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Abstract

Can a central bank tighten monetary policy and real interest rates fall under mone-

tary dominance? Introducing endogenous capital into the New Keynesian model allows

real interest rates to move in any direction at the impact of a positive persistent mone-

tary policy shock. This raises concerns that the real interest rate channel is only obser-

vational — not structural — in these models. This paper demonstrates that the puzzle

goes beyond capital. It emerges when the elasticity of an endogenous state variable to

a persistent shock is high enough to sink inflation expectations, inducing the endoge-

nous (or systematic) component of the monetary policy rule to sufficiently offset its

exogenous component. The channel is indeed structural, but conventional definitions

of the natural interest rate (r-star) and real interest rate gap can be misleading, particu-

larly following events that significantly disrupt investment, such as pandemics, financial

crises or trade wars. As an alternative sign-consistent gauge of the monetary policy

stance, I propose the real interest rate gap that neutralizes the effect of shocks on en-

dogenous state variables. From 1965Q1 to 2023Q3, it was often a better predictor of

future inflation and helped telling the history of monetary policy in the United States.
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1 Introduction

Can a central bank tighten monetary policy and real interest rates fall under monetary dom-

inance? In a recent paper, Rupert and Šustek (2019) challenged the existence of a real inter-

est rate channel of monetary policy transmission in textbook New Keynesian models, e.g.,

Woodford (2003a) and Galí (2015). They showed that introducing endogenous capital into

such models allows the real interest rate to move in any direction after a positive persistent

monetary policy shock, ξm
t .1 Figure 1 displays the effect of that shock under two different

specifications for its persistence coefficient, ρm . The real interest rate rises immediately

after a transitory shock (ρm = 0.0) but falls when the latter is just mildly persistent (ρm = 0.5),

while inflation falls and investment slumps in both cases.

Rupert and Šustek (2019) argue that these puzzling impulse response functions would

prove that the real interest rate channel is only observational — not structural — in New

Keynesian models. A channel that is not robust to the Lucas (1976) critique raises serious

concerns regarding the reliability of these models for policy recommendations. For example,

the interpretation of the mechanisms behind their impulse response functions becomes de-

batable. It would also be quite problematic to assume the real interest rate channel for the

identification of vector autoregression (VAR) models, whether through sign restrictions, as

in the method proposed by Uhlig (2005); through sequentially ordering nominal and real

rates, as in a Cholesky decomposition; or by selecting real rates instead of nominal ones

as part of a reduced model’s endogenous variables. The importance of this identification

problem is straightforward, yet significant, to the extent that it has recently been evoked

by Holden (2024) as one of the reasons to motivate a radical shift in central banking from

nominal to real interest rate rules.
1Woodford (2003a, sec. 5.3.3) calls the lack of any effect of variations in private spending on the economy’s

productive capacity one of the more obvious omissions in the baseline New Keynesian model. He observes

that although there are calibrations for which introducing endogenous capital results in similar dynamics for

output and inflation after a monetary policy shock, the mechanisms within each model that generate these

results are not the same.
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Note: hat variables are deviations from the zero-inflation-target steady state. ît denotes the nominal interest

rate; r̂t the real interest rate; πt inflation; r̂ Gap,cc
t the real interest rate gap with constant capital; ŷt output; ĉt

consumption; k̂t capital at the beginning of period; and x̂t investment.

