deviation of bid-ask spreads have declined across all markets studied, 
higher moments of the distribution, especially skewness, show different patterns. Skewness has increased 
significantly in equity and sovereign bond markets, while it exhibits an inverted-U shape in currency 
markets. This suggests that episodes of illiquidity are now more common in sovereign bonds and stock 
markets. The authors also find that structural breaks in mean spreads correlate with macroeconomic 
shocks, while breaks in skewness are more closely associated with changes in regulation and market 
microstructure. Overall, modern markets may have traded off smaller average spreads for higher liquidity 
skewness. 

More recently, a burgeoning literature on AI/ML uses in finance has used the numerical flexibility 
of these models to forecast or explain asset prices.5 One theme in this literature is that these models 
enable analyses on high-dimensional settings, which in finance can be advantageous (Kelly et al (2024)). 
For example, Bali et al (2023) document the role of non-linearity and functional form flexibility in 

 
5  Kelly and Xiu (2023) offer a broad review of the literature. 
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forecasting option returns out-of-sample. Aldasoro et al (2025) show that ML models can outperform 
autoregressive benchmark in forecasting the future distribution of market conditions. Tölö (2020) 
documents that RNNs, with a more sophisticated time series representation of the data, outperform 
simpler neural networks and logistic regressions when forecasting banking crises (as defined by Schularick 
and Taylor (2012)). Sirignano and Cont (2019) use RNNs to document universal features of asset prices, 
and Vuletić et al (2024) combine RNNs with a generative adversarial network (GAN) model that learns to 
generate seemingly typical instances of its training data, to successfully forecast financial series. Ward 
(2017), Beutel et al (2019) and Bluwstein et al (2020) exploit AI/ML methods to predict banking and 
financial crises. Our work draws from some of those insights in that the models trained have many more 
parameters than the number of data points. 

Recent advances in LLMs have further precipitated a transformation in the analytical capabilities 
available for financial market prediction and risk monitoring. These sophisticated architectures enable the 
systematic extraction and synthesis of latent signals from vast textual datasets, encompassing market 
commentary, corporate disclosures, regulatory filings, and social media postings, thereby expanding the 
analytical frontier beyond conventional structured data sources. Current implementations of LLM-based 
prediction systems predominantly concentrate on equity price forecasting, leveraging two architectural 
paradigms: Retrieval-Augmented Generation (RAG; Lewis et al (2020)), which enhances predictive accuracy 
through dynamic integration of relevant timely and contextual data, and LLM-based agents that are tasked 
to conduct specific analysis, strategy formulation, and decision-making processes within pre-defined 
operational parameters (Ding et al (2024)). 

Notably, an emerging strand of research has extended these methodological frameworks toward 
financial market risk monitoring applications. These monitoring implementations demonstrate particular 
efficacy in synthesizing multi-modal data streams, incorporating traditional numerical indicators alongside 
diverse textual sources such as earnings call transcripts and contextual news feeds to construct more 
comprehensive risk assessment frameworks (Cao et al (2024)). However, a critical limitation of using LLMs 
for market predictions stems from the inherent probabilistic nature of LLMs, which generate outputs based 
on statistical patterns in training data rather than through causal reasoning or accurate insight. This 
introduces significant risk when these models are deployed for direct market forecasting and integrated 
with real-time trading algorithm. Therefore, applications of LLM-based financial market analysis are most 
appropriately positioned as complementary analytical tools that generate supplementary insights for 
human evaluation and interpretation, rather than as autonomous predictive systems, thereby preserving 
critical human judgment in the complex process of financial decision-making and risk assessment.  

3. Measuring market dysfunction 

We study TAP violations in a representative currency pair. We focus on TAP violations as a testing ground, 
but it is important to note that these violations are associated with periods of significant market 
dysfunction and other indicators of strain in global financial markets, such as increases in cross-currency 
swap spreads. Hence, while our approach in this study is limited to a single indicator, it is representative 
of market-wide financial conditions.      

We focus on the EUR-JPY exchange rate with the USD as the vehicle currency; this pair is markedly 
more volatile than others, even though the two currencies are widely traded (see Table 1). Defining the FX 
rate between two currencies 𝑖𝑖 and 𝑗𝑗, with 𝑖𝑖 ≠ 𝑗𝑗, as 𝑆𝑆𝑖𝑖 𝑗𝑗⁄ , this TAP deviation is: 

𝑦̇𝑦 = 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸
𝐽𝐽𝐽𝐽𝐽𝐽

− �𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸
𝑈𝑈𝑈𝑈𝑈𝑈

× 𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈
𝐽𝐽𝐽𝐽𝐽𝐽

� , (1) 
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In our application, we calculate 𝑦̇𝑦 for each 1-minute window. Our variable of interest is the daily 
standard deviation of these 1-minute TAP deviations:  

𝑦𝑦𝑡𝑡 =
�∑ �𝑦̇𝑦 −

∑ 𝑦̇𝑦𝑡𝑡(𝑦̇𝑦)∈𝑡𝑡
|𝑦̇𝑦|𝑡𝑡

�
2

𝑡𝑡(𝑦̇𝑦)∈𝑡𝑡

|𝑦̇𝑦|𝑡𝑡
� , (2)

 

where 𝑡𝑡  represents the day, |𝑦̇𝑦|𝑡𝑡  is the number of valid measurements in day 𝑡𝑡 , and 𝑡𝑡(𝑦̇𝑦) ∈ 𝑡𝑡 
means that the operator is only valid for the measurements in day 𝑡𝑡. Using the standard deviation, and 
not the average, ensures the resulting daily series is more sensitive to differences in intraday values of TAP 
deviations, while capturing deviations in either direction of the trade, since both directions equally offer 
arbitrage opportunities. Furthermore, the daily mean of 𝑦̇𝑦 is not a good metric because it would become 
attenuated if TAP violations occurred in different directions during the same day, as one violation would 
offset the other, resulting in a false sense that deviations are smaller than they are. 

Since the daily data are noisy and forecasting exact dates is not the focus of financial stability 
analyses, we set out to forecast a smoothed version of the data. For simplicity, we use as dependent 
variable a moving average with a window of 𝑤𝑤=20 days, roughly equivalent to a calendar month:  

𝑦𝑦�𝑡𝑡 =
1
𝑤𝑤
∑𝑝𝑝=0
𝑤𝑤−1𝑦𝑦𝑡𝑡−𝑝𝑝. (3) 

Graph 1 gives an intuitive picture of how TAP deviations ebb and flow over time and highlights 
when markets came under stress. 
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Standard deviation of Euro-Yen TAP violations Graph 1 

 

 
Top panel: Raw standard deviation. Bottom panel: Standardised value (zero mean and unit variance). The vertical red dashed lines represent 
market stress events.  

Source: Authors’ calculations. 

4. Methods and Data 

This section presents the neural network machinery, describes the formal tests applied to these models, 
and discusses the input variables used to forecast the TAP deviations.  
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4.1 Recurrent neural networks 

Of all myriad possibilities for nonlinear and nonparametric modelling of TAP violations, we focus on RNNs, 
since they combine all key characteristics of these processes documented in the literature. RNNs nest 
autoregressive models, an important feature since market liquidity innovations help explain future liquidity 
(Chordia et al (2005)). RNNs also flexibly model regime-switching behaviour with time-varying dynamics, 
addressing empirical evidence of different persistent regimes (Hauptmann et al (2014), Duprey and Klaus 
(2017), Chuliá et al (2021)). Another desirable characteristic is their ability to efficiently model signal from 
large datasets, reducing model risk from sparse representations (Giannone et al (2021)). 

In addition, the empirical use of RNNs is very flexible. We take advantage of this flexibility and 
design a neural network whose prediction architecture can at the same time extract meaningful signals 
and inform the econometrician as to which variables these signals came from, at each point in time. This 
and other design decisions are discussed in Appendix A.2.  

 The essence of our model is described by 

y��𝑡𝑡+𝑤𝑤+ℎ = 𝑓𝑓(ℎ𝑡𝑡−1, 𝑥𝑥�𝑡𝑡)(4. 𝑖𝑖) 

ℎ𝑡𝑡+1 = 𝑔𝑔(ℎ𝑡𝑡−1, 𝑥𝑥�𝑡𝑡), (4. 𝑖𝑖𝑖𝑖) 

where both 𝑓𝑓(. ) and 𝑔𝑔(. ) are nonlinear functions of the relevant information from past periods, ℎ𝑡𝑡−1, input 
data 𝑥𝑥�𝑡𝑡. y��𝑡𝑡+𝑤𝑤+ℎ represents the estimate of the average TAP deviation for the period between 𝑡𝑡 + ℎ + 1 and 
𝑡𝑡 + 𝑤𝑤 + ℎ days ahead. The input variable 𝑥𝑥�𝑡𝑡 is described below:  

𝑥𝑥�𝑡𝑡 = 𝑥𝑥𝑡𝑡⨀
𝑤𝑤𝑡𝑡

max (𝑤𝑤𝑡𝑡)
, (4. 𝑖𝑖𝑖𝑖𝑖𝑖) 

𝑤𝑤𝑡𝑡 = 𝑣𝑣(𝑤𝑤𝑡𝑡−1, 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+𝑤𝑤+ℎ), (4. 𝑖𝑖𝑖𝑖) 

where 𝑥𝑥𝑡𝑡  are the explanatory variables for our prediction, covered in Subsection 4.3, ⨀ stands for the 
elementwise (or Hadamard) multiplication, and 𝑤𝑤𝑡𝑡 are importance weights that indicate in each period 
how relevant each variable is for predicting y�𝑡𝑡+𝑤𝑤+ℎ. We divide the weights 𝑤𝑤𝑡𝑡 by the highest weight at 
each period so that the variable carrying the most signal is not dampened by the model. All input variables 
are standardised individually to zero-mean, unit-variance series, considering only the training period mean 
and standard deviation. This ensures that 𝑣𝑣(. ) is not influenced by the scale of the variables, only by the 
relevance of their signal. 

