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ABSTRACT 
 

When trading in financial markets reaches light speed, does the real economy slow down? 
Using co-location and latency improvement upgrades at NASDAQ as natural experiments, we 
find that, on average, high frequency trading (HFT) leads to higher cost of capital. However, 
the impact is not uniform. HFT raises the cost of capital for low-beta stocks by amplifying their 
systematic risk, as HFT’s correlated trading strategies make these stocks more responsive to 
market-wide information. For the most liquid stocks, HFT reduces the cost of capital by 
lowering the liquidity premium required by investors. A complementary test using data from 
the unfragmented Hong Kong market shows that these causal effects are not due to market 
fragmentation and persist across countries and market structures. Our results demonstrate that 
HFT’s real economic effects are heterogeneous across stock characteristics, with important 
implications for financial market regulation and policy design. 
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1. INTRODUCTION 

Technology has fundamentally transformed financial markets over the past two decades, 

with high-frequency trading (HFT) a dominant force. High-frequency traders (HFTs) invest 

substantial resources to gain microsecond advantages in market access, fundamentally 

changing how informed trading operates – speed, rather than superior information acquisition, 

has become the key competitive advantage (Budish et al., 2015; Menkveld, 2016; Foucault et 

al., 2017; Shkilko and Sokolov, 2020; Aquilina et al., 2022; Rzayev et al., 2023). With recent 

developments in artificial intelligence (AI), these technological capabilities are poised to 

accelerate even further, potentially reshaping the competitive landscape of financial markets 

once again.  

Despite extensive research on HFT’s effects on market quality, a significant gap 

remains: we know little about how these technological changes affect factors directly linked to 

the real economy, such as firms’ cost of capital. This gap is concerning given that most 

retirement savings are invested in global capital markets, and job growth, incomes, and living 

standards depend on corporate investment financing that relies on well-functioning financial 

markets. Market quality, after all, is just a means to an end, and what policymakers and 

regulators are concerned about is how well markets are fulfilling their roles with regards to the 

real economy and contributing to welfare issues like the provision of capital to drive economic 

growth (Foucault et al., 2023). In this paper, we examine HFT’s implications for the cost of 

capital, addressing this important but understudied connection between market microstructure 

innovations and real economic outcomes. 

The impact of HFT on the cost of capital is theoretically ambiguous. Financial market 

innovations often have mixed effects – for instance, HFT is associated with narrower bid-ask 

spreads that benefit small traders (Hendershott et al., 2011) but also increases the tendency for 

extreme events, such as flash crashes (Easley et al., 2012; Rzayev and Ibikunle, 2021), and 
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increases implementation shortfall of institutional traders by back-running them (Van Kervel 

and Menkveld, 2019; Yang and Zhu, 2020). Moreover, HFT’s effects depend critically on 

whether speed advantages are adopted by liquidity providers or demanders (Brogaard et al., 

2014), and HFT interacts with other market structure changes like fragmentation, including the 

growth of dark trading (Menkveld, 2016). Even when HFT improves market quality measures, 

this does not necessarily translate into better economic outcomes. Cochrane (2013) argues that 

“it is especially hard to see why high-frequency trading is needed. Price discovery every 

millisecond does not seem necessary to guide corporate investment or individual risk sharing 

and hedging.” Thus, any change in market quality at ultra-high frequencies may not affect the 

endpoint – the real economy.  

A key challenge in investigating the effects of HFT on financial markets is that HFT 

activity is endogenous to market quality characteristics and firm fundamentals. To address this 

endogeneity concern and establish causality, we exploit two technological shocks: co-location 

and latency improvement updates implemented by NASDAQ. These types of technological 

upgrades provide an ideal setting for a quasi-natural experiment because they directly lead to 

considerable reductions in trading latency and increased HFT activity (Chordia and Miao, 2020; 

Boehmer et al., 2021), while remaining orthogonal to firms’ fundamentals. Similar shocks have 

also been employed in studies of other markets (Brogaard et al., 2015; Rzayev et al., 2023). 

We employ a difference-in-differences (DiD) framework, using NASDAQ-listed stocks as the 

treatment group and matched NYSE-listed stocks as the control group around the two 

technological shocks.  

Our baseline results indicate that HFT increases the cost of capital. We investigate the 

economic mechanisms underlying this effect by testing two competing channels. The first 

channel we analyze is the systematic risk one. It posits that the correlated trading strategies 

employed by HFTs increase stocks’ responsiveness to market-wide information (Chaboud et 
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al., 2014; Boehmer et al., 2018), causing them to co-move more strongly with each other and 

with the overall market (Malceniece et al., 2019), thereby increasing systematic risk and the 

cost of capital. The second channel is linked to the liquidity premium. As HFTs generally 

increase market liquidity (Hendershott et al., 2011; Brogaard et al., 2015), they should lower 

the cost of capital since investors require lower returns to hold more liquid stocks (Amihud, 

2002; Acharya and Pedersen, 2005). Our overall results indicate that the systematic risk 

channel dominates on average. However, we investigate both channels separately to understand 

their distinct impacts and find that focusing solely on the net effect masks important dynamics 

and can lead to misinterpretation of results and inappropriate policy implications. 

We find evidence that both channels are important; however, their relevance varies 

across stock characteristics.  

Consistent with the systematic risk channel, we find that HFT amplifies systematic risk 

in financial markets, with this effect being particularly pronounced among low-beta stocks (𝛽𝛽 

< 1). This pattern is intuitive: low-beta stocks naturally co-move less with the market and are 

less responsive to market-wide information. The effect is stronger among illiquid stocks, as 

these are the ones where a positive shock to HFT is more likely to increase their correlation 

with the overall market. After all, liquid stocks, even if they have low beta, are more actively 

traded and followed by analysts, making them more likely to already reflect market-wide 

information (Malceniece et al., 2019; Glosten et al., 2021). For high-beta stocks, we do not find 

that HFT increases the cost of capital: these stocks are already highly responsive to market-

wide information; hence, an increase in HFT does not appear to make a difference to their cost 

of capital.  

Consistent with the liquidity channel, we find that HFTs reduce the cost of capital for 

the most liquid stocks, irrespective of their beta. This finding is in line with the fact that while 

HFTs increase liquidity on average, their liquidity-providing strategies are concentrated in the 
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most liquid stocks (Brogaard et al., 2014), as market-making in illiquid stocks is less profitable 

and riskier. This is because high-frequency market making requires the ability to unload 

inventory positions very quickly, which is much more difficult in less liquid stocks (Menkveld 

and Zoican, 2017).  

In financial markets, and especially in the US, HFT evolves with increased market 

fragmentation. Specifically, HFT facilitates the linking of multiple markets and allows 

investors to trade at the best available price, thereby increasing competition among trading 

venues (e.g., Menkveld, 2013). Hence it is important to examine whether our main results 

depend on the specific structure of the US market and if they would be different in a market 

where HFT exists independent of market fragmentation. To this end, we conduct a 

complementary analysis using data from the Stock Exchange of Hong Kong (SEHK), one of 

the largest yet essentially unfragmented financial market in the world. In this setting, we exploit 

a very similar shock as for our US sample: the introduction of the Orion Central Gateway (OCG) 

in 2014, a major technological upgrade that substantially reduced trading latency, as an 

exogenous shock to HFT activity. We construct a matched sample of firms listed on the 

Shanghai Stock Exchange (SSE), the largest exchange in the region and one unaffected by the 

OCG implementation, to serve as a control group. Using the same methodology as for our 

baseline specification, we find that our results hold in this alternative setting. Specifically, we 

continue to find that HFT increases the cost of capital, particularly for low-beta stocks, while 

reducing it for the most liquid stocks. Furthermore, the former channel dominates the latter 

when we investigate the overall impact. 

This study makes two contributions to the literature. First, while the HFT literature has 

predominantly focused on the effects of HFT on traders and market participants (see Menkveld, 

2016 for a survey), we shift the focus to issuers – the corporations that issue shares to raise 

capital for their investment activities. To the best of our knowledge, this is the first study to 
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investigate the role of HFT in firms’ cost of capital. Thus, our study straddles two traditionally 

distinct literature areas in financial economics, market microstructure and corporate finance, 

demonstrating how market microstructure innovations can have tangible implications for real 

economic outcomes. This cost of capital perspective is important because corporations rely on 

equity markets to raise capital for investment activities that drive economic growth and 

productivity. Thus, it is surprising that the impact of HFTs, which account for more than 50% 

of equity market trading volume, on the cost of capital has not been previously investigated.  

Second, we formally explore the economic channels driving the HFT-cost of capital 

relationship, identifying which channel dominates and under what conditions this dominance 

holds. By decomposing the net effect into systematic risk and liquidity channels, we provide a 

nuanced understanding of how HFT affects different types of firms, moving beyond aggregate 

effects that may mask important heterogeneity. By doing so, we contribute to the ongoing 

policy debate regarding the economic value of HFT. While this debate has captivated financial 

market stakeholders, including investors, intermediaries, policymakers, regulators, and 

researchers, empirical evidence on HFT’s real economic effects has been limited. By providing 

novel evidence on the interactions between HFT and corporate cost of capital, we offer 

actionable insights for policy and regulation. Our findings suggest that the benefits and costs 

of HFT are not uniformly distributed across all stocks, raising important questions about 

whether access to HFT infrastructure should be differentiated based on stock characteristics 

rather than applied universally. 

 

2. LINKING HFT TO THE COST OF CAPITAL 

From a theoretical perspective, the impact of HFT on the cost of capital is unclear. On 

the one hand, given that HFTs are engaged in correlated trading strategies (Chaboud et al., 

2014; Benos et al., 2017; Malceniece et al., 2019) as they incorporate marked-wide information 
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into the price of every stock, HFT could increase systematic risk thereby increasing issuers’ 

cost of capital. On the other hand, HFT enhancing liquidity in a given stock implies a reduction 

in the rate of return investors demand to hold the stock (Amihud, 2002; Menkveld, 2016).  

Systematic risk, typically measured by a stock’s beta, captures the sensitivity of a 

stock’s return to aggregate market movements. Since the introduction of the Capital Asset 

Pricing Model (CAPM) (Sharpe, 1964), beta has been central to asset pricing models including 

extensions proposed by Fama and French (1993, 2015), which link higher exposure to 

systematic risk with higher required returns. Hence, any factor that increases a firm’s exposure 

to market-wide risk is a natural candidate for explaining variation in the cost of capital.  

A key feature of HFT strategies is their high degree of correlation. Chaboud et al. (2014) 

document substantial commonality in algorithmic traders’ behavior, a by-product of automated 

responses to common market signals. While this pattern is not unique to HFTs, Benos et al. 

(2017) show that HFTs exhibit significantly higher trading correlation than other algorithmic 

participants, including investment banks. This suggests that HFTs amplify market-wide co-

movements. Malceniece et al. (2019) test this hypothesis using the staggered entry of Chi-X 

Europe as a natural experiment and find that HFT activity increases return and liquidity co-

movement, especially among small and mid-cap stocks. These findings point to a potential 

mechanism: HFTs may increase the cost of capital by amplifying systematic risk through 

increased correlation of individual stock returns with market movements, thereby raising their 

betas. 