Figure 1: Impulse response function to a positive monetary policy shock in a canonical New

Keynesian model augmented with endogenous capital

The dynamics in Figure 1 resembles gloomy scenarios such as a pandemic, financial

crisis or trade war — episodes where investment collapses, and the central bank risks falling

behind.2 Although investment slumps of this magnitude are uncommon, they do occur, par-

ticularly during recessions, as exemplified in Figure 2. It plots the investment history of the

United States, from 1965Q1 to 2019Q4, against smoothed monetary policy shocks recovered

from the estimated Smets and Wouters (2024)’s model, where shaded areas are recessions

identified by the business cycle dating committee of the National Bureau of Economic Research

(NBER).3 In that period, quarterly investment dropped on average 1.3% during expansions

2Given the model’s linearization, sign-reversed impulse response functions can be derived in the case of

a monetary easing, where a sudden boost in investment, e.g., due to a technological discovery, may result

in rising demand and rising inflation expectations combined with rising policy real interest rates, which is a

sign-switch of the same mechanism discussed in this paper.
3It is a stylized fact that investment drops by more during the recessions identified by the NBER. Under

their definition, a recession involves a significant widespread decline in economic activity which lasts more

than a few months. Depth, diffusion, and duration are treated as somewhat interchangeable criteria. Extreme

conditions under one criterion may partially offset weaker indications under another (NBER, 2025).
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and 2.9% during recessions, but in at least two episodes, in the early 1980s and during the

Great Financial Crisis of 2008, investment plunged by more than 8%. More recently, a similar

downfall was observed at the outbreak of the Covid-19 pandemic. Just as investment has

been negatively correlated with monetary policy shocks in the last decades, quarters with a

contractionary monetary policy stance have been observed even during recessions. That is

not surprising since an identified monetary policy shock is not always a voluntary or well-

informed action of a central bank. It may be a delayed response, a misinterpretation of

the monetary policy stance, or even some binding feature not incorporated into the model,

such as the effective lower bound. With hindsight, some of these shocks are called monetary

policy mistakes in Economic History books.

Figure 2: Estimated monetary policy shocks from Smets and Wouters (2024) and observed

investment in the United States from 1965Q1 to 2019Q4

Despite the fact that in general equilibrium all variables are determined simultaneously,

every model needs a story to tell, and the common view on the transmission of monetary

policy in textbook New Keynesian models hinges on the real interest rate channel, which

Ireland (2010) describes as follows:

"A monetary tightening in the form of a shock to the Taylor rule that increases

the short-term nominal interest rate translates into an increase in the real inter-

est rate as well when nominal prices move sluggishly due to costly or staggered
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price setting. This rise in the real interest rate then causes households to cut

back on their spending, as summarized by the IS curve. Finally, through the

Phillips curve, the decline in output puts downward pressure on inflation, which

adjusts only gradually after the shock."

Galí (2015, p. 5) similarly highlights the real interest rate channel when discussing the

short-run non-neutrality of monetary policy in this class of models:

"As a consequence of the presence of nominal rigidities, changes in short-

term nominal interest rates (whether chosen directly by the central bank or induced

by changes in the money supply) are not matched by one-for-one changes in

expected inflation, thus leading to variations in real interest rates. The latter

bring about changes in consumption and investment and, as a result, in output

and employment, because firms find it optimal to adjust the quantity of goods

supplied to the new level of demand. In the long run, however, all prices and

wages adjust, and the economy reverts back to its natural equilibrium."

Schematically, a positive monetary policy shock (ϵm
t ) raises the nominal interest rate (it )

and, due to price stickiness, the real rate (rt ). This reduces consumption (ct ), output (yt ),

and ultimately inflation (πt ).

↑ ϵm
t ⇒ ↑ it ⇒ ↑ rt︸︷︷︸

if prices are sticky

⇒ ↓ ct ⇒ ↓ yt ⇒ ↓πt

However, Rupert and Šustek (2019) propose a different story, which they argue is more

consistent with the actual mechanics of the model. The transmission does not operate

through a real interest rate channel. First, equilibrium inflation is approximately determined

as in a flexible-price model.4 Second, output is pinned down by the New Keynesian Phillips

curve, interpreted here to mean that, given the expected inflation trajectory, firms that cannot