The weights are determined by 𝑣𝑣(. ), a nonlinear function of the past value of the weights, current 
input data, and temporal dummies 𝜉𝜉𝑡𝑡+𝑤𝑤+ℎ marking the quarter of the year for the forecasted day and 
whether the forecasted day is within a 10-day period centred at quarter-ends. These temporal dummies 
help determine the weight given to each variable, consistent with literature findings that seasonality 
and/or quarter-end timing matter (Chordia et al (2005), Aldasoro et al (2022b)), but are themselves not 
input variables in the main equation (4.i). The weight of each variable 𝑚𝑚 at date 𝑡𝑡 is always non-negative, 
and in each period, all weights add up to one: 𝑤𝑤𝑚𝑚,𝑡𝑡 ≥ 0, ∑ 𝑤𝑤𝑚𝑚,𝑡𝑡𝑚𝑚 = 1∀𝑡𝑡. Hence, at each period the different 
variables compete for importance in the prediction, with our model “learning” how to optimise forecasting 
performance by allocating the weights of each variable based on current and past observations of all 
variables and seasonal markers. Once the model estimates the weight of each variable for a particular 
date, that variable is multiplied by its weight scaled by the largest weight of that date. This ensures that 
the highest-weighted variable is multiplied by one.6  

 
6  For more details on this dynamic variable weighting algorithm and alternative setups, see Araujo (2025). 
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The system (4.i)-(4.iv) comprises an iterative map 𝐺𝐺ℎ,𝑤𝑤: (𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+𝑤𝑤+ℎ) → ℝ that directly forecasts 
𝑦𝑦�𝑡𝑡+𝑤𝑤+ℎ , the 20-day average of the TAP deviation measure starting after each forecast horizon ℎ = 60 days. 
In other words, each forecast uses data up to day t to forecast the 20-day window that starts 60 days later. 
Our forecasts are direct, with data at time 𝑡𝑡 used to forecast the 𝑤𝑤-day average values for the period 
ending at time 𝑡𝑡 + 𝑤𝑤 + ℎ ; rather than iterated, where time 𝑡𝑡-data forecasts 𝑡𝑡 + 𝑤𝑤 + 1 , and 𝑡𝑡 + 1 data 
forecasts 𝑡𝑡 + 𝑤𝑤 + 2 , and so on all the way until 𝑡𝑡 + 𝑤𝑤 + ℎ . Empirically, we structure 𝐺𝐺ℎ,𝑤𝑤  as an RNN, 
specifically a neural network containing Long-Short Term Memory (LSTM) layers and estimate it via 
gradient descent. In Appendix A.1 we present the general architecture for LSTMs and in A.2 we detail our 
specific implementation.7 The weights 𝑤𝑤𝑡𝑡 are themselves also computed with another RNN building block 
that is estimated jointly as part of the larger model (ie, 𝑣𝑣(. ) is parameterised as an RNN; details can be 
found in Appendix A.2). These weights are a valuable byproduct of the model, because they inform us 
about which input variables are relevant for predicting the TAP in each time instance. 

As a baseline, we compare our model to the challenging AR model prediction, namely: 

y��𝑡𝑡+𝑤𝑤+ℎ𝐴𝐴𝐴𝐴 = 𝛼𝛼 + ∑
𝑖𝑖=0

𝑙𝑙
𝛽𝛽𝑖𝑖𝑦𝑦�𝑡𝑡−𝑖𝑖 , (5) 

where 𝑙𝑙 represents the size of the context used to train RNN models, ℎ the direct forecasting horizon and 
𝑤𝑤 the number of days over which the dependent variable is averaged, all measured in days. The values of 
𝛼𝛼 and 𝛽𝛽 are estimated by OLS. 

Many macroeconomic time series are highly persistent and have low signal-to-noise ratios. A 
first-order autoregressive process, AR (1)—of which the random walk is a special case—captures 
persistence with a single parameter, enabling competitive forecasts without incurring the variance and 
overfitting penalties that undermine richer models (Nelson and Plosser (1982)). Across numerous classic 
forecasting horse races, particularly for inflation, more sophisticated models do not reliably outperform 
them out of sample (Atkeson and Ohanian (2001); Stock and Watson (2007)). 

4.2 Data 

Our main source of data is LSEG Tick History. Tick History provides historical information at different levels 
of aggregation (from tick-by-tick to daily) for several asset classes. Its coverage goes as far back as 1996 
for many times series and is widely used by industry practitioners. The dataset consists of recorded trades 
and quotes from a number of several real-time feeds across more than 500 trading venues including all 
types of participants (ie, not just dealers).  

We obtain 1-minute snapshots of bid and ask quotes and calculate the midpoint, as well as the 
bid-ask spread and its standard deviation. We then average these high frequency observations to obtain 
daily observations. We clean the data by only using local trading hours (9:30 to 16:00) and removing 
weekends.8 We also eliminate data when the order book is crossed (i.e., ask price is lower than or equal to 
the bid price). To predict TAP deviations, we use a wide-ranging set of financial market variables. 

The daily mean and standard deviation of the minute-by-minute TAP deviations of other FX pairs 
of relevance, and lagged values of the pair of choice, are used as explanatory variables (Table 1). These 

 
7  Another neural network architecture that could perform the same task is the so-called transformer architecture (Vaswani et al 

(2017)). Instead of a recurrent model that applies to each time step, learning to retain a “memory” that is relevant to predict 
the future, like LSTMs, transformers directly estimate the dependence (self-attention) of a time step on the others. Indeed, 
Snellman (2025) uses a transformer model to construct a market fragility index. Other widely used ML methods based on 
completely different algorithms than neural networks, such as elastic net (Zou and Hastie (2005)) and XGBoost (Chen and 
Guestrin (2016)), are not used as they do not hold a stateful representation of the time series as RNNs do. 
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are, namely: EUR-AUD, EUR-CAD, EUR-CHF, EUR-GBP, EUR-JPY, EUR-MXN, EUR-ZAR, JPY-AUD, JPY-CHF 
and JPY-GBP with the USD as the vehicle currency. Note that these pairs include both advanced and 
emerging market economies, two currencies that are usually considered safe havens (CHF and JPY) and 
also advanced economy currencies that are usually associated with commodities (AUD and CAD).  

In addition, our selection of potential predictors also includes variables that have proven to be 
useful when used in machine learning models for prediction of returns (Gu et al (2020)). Specifically, we 
include as explanatory variables bid-ask spreads on large currency pairs as proxies of liquidity, equity 
market implied volatility (as estimated from options markets), foreign exchange risk reversals (the 
difference in implied volatility between comparable call and put options), forward FX quotes to capture 
forward-looking measures of market expectation. In contrast, while the volatility of bid-ask spreads over 
a rolling window of time and momentum variables for both the TAP deviations and liquidity are known to 
be able to forecast financial variables, we did not include them as the recurrent nature of the model should 
have the ability to approximate these time-wise moments from the data if they are indeed relevant. The 
input data further include equity benchmark returns for major financial markets, the MOVE bond volatility 
index and a range of government bond yields. 