In addition to the systematic risk channel, HFT may also influence the cost of capital 

by directly impacting liquidity. A substantial stream of the market microstructure literature 

show that, on average, HFTs enhance market liquidity as they engage in market making 

(Menkveld, 2013, 2016). It is also well established in the literature that investors require higher 

returns for holding assets that are less liquid, translating into a higher cost of capital (Amihud 
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and Mendelson, 1986; Brennan and Subrahmanyam, 1996; Chordia et al., 2011; Amihud and 

Levi, 2023). Hence, because of their activities which improve the liquidity of the underlying 

stocks, HFT can reduce issuer cost of capital. 

However, HFTs tend to concentrate their market-making in the most liquid stocks 

(Brogaard et al., 2014). Liquidity provision involves significant risks, including adverse 

selection and inventory holding costs, which are easier to manage in liquid stocks where HFTs 

can more quickly unwind positions. In contrast, providing liquidity in illiquid stocks entails 

greater difficulty for HFTs due to limited trading volume. As a result, market-making HFTs 

typically avoid less liquid assets and focus on stocks with high baseline liquidity (Menkveld, 

2013). This implication of this choice is that any reduction in the cost of capital due to improved 

liquidity from HFT activity will concentrate in the most liquid stocks. 

 

3. DATA, MAIN VARIABLES AND DESCRIPTIVE STATISTICS 

3.1. Cost of capital metrics 

Given that the focus of our analysis is the effect of HFT on the cost of capital, we focus 

on the single component that they can directly influence, namely the cost of equity (COE). We 

use two quarterly COE measures. Our first measure, 𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, is estimated using the CAPM. For 

each calendar quarter 𝑡𝑡, we estimate the following time-series regression for each individual 

stock 𝑖𝑖 using all available daily excess returns: 1 

𝑟𝑟𝑖𝑖,𝑑𝑑 −  𝑟𝑟𝑓𝑓,𝑑𝑑 =  𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡�𝑟𝑟𝑚𝑚,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑� + 𝜀𝜀𝑖𝑖,𝑑𝑑                                 (1), 

where 𝑟𝑟𝑖𝑖,𝑑𝑑 is the daily stock return obtained from the Center for Research in Security Prices 

(CRSP), 𝑟𝑟𝑓𝑓,𝑑𝑑 is the daily risk-free rate proxied by the ten-year Treasury yield from the Federal 

Reserve Economic Data (FRED), and 𝑟𝑟𝑚𝑚,𝑑𝑑 is the daily value-weighted market return obtained 

 
1 For each quarterly estimation of beta, we require at least 30 valid observations of daily returns. 
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from Ken French’s website. We winsorize daily stock returns at the 1% level in each tail to 

eliminate outliers. The quarterly cost of equity is then computed as: 

𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑟𝑟𝑓𝑓,𝑡𝑡 + 𝛽̂𝛽𝑖𝑖,𝑡𝑡𝐸𝐸𝑡𝑡�𝑟𝑟𝑚𝑚,𝑡𝑡 − 𝑟𝑟𝑓𝑓,𝑡𝑡�                                  (2), 

where 𝛽̂𝛽𝑖𝑖,𝑡𝑡 is the estimated market beta from Equation (1), and 𝐸𝐸𝑡𝑡�𝑟𝑟𝑚𝑚,𝑡𝑡 − 𝑟𝑟𝑓𝑓,𝑡𝑡� is the expected 

quarterly market excess return, calculated as the historical mean of quarterly market excess 

returns. We compute both the quarterly market excess return and risk-free rate using daily 

compounded values. 

Our second measure, 𝑟𝑟𝐹𝐹𝐹𝐹−3, extends the CAPM by incorporating the Fama and French 

(1993) three-factor model to capture additional sources of return variation. The model includes 

two additional factors: SMB (Small Minus Big), the return difference between portfolios of 

small and large market capitalization stocks; and HML (High Minus Low), the return 

difference between portfolios of high and low book-to-market stocks. In this model, we first 

estimate the following time-series regression using daily data: 

𝑟𝑟𝑖𝑖,𝑑𝑑 −  𝑟𝑟𝑓𝑓,𝑑𝑑 =  𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡�𝑟𝑟𝑚𝑚,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑� + 𝑠𝑠𝑖𝑖,𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 +  ℎ𝑖𝑖,𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑 + 𝜀𝜀𝑖𝑖,𝑑𝑑                 (3), 

where the daily 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 and 𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑 are factors obtained from Ken French’s website. Using the 

estimated factor loadings 𝛽̂𝛽𝑖𝑖,𝑡𝑡 , 𝑠̂𝑠𝑖𝑖,𝑡𝑡  and ℎ�𝑖𝑖,𝑡𝑡 , along with expected quarterly factor premiums 

calculated as historical averages, we compute: 

 𝑟𝑟𝐹𝐹𝐹𝐹−3 =  𝑟𝑟𝑓𝑓,𝑡𝑡 + 𝛽̂𝛽𝑖𝑖,𝑡𝑡𝐸𝐸𝑡𝑡�𝑟𝑟𝑚𝑚,𝑡𝑡 − 𝑟𝑟𝑓𝑓,𝑡𝑡� + 𝑠̂𝑠𝑖𝑖,𝑡𝑡𝐸𝐸𝑡𝑡[𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡] +  ℎ�𝑖𝑖,𝑡𝑡𝐸𝐸𝑡𝑡[𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡]               (4). 

We employ both COE measures to ensure robustness in our analysis. The Fama-French 

three-factor model captures additional sources of return variation beyond the market factor that 

help explain cross-sectional differences in stock returns (Fama and French, 1993). However, 

higher-dimensional factor models can introduce potential estimation issues, such as extreme 

value estimates, due to their increased complexity and sensitivity to factor exposures (Fama 

and French, 2018; Lee et al., 2021). Therefore, we use both measures as complementary proxies. 
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3.2. Liquidity proxies 

We construct two inverse measures of liquidity using intraday trading data from CRSP 

to capture different dimensions of market liquidity. Our first measure is the relative quoted 

spread, defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑑𝑑 = 100 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑑𝑑−𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑑𝑑
(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑑𝑑+𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑑𝑑)/2

                              (5), 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑑𝑑 and 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑑𝑑 correspond to the last ask and bid quotes for stock 𝑖𝑖 on day 𝑑𝑑. Daily 

estimates are averaged across each quarter to obtain the quarterly measure 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 . The second measure is the quarterly Amihud price impact ratio, 

computed as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 =  106 1
𝐷𝐷
∑ �𝑅𝑅𝑖𝑖,𝑑𝑑�

𝑉𝑉𝑖𝑖,𝑑𝑑 

𝐷𝐷
𝑑𝑑=1                                                      (6), 

where 𝐷𝐷 is the number of trading days in quarter 𝑡𝑡, 𝑅𝑅𝑖𝑖,𝑑𝑑 is the return on day 𝑑𝑑 and 𝑉𝑉𝑖𝑖,𝑑𝑑  is the 

trading volume in US dollars on day 𝑑𝑑. Following Amihud et al. (2015), observations with 

daily volume below $100 are excluded. 

These two measures capture complementary dimensions of market liquidity. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 is the most used proxy for transaction costs and can be interpreted as the 

immediate roundtrip cost of a small trade. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡, while also well-established in the literature, 

captures price impact and is particularly suitable for the lower-frequency context of our 

analysis, as it reflects how much prices move in response to trading volume over longer periods. 

 

3.3. Other variables 

We obtain accounting information from Compustat to construct nine quarterly firm-

level control variables that capture key dimensions of firm characteristics including size, 

profitability, investment, leverage, and valuation. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is measured as the logarithm of total 

assets. 𝐼𝐼𝐼𝐼, investment-to-capital ratio, is calculated as investment expenditure divided by total 
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net property, plant, and equipment. We include two profitability metrics: return on assets 

(𝑅𝑅𝑅𝑅𝑅𝑅), computed as operating income before depreciation divided by the average total assets 

over the most recent two years; and return on equity (𝑅𝑅𝑅𝑅𝑅𝑅), calculated as income before 

extraordinary items divided by the average equity market value over the most recent two years. 

𝐵𝐵𝐵𝐵 is the book value of equity divided by the market value of equity. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is total debt 

divided by total assets. Cash ratio (𝐶𝐶𝐶𝐶𝐶𝐶ℎ) is cash and short-term equivalents divided by total 

assets. Gross profit margin (𝐺𝐺𝐺𝐺) is the difference between sales and cost of goods sold divided 

by sales. 𝑃𝑃𝑃𝑃𝑃𝑃 is net property, plant, and equipment divided by total sales. Detailed variable 

definitions are provided in Appendix Table A. 

  

3.4.Summary statistics 

Table 1 presents descriptive statistics for our main variables across NASDAQ and 

NYSE samples. Given that the co-location shock occurred around 2005Q2 and the latency 

improvement occurred around 2010Q2, the sample encompasses data from 2004 to 2011 in 

Table 1. The cost of capital measures show that NYSE firms have slightly higher average 

financing costs than NASDAQ firms. The mean 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is 3.085% for NASDAQ versus 3.419% 

for NYSE, while the 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3  yields higher estimates of 3.437% and 3.871%, respectively. 

Market betas are comparable across exchanges, with means of 1.013 for NASDAQ and 1.176 

for NYSE. 

Firm characteristics show notable differences between the two exchanges. NYSE firms 

are substantially larger, with mean 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (the logarithm of total assets) of 8 compared to 5.7 

for NASDAQ firms. NASDAQ firms exhibit higher investment rates (17.5% versus 12.4% for 

NYSE) and maintain significantly higher cash ratios (24.2% versus 10.3% for NYSE firms). 

NYSE firms show higher profitability, with mean 𝑅𝑅𝑅𝑅𝑅𝑅  of 3.2% compared to 0.6% for 

NASDAQ. NASDAQ firms display higher book-to-market ratios (0.668 versus 0.584) and 
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Table 1. Descriptive statistics 
This table presents descriptive statistics for all variables employed in the analysis. The statistics include the mean, standard deviation (𝜎𝜎), 25th percentile (first quartile), median, 
and 75th percentile (third quartile) for each variable. 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 are the cost of capital measures calculated using the CAPM and Fama and French (1993) models, 
respectively. 𝛽𝛽𝑖𝑖𝑖𝑖 is the systematic risk measure estimated by regressing stock returns on market returns. Firm characteristics are 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖  (the natural logarithm of total assets), 
𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡 (ratio of investment expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖  (returns on average total assets and common equity, respectively), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖  (ratio of current liabilities and long-term debt 
to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 (ratio of cash and short-term equivalents to total assets), 𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖  (ratio of gross value of property and equipment to total 
revenue). Liquidity measures are 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 (Amihud’s illiquidity measure) and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 ,𝑡𝑡 (relative quoted spread). Variable definitions are provided in Appendix A. 
All variables are winsorized at the 1% level in both tails of the distribution. The sample period extends from January 1, 2004, to December 31, 2011, encompassing the 
timeframe surrounding two technological infrastructure upgrades examined in this study: the co-location upgrade implemented in Q2 2005 and the latency reduction upgrade 
implemented in Q2 2010. 