4In Chapter 2 of Galí (2015), a canonical real business cycle (RBC) model is augmented with a fixed-

intercept interest rate rule to pin down inflation and, thus, a trajectory for the price level. Current inflation,

as a deviation from its steady-state value, is determined by the expected path of real interest rate deviations

from the steady state, as long as the Taylor principle is obeyed. It is important to note that the steady-state

value of the real interest rate and the intercept of the monetary policy rule coincide, assuming a zero-inflation

target. Chapter 1 of Woodford (2003a) shows the same idea in a partial-equilibrium monetary model where

the sequence of real interest rates is exogenous.
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adjust prices will change output. Finally, the real rate only reflects the feasibility of main-

taining smooth consumption when income changes, whereas equivalence with the real in-

terest rate channel depends on the persistence of the monetary policy shock. The canon-

ical model, with fixed capital, is simply a limiting case where capital adjustment costs are

infinite. According to this view, monetary transmission should work as follows:

↑ ϵm
t ⇒ ↑ it ⇒ ↓πt ⇒ ↓ yt︸︷︷︸

if prices are sticky

⇒ ↓ ct ⇒ ?rt︸︷︷︸
depends on the presence
of capital and calibration

In this paper, I show that this puzzle stems from a problem of definition. In the ca-

nonical New Keynesian model, monetary policy stance is measured by the real interest rate

gap (RIRG), r Gap
t , which compares the actual real interest rate of a sticky economy, rt , with

the one of an identical counterpart except for the absence of nominal rigidities, that is,

the natural real interest rate, r n
t . The gap is represented here by equation (1), where hat-

variables are deviations from the non-stochastic steady state. If there is only a history of

monetary policy shocks in the economy, r n
t should not move, implying that r Gap

t is equal to

rt .

r̂ Gap
t = r̂t − r̂ n

t (1)

In the most frequently used definition of r n
t , nominal rigidities are assumed to not exist

neither in the past, present, nor future of the model. This definition has been ubiquitously

employed in dynamic stochastic general equilibrium (DSGE) models, such as Smets and

Wouters (2003, 2007, 2024). I call this definition, the state-variant definition, because for

any given period state-variables may differ in value for rt and r n
t . Since the canonical New

Keynesian model has no endogenous state variables, such as capital, the difference in states

is not an issue, and r Gap
t is strictly connected to the notion of equilibrium determination in

that economy. In this case, r Gap
t = 0 implies that output is at its potential level and inflation

is at the central bank’s target. This represents a short-run equilibrium, which also holds

in the long run in the absence of additional exogenous shocks, where a single persistent

exogenous shock is just a sequence of exogenous shocks.

Table 1 summarizes the algebra of how the capital puzzle emerges under the state-variant

definition. The expressions for r̂t , r̂ n
t and r̂ Gap

t are translated into a state-space representation,

where {A,B ,C ,D} are matrices of coefficients, {ŝt } is a matrix with a given sequence of actual

and expected endogenous state variables as deviations from the steady state, ϵt is a vector
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of exogenous shocks, and ξt is a vector of persistent exogenous shocks that follow AR(1)

processes. When there is not a single state variable, such as in the canonical New Key-

nesian model, the presence or not of persistence in any shock does not affect the matrix

coefficients of the shock, B and D , which reflect the reaction of r̂t and r̂ n
t , respectively, in

the period of the shock. Nevertheless, when one adds at least a single state variable to the

model (e.g., capital), then this remains the case only if there is no persistence in the shock

processes. In the case of persistence, the matrix coefficients of the shocks are now related to

the expected trajectory of the state variables, ŝt
ŝt−1

, a function of their elasticities. In this case,

if a state variable is allowed to suffer a sudden large change, the sign of the shock coefficient

of r̂ Gap
t will depend on the persistence of the shock and on the expected trajectory of the

state variables. This explains why Rupert and Šustek (2019) find that the combination of a

just slightly persistent monetary shock (ρm = 0.1) with low capital adjustment costs (high

elasticity) induces the real interest rate to deviate from its conventional trajectory, declining

at the impact of a contractionary monetary shock.