Input variables: TAP deviations1 Table 1 

 Full sample Training 
set 

Test set 

Currency pair Mean S.D. Min 25% 50% 75% Max Mean Mean 

EURAUD (Mean) 1.7E-05 4.0E-05 -6.3E-04 2.8E-06 1.5E-05 3.3E-05 3.9E-04 1.7E-05 1.9E-05 

EURAUD (S.D.) 2.0E-04 9.5E-05 7.6E-05 1.2E-04 1.8E-04 2.5E-04 9.1E-04 2.2E-04 1.1E-04 

EURCAD (Mean) 4.1E-05 5.8E-05 -4.1E-04 1.3E-06 3.9E-05 7.7E-05 3.1E-04 4.9E-05 1.4E-06 

EURCAD (S.D.) 1.8E-04 6.7E-05 5.9E-05 1.5E-04 1.8E-04 2.1E-04 4.5E-04 2.0E-04 1.1E-04 

EURCHF (Mean) -9.9E-06 3.3E-05 -2.8E-04 -1.6E-05 -5.8E-06 2.8E-06 4.2E-04 -1.0E-05 -7.8E-06 

EURCHF (S.D.) 1.4E-04 5.6E-05 0.0E+00 8.9E-05 1.3E-04 1.8E-04 4.9E-04 1.5E-04 8.3E-05 

EURGBP (Mean) 6.7E-06 1.6E-05 -1.2E-04 2.1E-06 7.5E-06 1.3E-05 3.2E-04 6.0E-06 1.0E-05 

EURGBP (S.D.) 8.4E-05 2.3E-05 0.0E+00 6.8E-05 8.1E-05 9.4E-05 3.1E-04 8.8E-05 6.4E-05 

EURJPY (Mean) -8.2E-04 6.2E-03 -1.0E-01 -2.8E-03 -9.6E-04 8.0E-04 8.4E-02 -1.1E-03 2.7E-04 

EURJPY (S.D.) 1.3E-02 4.7E-03 0.0E+00 9.1E-03 1.2E-02 1.6E-02 4.9E-02 1.4E-02 8.7E-03 

EURMXN (Mean) -1.2E-03 4.2E-03 -2.3E-02 -2.7E-03 -3.2E-05 1.2E-03 2.1E-02 7.5E-05 -7.3E-03 

EURMXN (S.D.) 3.6E-03 1.6E-03 0.0E+00 2.7E-03 3.3E-03 4.3E-03 1.5E-02 3.6E-03 3.8E-03 

EURZAR (Mean) -5.2E-04 1.7E-03 -1.8E-02 -8.3E-04 -1.4E-04 1.2E-04 4.9E-02 -6.5E-04 7.0E-05 

EURZAR (S.D.) 3.9E-03 2.1E-03 0.0E+00 2.6E-03 3.3E-03 4.5E-03 2.7E-02 4.1E-03 3.0E-03 

JPYAUD (Mean) 1.1E-07 6.0E-07 -2.3E-06 -3.5E-08 1.1E-07 2.5E-07 8.2E-06 2.0E-07 -2.9E-07 

JPYAUD (S.D.) 1.7E-06 7.3E-07 0.0E+00 1.2E-06 1.5E-06 2.0E-06 1.0E-05 1.7E-06 1.8E-06 

JPYCAD (Mean) 1.7E-07 1.1E-06 -6.1E-06 -1.4E-07 1.9E-07 5.5E-07 6.0E-06 3.8E-08 7.9E-07 

JPYCAD (S.D.) 1.3E-06 6.3E-07 0.0E+00 1.1E-06 1.3E-06 1.7E-06 3.9E-06 1.5E-06 4.4E-07 

JPYCHF (Mean) -1.8E-07 5.7E-07 -5.7E-06 -3.0E-07 -5.7E-08 8.1E-08 4.4E-06 -1.0E-07 -5.3E-07 

JPYCHF (S.D.) 1.2E-06 5.1E-07 0.0E+00 7.5E-07 1.2E-06 1.5E-06 3.6E-06 1.3E-06 8.7E-07 

JPYGBP (Mean) 5.9E-08 2.0E-07 -2.9E-06 2.1E-08 5.8E-08 9.7E-08 3.1E-06 5.2E-08 9.1E-08 

JPYGBP (S.D.) 5.6E-07 2.4E-07 0.0E+00 3.8E-07 4.8E-07 6.9E-07 1.7E-06 6.0E-07 3.5E-07 
1  Daily mean (Mean) and standard deviation (S.D.) of the minute-by-minute difference between the currency pair and the indirect price 
using the US dollar as a vehicle currency. 

Sources: LSEG Tick History; authors’ calculations.  
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In addition, we include quarter dummies and a dummy marking the ten-day period around 
quarter-ends. These variables capture variations in liquidity conditions that are seasonal or periodic, as 
well as any factors around quarter-ends that could create or amplify liquidity shortages (eg, simple 
seasonal festivities or window-dressing (Garcia et al (2021)).  

A complete list of the input data is in Table 2 below. Descriptive statistics for the other input data 
that are not TAP deviations are found in Appendix 4. 

Input variables: sources 
Table 2 

Variable Source 

TAP deviations  LSEG Tick History; authors’ calculations. 

Foreign exchange bid-ask spreads LSEG Tick History; authors’ calculations. 

Equity indices Bloomberg. 

Spot exchange rates against the US dollar Bloomberg. 

Forward exchange rates against the US dollar Bloomberg. 

Equity market volatility indices Bloomberg. 

MOVE index Bloomberg. 

Government bond yields Bloomberg; LSEG Datastream. 

Risk reversals Bloomberg. 

5. Findings 

This section introduces the findings from the forecasting exercise, the identification of liquidity periods of 
interest, and the use of LLMs for summarisation of text content that could be related to events of interest. 

5.1 Market dysfunction prediction 

Relatively simple LSTM models, regularised by the dynamic variable selection feature, perform 
competitively with respect to an AR benchmark, although slightly different configurations along the 
dimension size perform better at different horizons. Graph 2 presents the results for the 20-day average 
of Euro-Yen TAP violations, forecast 60 business days ahead. We discuss the performance of the model 
more formally below. However, a few interesting insights emerge from a visual inspection of the graph.  
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 Performance of LSTM model Graph 2 

 
True data: 20-day average of the daily Euro-Yen triangular arbitrage parity difference with the US dollar as vehicle currency, calculated on a 
minute-by-minute basis. The vertical red dashed line represents the end of the training period, end-2020; everything to the right of this line 
is considered pseudo out-of-sample.  

Source: Authors’ calculations. 

First, TAP deviations are indeed forecastable to some extent, and exploring the nonlinearities 
across both the cross-sectional and temporal dimensions might be key to extract this signal. It is plausible 
that a wider search along the parameter space of these models might yield even better performances, 
although that remains an empirical question. 

Second, the RNN model has a particularly useful feature, namely that it is less noisy than either 
the actual realisations of the target variable and of the predictions based on the autoregressive model. 
This implies that the RNN model does particularly well at forecasting instances in which dysfunctions will 
take place in the future rather than forecasting the realisations of the target variable in general. As a result, 
the user can be reasonably confident that – when the model is forecasting dysfunction – it is very likely to 
materialise.   

The out-of-sample performance in key recent periods is also satisfactory. There are signs that 
these models were picking up a higher probability of market dysfunction in the lead up to September 
2022 LDI event in the UK, and especially in the lead up to the March 2023 banking stresses. This 
performance occurs even though this model was not fed data after end-2020. In contrast, periods such as 
the onset of Covid-19 were essentially not forecasted by the model, consistent with the fact that the origins 
of the event were completely outside the financial system.   

To better understand the performance of both estimators, we compute the Pearson correlation 
(Pearson (1895)) between  y��𝑡𝑡+𝑤𝑤+ℎ𝐴𝐴𝐴𝐴  and 𝑦𝑦�𝑡𝑡 , and y��𝑡𝑡+𝑤𝑤+ℎ  and 𝑦𝑦�𝑡𝑡  for ℎ = 60  and 𝑤𝑤 = 20  (Graph 3). The 
correlation between the LSTM predictions and the actual signal peaks at lag 0 of the training sequence. 
For the test sequence the cross-correlation is flat from -70 to 0 lags at 0.8, indicating that the model is 
most predictive from 80 to 0 days lags in advance. However, the predictive performance decreases in the 
test set compared to the training set. This decline is typical of overparameterized machine learning models, 
suggesting that a longer training sequence would be necessary to improve performance. 
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In contrast, the correlation between the AR model and the true signal peaks at lag -80. Even when 
using an AR model with 𝑙𝑙 = 500 to match the memory capacity of the RNN model, it still mostly behaves 
like an AR (1) model, where the best prediction for 60+20 days ahead is today’s value. During the test 
period, where the signal remains stable for most of the sample, this explains why the AR model performs 
similarly to the RNN model. 

 

  

 
Pearson Correlation for the RNN and AR models  Graph 3 

 

 
The solid lines represent the correlation in the test period (post 1st January 2021) and the dashed lines the correlation prior. The blue lines 
denote the LSTM model and the green lines the AR model  

Source: Authors’ calculations. 

 

5.2 Statistical tests of the forecasts 

The ability of these models to predict the TAP violations for the Euro-Yen pair is formally evaluated in four 
complementary ways, all using only out-of-sample data. The first evaluation is a Diebold-Mariano test 
(Diebold and Mariano (1995), Diebold (2015)) that compares the forecast loss of our neural network to the 
forecast loss of an equivalent AR model, using the root mean squared error (RMSE) as a loss function. The 
second evaluation is also a Diebold-Mariano test, but executed only on dates of actual financial market 
stress events. The third and most important evaluation directly checks whether the RNN predictions are 
contemporaneously related to the target variable: if yes, the former can help predict the latter even if it 
does not perfectly match its scale or contains some bias. In fact, this second evaluation addresses the cases 
where the neural network produces forecasts that match the future dynamics of the true variable, even if 
it does not provide a precise point estimate. These tests are described in the following paragraphs. 
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The Diebold-Mariano (DM) test checks whether the pseudo out-of-sample forecast losses of the 
RNN models are statistically the same as the forecast losses of a corresponding AR model. Due to the 
random walk nature of financial market variables, this is a reasonable benchmark. The AR is challenging 
to beat when predicting currency movements (Rossi (2013)), especially at this horizon. The DM test is 
agnostic to the forecast loss function used. We evaluate these forecasts with a symmetric loss function, 
namely the RMSE, to assess the null hypothesis that these two forecasts are equal. Since the outcome 
variable is a 20-day moving average, we select one of every 20 data points when doing this test to avoid 
autocorrelation. Empirically, the DM test is implemented as a regression of the difference between the 
RMSE of the RNN out-of-sample forecasts and that of the AR on a constant, while using heteroskedasticity 
and autocorrelation (HAC) robust standard errors.  