 
NASDAQ NYSE  

Mean 𝜎𝜎 25th Median 75th Mean 𝜎𝜎 25th Median 75th 
Cost of capital metrics 

𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  (%) 3.085 1.534 1.933 2.978 4.030 3.419 1.166 2.602 3.292 4.105 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 (%) 3.437 2.247 1.846 3.052 4.536 3.871 2.033 2.476 3.543 4.851 
𝛽𝛽𝑖𝑖𝑖𝑖 (%) 1.013 0.725 0.465 0.975 1.468 1.176 0.566 0.777 1.111 1.508 

Firm characteristics 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖  (ln assets, $M) 5.704 1.670 4.550 5.717 6.796 7.999 1.638 6.814 7.824 9.015 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 0.175 0.173 0.050 0.117 0.242 0.124 0.111 0.046 0.091 0.166 
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 0.006 0.062 0.001 0.012 0.036 0.032 0.026 0.017 0.030 0.045 
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  -0.009 0.050 -0.006 0.004 0.008 0.001 0.036 0.003 0.007 0.010 
𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖  0.668 0.646 0.295 0.516 0.826 0.584 0.499 0.307 0.497 0.739 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖  0.160 0.202 0.000 0.092 0.235 0.264 0.194 0.118 0.243 0.370 
𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖  0.242 0.253 0.038 0.136 0.389 0.103 0.120 0.023 0.058 0.139 
𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 -0.295 5.341 0.246 0.442 0.629 0.354 0.220 0.204 0.319 0.489 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  1.861 5.587 0.268 0.618 1.290 2.080 3.297 0.406 0.796 1.936 

Liquidity 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 78.912 227.234 0.422 2.907 32.243 1.716 8.073 0.028 0.102 0.435 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 ,𝑑𝑑 (bps) 118.160 192.536 17.400 40.192 127.833 20.271 31.296 7.723 12.495 21.182 
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lower leverage (16.0% versus 26.4%). The liquidity measures also highlight stark differences 

between the two exchanges. NASDAQ stocks are substantially less liquid, with a mean 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

of 78.9 compared to 1.7 for NYSE. Similarly, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 averages 118 basis points 

for NASDAQ versus 20 basis points for NYSE. Overall, the differences in fundamentals and 

liquidity dynamics clearly show that there are significant differences between firms listed on 

NYSE and NASDAQ. Therefore, in the next section, where we investigate the impact of HFT 

on the cost of capital using the technological shocks implemented on NASDAQ, we use a 

matched sample approach. 

 

4. THE IMPACT OF HFT ON THE COST OF CAPITAL 

HFT activity and market quality are jointly determined, creating an endogeneity 

problem. We address this using a DiD framework that exploits two technological shocks 

affecting HFT activity. The first shock is NASDAQ’s introduction of co-location hosting 

services in 2005 (Boehmer et al., 2021), and the second is the 2010 introduction of NASDAQ’s 

technological upgrade that reduces order submission and processing latency (Chordia and Miao, 

2020). In this section, we discuss these technological upgrades, describe our sample matching 

procedure, and estimate the impact of HFT on the cost of capital around the shocks. 

4.1.Technological shocks 

Using technological upgrades in financial markets to investigate the role of HFTs in 

market quality is common. One frequently used technological change is the introduction of co-

location services (Brogaard et al., 2015; Boehmer et al., 2021). Co-location allows fast traders 

to minimize data turnaround time by physically locating their computer hardware close to the 

stock exchange’s hardware. This proximity reduces the physical distance that electronic signals 

must travel, cutting latency from milliseconds to microseconds – a significant advantage when 

trading decisions occur in fractions of a second. The service typically involves traders renting 
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space in the same data center as the exchange’s matching engines. Many financial markets have 

introduced co-location to facilitate HFT activity, recognizing that even nanosecond advantages 

can translate into substantial profits for HFTs. We use NASDAQ’s introduction of co-location 

services around 2005Q2 as in Boehmer et al. (2021).2  NASDAQ’s co-location service was 

among the first comprehensive offerings by a major U.S. exchange, providing a clean setting 

to examine how enhanced speed advantages affect market outcomes. 

The second shock we take advantage of is NASDAQ’s improvement in data and order 

dissemination technology in 2010Q2. Ye et al. (2013) document a significant decrease in 

trading latency for order cancellation and execution on NASDAQ in April and May 2010. This 

improvement was partly driven by NASDAQ’s installation of the Nehalem engine. As a result, 

order submission and processing latency decreased from microseconds to nanoseconds. This 

technological upgrade not only affected order execution but also improved the dissemination 

of market data, allowing traders to receive price updates and trade confirmations with 

substantially reduced latency. Given the importance of this event, Chordia and Miao (2020) 

use it to examine HFT’s effect on market efficiency around earnings announcements, finding 

that the enhanced speed facilitates more rapid price discovery during information-intensive 

periods.  

4.2.Sample matching 

The two technological shocks occur on NASDAQ. Therefore, we designate NASDAQ-

listed stocks as our treatment group and NYSE-listed stocks as the corresponding control group 

in the DiD analysis. However, stocks listed on these two exchanges differ fundamentally with 

 
2 There is a debate in the literature on the correct timing of NASDAQ’s introduction of co-location services for 
the first time. Boehmer et al. (2021) use April 2005 as NASDAQ’s co-location introduction date, while Aitken et 
al. (2023) use March 2007. We carried out an extensive search and concluded that 2005Q2 is much more likely 
to be the correct date. NASDAQ introduced co-location well before 2007, as evidenced by a document available 
on the SEC website announcing the existence of a co-location agreement in December 2005:  
https://www.sec.gov/Archives/edgar/data/1120193/000119312505242699/dex994.htm. It is plausible that 
NASDAQ introduced co-location in April 2005 and later increased capacity or upgraded its technological features 
in 2007. 

https://www.sec.gov/Archives/edgar/data/1120193/000119312505242699/dex994.htm
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regards to certain characteristics (see Table 1); hence, to mitigate potential biases, we match 

NYSE and NASDAQ stocks. For each HFT shock event, we obtain a matched sample using 

propensity score matching (PSM), which constructs balanced treatment and control groups by 

matching firms with similar characteristics, thereby isolating the effects of the technological 

upgrades from confounding factors (Dai et al., 2020; Francis et al., 2021). Specifically, ahead 

of each technological shock at quarter 𝑡𝑡, we estimate the following pre-match probit regression 

using cross-sectional observations at quarter 𝑡𝑡 − 4:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝛼𝛼 +  𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝛿𝛿𝑛𝑛 + 𝜀𝜀𝑖𝑖                                                  (7), 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 is a dummy variable equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if 

listed on NYSE, and 𝛿𝛿𝑛𝑛 corresponds to industry fixed effects. 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of firm controls 

relevant to firm 𝑖𝑖’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 (the natural logarithm of total assets), 𝐼𝐼𝐼𝐼𝑖𝑖 

(ratio of investment expenditure), 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 (returns on average total assets and common 

equity, respectively), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖  (ratio of current liabilities and long-term debt to total assets), 

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 (ratio of cash and short-term equivalents to total assets), 𝐺𝐺𝐺𝐺𝑖𝑖 (gross profit margin), and 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 (ratio of gross value of property and equipment to total revenue). Appendix A defines all 

variables and their sources. All variables are winsorized at the 1% level. Standard errors are 

double-clustered by firm and quarter. 

The fitted value of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝚤𝚤�  for firm 𝑖𝑖 serves as its propensity score and is used to 

match each NASDAQ firm to a corresponding NYSE firm.3 Following Francis et al. (2021), 

we require that the difference in a matched pair’s 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝚤𝚤�  value be less than 0.01. This 

 

3 We implement a nearest neighbor matching (NNM) algorithm without replacement to match firms with similar 
propensity scores across both platforms. The NNM algorithm calculates the distance between covariate patterns 
to identify the “closest” neighbors, minimizing the disparity between matched units while avoiding duplicates. 
This approach ensures that each treated firm is paired with the most comparable control firm, enhancing the 
validity of the matching process. By prioritizing similarity in key covariates, NNM reduces potential bias in 
estimating treatment effects, providing a robust framework for causal inference. 
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Table 2. Propensity score matching results 
This table reports results from propensity score matching (PSM) of firms listed on NASDAQ (treatment group) 
with those listed on NYSE (control group). The pre-match probit regression is estimated using cross-sectional 
observations at quarter t-4, four quarters prior to the implementation of technological upgrades: co-location 
hosting service on NASDAQ in Q2 2005 and latency upgrade technology in Q2 2010, as documented in Boehmer 
et al. (2021) and Chordia and Miao (2020), respectively. The probit regression specification is: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑿𝑿𝒊𝒊 + 𝛿𝛿𝑛𝑛 + 𝜀𝜀𝑖𝑖, 
where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 is a dummy variable equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if listed on NYSE, 
and 𝛿𝛿𝑛𝑛 corresponds to industry fixed effects. 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of firm controls relevant to firm 𝑖𝑖’s cost of capital, 
including 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖  (the natural logarithm of total assets), 𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡 (ratio of investment expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖 
(returns on average total assets and common equity, respectively),  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖  (ratio of current liabilities and long-
term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 (ratio of cash and short-term equivalents to total assets), 𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), 
and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖 (ratio of gross value of property and equipment to total revenue). Appendix A defines all variables and 
their sources. The fitted value (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖� ) for firm 𝑖𝑖 is used to match each NASDAQ firm to a corresponding 
NYSE firm. Panel A reports probit regression results for pre-match and post-match samples. Matching is 
conducted separately for each upgrade event. Post-match samples are obtained by restricting matched pairs to 
have propensity score differences less than 0.01. Panel B reports the distribution of propensity scores for matched 
firms. In Panel A, standard errors are double-clustered by firm and quarter, with t-statistics reported in parentheses. 
***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. 
 
Panel A 

Panel B 

criterion yields a sample of 1378 matched firms (689 for each exchange) for the 2005 co-

location hosting services event, and 1320 firms (660 for each exchange) for the 2010 latency 

upgrade. To test matching quality, we re-estimate Equation (7) using the matched pairs.  