Endogenous State Variable Shock Persistence r̂t r̂ n
t r̂ Gap

t

no no r̂t = Bϵt r̂ n
t = Dϵt (B −D)ϵt

no yes r̂t = Bξt r̂ n
t = Dξt (B −D)ξt

yes no r̂t = Aŝt−1 +Bϵt r̂ n
t =C ŝn

t−1 +Dϵt Aŝt−1 −C ŝn
t−1 + (B −D)ϵt

A = Et r̂t+1
ŝt

C = Et r̂ n
t+1

ŝn
t

Et r̂t+1
ŝt

ŝt−1
−Et r̂ n

t+1
ŝn

t
ŝn

t−1
+ (B −D)ϵt

yes yes r̂t = Aŝt−1 +Bξt r̂ n
t =C ŝn

t−1 +Dξt
(
Et r̂t+1 −Bρmξt

) ŝt
ŝt−1

− (
Et r̂ n

t+1 −Dρmξt
) ŝn

t
ŝn

t−1
+ (B −D)ξt

A = Et r̂t+1−Bρmξt
ŝt

C = Et r̂ n
t+1−Dρmξt

ŝn
t

Et r̂t+1
ŝt

ŝt−1
−Et r̂ n

t+1
ŝn

t
ŝn

t−1
+

(
B −Bρm

ŝt−1
ŝt

−D +Dρm
ŝn

t−1
ŝn

t

)
ξt

Table 1: State-variant definition

Woodford (2003a, Ch. 5 sec 3.4) points out that the state-variant definition of the RIRG

turns out to be odd once one introduces capital in the model. That is so because, out of the

steady state, the stock of capital of the sticky economy will probably differ most of the times

from the stock of the counterpart economy without nominal rigidities. He suggests defining

the natural rate of this economy at any period t as the one that would result from the lack of

nominal rigidities now and in the future, given the same exogenous and predetermined state

variables of the actual economy.5 I call this the state-consistent definition, r̂ n,cons
t . Thus, for

the RIRG to represent the current monetary policy stance, it must control for the effect of

shocks on state variables, r̂ Gap,cons
t . A natural rate that matters for measuring the monetary

5Woodford (2003a, Ch. 5 sec 3.4)’s refers only to price flexibility in the context of the simple model he is

analyzing.
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policy stance should be one that assumes that state variables are at the same levels as for

the real rate, so that they are comparable. However, Table 2 shows that the state-consistent

definition also allows for the presence of the capital puzzle as the matrix coefficients of the

shocks are still related to the trajectory of the state variables, just like in the state-variant

definition.

Endogenous State Variable Shock Persistence r̂t r̂ n,cons
t r̂ Gap,cons

t

no no r̂t = Bϵt r̂ n
t = Dϵt (B −D)ϵt

no yes r̂t = Bξt r̂ n
t = Dξt (B −D)ξt

yes no r̂t = Aŝt−1 +Bϵt r̂ n
t =C ŝt−1 +Dϵt (A−C ) ŝt−1 + (B −D)ϵt

A = Et r̂t+1
ŝt

C = Et r̂ n
t+1

ŝt
Et r̂t+1

ŝt
ŝt−1

−Et r̂ n
t+1

ŝt
ŝt−1

+ (B −D)ϵt

yes yes r̂t = Aŝt−1 +Bξt r̂ n
t =C ŝt−1 +Dξt

(
Et r̂t+1 −Bρmξt

) ŝt
ŝt−1

− (
Et r̂ n

t+1 −Dρmξt
) ŝt

ŝt−1
+ (B −D)ξt

A = Et r̂t+1−Bρmξt
ŝt

C = Et r̂ n
t+1−Dρmξt

ŝt

(
Et r̂t+1 −Et r̂ n

t+1

) ŝt
ŝt−1

+
(
B −Bρm

ŝt−1
ŝt

−D +Dρm
ŝt−1

ŝt

)
ξt

Table 2: State-consistent definition

The finding that both the state-variant and the state-consistent definition can result in