These tests show that the RNN forecast losses are systematically higher than those of the AR, 
both in the complete out-of-sample period (column 1 of Table 3) and on specific dates associated with 
market stress events (column 2). However, the magnitude suggests this difference is small: the forecast 
loss difference of 0.0007 is only 39% of the standard deviation of the out-of-sample TAP deviation. In 
other words, the out-of-sample RMSE of the RNN model (4.i)-(4.iv) is higher but close to that of the AR 
model (5) in the test set. 

However, given that AR predictions essentially carry forward by 60 days the last known value, a 
more informative test directly checks whether the RNN forecasts are relevant predictors of the true value. 
These forecast relevance tests take the following form: 

𝑦𝑦�𝑡𝑡+𝑤𝑤+ℎ = 𝜌𝜌� + 𝜇̂𝜇y��𝑡𝑡+𝑤𝑤+ℎ + 𝜂𝜂𝑡𝑡+𝑤𝑤+ℎ. (6) 

Armed with this regression, we inspect both the constant 𝜌𝜌� and 𝜇̂𝜇, the coefficient on the forecast, 
in both cases using HAC standard errors. The constant identifies whether the forecasts are unconditionally 
biased in any direction. Ideally, 𝜌𝜌� would be statistically zero. When it is not zero, 𝜌𝜌� identifies the direction 
and magnitude of the forecast bias. The real litmus test is the value of 𝜇̂𝜇: controlling for any potential bias, 
a statistically significant positive loading on the contemporaneous forecasted value serves to confirm the 
relevance of the estimates, especially if this coefficient approaches one, ie the forecast can be, in 
expectation, mapped one-to-one with the actual variable.  

The RNN forecasts serve as statistically significant approximators for the target variable. The 
results in column 3 of Table 3 demonstrate that the loading of the future TAP deviation on the prediction 
is not only statistically significant, but also explains a meaningful portion of the former (R-squared of 
53.2%). An additional encouraging sign of the relevance of the RNN forecasts comes from an extension of 
equation (6) to also include the AR forecast as a covariate. As seen in column 4 of Table 3, the RNN forecast 
continues to be a relevant predictor of the true value, even when considering the AR forecast. If anything, 
the addition of the latter takes away the significance of 𝜌𝜌�. 

All in all, these analyses confirm the relevance of the predictions obtained with RNNs, while 
noting that this particular model is a useful indicator of the dynamics of the true value 60 days ahead, but 
not so much of its value (given the systematic bias). 
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Out-of-sample forecast tests 1 Table 3 

 Diebold-Mariano tests 
Forecast relevance tests3 

(I)2 (II)2 

RNN forecast loss minus  
AR forecast loss 

0.0007*** 0.0007**   

 (0.0002) (0.0003)   

Constant   0.0039*** 0.0024 

   (0.001) (0.002) 

RNN forecast   0.4690*** 0.4180*** 

   (0.069) (0.082) 

AR forecast    0.2471 

    (0.218) 

Observations 43 10 43 43 

R-squared   0.532 0.546 

1  ***/**/* indicates statistical significance at the 1/5/10% level.  Standard errors are heteroscedasticity and autocorrelation robust 
(HAC).    2  Test (I) is executed on every 20th day, since the dependent variable is a 20-day moving average. Test (II) is based on forecasts 
for dates of market stress only, namely 8 March 2021 (Greensill), 26 March 2021 (Archegos), 22 June 2021 (Evergrande downgrade), 24 
February 2022 (Russian invasion of Ukraine), 6 September 2022 (massive margin calls in energy markets), 28 September 2022 (LDI crisis), 
1 October 2022 (viral tweet questioning viability of a G-SIB, widely understood to mean Credit Suisse), 10 March 2023 (Silicon Valley Bank 
collapse), 24 March 2023 (UBS merges with Credit Suisse), 19 October 2023 (peak US Treasury yield, “Treasury Tantrum”) A positive 
(negative) value for the difference between the RNN forecast loss and the AR forecast loss means that the RNN performs worse (better) 
than the AR. When the value is statistically similar to zero, there is no evidence to reject the null hypothesis that the forecast losses are 
equal.     3  The dependent variable is the true value of the TAP deviation. A statistically-significant positive loading on the RNN forecast 
demonstrates its relevance throughout the out-of-sample period, because it shows that an analyst that has only the RNN forecast is able 
to systematically anticipate the future value of the TAP deviation.  

Source: Authors’ calculations. 

5.3 Variable importance 

One of the advantages of our proposed model is that the weights assigned to each variable in (4.iv) provide 
insight into the importance of each variable daily, and hence what could be driving the predictions of the 
LSTM model. In other words, the model can select at each date the variables that contain a more predictive 
signal, and this in turn opens up the possibility of inspecting the model’s “attention.” In Graph 4, we 
represent the ten series with the largest overall weight during the test period. The EURUSD Risk reversal 
5y is plotted in both for comparison, as it possesses the largest mean weight. 

One key observation is that changes in the weights of the factors do not always result in changes 
to the predicted values, and that some changes in the variables do not correspond to identified market 
stress events. For example, the expected value remains relatively stable up to mid-2022, even though the 
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weights associated with many variables change significantly. For example, the Euro Liquidity changes 
considerably after the Russian invasion of Ukraine (24 February 2022), on massive margin calls in the 
energy market (6 September 2022), the LDI crisis (28 September 2022), a Tweet questioning the viability 
of a G-SIB (1 October 2022), the downfall of Silicon Valley Bank (10 March 2023) and the UBS acquisition 
of Credit Suisse (CS) (24 March 2023). It does not move significantly for the events in 2021 or the last one 
in 2024. In all the events, there is a considerable change in at least one of the selected variables, except 
for the Evergrande downgrade (June 22, 2021). In advance of the March 2023 (USB acquisition of CS) 
episode, the model increases the weights of two variables: Euro Liquidity and TAP deviations of USD–EUR–
CHF (Graph 4), but the 10-year CHF bond yield and the 1-year USDCHF risk reversal remain mostly 
unchanged. 

The model's ability to maintain a consistent prediction while altering the weights of the predictors 
is a captivating feature. For the specific case of monitoring financial market distress, given our goals, it is 
interesting that the model predicted market stress in March 2023 by adjusting the weights of different 
variables. This is particularly noteworthy since the stress originated in the banking sector, leading to 
widespread market disruption, despite none of the included variables being directly related to the banking 
sector. 
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Weights for selected variables during the out-of-sample period  Graph 4 

 

 

Both charts include the 5-year EUR/USD Risk Reversal for comparison purposes, as it possesses the largest mean weight. The remaining 
nine series represent those with the highest overall weights. The series depicted in the upper graph exhibit a cosine similarity exceeding 
0.94 with the 5-year EUR/USD Risk Reversal, while the series shown in the lower graph demonstrate a cosine similarity below 0.84. 

Source: Authors’ calculations. 
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5.4 LLM news search 

In this section, we illustrate how to use the insights provided by the variable-specific weights, as seen in 
the previous subsection, to inform LLM-powered searches. For this use case, we use a sophisticated 
language model, namely Google’s Gemini 2.5 pro. We choose this model because, among the key LLMs 
available, this one was trained with data that went only up to early 2023, which affords us the possibility 
to prototype its use in an out-of-sample way for one financial market stress in our study period, namely 
the “Treasury Tantrum” of October 2023 (Diercks and Asnani (2024)). Other LLMs were trained with more 
recent data, and therefore any result could be plausibly attributed to the data it had seen before. 

We collect a large number of financial news from the first half of July 2023 to mimic the 
information set available at the time of forecast. Then, we prompt the model to read the news and identify 
and summarise developments that financial supervisors should monitor, knowing that the RNN forecast 
assigned particularly high weights to a small set of variables. Based on the context from the financial news 
and the knowledge about which financial market variables provide more signal, the model lists three 
candidates for monitoring (Graph 5). Interestingly, the first such item relates to the Treasury Tantrum 
episode.  

To summarise the exercise: suppose the analyst is in July 2023, and sees that the RNN forecasts 
higher values for TAP deviations for October 2023, as seen in Graph 2. Then, the analyst can use an LLM 
to sift through current information (financial market news as in this example, or other relevant documents) 
while knowing which financial market variables contributed more to the forecast. The result is a more 
targeted search process that increases the odds that the LLM will provide meaningful responses to help 
the process of monitoring financial markets. 
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Response of a large language model to a targeted prompt 
Prompt based on RNN-provided variable weights Graph 5 

 
Response of Gemini 2.5 Pro (trained with data up to early 2023) to the following prompt, itself informed by the variables identified in Graph 
4: “Attached is a collection of financial-market news in the first half of July 2023. We search for predictive signal across various daily financial 
market data, and our prediction model flagged unusual signals in USD/CHF 1-year risk reversal, AUD/USD 3-month forward points, and 
triangular-arbitrage parity (TAP) deviations in USD–EUR–AUD and USD–EUR–MXN. Informed by that, identify and summarize from your corpus 
the top three developments a financial supervisor should monitor for potential market dysfunction in the coming months. Output: exactly 
three bullets, ordered by importance/relevance. For each bullet, 1–2 sentences on why it matters. Use only the attached articles. Keep it 
concise.” We provided the model circa 1,000 different financial news from the first half of July 2023 as context. 