  Co-location hosting service Latency upgrade 
 Pre-match Post-match Pre-match Post-match 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖   -0.543*** -0.019 -0.465*** -0.007 
 (-26.950) (-0.656) (-24.615) (-0.238) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖   0.605** -0.276 0.625** -0.043 
 (2.341) (-0.782) (2.013) (-0.099) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  -10.895*** -0.668 -6.100*** 0.015 
 (-9.951) (-0.480) (-5.739) (0.011) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖   2.634** 0.359 0.187 -0.291 
 (2.176) (0.245) (0.400) (-0.484) 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖   -0.272*** 0.054 0.237*** 0.009 
  (-3.576) (0.553) (6.122) (0.186) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖   -0.349**  -0.165 -0.666*** -0.060 
 (-2.314) (-0.852) (-4.725) (-0.331) 

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖   0.510*** 0.115 0.431** 0.077 
 (2.675) (0.445) (2.082) (0.274) 

𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  0.029* -0.017 0.023 -0.002 
 (1.727) (-0.704) (1.296) (-0.060) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖   0.013 -0.013 0.011 0.007 
 (1.155) (-0.738) (1.335) (0.631) 

Constant  Yes Yes Yes Yes 
Industry fixed effects  Yes Yes Yes Yes 
Stock observations  3789 1376 3495 1320 

 Co-location hosting service Latency upgrade 
 N Mean Min Max N Mean Min Max 

Treatment 688 0.556 0.031 1.000 660 0.566 0.040 0.990 
Control 688 0.556 0.030 0.995 660 0.565 0.040 0.985 
Difference 

 
0.000 0.001 0.005 

 
0.001 0.000 0.005 
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Panel A of Table 2 presents both pre-match and post-match coefficient estimates. The 

pre-match estimates for both technological shocks demonstrate statistically significant 

differences in firm characteristics between NASDAQ and NYSE firms, underscoring the 

necessity of matching to mitigate bias. In contrast, the post-match probit regression results 

show that none of the characteristics between NASDAQ and NYSE firms in our matched 

sample is statistically significant. Panel B presents the distribution of propensity scores from 

the matching process. The differences between the mean, minimum, and maximum scores for 

treatment and control groups are trivial, with identical mean estimates for both shocks. Thus, 

we have sufficient evidence that there are no fundamental differences between the treatment 

and control groups in our matched sample, which is necessary for the DiD analysis we conduct 

in the next section. 

4.3.HFT and the cost of capital 

We begin by examining the overall effect of HFT on firms’ cost of capital using the 

following DiD specification: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖      (8),      

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 is a dummy variable equal to 1 (0) for NASDAQ- (NYSE-) listed firms. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is a dummy variable that equals one for the quarter when either shock to HFT event is 

observed (2005Q2 for co-location and 2010Q2 for the latency reduction) and the subsequent 

four quarters, and zero for the preceding four quarters. Thus, we employ a nine-quarter event 

window around each technological upgrade.4 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and time fixed 

effects, respectively. We cannot include a separate 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 variable in the model because it is 

perfectly collinear with the time fixed effects. The dependent variable, 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 , denotes the 

firm’s cost of capital, measured using two approaches: 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, calculated using the CAPM, and  

 
4 Using alternative event windows of 7 or 11 quarters around the event yield qualitatively similar results. 
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Table 3. HFT and the cost of capital  
This table reports estimated coefficients and t-statistics (in parentheses) for the following firm-quarter difference-
in-differences model using a propensity score matched sample, as outlined in Table 2: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝜸𝜸𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖, 
where 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and quarter fixed effects, respectively. Subscripts 𝑖𝑖 and 𝑡𝑡 indicate firm 
and quarter, respectively. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 corresponds to one of 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 . 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡  is a dummy variable 
equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if listed on NYSE. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  is a dummy variable that equals 
one from the quarter when implementation of either technological upgrade on NASDAQ is completed and 
subsequently. The upgrades are the implementation of co-location hosting service on NASDAQ in Q2 2005 
(Columns 1 and 2) and latency upgrade in Q2 2010 (Columns 3 and 4). 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of firm controls relevant to 
firm 𝑖𝑖 ’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖  (the natural logarithm of total assets), 𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡  (ratio of investment 
expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖  (returns on average total assets and common equity, respectively),  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖 (ratio of 
current liabilities and long-term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 (ratio of cash and short-term equivalents to total assets), 
𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖  (ratio of gross value of property and equipment to total revenue). Appendix 
A defines all variables and their sources. All variables are winsorized at the 1% level. The model is estimated for 
each upgrade event independently using a [-4, +4]-quarter estimation window. Columns (1) and (3) report 
estimations using 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , while Columns (2) and (4) report results for 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3. Standard errors are double-clustered 
by firm and quarter. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. 
 

 
 Co-location hosting service Latency upgrade 
 (1) 

𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
(2) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

(3) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

(4) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡  0.096*** -0.076 -0.404*** -0.454*** 
  (2.906) (-1.338) (-14.746) (-13.468) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡   0.031 0.296*** 0.141*** 0.266*** 
  (0.615) (3.419) (3.347) (5.143) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖   0.137*** 0.028 0.041*** 0.029*** 
 (12.917) (1.534) (5.047) (2.902) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖   0.068 0.213 -0.463*** -0.862*** 
 (0.591) (1.084) (-4.414) (-6.675) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  0.040 1.767** -4.103*** -7.130*** 
 (0.076) (1.974) (-9.647) (-13.608) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖   -0.149 0.052 -0.447* -0.942*** 
 (-0.274)  (0.055) (-1.727) (-2.957) 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖   -0.382*** 0.019 0.067*** 0.143*** 
 (-9.562) (0.270) (3.309) (5.767) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖   -0.175**  0.082 0.466*** 0.523*** 
 (-2.321) (0.633) (8.195) (7.468) 

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖   0.758*** -0.667*** 0.088 -0.239** 
 (7.704) (-3.948) (1.095) (-2.400) 

𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  -0.056*** -0.037* 0.006 0.033 
 (-4.647) (-1.763) (0.327) (1.445) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖   -0.005 0.004 -0.000 -0.010** 
 (-0.760) (0.419) (-0.129)  (-2.348) 

Industry fixed effects  Yes Yes Yes Yes 
Time fixed effects  Yes Yes Yes Yes 
Stock observations  11033 11033 11075 11075 

𝑅𝑅2����  0.080 0.120 0.150 0.153 
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𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3, based on the Fama and French (1993) three-factor model. All other variables remain as 

defined in Equation (7). 

Table 3 presents the estimation results for both technological shocks. Columns (1) and 

(2) report the results for the 2005Q2 co-location introduction, while Columns (3) and (4) 

correspond to the 2010Q2 latency reduction event. For each event, we present results for both 

cost of capital measures: 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 in Columns (1) and (3), and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 in Columns (2) and (4). The 

interaction term 𝛽𝛽2� is consistently positive and statistically significant for both cost of capital 

measures following the 2010 latency upgrade, and for 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 following the 2005 co-location 

upgrade. These results indicate that increased HFT activity, induced by the technological 

enhancements, is associated with a higher cost of capital. The magnitudes of these effects are 

also economically meaningful. For the 2010 latency reduction, the estimated coefficients for 

𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 are 0.141 and 0.266, respectively. Relative to the pre-shock average values 

of these measures for the control group (NYSE-listed firms), this corresponds to increases of 

approximately 4.1% and 7.5%. For the 2005 co-location upgrade, the increase in 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 is about 

7.3%, also reflecting substantial economic significance. 

We also estimate Equation (8) as a dynamic DiD specification and plot the time-varying 

estimates of 𝛽𝛽2�, along with their 90% confidence intervals. Panel A (B) presents the results for 

the co-location (latency) upgrade. As shown in Figure 1, there are no statistically significant 

differences in the cost of capital between NASDAQ and NYSE firms prior to both 

technological shocks, supporting the parallel trends assumption. This confirms the reliability 

of our sample matching process and hence, DiD framework. Following the upgrades, however, 

we observe a significant divergence.  

Specifically, for the co-location upgrade, the cost of capital for NASDAQ-listed firms 

increases relative to their NYSE counterparts. The increase is statistically significant for 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

in the quarter immediately following the upgrade at the 0.05 level and remains significant in 
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Figure 1. The dynamics of HFT and cost of capital surrounding the technological upgrades 
This figure plots the coefficients 𝛽𝛽𝑡𝑡  from the following dynamic DiD model estimated using a 6-quarter window 
[-3 quarters, +3 quarters] surrounding two technological upgrades: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + ∑ 𝛽𝛽𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡=3
𝑡𝑡=−3 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 + +𝛿𝛿𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑖𝑖, 

where 𝛿𝛿𝑛𝑛 corresponds to industry fixed effects. Subscripts 𝑖𝑖  and 𝑡𝑡  indicate firm and quarter, respectively. 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 corresponds to one of 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 is a dummy variable equaling one if firm 𝑖𝑖 is listed on 
NASDAQ and zero if listed on NYSE. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is a time indicator that takes the value of one for the 𝑡𝑡𝑡𝑡ℎ time period 
following the completion of either technological upgrade on NASDAQ. The upgrades are the implementation of 
co-location hosting service on NASDAQ in Q2 2005 (Panels A and B) and latency upgrade in Q2 2010 (Panels 
C and D). The dots represent the coefficients 𝛽𝛽𝑡𝑡 while the shaded areas denote their corresponding 90% confidence 
intervals. Standard errors are double-clustered by firm and quarter. 
 
Panel A: Co-location  

 
 
the third quarter following the upgrade at the 0.10 level. For 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , we do not observe 

significant changes, consistent with the baseline DiD results. For the latency upgrade, the 

increase in both cost of capital measures is statistically significant. Specifically, the increase is 

statistically significant at the 0.05 level for 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 in the first and second quarters following the 

shock. For 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the increase is statistically significant at the 0.05 level in the second quarter 

following the shock.
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(continued) Figure 1.Panel B: Latency upgrade 
 

  
 

5. TESTING THE MECHANISMS 

Our baseline results show that HFT – on average – leads to higher cost of capital. In 

this section, we explore the economic mechanisms underpinning this relationship. In Section 

2, we highlight that HFT impacts the cost of capital either via the systematic risk or the liquidity 

premium channel. In this section we, therefore, investigate these channels in detail. We 

formally test the systematic risk channel by re-estimating Equation (8), however using firm-

level beta as the dependent variable. Thus, by testing whether the HFT shock events are 

associated with increases to the beta of stocks in our sample, we can observe any change to 

systematic risk levels arising from a positive shock to HFT. To capture heterogeneity in how 

stocks respond to market-wide shocks, we estimate this model for the full sample, and 

separately for low-beta (𝛽𝛽 < 1) and high-beta (𝛽𝛽 ≥ 1) stocks. This distinction is motivated by 
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Table 4. Systematic risk channel: beta as dependent variable 
This table reports estimated coefficients and t-statistics (in parentheses) for the following firm-quarter difference-
in-differences model using a propensity score matched sample, as outlined in Table 2: 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝜸𝜸𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖, 
where 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and quarter fixed effects, respectively. Subscripts 𝑖𝑖 and 𝑡𝑡 indicate firm 
and quarter, respectively. 𝛽𝛽𝑖𝑖𝑖𝑖 is the systematic risk measure estimated by regressing the stock returns on market 
returns. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 is a dummy variable equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if listed on NYSE. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is a dummy variable that equals one from the quarter when implementation of either technological upgrade 
on NASDAQ is completed and subsequently. The upgrades are the implementation of co-location hosting service 
on NASDAQ in Q2 2005 (Columns 1 to 3) and latency upgrade in Q2 2010 (Columns 4 to 6). 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of 
firm controls relevant to firm 𝑖𝑖’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖  (the natural logarithm of total assets), 𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡 (ratio 
of investment expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖  (returns on average total assets and common equity, respectively), 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖  (ratio of current liabilities and long-term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖  (ratio of cash and short-term 
equivalents to total assets), 𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖  (ratio of gross value of property and equipment 
to total revenue). Appendix A defines all variables and their sources. All variables are winsorized at the 1% level. 
The model is estimated for each upgrade event independently using a [-4, +4]-quarter estimation window. 
Columns (1) and (4) report estimations using the whole sample, while Columns (2) and (5) report results for low 
beta stocks (𝛽𝛽 < 1) and Columns (3) and (6) report results for high beta stocks (𝛽𝛽 ≥ 1). Standard errors are 
double-clustered by firm and quarter. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 levels, 
respectively. 
 