a sign inconsistent with the real interest rate channel awakens the interest in other ways of

measuring the monetary policy stance. In this paper, I propose a state-invariant definition

for the RIRG. In that, I incorporate the important caveat that state variables must be com-

parable through a different approach. I decompose the natural real interest rate into an

exogenous component, r̂ n,cc
t , that corresponds to a counterfactual that keeps the endoge-

nous state variables constant – in this case the capital stock – and a remaining component,

ηnk k̂n
t +ηnkkεt , that captures the state variable and the shocks, whereηnk is a constant,ηnkk

is a vector of constants, k̂n
t is the log-deviation from the steady state of the capital stock in a

counterfactual economy without nominal rigidities, and εt is a vector of shocks.6

r̂ n
t = r̂ n,cc

t︸ ︷︷ ︸
= 0 if only shocks are monetary

+ηnk k̂n
t + ηnkkεt︸ ︷︷ ︸

= 0 if only shocks are monetary

(2)

Next, I decompose r̂t as the sum of a counterfactual where capital is fixed, r̂ cc
t , and a residual,(

ηk k̂t +ηkkϵ
m
t

)
, whereηk and ηkk are constants, and define the state-invariant RIRG, r̂ Gap,cc

t ,

as the gap of real interest rates that controls for the endogenous state variables.

r̂t = r̂ cc
t + (

ηk k̂t +ηkkϵ
m
t

)
(3)

r̂ Gap,cc
t = r̂ cc

t − r̂ n,cc
t (4)

6Note that the remaining component does not depend on the monetary policy shock due to the lack of

nominal rigidities in the counterfactual economy.
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Figure 1 shows that, by comparing r̂t and r̂ Gap,cc
t , the latter is the RIRG measure whose sign is

consistent with the New Keynesian theory in the shock period. Note that the decomposition

proposed here isolates in coefficients ηk and ηkk any deep parameter sensitive to the speed

of the adjustment of the state variable. The algebra is summarized in Table 3.

Endogenous State Variable Shock Persistence r̂ cc
t r̂ n,cc

t r̂ Gap,cc
t

no no r̂ cc
t = Bϵt r̂ n,cc

t = Dϵt (B −D)ϵt

no yes r̂ cc
t = Bξt r̂ n,cc

t = Dξt (B −D)ξt

Table 3: State-invariant definition

Thus, I propose the following explanation for the New Keynesian capital puzzle: a mon-

etary tightening in the form of a shock to the Taylor rule increases the short-term nominal

interest rate (policy rule), causing an increase in the real interest rate when nominal prices

move sluggishly (Fisher equation). This rise in the real interest rate causes households to

cut back on their spending (IS). If investment sinks too much, households cut consump-

tion even further (IS with capital). The large decline in output puts significant downward

pressure on inflation (Phillips Curve), amplifying the endogenous negative response of the

policy rule. This results in the nominal interest rate reversing its sign and dropping when

its endogenous response is numerically larger than the original monetary policy shock, ul-

timately causing a drop in the real interest rate because prices are sticky. Then, onward, this

flow continues with shrinking and oscillating amplitude until convergence to the in-period

equilibrium, as induced by monetary dominance.