Source: Authors’ elaboration. 

 

6. Conclusions 

Our findings show that neural networks with recurrent layers are able to successfully forecast market 
dysfunctions out-of-sample. In fact, the RNN predictions covary with the target variable even while being 
smoother. This suggests that these types of models can provide insight into potential looming periods of 
illiquidity or other adverse market situations.  

One novel aspect of the RNNs we present in this paper is their ability to learn how to weight each 
input variable such that the network can combine their signals to optimise each period’s forecast. These 
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weights are directly visible to the econometrician, providing valuable insights to understand periods 
forecasted to be adverse, as well as calmer periods. 

Building on these findings, we also demonstrate how LLMs can further support financial market 
monitoring. Armed with these time-varying weights for each variable, the econometrician can select the 
most important variable in periods of interest and use LLMs to sift through large text datasets, such as 
financial news (or supervisory texts, internal bank documents etc), to help identify “needles in a haystack” 
related to periods of forecasted illiquidity. This can further support financial stability monitoring by 
providing signals to authorities that might otherwise miss. 

The performance of our RNN model is tested rigorously but can likely improve further. Finding 
model configurations that perform well in practice is an empirical exercise: the model parameter space is 
wide and multi-dimensional, and there is scant guidance on configurations that work well in practice in 
financial data. In addition, the architecture of neural networks, ie how their layers are set up and connected 
to each other, is usually very flexible; choices around data transformations are also plentiful. This requires 
the econometrician to test out a large number of configurations. We hope that our work will contribute 
to inform this exercise, by offering insights into an architecture and data transformations that works in 
practice, providing a basis for further improvements.  
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Appendix  

A.1 Generative AI as an interpretative and ‘early warning’ tool 

Generative AI and LLMs can be used to assist supervisors and regulators in validating and interpreting the 
anomalies predicted using AI and ML models. This process also aids in assessing the potential causes of 
future dislocations, based on a real-time search of financial news and other relevant information.   

Identifying probable predictors of market dislocations is useful, even without an assessment of 
what are the potential causes of such future dislocations. Supervisors could use this information to prepare 
for ex post intervention, preventing more severe consequences. However, an evaluation of the likely 
underlying causes of such dislocations would enhance the tool's usefulness even further. Supervisors 
would then be able to address the causes of such dislocations, preventing situations from deteriorating 
before they occur. By leveraging the capabilities of LLMs to sift news in real time and aggregate 
information, supervisors could have access to potential explanations and decide on an appropriate course 
of action. 

To illustrate this potential, we tested the capacity of generative LLMs using the financial market 
disruption on 5 August 2024 (Aquilina et al (2024)). The goal was to determine whether generative LLMs 
can identify critical news concisely, ensuring that financial supervisors are aware of emerging risk signals. 
For this purpose, we compiled 200-300 financial market news articles per day for the two business days 
leading up to the disruption. The generative LLM was then tasked with summarising the most critical news 
items that a financial supervisory institute should monitor to detect potential upcoming market 
dysfunctions, such as liquidity shortages.9 The LLM was instructed to condense this information into three 
bullet points, including the reasons and relevance for each. Table A1.1 below summarises the results. 

This example illustrates how the generative LLM can identify critical and relevant news that, based 
on information available before the event, are now known to have triggered the disruption. For instance, 
the LLM pinpointed an aggressive shift in policy stance by major central banks in response to indications 
of a US economic slowdown, rising market volatilities and bearish market sentiments. Moreover, it 
accurately explained that the Bank of Japan's hawkish stance could lead to a further strengthening of the 
yen, potentially disrupting global markets that heavily rely on the yen as a funding currency. This, in turn, 
could trigger a rapid unwinding of carry trades—a central issue widely discussed in the aftermath of the 
disruption. Notably, this task is accomplished without any prior training (ie zero-shot learning).  

While we highlight that this example serves to explore and illustrate rather than formally test and 
confirm the ability of LLMs to correctly explain events before or as they unfold, much more can be done. 
For example, with an information retrieval system, the LLM is able to combine its extensive knowledge 
base with the external data source of news articles, a process known as retrieval-augmented generation 
(RAG). In addition to using LLMs to sift news sources to highlight potential causes of future dislocations, 
one can also use a multi-agent framework in the spirit of Park (2024) to harness a collaborative network 
of AI agents and coordinate their answers in the pursuit of the common objective to explain the potential 
cause of future dislocations. The important component is that this neural network architecture enables a 
targeted inspection, based on the variables identified in Graph 4. 

 

 
9  The prompt is: “Attached is a collection of financial market news for a specific day. Summarise the most critical news for a 

financial supervisory institute to monitor any potential market dysfunction (eg shortage of liquidity) in the coming days. 
Summarise in three bullets according to the importance and relevance. Briefly explain why they are important.” 
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Prompt and response to large language model about August 2024 Yen turbulence  Table A1.1 

1 August 2024  

US Treasury Yields and Basis Trade Concerns: 

U.S. Treasury yields experienced a significant drop, with two-year yields 
falling 17.8 basis points—the largest daily decline since December 2023. 
This movement is linked to the Fed's potential interest rate cuts and a 
record volume of basis trades involving Treasury futures and overnight 
repo markets. The extreme positions in these markets, valued at over $1 
trillion each, pose a substantial risk if unwound suddenly, potentially 
leading to severe liquidity shortages and market disruptions. 

The highly leveraged nature of these trades could trigger instability in 
the broader financial system if market conditions shift abruptly, 
necessitating close monitoring by supervisory authorities. 

Bank of Japan's Hawkish Stance and Yen Volatility: 

The Bank of Japan's (BOJ) shift towards a more hawkish policy stance, 
including potential further rate hikes, has already led to significant 
volatility in the yen, impacting global carry trades. The BOJ's actions 
could lead to further strengthening of the yen, disrupting global 
markets that have heavily relied on the yen as a funding currency. 

The yen's volatility could trigger a rapid unwinding of carry trades, 
leading to substantial market fluctuations and liquidity challenges, 
particularly in emerging markets and other highly leveraged financial 
sectors. 

Bank of England's Rate Cut and Potential Policy Reversal: 

The Bank of England (BoE) recently cut interest rates from a 16-year 
high, signalling a cautious approach to future cuts. This decision reflects 
growing concerns about the UK economy's resilience and inflation 
dynamics. The BoE’s actions could influence market expectations and 
create volatility in UK financial assets, with potential spillover effects on 
global markets. 

The BoE's policy decisions may impact investor confidence and market 
stability, especially if future rate cuts or reversals are perceived as 
insufficient to address underlying economic weaknesses. Monitoring the 
BoE’s communications and market reactions will be crucial. 

2 August 2024 

Sharp Decline in U.S. Treasury Yields and Aggressive Rate Cut 
Expectations: 

U.S. Treasury yields, particularly the two-year and ten-year, experienced 
significant drops, with the two-year yield falling below 4% for the first 
time since May 2023. This decline is driven by weaker-than-expected 
employment data and increasing market expectations of aggressive 
interest rate cuts by the Federal Reserve. The market is now pricing in 
a 120 basis point cut by the end of the year, which could lead to 
increased volatility and liquidity concerns in the bond market. 

Sudden shifts in yield curves and rate expectations can cause liquidity 
strains and lead to disorderly market conditions, particularly if 
leveraged positions in Treasury futures and overnight repo markets 
begin to unwind. 

Emerging Markets and Asian Equity Market Volatility: 

Emerging Asian markets, particularly South Korea and Taiwan, saw 
significant declines, with indices dropping 4.4% and 3.7% respectively. 
This sell-off was triggered by fears of a U.S. economic slowdown and 
was exacerbated by the Fed’s potential end to its restrictive policy 
stance. The broader impact included a significant decline in the MSCI 
International All Asia Pacific Index. 

Market volatility in these regions can lead to capital outflows, currency 
instability, and broader financial instability, which could spill over into 
other emerging markets and potentially affect global financial stability. 

Increased Bearish Sentiment Among Hedge Funds: 

Global hedge funds have been increasingly adding bearish bets, 
particularly in equity markets, driven by fears of a faster-than-
anticipated U.S. economic slowdown. This sentiment was reinforced by 
recent weak economic data, leading to a correction in the Nasdaq 
Composite and broader equity markets. Hedge funds reduced 
exposure across multiple sectors, signaling a shift towards a more 
defensive posture. 

A continued shift towards bearish sentiment among major financial 
players could lead to increased market stress and a tightening of 
liquidity, particularly in riskier asset classes. Supervisory bodies need to 
monitor these developments to mitigate potential systemic risks. 

Source: Authors. 