 Co-location hosting service Latency upgrade 

 (1) 
Whole 

l  

(2) 
𝛽𝛽 < 1 

(3) 
𝛽𝛽 ≥ 1 

(4) 
Whole 

l  

(5) 
𝛽𝛽 < 1 

(6) 
𝛽𝛽 ≥ 1 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 0.028* -
 

0.236*** -0.202*** -
 

0.058**
 (1.775) (-16.078) (11.467) (-14.697) (-30.188) (3.664) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  -0.012 0.217*** -
 

0.071*** 0.151*** -0.030 
(-0.479) (5.235) (-2.792) (3.395) (6.146) (-1.271) 

Controls Yes Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes 

Stock-quarter 
 

11033 2664 5040 11075 6354 7542 
𝑅𝑅2���� 0.075 0.186 0.104 0.159 0.228 0.153 

 

prior literature: Black (1972) and Frazzini and Pedersen (2014) show that low- and high-beta 

stocks behave asymmetrically and respond differently to funding conditions and investor 

constraints. Similarly, Hong and Sraer (2016) argue that these two groups vary in their 

sensitivity to investors’ disagreements regarding market prospects, i.e., differences in beliefs 

about future stock market earnings and returns. 

Table 4 presents the estimation results. In the full sample, HFT activity is not 

significantly associated with changes in systematic risk following the co-location upgrade. For 

the order transmission latency upgrade, HFT is positively and statistically significantly 

associated with stock beta. For the whole sample, the results suggest that the 2010Q2 order 

submission latency upgrade increased NASDAQ stock betas by approximately 7% relative to 
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NYSE stocks. Nevertheless, given that this impact is statistically significant only for the latency 

upgrade, this finding should be interpreted with caution. 

The split-sample analysis reveals a notable asymmetry. Among low-beta stocks, HFT 

activity is positively and statistically significantly related to increases in beta. Following the 

introduction of NASDAQ’s co-location and latency-reducing technologies, the betas of low-

beta NASDAQ stocks rose by approximately 24% (0.217 estimated coefficient relative to a 

pre-shock average of 0.888) and 17%, respectively, compared to matched NYSE counterparts. 

These effects are statistically significant at the 1% level across all specifications and 

economically meaningful. In contrast, for high-beta stocks, HFT activity is associated with a 

modest ~6%, nevertheless, statistically significant decline (at the 0.01 level) in beta around the 

co-location upgrade; no statistically significant change in beta is observed following the latency 

reduction.  

The fact that the positive association between HFT and the systematic risk measure, 

beta, holds for only low-beta stocks emphasizes the importance of estimating our baseline DiD 

framework separately for low and high-beta stocks when investigating the association between 

HFT and the cost of capital. The logic is straightforward: if HFT increases systematic risk 

primarily for low-beta stocks, and if investors price systematic risk accordingly, then the effect 

of HFT on the cost of capital should be concentrated among this group. Consistent with this 

hypothesis, the results in Table 5 confirm that the positive association between HFT activity 

and the cost of capital is driven entirely by low-beta stocks. In the baseline results, HFT is not 

significantly related to the𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 for the co-location upgrade. However, for low-beta stocks, 

HFT is statistically significantly and positively associated with the cost of capital in all four 

specifications (2 technology upgrades × 2 cost of capital measures). Additionally, examining 

the magnitudes of the coefficients, they increase by at least 50% when we restrict our sample 
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Table 5. Systematic risk channel: heterogeneous effects by beta 
This table reports estimated coefficients and t-statistics (in parentheses) for the following firm-quarter difference-in-differences model using a propensity score matched sample, 
as outlined in Table 2: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝜸𝜸𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖, 
where 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and quarter fixed effects, respectively. Subscripts 𝑖𝑖 and 𝑡𝑡 indicate firm and quarter, respectively. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 corresponds to one of 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 is a dummy variable equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if listed on NYSE. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is a dummy variable that equals one from the quarter 
when implementation of either technological upgrade on NASDAQ is completed and subsequently. The upgrades are the implementation of co-location hosting service on 
NASDAQ in Q2 2005 (Columns 1 to 4) and latency upgrade in Q2 2010 (Columns 5 to 8). 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of firm controls relevant to firm 𝑖𝑖’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖 
(the natural logarithm of total assets), 𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡 (ratio of investment expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖 (returns on average total assets and common equity, respectively), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖  (ratio 
of current liabilities and long-term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 (ratio of cash and short-term equivalents to total assets), 𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖  (ratio of gross value 
of property and equipment to total revenue). Appendix A defines all variables and their sources. All variables are winsorized at the 1% level. The model is estimated for each 
upgrade event independently using a [-4, +4]-quarter estimation window. The model is estimated for low-beta and high-beta stocks separately. Columns (1), (3), (5) and (7) 
report estimations for low beta stocks (𝛽𝛽 < 1), while Columns (2), (4), (6) and (8) report estimations for high beta stocks (𝛽𝛽 ≥ 1). Standard errors are double-clustered by firm 
and quarter. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. 
 

 Co-location hosting service Latency upgrade 
 𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡  𝑟𝑟𝑟𝑟_𝐹𝐹𝐹𝐹3𝑖𝑖,𝑡𝑡  𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 𝑟𝑟𝑟𝑟_𝐹𝐹𝐹𝐹3𝑖𝑖,𝑡𝑡 

 (1) 
𝛽𝛽 < 1 

(2) 
𝛽𝛽 ≥ 1 

(3) 
𝛽𝛽 < 1 

(4) 
𝛽𝛽 ≥ 1 

(5) 
𝛽𝛽 < 1 

(6) 
𝛽𝛽 ≥ 1 

(7) 
𝛽𝛽 < 1 

(8) 
𝛽𝛽 ≥ 1 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 -0.952*** 0.504*** -0.924*** 0.110 -0.986*** 0.108*** -1.073*** 0.079* 
(-16.127) (11.627) (-8.692) (1.384) (-29.995) (3.440) (-26.211) (1.958) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.466*** -0.177*** 0.393** 0.031 0.288*** -0.053 0.431*** 0.036 
(5.332) (-2.737) (2.499) (0.262) (5.862) (-1.124) (7.048) (0.596) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Stock-quarter observations 2664 5040 2664 5040 6354 7542 6354 7542 
𝑅𝑅2���� 0.195 0.106 0.227 0.196 0.218 0.138 0.199 0.150 
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to low-beta stocks. Conversely, for high-beta stocks, HFT is statistically significantly related 

to the cost of capital in only one of four specifications, and this association is negative.  

Why does this effect appear only for low-beta stocks? A plausible explanation lies in 

the nature of HFT information transmission. HFTs enhance the speed and efficiency with 

which market-wide information is impounded into prices through arbitrage and market-making. 

For low-beta stocks, which are typically less sensitive to aggregate market movements, the 

introduction of HFT may substantially increase their responsiveness to market-wide 

information, thereby raising their co-movements with the market, which in turn increases 

systematic risk and the cost of capital. This occurs because HFTs, unlike traditional market 

makers with limited capacity and selective stock coverage, can simultaneously monitor and 

trade across thousands of securities (Malceniece et al., 2019). Their algorithms rapidly process 

market-wide signals and execute trades within microseconds, effectively transmitting 

systematic information to stocks that previously responded more slowly to market movements. 

Traditional market makers, constrained by human limitations and capital requirements, often 

focus on a subset of liquid stocks, leaving many securities with delayed incorporation of market 

information.  

In contrast, high-beta stocks are already tightly linked to market movements, limiting 

the marginal effect of additional information transmission. Consistent with this, we do not 

detect a significant increase in the systematic risk of high-beta stocks, and we even note a 

decline in one specification. The decline in high-beta stocks’ beta may reflect HFTs’ role in 

reducing noise and pricing errors, as suggested by Brogaard et al. (2014). Specifically, if high-

beta stocks exhibit high beta because they overreact to market-wide information, HFTs can 

reduce their beta by mitigating the overreaction of these stocks to systematic information.5    

 
5 One can also draw parallels to the “beta compression” mechanism discussed by Frazzini and Pedersen (2014). 
They show that in the presence of funding liquidity risk, betas tend to compress toward one across the cross-
section of assets. In such environments, low-beta stocks experience upward pressure on their betas, while high-
beta stocks see a downward adjustment. The intuition is that during funding liquidity shocks, all assets begin to 
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If this explanation is valid, among low-beta stocks, the effect of HFT would be stronger 

for firms whose stocks are relatively illiquid – those with more pronounced informational 

frictions that are often overlooked by traditional market makers due to limited profitability 

(Lyle and Naughton, 2015). In these stocks, a positive shock to HFT can facilitate the diffusion 

of market-wide information and increase co-movement with the broader market. In contrast, 

for more liquid stocks, where market-wide information is already incorporated efficiently due 

to high trading volume and analyst coverage, the marginal impact of HFT on price 

responsiveness and return co-movement is likely to be minimal even within the low-beta group. 

This prediction is consistent with Glosten et al. (2021), who show that ETF-induced co-

movement is strongest among small firms, and with Malceniece et al. (2019), who find that 

HFT-driven co-movement is concentrated in less liquid stocks. To test this, we estimate the 

following extended DiD model: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 +  𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  +  𝛽𝛽3𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 +

        𝛽𝛽4𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡+𝛽𝛽5𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝛽𝛽6𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 ×

                      𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖                                                                                  (9),   

 
where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is an indicator variable that equals one if firm 𝑖𝑖’s inverse measure of liquidity 

exceeds the cross-sectional median in the three quarters prior to the event. We use both 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 as inverse proxies of liquidity. Standard errors are clustered by stock 

and quarter, and we estimate Equation (9) separately for low- and high-beta stocks. 