↑ ϵm
t ⇒ ↑ it ⇒ ↑ rt︸︷︷︸

if prices are sticky

⇒ ↓↓ ct︸︷︷︸
if capital sinks

⇒ ↓↓ yt ⇒ ↓↓πt ⇒ ↓ it ⇒ ↓ rt

This explanation for the capital puzzle is backed by a simple arithmetic. Inflation is

determined in a New Keynesian model through two equations: the Fisher relation (ît =
r̂t +Et π̂t+1) and the interest rate rule (ît = áendogenoust + áexogenoust ). By combining both

equations and eliminating ît , I obtain that the sign of r̂t will be opposite to that of the

monetary policy shock if and only if the endogenous response of the monetary policy rule

discounted of the expectation for next-period inflation has the opposite sign to the shock

and is larger in absolute value.

r̂t =
( áendogenoust −Et π̂t+1

)
+ áexogenoust (5)
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A simple illustration exercise is to pick a policy rule of the form ît = 1.5Et π̂t+1 + ξm
t and

impose a +50 bps shock. It will generate the capital puzzle if Et π̂t+1 is lower than -100 bps.

From an empirical perspective, this paper also shows that the identification problem

of the real interest rate channel of monetary policy can be largely mitigated in the relevant

parameter range by adding interest-rate smoothing to the Taylor rule — a feature as prevalent

as capital in medium-scale New Keynesian DSGE models, e.g., Smets and Wouters (2003,

2007, 2024). Smoothing interest rates narrows down the numerical difference between the

RIRGs measured under the state-invariant and state-variant definitions, while it also makes

more likely that r̂ Gap
t reflects the sign of the monetary policy shock in impulse response

functions such as the one in Figure 1.

I adopt the following modeling strategy to disentangle the observational equivalence of

the real interest rate channel from its structural validity. First, I solve the textbook New Key-

nesian model without and with capital as well as decompose the effect of shocks on r Gap
t

as in Equations (2) to (4). This decomposition exposes that the state-invariant component

retains the sign predicted by the New Keynesian theory. The sign of the state-variant com-

ponent, by its turn, will depend on the interaction between the structure of the model and

the monetary policy rule. If the state-variant component happens to have the opposite sign

of the state-invariant one and it is larger in magnitude than the latter, a positive monetary

policy shock can lead to an immediate decrease of the real interest rate. In this case, yes, a

central bank can tighten and real interest rates fall, but that reflects the dynamics of the en-

dogenous state variables of that economy and not the first-round effect of monetary policy.

This is true for both short and long-term real rates.

Second, I add smoothing in the Taylor rule to show that the latter can mitigate the iden-

tification problem. The finding that the real interest rate channel of monetary policy is re-

established with a common ingredient of medium-scale New Keynesian models alleviates

concerns regarding that channel’s proper identification in policy-oriented DSGE or VAR

models. The latter are mostly immune to the problem because lagging terms are ubiquitous

in their specification. I check the robustness of my results by exploring different combinations

of interest-rate smoothing and also capital adjustment costs, since making capital adjust-

ment sluggish is warranted to prevent excessive output fluctuations after a monetary policy

shock.

Finally, I demonstrate how previous results extend to a medium-scale DSGE model —
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more closely resembling those employed by contemporary central banks — and explore the

potential of the state-invariant RIRG as a predictor of future inflation and as an instrument

that helps telling the history of monetary policy. I find that from 1965Q1 to 2023Q3 in

the United States, it often surpassed in performance the state-variant and state-consistent

versions.

The next sections of this paper are structured as follows. Section 2 presents the related

literature. Section 3 describes, solves, and analyzes the New Keynesian model before and

after introducing endogenous capital. Section 4 introduces interest-rate smoothing. Section

5 takes the proposed solutions to a medium-scale model. Section 6 explores forecasting

properties. Section 7 interprets the monetary policy stance history of the United States.

Finally, Section 8 concludes.

2 Related literature

In the literature about gauging the monetary policy stance through interest rate gaps, Wicksell

(1898, 1907) builds a whole monetary theory over the gap between the money rate and the

natural interest rate in a mostly frictionless environment. More recently, Woodford (2003a)

makes the theoretical case for the use of RIRGs in monetary policy; Neiss and Nelson (2003)

and Mésonnier (2011) present evidence in favor of their empirical relevance; and Barsky,

Justiniano and Melosi (2014) discuss their usefulness.