 

A.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are an architecture for deep neural networks that operate with 
sequential data, such as time series, speech, or text (Goodfellow et al. (2016)). RNNs take a new input, 
update their state (also called “memory”), and produce an output at each time step (illustrated in Graph 
A2.1). The output of an RNN – the target variable - depends solely on the current input data and on the 
stored memory. The memory efficiently stores all relevant information from previous inputs. Economic 
uses of RNNs include inflation forecasting (Almosova and Andresen (2023)) and well-performing 
submissions to forecasting competitions. In fact, the winner of a prominent forecasting competition 
(Petropoulos and Makridakis (2020)) combines RNNs with exponential smoothing (Smyl (2020)). 
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RNNs function similarly to Kalman filters (Gelb (1974)) on state-space models, with the main 
difference being that the relationships between inputs, outputs, and the memory update functions are 
nonlinear. Further, the nonlinearities are flexibly learned from the data, as opposed to modelled explicitly 
by the analyst. For example, in traditional econometrics a prototypical nonlinear model is the inclusion of 
a squared regressor in the estimation. In contrast, all a neural network requires is the set of regressors and 
the corresponding dependent variables to model, with sufficient examples, the (potentially much more 
complex) nonlinear form that best fits the data. 

 

Scheme of a typical recurrent neural network Graph A2.1 

  

𝑋𝑋𝑡𝑡 represents the input to the RNN, A the hidden layer and memory, and  ℎ𝑡𝑡the output. The right-side plot unfolds the RNN structure to 
illustrate left-to-right how each input only affects the current state of the network. 

Source: Olah (2015). 

However, early types of RNNs were unable to learn long-term relationships because the memory 
is constantly updated with new information. Long Short-Term Memory (LSTM) networks (Hochreiter and 
Schmidhuber (1997)) address this vanishing memory problem by adding a set of “gates” to the memories 
of the RNNs.10 These gates are themselves neuronal layers whose output is a number between 0 and 1. 
This allows the gates to automatically control, based on data, the addition of new relevant information to 
the memory, the removal of information that is no longer relevant, and the retention of long-term 
concepts that are useful to predict the output. LSTMs also include a gate to decide which memories are 
active for each output.11 

Exploring the structure of an LSTM network provides insight about how and why they function 
well. The key insight is that the data observed at period t and the result from the previous period both 
help to jointly determine how much of the previous state persists, as well as if anything from current data 
should be stored in the state-space. For example, a date with a particularly stark TAP deviation can make 
the model forget some of its state carried over from past periods and absorb a new value for the state, 

 
10  LSTMs, combined with connectionist temporal classification (CTC) of Graves et al (2006), solved the speech-to-text and OCR 

problems in the early 2010s. A comprehensive introduction to RNN and LSTMs can be found in Olah (2015). 
11  While recent advances in AI are underpinned by another neural network, the Transformers (Vaswani et al (2017)), LSTMs remain 

a competitive technique for data of the scale typically used in economics and financial settings. RNNs (including LSTM 
networks) process data sequentially and are not well-suited for parallel processing and thus do not take full advantage of 
parallel computing power. Transformers resolve this issue by eliminating recurrency through positional encoding. This allows 
these networks to train on much larger amounts of data, underpinning their much wider application compared to LSTMs. In 
economic or financial time series, however, LSTMs continue to perform well, if not better due to generally lower data 
requirements compared to the transformer. 
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similar to how Markov regime switching models work. In turn, this new value for the state influences how 
the model will forecast given the same input data (as if the parameters in a structural model changed 
depending on whether the period is in a “good” or in a “bad” state). Being a neural network, these 
interactions all occur nonlinearly, further adding flexibility to the model. 

Formally, the LSTM process goes as follows. At each period, new observed inputs 𝑥𝑥𝑡𝑡 enter from 
the bottom, while a vector of outputs (also known as “hidden states”) ℎ𝑡𝑡 are produced at the top and 
transmitted to the subsequent stage too, where another version of this LSTM with the same parameters 
will repeat this process. The “long-term” information (also known as “carry state”) flows from left to right, 
represented by the vector 𝑐𝑐𝑡𝑡. The top line in the Graph A2.2 scheme represents  𝑐𝑐𝑡𝑡. The values of this vector 
can be modified by a nonlinear combination of the new input 𝑥𝑥𝑡𝑡 and the previous state ℎ𝑡𝑡−1. In the first 
time step, both   𝑐𝑐𝑡𝑡 and ℎ𝑡𝑡 are zero-valued vectors. The LSTM has three gate functions: 

1. Forget Gate (Labelled 1): This is a single layer fully connected neural network with a sigmoid 
activation function 𝜎𝜎 that constrains the output to be between 0 and 1. If the sigmoid output is 
zero, the network will erase the memory 𝑐𝑐𝑡𝑡 . Conversely, an output of one will allow the 
information in 𝑐𝑐𝑡𝑡 to pass through fully. Formally, the forget gate is: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑏𝑏𝑓𝑓 + 𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1). 

2. Input Gate (Labelled 2): This consists of two networks. The first is a single layer fully connected 
neural network with a sigmoid activation function that decides whether to add information to 
the memory (the opposing operation to the forget gate). The second is another single layer fully 
connected neural network with a hyperbolic tangential activation function (𝑡𝑡𝑡𝑡𝑡𝑡ℎ) that limits the 
output to a range between -1 and +1. This second layer determines the specific information to 
be added, while the first network determines how much of this new information will effectively 
be added to the long-term carry state 𝑐𝑐𝑡𝑡. Formally, the inputs are: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑏𝑏𝑖𝑖 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1) 

𝑐𝑐
~
𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑏𝑏𝑐𝑐 + 𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1). 

After an LSTM cell receives the carry state from the previous time step, 𝑐𝑐𝑡𝑡−1 and it goes through 
the forget gate and the input gate in sequence (the first and second multiplications in the equation below), 
it becomes the cell’s current carry state, as such: 

𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡𝑡−1 ⊙ 𝑓𝑓𝑡𝑡 + 𝑐𝑐
~
𝑡𝑡 ⊙ 𝑖𝑖𝑡𝑡 , 

with ⊙ representing the Hadamard point-wise multiplication. 

3. Output Gate (Labelled 3): This sigmoid network determines which part of the (now updated) 
memory is exposed at time t to be the LSTM cell’s output. If the value is zero, no memory is 
exposed. If the value is one, the updated memory 𝑐𝑐𝑡𝑡 is presented as the output ℎ𝑡𝑡. Formally: 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑏𝑏𝑜𝑜 + 𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑐𝑐𝑡𝑡 . 

In all above regressions, 𝑥𝑥𝑡𝑡 ∈ ℝ𝑁𝑁 is the column vector of N covariates, 𝑐𝑐𝑡𝑡, ℎ𝑡𝑡 ∈ ℝ𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are vectors 
of the same dimension 𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 > 0 . Each element of {𝑊𝑊𝑓𝑓,𝑊𝑊𝑖𝑖 ,𝑊𝑊𝑐𝑐 ,𝑊𝑊𝑜𝑜} ∈ ℝ𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿×𝑁𝑁  are the parameter 
matrices related to contemporaneous inputs and each element of {𝑈𝑈𝑓𝑓,𝑈𝑈𝑖𝑖 ,𝑈𝑈𝑐𝑐 ,𝑈𝑈𝑜𝑜} ∈ ℝ𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿×𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are the  
parameter matrices related to the previous state. The elements of {𝑏𝑏𝑓𝑓,𝑏𝑏𝑖𝑖 ,𝑏𝑏𝑐𝑐 ,𝑏𝑏𝑜𝑜} ∈ ℝ𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are the column 
vectors of constants (known in the computer science literature as “biases”). And the operations described 
above by the Hadamard multiplication are independently applied to each vector component. In general, 
we represent an LSTM network as follows: 

ℎ𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡 ,𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿). 
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Scheme of an LSTM network Graph A2.2 

 
 
 
 
 
 
 
 
 
 
 
  

𝑋𝑋𝑡𝑡 represents the input to the RNN, 𝐶𝐶𝑡𝑡 the hidden layer and memory, and  ℎ𝑡𝑡the output.  

Source: Olah (2015). 

 

 

A.3 Prediction architecture 

The purpose of our model is to map an extensive panel of daily financial market variables into ℎ-day ahead 
predictions of the market anomalies for a window of 𝑤𝑤 days. In what follows, we illustrate the technique 
with an example using ℎ = 60 and 𝑤𝑤 = 20, that is, a model that forecasts the average of the 20-day 
window that starts 60 days into the future. We use a novel architecture inspired by insights that financial 
market variables can interact nonlinearly, and that these interactions (and the importance of each variable) 
can change over time. The model also flexibly deals with seasonality. Importantly, in addition to the 
predictions, the network offers interesting by-products such as the time series of variable importance.  

The architecture of the network is shown in Graph A3.1 below. Each rectangle is a different layer 
of the network. Starting from the top towards the bottom, the network takes in two types of data: a time 
series of two categorical variables (calendar quarter and a dummy for days around quarter-ends) and a 
time series of 125 continuous variables representing financial market series. The data is then sequentially 
processed by the network, as shown in the directed graph, eventually producing the TAP deviation forecast 
and the variable weights. It can be instructive to analyse the neural network as separate building blocks, 
next. 