 The results, presented in Table 6, support our prediction. Among low-beta firms, the 

double interaction term is positive and statistically significant across all 8 specifications (2 

 
co-move more closely with the market, regardless of their usual levels volatility, resulting in convergence of betas 
toward unity. While Frazzini and Pedersen (2014) focus on funding liquidity constraints, which may not be 
directly affected by HFT, Brunnermeier and Pedersen (2009) establish a link between funding liquidity and market 
liquidity. Given that HFTs significantly influence market liquidity, they may indirectly affect funding conditions 
and thus contribute to beta compression. Through this channel, HFT could raise the systematic risk of low-beta 
stocks by amplifying liquidity-related constraints in financial markets. 
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Table 6. Systematic risk channel: illiquidity interaction effects 
This table reports estimated coefficients and t-statistics (in parentheses) for the following firm-quarter difference-in-differences model using a propensity score matched sample, 
as outlined in Table 2: 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  +  𝛽𝛽3𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 + 𝛽𝛽4𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡+𝛽𝛽5𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽6𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  + 𝜸𝜸𝑿𝑿𝒊𝒊𝒊𝒊 + 𝛿𝛿𝑛𝑛

+ 𝜌𝜌𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖 
where 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and quarter fixed effects, respectively. Subscripts 𝑖𝑖 and 𝑡𝑡 indicate firm and quarter, respectively. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 corresponds to one of 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 is a dummy variable equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if listed on NYSE. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is a dummy variable that equals one from the quarter 
when implementation of either technological upgrade on NASDAQ is completed and subsequently. The upgrades are the implementation of co-location hosting service on 
NASDAQ in Q2 2005 (Columns 1 to 4) and latency upgrade in Q2 2010 (Columns 5 to 8). 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is an indicator equal to one if firm 𝑖𝑖’s illiquidity measure exceeds the cross-
sectional median in the three quarters prior to the event. We use both Amihud’s illiquidity measure (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡) in Panel A and relative quoted spread (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 ,𝑡𝑡) in 
Panel B as our liquidity proxy. 𝑋𝑋𝑖𝑖𝑖𝑖 is a vector of firm controls relevant to firm 𝑖𝑖’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖  (the natural logarithm of total assets), 𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡 (ratio of investment 
expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖 and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖  (returns on average total assets and common equity, respectively),  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖 (ratio of current liabilities and long-term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 
(ratio of cash and short-term equivalents to total assets), 𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖  (ratio of gross value of property and equipment to total revenue). Appendix A 
defines all variables and their sources. All variables are winsorized at the 1% level. The model is estimated for each upgrade event independently using a [-4, +4]-quarter 
estimation window. The model is estimated for low-beta and high-beta stocks separately. Columns (1), (3), (5) and (7) report estimations for low beta stocks (𝛽𝛽 < 1), while 
Columns (2), (4), (6) and (8) report estimations for high beta stocks (𝛽𝛽 > 1). Standard errors are double-clustered by firm and quarter. ***, **, and * denote statistical significance 
at the 0.01, 0.05, and 0.1 levels, respectively. 
 
Panel A: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is used as an illiquidity proxy 
 

 Co-location hosting service Latency upgrade 
 𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡  𝑟𝑟𝑟𝑟_𝐹𝐹𝐹𝐹3𝑖𝑖,𝑡𝑡  𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 𝑟𝑟𝑟𝑟_𝐹𝐹𝐹𝐹3𝑖𝑖,𝑡𝑡 

 (1) 
𝛽𝛽 < 1 

(2) 
𝛽𝛽 ≥ 1 

(3) 
𝛽𝛽 < 1 

(4) 
𝛽𝛽 ≥ 1 

(5) 
𝛽𝛽 < 1 

(6) 
𝛽𝛽 ≥ 1 

(7) 
𝛽𝛽 < 1 

(8) 
𝛽𝛽 ≥ 1 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 -0.544*** 0.660*** -0.494*** 0.275** -0.515*** 0.262*** -0.557*** 0.276*** 
(-6.358) (10.962) (-3.181) (2.476) (-11.379) (5.938) (-9.887) (4.907) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.049 -0.303*** -0.190 -0.167 0.193*** -0.106 0.311*** -0.050 
 (0.385) (-3.384) (-0.824) (-1.015) (2.864) (-1.612) (3.710) (-0.596) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 0.070 0.370*** 0.113 0.368*** 0.723*** 0.393*** 0.718*** 0.388*** 
 (0.790) (5.705) (0.708) (3.081) (14.547) (8.019) (11.599) (6.210) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 -0.726*** -0.312*** -0.851*** -0.334** -0.923*** -0.305*** -1.004*** -0.391*** 
(-5.960) (-3.661) (-3.850) (-2.124) (-14.279) (-4.902) (-12.458) (-4.937) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 -0.147 0.125 -0.261 0.282* -0.033 0.078 0.306*** 0.434*** 
 (-1.163) (1.402) (-1.140) (1.714) (-0.494) (1.179) (3.649) (5.183) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.735*** 0.272** 1.139*** 0.447* 0.192** 0.108 0.243** 0.174 
 (4.118) (2.155) (3.514) (1.920) (2.015)  (1.164)  (2.049) (1.468) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Stock-quarter observations 2610 5022 2610 5022 6354 7542 6354 7542 
𝑅𝑅2���� 0.207 0.113 0.273 0.207 0.265 0.152 0.246 0.174 

 
Panel B: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 is used as an illiquidity proxy 
 

 Co-location hosting service Latency upgrade 
 𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡  𝑟𝑟𝑟𝑟_𝐹𝐹𝐹𝐹3𝑖𝑖,𝑡𝑡  𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 𝑟𝑟𝑟𝑟_𝐹𝐹𝐹𝐹3𝑖𝑖,𝑡𝑡 

 (1) 
𝛽𝛽 < 1 

(2) 
𝛽𝛽 ≥ 1 

(3) 
𝛽𝛽 < 1 

(4) 
𝛽𝛽 ≥ 1 

(5) 
𝛽𝛽 < 1 

(6) 
𝛽𝛽 ≥ 1 

(7) 
𝛽𝛽 < 1 

(8) 
𝛽𝛽 ≥ 1 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 -0.467*** 0.557*** -0.318** 0.273** -0.463*** 0.307*** -0.482*** 0.324*** 
(-5.467) (9.238) (-2.049) (2.462) (-10.264) (6.977) (-8.556) (5.757) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.157 -0.234*** -0.071 -0.226 0.125* -0.111* 0.198** -0.085 
 (1.248) (-2.618) (-0.308) (-1.374) (1.860) (-1.689) (2.361) (-1.020) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 0.278*** 0.316*** 0.544*** 0.449*** 0.799*** 0.553*** 0.820*** 0.577*** 
 (3.089) (4.868) (3.323) (3.766) (16.374) (11.643) (13.462) (9.522) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 ×  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 -0.878*** -0.113 -1.202*** -0.336** -1.026*** -0.391*** -1.154*** -0.482*** 
(-7.186) (-1.328) (-5.410) (-2.144) (-15.940) (-6.313) (-14.354) (-6.095) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 0.073 0.139 -0.021 0.195 -0.170**  -0.078 0.066 0.201** 
 (0.577) (1.559) (-0.091) (1.184) (-2.529) (-1.193) (0.791) (2.401) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.521*** 0.135 0.907*** 0.564** 0.327*** 0.118 0.468*** 0.245** 
 (2.931) (1.069) (2.807) (2.424) (3.446) (1.270) (3.946) (2.071) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Stock-quarter observations 2610 5022 2610 5022 6354 7542 6354 7542 
𝑅𝑅2���� 0.213 0.112 0.278 0.209 0.270 0.160 0.247 0.176 



29 
 

technology upgrades × 2 cost of capital measures × 2 liquidity measures), indicating that the 

effect of HFT on the cost of capital is amplified for illiquid stocks. Notably, in the case of the 

co-location shock, statistical significance shifts entirely from the interaction term 

( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ) to the double interaction term ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ), 

suggesting that the observed effect of HFT on the cost of capital for low-beta stocks is 

concentrated exclusively among the least liquid stocks, where HFTs are more likely to increase 

co-movement with the market.  

Conversely, for high-beta firms, the double interaction term is either statistically 

insignificant at the conventional 0.05 level (insignificant in 5 out of 8 specifications) or 

economically small across specifications, with no consistent pattern. The magnitude of the 

coefficient for the double interaction term 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  is approximately 2 to 

3 times lower for high-beta stocks compared to low-beta stocks. Given that high-beta stocks 

mostly have a higher cost of capital, the economic magnitude is even smaller. Taken together, 

these findings provide strong support for the systematic risk channel as a key mechanism 

through which HFT activity increases the cost of capital – specifically, by increasing systematic 

risk for low-beta stocks.  

We have established that HFT activity is associated with an increase in the cost of 

capital, and that this increase is concentrated in low-beta stocks that become more responsive 

to market-wide information in the presence of HFT. However, as discussed in Section 2, HFT 

may also impact the cost of capital by changing the liquidity premium. To test this channel, we 

re-estimate Equation (9) with a sole focus on highly liquid stocks. This is because, as discussed 

in Section 2, most of the HFT activity is concentrated in liquid stocks. The estimated stock-

quarter panel regression is as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 +  𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  +  𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 +

        𝛽𝛽4𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡+𝛽𝛽5𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 + 𝛽𝛽6𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 ×

                      𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  + 𝛾𝛾𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖                                                                                  (10).  
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Table 7. HFT and the cost of capital: liquidity channel   
This table reports estimated coefficients and t-statistics (in parentheses) for the following firm-quarter difference-
in-differences model using a propensity score matched sample, as outlined in Table 2: 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  +  𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡

+ 𝛽𝛽4𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡+𝛽𝛽5𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 + 𝛽𝛽6𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  + 𝜸𝜸𝑿𝑿𝒊𝒊𝒊𝒊
+ 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖 

where 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and quarter fixed effects, respectively. Subscripts 𝑖𝑖 and 𝑡𝑡 indicate firm 
and quarter, respectively. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 corresponds to one of 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  and 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 . 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡  is a dummy variable 
equaling one if firm 𝑖𝑖 is listed on NASDAQ and zero if listed on NYSE. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  is a dummy variable that equals 
one from the quarter when implementation of either technological upgrade on NASDAQ is completed and 
subsequently. The upgrades are the implementation of co-location hosting service on NASDAQ in Q2 2005 
(Columns 1 and 2) and latency upgrade in Q2 2010 (Columns 3 and 4). 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 is an indicator equal to one if firm 
𝑖𝑖’s illiquidity measure is lower than the 30th percentile in the three quarters prior to the event. We use both 
Amihud’s illiquidity measure (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡) and relative quoted spread (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡) as proxies. 𝑋𝑋𝑖𝑖𝑖𝑖 is a 
vector of firm controls relevant to firm 𝑖𝑖’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝑖𝑖𝑖𝑖  (the natural logarithm of total assets), 
𝐼𝐼𝐾𝐾𝑖𝑖,𝑡𝑡  (ratio of investment expenditure), 𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖  and 𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖  (returns on average total assets and common equity, 
respectively), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖  (ratio of current liabilities and long-term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 (ratio of cash and short-
term equivalents to total assets), 𝐺𝐺𝑃𝑃𝑖𝑖  (gross profit margin), and 𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖  (ratio of gross value of property and 
equipment to total revenue). Appendix A defines all variables and their sources. All variables are winsorized at 
the 1% level. The model is estimated for each upgrade event independently using a [-4, +4]-quarter estimation 
window. The model is estimated for low-beta and high-beta stocks separately. Columns (1) and (3) report 
estimations using 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , while Columns (2) and (4) report results for 𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3. Standard errors are double-clustered 
by firm and quarter. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. 
 