In central banking practice, the use of RIRGs has been pervasive (e.g., Waller (2024);

Schnabel (2024)), leading to several estimation methods being proposed. Laubach and

Williams (2003) estimate the gap in a semi-structural model, defining the natural rate as a

trend that depends on output growth. Cour-Thimann, Pilegaard and Stracca (2006) specify

the natural rate as the unobservable component of the real interest rate which has neither

contemporaneous nor lagged correlations with the output gap. Lubik, Matthes et al. (2015)

employ a time-varying parameter VAR model without assuming economic relationships be-

tween key macroeconomic variables, in a largely agnostic approach. What all proposed

methods in the literature have in common are large confidence bands around their estimates

for the natural rate.

Despite the widespread use of the RIRG as a measure of the monetary policy stance,

suspicion about the real interest rate channel of New Keynesian models is considerably
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older than Rupert and Šustek (2019). The early work of Kimball (1995) on the derivation of

real business cycle models with sticky prices and a quantity equation with exogenous shocks

to the money supply dedicates a whole section to discussing the likelihood of that channel.

He concludes that, even when investment adjustment costs are introduced, parameter values

perceived by him as "plausible" would imply that the real interest rate increases in response

to a monetary expansion.7 The "implausible" scenario would occur if either adjustment

costs were "too high" or convergence back to the long-run equilibrium after a monetary

policy shock was "too fast", not unlike what Rupert and Šustek (2019) find.

Nonetheless, two distinctions exist between Kimball (1995)’s Neo-Monetarist model and

most New Keynesian models that followed. First, the New Keynesian literature has followed

the real-world trend of adopting nominal interest rate rules with an endogenous response to

inflation. These last rules, especially when augmented with smoothing, put in sharp relief

the speed of convergence back to a long-run equilibrium. Second, the parameterization

he deems as "plausible" — an investment adjustment cost elasticity of 0.2 and a (labor-

constant) elasticity of intertemporal substitution (EIS) for consumption of 0.2 — does not

match modern estimations, which find higher values for the EIS.8 The lack of realism in

modeling assumptions is also a subject of criticism in Brault and Khan (2022), who modify

Rupert and Šustek (2019)’s work by including frictions on changes in the flow of investments,

as Christiano, Eichenbaum and Evans (2005) do, rather than on capital adjustment. They

find that the real interest rate moves in the same direction as the monetary policy shock

when the model contains empirically realistic frictions. This suggests that, at least in con-

temporary (medium-scale) New Keynesian models, the real interest rate channel should be

observed.

Concerning interest-rate smoothing, its introduction into the canonical model is empir-

ically motivated. Significant levels of it are found in the response function of the Federal

Reserve by Clarida, Galí and Gertler (1999), for both the pre-Volcker (1960Q1-1979Q2) and

the Volcker-Greenspan (1979Q3-1996Q4) eras. The same are found by Coibion and Gorodnichenko

(2012), whose results employing both hard and narrative real-time data favor that source

of purposeful policy inertia over simply serially correlated monetary policy shocks, where

7The model is linearized and, therefore, I assume a symmetrical response in the case of a monetary

contraction.
8Using Bayesian methods, Smets and Wouters (2003) estimate the EIS to be 0.74 for the Euro Area, and

Smets and Wouters (2007) estimate it to be 0.68-0.72 for the U.S. All values are posterior modes.
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the latter could be arbitrary or motivated by the inherited persistence from underlying data

generating processes of omitted variables to which the Federal Reserve also responds. For

their part, Smets and Wouters (2007) estimate a medium-scale New Keynesian DSGE model

using Bayesian methods for the United States from 1966 to 2004 and find large coefficients

for interest-rate smoothing (above 0.7) as well as small coefficients for monetary policy

shock persistence (below 0.3). Smets and Wouters (2024) update the sample until 2019 with

a more detailed fiscal sector and allow inflation to be only partially backed by fiscal policy,

obtaining mostly similar results. All these papers suggest the empirical presence of smooth-

ing through the estimation of either single or multiple equation models, that is, by imposing

only a little or a lot of informational restriction on the estimation. However, contrasting

results can still be found depending on the estimation strategy as Rudebusch (2006) and

Carrillo, Fève and Matheron (2018) demonstrate, favoring the modeling of serially correlated

monetary policy shocks employed by Rupert and Šustek (2019).