Temporal features. Seasonality can play a key role in financial market series. In our case, for 
example, many of the variables including TAP deviations themselves, display considerable changes at end-
of-quarter periods. In addition, there might be other, less obvious ways in which seasonality can play a 
role. For this reason, we embed each quarter 𝑄𝑄𝑡𝑡 ∈ {1,2,3,4} and a quarter-end dummy 𝑄𝑄𝑄𝑄𝑄𝑄𝑑𝑑𝑡𝑡 ∈ {0,1}, 
defined as 1 for the five days before and five days after quarter-ends. These embeddings map each 
possible value of 𝑄𝑄𝑡𝑡  and of 𝑄𝑄𝑄𝑄𝑄𝑄𝑑𝑑𝑡𝑡  to a real-valued vector of dimension 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , as such: 𝑀𝑀𝑄𝑄:𝑄𝑄𝑡𝑡 →
ℝ𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 . In this case, we use 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 16. This results in two time series of embeddings, one of each 

1 
2 

3 
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time variable. They are then concatenated to result in a single vector time series of dimension 
2 × 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. These temporal features inform the decision on the variable specific-weights, 𝜔𝜔𝑡𝑡, as well as 
the final prediction. 

Competitive variable selection. The vector time series of temporal features is concatenated with 
the time series of the 𝑁𝑁 different financial market variables into a single, large time series vector with 
dimension 2 × 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑁𝑁. This large panel time series is then fed to an LSTM layer that combines all 
these signals nonlinearly. At the end of this process, the network combines the information into an 𝑁𝑁-
dimensional vector. Then at each point in time, these N values undergo a softmax transformation, which 
maps each result into a positive number that highlights the largest values with all summing to one. The 
“temperature” or smoothness of this transformation is a learned parameter. The temperature parameter 
determines just how competitive this process is (lower values make it more competitive). All variables are 
normalised; thus the weight is independent of each variable’s scale. These time-varying, variable specific 
weights are then multiplied by each variable’s series, resulting in competitively weighted variables. For 
some variables, the weight might be very close to zero. 

Final transformation. Once weighted, the variables pass through a densely connected layer (with 
weights shared across time steps) to cast the signals into a uniform geometry and then another LSTM 
layer with nonlinear activation to extract increasingly refined features to predict the anomaly in question. 
Finally, another densely connected layer with output of dimension 1 results in the prediction for the TAP 
variable. 

The proposed algorithm can be presented as follows: 

𝑢𝑢𝑡𝑡 = � 𝑊𝑊1𝑄𝑄𝑡𝑡
𝑊𝑊2𝑄𝑄𝑄𝑄𝑄𝑄𝑑𝑑𝑡𝑡

� 

𝑜𝑜𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿��𝑢𝑢
~
𝑡𝑡 , 𝑥𝑥𝑡𝑡�, 16�, 125�(4) 

𝑜𝑜
~
𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑜𝑜𝑡𝑡) 

𝑥𝑥
~
𝑡𝑡 = 𝑜𝑜

~
𝑡𝑡 ⊙ 𝑥𝑥𝑡𝑡 

𝑦𝑦
^
𝑡𝑡+ℎ,𝑤𝑤 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿��𝑢𝑢

~
𝑡𝑡 , 𝑥𝑥

~
𝑡𝑡�, 16�, 1�, 

where 𝑊𝑊1 and 𝑊𝑊2 are 4-dimensional real vectors and 𝑥𝑥𝑡𝑡 is the period-t vector with the input variables, as 
detailed in the following section. The function VARSEL applies a softmax transformation across the 125 
elements in each period, with a temperature parameter 𝜏𝜏 that is learned to optimise predictive ability: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑜𝑜𝑡𝑡) = 𝑒𝑒𝑜𝑜𝑡𝑡
(𝑗𝑗) 𝜏𝜏�

∑ 𝑒𝑒𝑜𝑜𝑡𝑡
(𝑗𝑗) 𝜏𝜏�125

𝑗𝑗=1

. This softmax transformation essentially highlights the differences between the 

weights of each variable. If the weights were all the same, the values would be equal to 1/125. But if, say, 
one variable tends to provide richer signal and therefore gets higher weight from the model, its share 
grows sharply as its weight becomes higher than other variables. Just how sharp is determined by the 
temperature 𝜏𝜏>0: lower values tend to accentuate differences, whereas higher values (especially if above 
one) attenuate differences. The result is a time series of equal dimension to the financial market inputs, 
but with weights between 0 and 1 for each variable. Importantly, these variable-specific weights change 
over time, depending on the data up until that time. Further, the weights sum to one for each period, 
meaning they are “competitive” in the sense that a higher weight for one variable necessarily implies lower 
weights for the others.  
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Architecture of the prediction neural network Graph A3.1 

 
Neural network to predict 20-day TAP averages starting 60 days ahead used to illustrate the neural network architecture. The calculation 
graph from the input data to the TAP predictions flows from top to bottom. Numbers in parenthesis represent respectively a unit sample 
(always set to one in this example), the number of time steps in the full sample and the dimensionality of the data at each calculation node. 

Source: Authors. 
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A.4 Input data 

This Appendix provides descriptive statistics for the input data that are not described in Table 1 of the 
main text. 

Input data: Foreign exchange bid-ask spreads 
As a percentage of the bid-ask midpoint Table A4.1 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

USD-AUD 0.0393 0.0088 0.0247 0.0330 0.0376 0.0448 0.1306 0.0410 0.0313 

USD-GBP 0.0233 0.0046 0.0157 0.0196 0.0225 0.0268 0.0518 0.0223 0.0276 

USD-EUR 0.0225 0.0054 0.0134 0.0182 0.0220 0.0261 0.0819 0.0211 0.0290 

USD-JPY 0.0263 0.0074 0.0152 0.0207 0.0244 0.0310 0.0537 0.0280 0.0188 

USD-CHF  0.0374 0.0090 0.0206 0.0315 0.0365 0.0413 0.0719 0.0374 0.0373 

Sources: LSEG Tick History; authors’ calculations. 

         

Input data: Equity market returns 
In percent Table A4.2 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

S&P/ASX 200  0.02 1.06 -9.70 -0.48 0.03 0.56 7.00 0.01 0.02 

Euro Stoxx 50 0.02 1.36 -12.40 -0.59 0.02 0.65 11.00 0.01 0.05 

Nikkei 225 0.03 1.41 -11.41 -0.61 0.00 0.71 14.15 0.02 0.05 

Swiss Market 0.01 1.06 -9.64 -0.46 0.03 0.52 11.39 0.01 0.01 

FTSE 100  0.01 1.13 -10.87 -0.47 0.01 0.55 9.84 0.01 0.03 

S&P 500  0.04 1.22 -11.98 -0.39 0.04 0.56 11.58 0.04 0.04 

Sources: Bloomberg; authors’ calculations. 

         

Input data: Volatility indices Table A4.3 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

CBOE Volatility 
Index 19.62 8.97 9.14 13.57 17.21 22.79 82.69 19.51 20.11 

S&P/ASX 200 
Volatility Index 15.88 9.14 0.00 11.92 14.37 19.32 66.72 16.40 13.47 

Euro Stoxx 
50 Volatility Index 22.60 8.86 10.68 16.67 20.66 25.91 87.51 22.97 20.92 
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Nikkei Stock 
Average Volatility 
Index 23.72 8.87 12.19 18.39 21.57 26.31 92.03 24.39 20.67 

Deutsche Borse 
VSMI Volatility 
Index 17.81 7.42 8.81 13.37 15.79 19.66 84.90 18.24 15.82 

MOVE Index 84.56 32.99 36.62 60.00 74.51 103.69 264.60 80.86 101.49 

Sources: Bloomberg; authors’ calculations. 

         

Input data: Spot exchange rates 

In percentage changes Table A4.4 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

AUD-USD 0.00 0.78 -8.69 -0.39 0.02 0.41 7.18 0.00 -0.02 

CHF-USD 0.01 0.63 -8.66 -0.31 -0.01 0.30 14.39 0.01 0.00 

EUR-USD 0.00 0.55 -2.86 -0.30 0.01 0.29 4.01 0.00 -0.01 

GBP-USD -0.01 0.59 -7.10 -0.33 0.00 0.32 5.38 -0.01 -0.01 

JPY-USD 0.00 0.61 -3.45 -0.33 -0.01 0.29 5.00 0.00 -0.04 

Sources: Bloomberg; authors’ calculations. 