Panel A: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is used as an illiquidity proxy 
 

 

Panel B: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 is used as an illiquidity proxy 

 
 Co-location hosting service Latency upgrade 
 (1) 

𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
(2) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

(3) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

(4) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡  -0.087**  -0.379*** -0.510*** -0.592*** 
  (-2.040) (-5.036) (-17.831) (-16.729) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡   0.089 0.316*** 0.162*** 0.359*** 
  (1.394) (2.814) (3.790) (6.815) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  -0.685*** -0.679*** -0.556*** -0.564*** 
  (-10.521) (-5.918) (-13.365) (-10.954) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  0.475*** 0.598*** 0.438*** 0.546*** 
 (5.819) (4.155) (8.193) (8.251) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡  -0.337*** -0.475*** -0.058 -0.328*** 
 (-3.824) (-3.056) (-1.024) (-4.643) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  -0.134 -0.427** -0.173**  -0.426*** 
 (-1.105) (-1.996) (-2.173) (-4.325) 

Controls  Yes Yes Yes Yes 
Industry fixed effects  Yes Yes Yes Yes 

Time fixed effects  Yes Yes Yes Yes 
Stock observations  7632 7632 13896 13896 

𝑅𝑅2����  0.103 0.218 0.157 0.165 

 
 Co-location hosting service Latency upgrade 
 (1) 

𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
(2) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

(3) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

(4) 
𝑟𝑟𝑖𝑖,𝑡𝑡𝐹𝐹𝐹𝐹−3 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡  -0.112*** -0.378*** -0.530*** -0.611*** 
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This specification is identical to Equation (9), except that we now define the liquidity indicator 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 to equal one if firm 𝑖𝑖’s 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 or 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 value places it in the bottom 

tercile (i.e., more liquid than the 30th percentile) based on the three quarters preceding the 

technological upgrade events. This threshold allows us to isolate the top tier of liquid stocks, 

also avoiding perfect negative correlation with the illiquidity dummy used in earlier tests in 

Equation (9) (which was based on the median).  

The results, reported in Table 7, show that HFT activity significantly reduces the cost 

of capital among the most liquid stocks. In 7 out of 8 specifications, the coefficient on the 

double interaction term (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  )  is negative and statistically significant 

at the 0.05 level or lower. Additionally, the coefficient on the interaction term 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 remains positive and statistically significant in most specifications – and, 

notably, its magnitude increases by more than 50%. This suggests that the overall increase in 

the cost of capital identified in the baseline results is even larger once the most liquid stocks in 

the sample are controlled for. 

Taken together, the findings in this section indicate that HFT affects the cost of capital 

through two channels. First, HFT increases the cost of capital by amplifying systematic risk, 

  (-2.605) (-5.018) (-18.712) (-17.389) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡   0.126** 0.340*** 0.173*** 0.378*** 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  -0.703*** -0.752*** -0.801*** -0.838*** 

  (-11.060) (-6.732) (-19.629) (-16.565) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡  0.539*** 0.593*** 0.542*** 0.651*** 

 (6.608) (4.137) (10.216) (9.889) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡  -0.227**  -0.450*** 0.088 -0.129* 

 (-2.579) (-2.916) (1.545) (-1.833) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  -0.280**  -0.517** -0.221*** -0.499*** 

 (-2.306) (-2.424) (-2.793) (-5.095) 
Controls  Yes Yes Yes Yes 

Industry fixed effects  Yes Yes Yes Yes 
Time fixed effects  Yes Yes Yes Yes 
Stock observations  7632 7632 13896 13896 

𝑅𝑅2����  0.102 0.222 0.172 0.175 
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particularly among low-beta firms. This occurs because HFT activity increases these firms’ 

responsiveness to market-wide information, thereby raising their co-movement with the overall 

market. Second, HFT reduces the cost of capital by improving liquidity – but only for the most 

liquid stocks, where HFTs are actively engaged as liquidity providers. These offsetting effects 

underscore the importance of accounting for firm-level heterogeneity when assessing the 

broader implications of HFT for the cost of capital.  

 

6.  EXTERNAL VALIDITY: EVIDENCE FROM THE STOCK EXCHANGE OF 

HONG KONG 

As discussed in the Introduction, HFT and market fragmentation exhibit a symbiotic 

relationship. Generally, increases in HFT activity are associated with greater market 

fragmentation. For instance, Menkveld (2013) shows that the entry of new HFT firms not only 

affects market quality but also increases fragmentation. The study suggests that HFT may be a 

channel through which fragmentation influences market quality. Moreover, Menkveld (2013) 

argues that one of the key reasons behind the high degree of fragmentation in U.S. stock 

markets is the intense activity of HFTs. While fragmentation itself is not the focus of our study, 

the possibility that HFTs affect the cost of capital through their influence on market 

fragmentation raises an interesting question: do HFTs impact the cost of capital in markets that 

are less fragmented? To explore this, we replicate our main analysis using exogenous HFT 

shocks in a large, essentially unfragmented market – the Stock Exchange of Hong Kong 

(SEHK).  

The SEHK is the seventh-largest stock exchange in the world by market capitalization, 

with a total listing value of $4.2 trillion as of August 2024.6 It comprises two distinct equity 

 
6 https://statistics.world-exchanges.org. 
  

https://statistics.world-exchanges.org/
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listing platforms: the Main Board, which hosts large and blue-chip firms, and the Growth 

Enterprise Market, which is tailored to small and mid-sized firms. As of December 2023, the 

Main Board accounts for 99.83% of SEHK’s total market capitalization; accordingly, our 

analysis focuses on firms listed on the Main Board. Starting with the launch of AMS 3.8 in 

December 2011, over the past fifteen years, the Hong Kong Exchanges and Clearing Limited 

has undertaken major upgrades to the SEHK’s trading infrastructure to maintain its status as a 

leading global exchange. One of the most important technological advancements affecting 

trading latency was the introduction of the Orion Central Gateway (OCG) in Q2 2014. The 

OCG serves as a secure gateway between the Broker Supplied Systems of Exchange 

Participants and HKEX’s securities market trading platform. Its primary benefits, as promoted 

by HKEX, are significant reductions in trading latency and improvements in system resilience. 

The Main Board of the SEHK serves as the exclusive platform for trading blue-chip 

and large-cap stocks in Hong Kong, and as such, the market lacks the kind of trading 

fragmentation commonly observed in U.S. and European markets. Nevertheless, an important 

structural feature of the SEHK is its link to Mainland China’s financial markets via the Stock 

Connect program, which facilitates cross-border trading of eligible securities, including Hong 

Kong-listed, China-headquartered firms designated as H shares. The Connect was launched in 

November 2014; however, trading activity through this channel only gained momentum in 

2017 – about three years after the technological shock we analyze. More importantly, the 

structure of the Connect programme does not fragment execution across venues. Although 

orders are routed through the participating exchanges, each operates its own order-receiving 

system and ultimately forwards trades to the listing exchange for execution. Thus, all trades in 

SEHK-listed stocks are executed on SEHK itself, preserving a unified trading venue. Given 

this institutional structure, SEHK provides a clean and non-fragmented environment, offering 

a neat quasi-natural experimental setting to assess whether HFT also affects the cost of capital 
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in the absence of market fragmentation. In addition, trading in Hong Kong provides an out-of-

sample setting that allows us to assess whether our main results hold in a markedly different 

market context. 

To investigate the impact of HFT on the cost of capital in SEHK, we employ a DiD 

framework similar to our baseline specification in Equation (8). As noted earlier, we use the 

introduction of the OCG, a new order input gateway, in Q2 2014 as the exogenous shock. For 

the control group, we use firms listed on the Shanghai Stock Exchange (SSE). Specifically, we 

apply the same matching procedure described in Section 3.2 to construct a matched sample of 

SSE firms, thereby controlling for macroeconomic factors that may simultaneously affect 

trading activity in both markets. We use SSE stocks as the control group because the SSE is 

the largest stock exchange in the region, subject to similar macroeconomic and regional factors 

as the SEHK, while remaining unaffected by the OCG implementation in Hong Kong.  

Our matching procedure yields a total of 756 firms: 378 treated firms from the SEHK 

and 378 matched control firms from the SSE. As in the baseline DiD model for the U.S. markets, 

we employ an estimation window of [-4, +4] quarters around the shock. For this test, we obtain 

the cost of equity (𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and market beta (𝛽𝛽𝑖𝑖𝑖𝑖) from Bloomberg. Daily data used to compute 

liquidity measures, including ask price, bid price, trading volume, and return, are sourced from 

Refinitiv Eikon. Quarterly firm characteristics used as control variables are also obtained from 

Refinitiv Eikon. This analysis uses the same set of control variables, fixed effects, and 

clustering approach as in our baseline specification. 

The results are reported in Table 8. Overall, our findings are consistent with the baseline 

estimates based on the U.S. market. First, we find that HFT activity is positively associated 

with the cost of capital. Second, this positive effect is entirely driven by low-beta firms, with a 

marginally stronger impact observed among the less liquid stocks within this group (the double 

interaction term with the illiquidity dummy is statistically significant at the 0.1 level of 
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Table 8. HFT and Cost of capital: evidence from the Stock Exchange of Hong Kong 
This table reports estimated coefficients and t-statistics (in parentheses) for three series of firm-quarter difference-in-differences model using a propensity score matched sample, 
constructed by firms listed on Stock Exchange of Hong Kong (SEHK, treatment group) with those listed on on Shanghai Stock Exchange (SSE, control group). The pre-match 
probit regression is estimated using cross-sectional observations at quarter t-4, four quarters prior to the implementation of technological upgrades: Orion Central Gateway 
(OCG) on SEHK in Q2 2014. Columns (1) reports estimations using the whole sample, while Columns (4) and (5) reports the results for low beta stocks (𝛽𝛽 < 1) and high beta 
stocks (𝛽𝛽 ≥ 1), for the following difference-in-differences (DiD) model: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝜸𝜸𝑿𝑿𝒊𝒊,𝒕𝒕 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖 , 

where 𝛿𝛿𝑛𝑛 and 𝜌𝜌𝑡𝑡 correspond to industry and quarter fixed effects, respectively. Subscripts 𝑖𝑖 and 𝑡𝑡 indicate firm and quarter, respectively. 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 corresponds to the cost of capital 
measure, 𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 is a dummy variable equaling one if firm 𝑖𝑖 is listed on SEHK and zero if listed on SSE. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  is a dummy variable that equals one from the quarter when 
implementation of OCG on SEHK is completed and subsequently. 𝑿𝑿𝒊𝒊,𝒕𝒕 is a vector of firm controls relevant to firm 𝑖𝑖’s cost of capital, including 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡 (the natural logarithm 
of total assets), 𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 (ratio of investment expenditure), 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑡𝑡 (returns on average total assets and common equity, respectively), 𝐵𝐵𝐵𝐵𝑖𝑖,𝑡𝑡 (ratio of book and market 
value of equity), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑖𝑖,𝑡𝑡 (ratio of current liabilities and long-term debt to total assets), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 ,𝑡𝑡 (ratio of cash and short-term equivalents to total assets), 𝐺𝐺𝐺𝐺𝑖𝑖,𝑡𝑡 (gross profit 
margin), and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 (ratio of gross value of property and equipment to total revenue). Columns (2) and (3) report the results for low beta stocks (𝛽𝛽 < 1) and high beta stocks 
(𝛽𝛽 ≥ 1), for the following DiD model: 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝜸𝜸𝑿𝑿𝒊𝒊,𝒕𝒕 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖, 

where 𝛽𝛽𝑖𝑖𝑖𝑖 is the systematic risk measure estimated by regressing the stock returns on market returns, and other variables are defined same with the above estimation. Columns 
(6) and (7) report the results for low beta stocks (𝛽𝛽 < 1), for the following DiD model: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 +  𝛽𝛽2𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  +  𝛽𝛽3𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽4𝐻𝐻𝐻𝐻𝑖𝑖 ,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡+𝛽𝛽5𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽6𝐻𝐻𝐻𝐻𝑖𝑖 ,𝑡𝑡 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  + 𝜸𝜸𝑿𝑿𝒊𝒊,𝒕𝒕 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖 , 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 is an indicator equal to one if firm 𝑖𝑖’s illiquidity measure exceeds the cross-sectional median in the three quarters prior to the event, other variables are defined 
same with the above estimation. Columns (8) and (9) report the results for the following DiD model: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 +  𝛽𝛽2𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  +  𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽4𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡+𝛽𝛽5𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽6𝐻𝐻𝐻𝐻𝑖𝑖 ,𝑡𝑡 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  + 𝜸𝜸𝑿𝑿𝒊𝒊,𝒕𝒕 + 𝛿𝛿𝑛𝑛 + 𝜌𝜌𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖, 

where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 is an indicator equal to one if firm 𝑖𝑖’s illiquidity measure is lower than the 30th percentile in the three quarters prior to the event, other variables are defined same 
with the above estimation. We use both Amihud’s illiquidity measure (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡) (Columns (6) and (8)) and relative quoted spread (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 ,𝑡𝑡) (Columns (7) and (9)) 
to define 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡. The model is estimated for each upgrade event independently using a [-4, +4]-quarter estimation window. The cost of equity (𝑟𝑟𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and market 
beta (𝛽𝛽𝑖𝑖𝑖𝑖) are obtained from Bloomberg; daily data used to compute liquidity measures, including ask price, bid price, trading volume, and return are obtained from Refinitiv 
Eikon; quarterly firm characteristics used as control variables are obtained from Refinitiv Eikon. All variables are winsorized at the 1% level. The whole sample estimation 
includes 378 pairs of firms, and the low (high) beta group estimation includes 232 (193) pairs of firms.  Standard errors are double-clustered by firm and quarter. ***, **, and 
* denote statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. 
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(1) 

𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 
Whole sample 

(2) 
𝛽𝛽 

𝛽𝛽 < 1 

(3) 
𝛽𝛽 

𝛽𝛽 ≥ 1 

(4) 
𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 
𝛽𝛽 < 1 

(5) 
𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 
𝛽𝛽 ≥ 1 

(6) 
𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 
𝛽𝛽 < 1 

(7) 
𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 
𝛽𝛽 < 1 

(8) 
𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 

Whole sample 

(9) 
𝑟𝑟𝑟𝑟_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 

Whole sample 

𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 -4.245*** -0.879*** -0.064** -5.421*** -2.475*** -4.824*** -4.872*** -4.460*** -4.378*** 
(-53.175) (-36.706) (-2.443) (-60.991) (-22.318) (-39.007) (-38.746) (-44.637) (-43.672) 

𝐻𝐻𝐻𝐻𝑖𝑖 ,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.786*** 0.551*** 0.061 1.733*** -0.422** 1.197*** 1.264*** 1.023*** 0.943*** 
(6.000) (17.070) (1.421) (11.917) (-2.320) (6.096) (6.470) (6.297) (5.785) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡      -0.102 -0.502***   
      (-0.805) (-4.094)   

𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 ×  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡      -0.899*** -0.793***   
      (-5.041) (-4.328)   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ×  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡      -0.029 0.098   
      (-0.149) (0.507)   

𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ×  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ,𝑡𝑡      0.468* 0.343   
      (1.697) (1.251)   

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡        0.099  0.472*** 
        (0.741) (3.618) 

𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 ×  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡        0.881*** 0.610*** 
        (4.697) (3.201) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ×  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡        0.296 -0.101 
        (1.428) (-0.487) 

𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ×  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡        -0.862*** -0.541* 
        (-2.939) (-1.838) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Stock-quarter observations 6024 3712 3088 3712 3088 3440 3440 5372 5380 
𝑅𝑅2���� 0.534 0.318 0.156 0.638 0.494 0.671 0.676 0.542 0.540 
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statistical significance, suggesting a weaker effect in this setting). Third, while HFT 

increases the cost of capital on average, we find that it reduces the cost of capital for the most 

liquid stocks, where HFTs are likely the primary liquidity providers. 

The consistency of these findings with our U.S.-based results is noteworthy. It suggests, 

first, that our baseline conclusions regarding the causal impact of HFT on the cost of capital 

are robust and generalizable across countries. Second, it indicates that HFT affects the cost of 

capital in both highly fragmented and non-fragmented trading environments. 

 

7.  CONCLUSION 

Investigating the market quality implications of HFT has been the focus of a thriving 

research stream in the market microstructure literature, with most studies focusing on the 

effects of HFT on traders and market participants. However, market quality is only valuable to 

the extent it serves its core economic purpose – facilitating asset allocation, hedging, 

diversification, and other vital activities that underpin the real economy. Hence, understanding 

HFT’s effects on real economic factors is crucial, particularly from policymaking and 

regulatory perspectives. In contrast to the existing literature that focuses on the role of HFTs 

in market quality and, hence, on traders, we focus on the role of HFT for issuers – the 

corporations that rely on well-functioning capital markets to raise funds for their investment 

activities. While existing research offers insights into potential effects on market participants, 

deducing clear implications for firms’ financing costs from extant studies is challenging 

because the overall effects of HFT are often ambiguous. Specifically, while it enhances certain 

market quality characteristics, it impedes others; therefore, it is not clear whether changes in 

market quality at the ultra-high frequency level can have an impact on low frequency corporate 

decisions. 
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We address the gap at the nexus of the real economy and HFT by directly investigating 

HFT’s effects on one of the most fundamental real economy signals: the firm-level cost of 

capital. We mitigate potential endogeneity concerns and establish causality by exploiting 

speed-inducing technological upgrades on NASDAQ (co-location upgrade and order 

dissemination, submission, and data latency improvements) as exogenous shocks to HFT 

activity. We show that HFT, on average, increases the cost of capital. This aggregate effect is 

driven primarily by HFT’s tendency to significantly increase systematic risk, particularly for 

low-beta stocks that previously co-moved less with the market. However, we also find evidence 

of heterogeneous effects: while HFT increases the cost of capital for the overall sample (driven 

by low-beta stocks), it reduces the cost of capital for the most liquid stocks, consistent with 

enhanced liquidity provision in these securities. To further test the generalizability of our 

results, we replicate the analysis using data from the Hong Kong Stock Exchange, a market 

that is essentially unfragmented. Our results remain consistent, suggesting that the impact of 

HFT on the cost of capital persists across different countries and market structures. 

Our findings hold broad implications for practice, policymaking, and regulation. HFT 

has been the subject of intense debate among investors, brokers, exchanges, policymakers, 

regulators, and academic researchers. Detractors argue that HFTs unfairly harm traditional 

investors, while advocates claim that faster trading improves market quality and aids real 

economic activities such as asset allocation. This paper contributes to this debate by providing 

evidence on how HFT impacts the cost of capital. Specifically, our results suggest that the 

benefits and costs of HFT are not uniformly distributed across stocks, providing potential 

justification for exploring stock characteristics-dependent access to fast trading infrastructure 

from a risk-based regulatory perspective. As HFT appears to reduce the cost of capital for the 

most liquid stocks while increasing it for low-beta stocks, a more nuanced approach to HFT 

regulation, one that considers stock characteristics, may be warranted. 
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Appendix A. Variable definition and data source  

Variable Definition (Compustat/CRSP item in parentheses) Source 

Calculation of Cost of Equity Measures 

𝑟𝑟𝑖𝑖,𝑑𝑑 Return (ret) CRSP 

𝑟𝑟𝑓𝑓,𝑑𝑑 Ten-year Treasury yield FRED 

𝑟𝑟𝑚𝑚,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑 Excess market return 

Ken French’s website 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 Difference between return on portfolios of small and big market capitalization stocks. 

𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑 Difference between return on portfolios of high and low book-to-market stocks. 

𝛽𝛽𝑖𝑖,𝑡𝑡 

Firm 𝑖𝑖’s market beta in quarter 𝑡𝑡, estimated using daily return data via the Capital Asset Pricing 

Model (CAPM), by regressing the firm’s excess return on the market excess return. See Eq. (1) in 

the main text. 

 

𝑟𝑟𝐸𝐸,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

Firm 𝑖𝑖’s cost of equity in quarter 𝑡𝑡, computed using the estimated quarterly market beta 𝛽̂𝛽𝑖𝑖,𝑡𝑡 from 

CAPM, multiplied by the expected market excess return (i.e., the historical average), and added to 

the risk-free rate. See Eq. (2) in the main text.  

 

𝑟𝑟𝐸𝐸,𝐹𝐹𝐹𝐹3 

Firm’s cost of equity in quarter 𝑡𝑡, calculated as the sum of the products of estimated Fama-French 

three-factor betas and the expected returns of the corresponding factor portfolios. See Eq. (3) and 

Eq. (4) in the main text. 

 

Calculation of Illiquidity Measure 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑑𝑑 Ask price (ask) 
   CRSP 

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑑𝑑 Bid price (bid) 
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𝑉𝑉𝑖𝑖,𝑑𝑑 Number of shares traded (vol) times price (prc) 

𝑟𝑟𝑖𝑖,𝑑𝑑 Return (ret) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖,𝑡𝑡 
Quarterly average of the daily relative bid-ask spread, calculated as the difference between the 

daily ask 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑑𝑑 and bid prices 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑑𝑑, divided by their average. See Eq. (5) in the main text.    
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 
Quarterly average of daily absolute return �𝑟𝑟𝑖𝑖,𝑑𝑑� scaled by the dollar trading volume 𝑉𝑉𝑖𝑖,𝑑𝑑. See Eq. 

(6) in the main text. 
 

Calculation of Firm Characteristics 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 Logarithm of total assets (atq). 

Compustat 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 Ratio of Investment expenditure (capxy) to total net property lant and equipment (ppentq). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 
Return on average total assets, the ratio of operating income before depreciation (oibdpq) to the 

most recent two-year’s total assets. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 
Return on average common Equity, the ratio of income before extraordinary items (ibq) to the 

most recent two years’ equity market value (cshoq * prccq). 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 Book value of equity (seqq) divided by the market value of equity (cshoq * prccq). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 Current liabilities (dlcq) plus long-term debt (dlttq) divided by total assets 

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖 Ratio of cash and short equivalents (cheq) to total assets 

𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 
Gross profit margin, the ratio of the difference between sales (saleq) and cost of good sold (cogsq) 

and sales. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 Ratio of the net property lant and equipment (ppentq) and total sales. 
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