         

Input data: Forward exchange rates 
In percentage changes Table A4.5 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

1-week          

AUD-USD  0.00 0.78 -8.36 -0.39 0.02 0.40 7.15 0.00 -0.02 

EUR-USD  0.00 0.55 -2.61 -0.30 0.01 0.29 4.01 0.00 -0.01 

GBP-USD  -0.01 0.60 -7.62 -0.33 0.00 0.32 5.37 -0.01 -0.01 

JPY-USD  0.01 0.61 -4.43 -0.28 0.01 0.32 3.55 0.00 0.05 

2-week          

AUD-USD  0.00 0.78 -8.74 -0.38 0.02 0.40 7.17 0.00 -0.02 

EUR-USD  0.00 0.55 -2.59 -0.30 0.01 0.29 4.00 0.00 -0.01 

GBP-USD  -0.01 0.60 -7.61 -0.33 0.00 0.32 5.36 -0.01 -0.01 

JPY-USD  0.01 0.59 -10.58 -0.24 0.00 0.28 3.55 0.00 0.05 

1-month          

AUD-USD  0.00 0.78 -8.38 -0.39 0.02 0.40 7.15 0.00 -0.02 

EUR-USD  0.00 0.55 -2.61 -0.30 0.01 0.29 3.98 0.00 -0.01 

GBP-USD  -0.01 0.60 -7.60 -0.33 0.00 0.32 5.33 -0.01 -0.01 

JPY-USD  0.01 0.61 -4.41 -0.28 0.01 0.32 3.56 0.00 0.05 

2-month          
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AUD-USD  0.00 0.78 -8.37 -0.39 0.02 0.40 7.10 0.00 -0.02 

EUR-USD  0.00 0.55 -2.61 -0.30 0.01 0.29 3.97 0.00 -0.01 

GBP-USD  -0.01 0.60 -7.58 -0.33 0.00 0.32 5.29 -0.01 -0.01 

JPY-USD  0.01 0.61 -4.45 -0.28 0.01 0.32 3.55 0.00 0.05 

3-month          

AUD-USD  0.00 0.78 -8.37 -0.39 0.02 0.40 7.00 0.00 -0.02 

EUR-USD  0.00 0.55 -2.61 -0.30 0.01 0.29 3.96 0.00 -0.01 

GBP-USD  -0.01 0.60 -7.58 -0.33 0.00 0.32 5.25 -0.01 -0.01 

JPY-USD  0.01 0.61 -4.40 -0.28 0.01 0.32 3.55 0.00 0.05 

6-month          

AUD-USD  0.00 0.77 -8.38 -0.39 0.02 0.40 6.97 0.00 -0.02 

EUR-USD  0.00 0.54 -2.61 -0.30 0.01 0.29 3.92 0.00 -0.01 

GBP-USD  -0.01 0.59 -7.55 -0.33 0.00 0.32 5.22 -0.01 -0.01 

JPY-USD  0.01 0.60 -4.37 -0.28 0.01 0.32 3.56 0.00 0.04 

Sources: Bloomberg; authors’ calculations. 

         

Input data: 25 delta risk reversals1 Table A4.6 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

1-month          

AUD-USD -1.31 1.09 -8.25 -1.58 -1.02 -0.69 0.48 -1.36 -1.05 

EUR-USD -0.53 0.79 -4.18 -0.89 -0.40 0.02 2.87 -0.54 -0.49 

GBP-USD -0.81 0.84 -9.67 -1.12 -0.64 -0.31 0.58 -0.80 -0.87 

USD-JPY -1.10 1.35 -10.35 -1.44 -0.88 -0.36 1.04 -1.17 -0.79 

USD-CHF -0.12 0.66 -3.25 -0.53 -0.21 0.29 2.94 -0.15 0.01 

2-month          

AUD-USD -1.54 1.12 -8.05 -1.91 -1.26 -0.84 0.05 -1.61 -1.23 

EUR-USD -0.66 0.87 -4.23 -1.16 -0.52 -0.03 2.60 -0.68 -0.59 

GBP-USD -1.00 0.86 -7.63 -1.37 -0.83 -0.46 0.45 -0.99 -1.03 

USD-JPY -1.24 1.40 -10.20 -1.57 -1.03 -0.49 1.24 -1.32 -0.84 

USD-CHF -0.14 0.70 -3.14 -0.61 -0.26 0.30 2.60 -0.17 -0.02 

3-month          

AUD-USD -1.74 1.19 -8.10 -2.19 -1.46 -0.94 -0.08 -1.82 -1.36 

EUR-USD -0.77 0.93 -4.35 -1.32 -0.64 -0.05 2.23 -0.79 -0.67 

GBP-USD -1.15 0.88 -6.37 -1.63 -1.00 -0.58 0.54 -1.15 -1.15 

USD-JPY -1.35 1.47 -10.45 -1.70 -1.12 -0.60 1.46 -1.46 -0.86 

USD-CHF -0.16 0.74 -3.05 -0.68 -0.30 0.31 2.36 -0.19 -0.06 

6-month          

AUD-USD -2.03 1.26 -8.20 -2.58 -1.78 -1.16 -0.05 -2.13 -1.57 

EUR-USD -0.91 1.01 -4.40 -1.54 -0.82 -0.07 1.92 -0.94 -0.80 

GBP-USD -1.34 0.88 -4.62 -1.88 -1.26 -0.76 0.70 -1.34 -1.36 
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USD-JPY -1.51 1.57 -10.30 -1.85 -1.25 -0.70 1.57 -1.65 -0.84 

USD-CHF -0.20 0.79 -2.90 -0.76 -0.35 0.30 2.30 -0.21 -0.15 

1-year          

AUD-USD -2.30 1.31 -8.30 -2.95 -2.05 -1.38 -0.23 -2.42 -1.79 

EUR-USD -1.02 1.06 -4.48 -1.70 -0.97 -0.15 1.47 -1.03 -0.95 

GBP-USD  -1.50 0.87 -4.43 -2.05 -1.51 -0.91 0.45 -1.47 -1.61 

USD-JPY  -1.67 1.70 -10.30 -2.08 -1.41 -0.77 1.41 -1.87 -0.77 

USD-CHF  -0.25 0.86 -2.85 -0.88 -0.40 0.28 2.33 -0.25 -0.25 

5-year          

AUD-USD  -2.47 1.06 -8.30 -3.08 -2.40 -1.82 1.34 -2.52 -2.25 

EUR-USD  -0.68 0.74 -3.22 -1.20 -0.54 -0.10 0.60 -0.70 -0.57 

GBP-USD  -1.38 0.69 -4.27 -1.72 -1.45 -1.17 0.84 -1.29 -1.81 

USD-JPY  -2.45 1.94 -10.63 -3.21 -2.37 -1.14 1.11 -2.78 -0.93 

USD-CHF  -0.66 0.60 -2.01 -1.15 -0.82 -0.20 1.08 -0.59 -0.97 
1 Defined as the implied volatility for call options minus the implied volatility for put options on the base currency with the same delta. 

Sources: Bloomberg; authors’ calculations. 

 

Input data:  Government bond/T-Bill yields 
In percent Table A4.7 

 Full sample Training 
set 

Test set 

 Mean S.D. Min 25% 50% 75% Max Mean Mean 

3-month          

Germany  0.60 1.63 -1.04 -0.62 -0.02 0.93 4.48 0.50 1.05 

Japan  0.03 0.24 -0.48 -0.14 0.00 0.11 0.73 0.07 -0.14 

US 1.38 1.83 -0.14 0.06 0.23 2.17 5.51 1.10 2.65 

6-month          

US 1.49 1.85 -0.03 0.11 0.41 2.30 5.58 1.20 2.82 

1-year          

Australia 2.96 1.84 -0.01 1.73 2.56 4.23 7.24 3.12 2.20 

Germany 0.77 1.68 -0.93 -0.59 0.05 1.47 4.69 0.66 1.27 

Switzerland -0.33 0.58 -2.22 -0.86 -0.11 0.00 1.63 -0.41 0.05 

UK 1.49 1.86 -0.15 0.35 0.56 1.98 5.89 1.28 2.46 

US 1.56 1.78 0.04 0.17 0.56 2.42 5.51 1.28 2.85 

2-year          

Australia 3.00 1.82 0.01 1.82 2.67 4.32 7.17 3.16 2.24 

Germany 0.80 1.62 -1.00 -0.60 0.12 1.76 4.70 0.73 1.13 

Japan 0.12 0.32 -0.36 -0.12 0.05 0.18 1.09 0.15 -0.04 

Switzerland 0.18 1.08 -1.12 -0.76 -0.04 0.67 3.06 0.16 0.29 

UK 1.57 1.78 -0.16 0.40 0.71 2.00 5.83 1.38 2.42 

US 1.69 1.60 0.10 0.41 0.94 2.56 5.28 1.45 2.77 
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5-year          

Australia 3.25 1.74 0.25 2.09 3.04 4.84 6.87 3.40 2.59 

Germany 1.11 1.59 -0.99 -0.31 0.61 2.38 4.76 1.12 1.06 

Japan 0.29 0.46 -0.38 -0.09 0.17 0.48 1.58 0.33 0.07 

Switzerland 0.46 1.12 -1.16 -0.54 0.17 1.14 3.19 0.47 0.38 

UK 1.99 1.58 -0.14 0.76 1.43 2.95 5.76 1.91 2.36 

US 2.19 1.27 0.19 1.30 1.82 2.87 5.23 2.06 2.77 

10-year          

Australia 3.61 1.57 0.61 2.57 3.46 5.17 6.79 3.74 2.99 

Germany 1.63 1.53 -0.86 0.31 1.52 3.02 4.68 1.72 1.22 

Japan 0.66 0.62 -0.29 0.07 0.56 1.23 2.01 0.73 0.32 

Switzerland 0.87 1.13 -1.12 -0.12 0.72 1.85 3.42 0.94 0.57 

UK 2.51 1.44 0.08 1.30 2.17 3.75 5.55 2.50 2.51 

US 2.76 1.08 0.51 1.94 2.61 3.56 5.29 2.73 2.90 

Sources: Bloomberg; LSEG Datastream; authors’ calculations. 
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