Smoothing interest rates is also theoretically justified. Sack and Wieland (2000) and

Woodford (2003b) show that smoothing policy interest rates may be optimal from a welfare

perspective. This is a concern already presented in Brainard (1967), for which the existence

of uncertainty on the effects of a certain policy recommends moving in its direction in small

steps. Taking a related perspective, Goodfriend (1987) rationalizes smoothing in terms of a

central bank’s preference to maintain "orderly money markets" by minimizing unexpected

asset price movements that otherwise could raise the risk of bankruptcies and banking crises.

Thus, although smoothing is a policy choice, high levels of it are generally optimal, and

low levels are empirically rare, which warrants the case of this paper. Listening directly to

central banks themselves, Amaral et al. (2025) asked several of them to rank their motivations

for adjusting the monetary policy rate in small steps and found evidence that central banks

do purposefully smooth the policy rate to some extent. Both approaches to monetary policy

are not mutually exclusive, though, since a data-driven stance and contingency on new

information do not preclude forward guidance and policy inertia. This paper shows that

different combinations of these two features are usually enough to restore the identification

of the real interest rate channel when using the conventional state-variant RIRG.
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3 New Keynesian model before and after capital

In this section, I propose and solve a New Keynesian toy model: first the canonical version,

followed by the model augmented with a generic endogenous state variable, and then finally

with endogenous capital. This exposition strategy facilitates the comparison across the

different versions of the model. The reader can find in Appendix A a glossary of all symbols

used.

3.1 Canonical closed economy (with omitted or fixed capital)

Consider a closed economy without fiscal policy, where a one-period risk-free nominal bond

is available in zero net supply and the central bank adopts a fixed-intercept Taylor rule. I

expand here on the simplified presentation made by Rupert and Šustek (2019) of the ca-

nonical New Keynesian model of Galí (2015), with minor notational changes, whose full

derivation is available in Appendix B.1.

The simple linearized model reduces to three equilibrium conditions: an Euler/IS equation

(6), a Phillips Curve (7), and a Taylor rule (8). They pin down three variables: real output,

yt ; nominal interest rate, it ; and inflation, πt . Over-lined variables represent their non-

stochastic steady-state values (π= 0, y = 1) and hat variables are deviations from that same

steady state, such that ŷt ≡ yt−y
y and ît ≡ it − i . At this stage of the model, the relevant

parameters are the subjective discount factor, β; the inverse of the elasticity of labor supply,

η; the fraction of producers not adjusting prices at any given period, θ; and the Taylor-rule

coefficient that gauges the central bank’s reaction to current inflation, ν. There is also an

exogenous monetary policy shock variable, ξm
t .

−ŷt =−Et ŷt+1 + ît −Et πt+1

πt =Ωŷt +βEt πt+1

ît = νπt +ξm
t


(6)

(7)

(8)

where

Ω≡ (1+η)(1−θ)(1−θβ)

θ
> 0 (9)

Notice that when prices are fully flexible, θ→ 0, thenΩ→∞, whereas when prices are fixed,

θ→ 1, thenΩ→ 0.
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I can proceed further by substituting the policy rule (8) into (6) so that I reduce the

system to only two equations:

−ŷt =−Et ŷt+1 +νπt +ξm
t −Et πt+1

πt =Ωŷt +βEt πt+1

 (10)

(11)

I assume the monetary policy shock follows an AR(1) process given by ξm
t = ρmξm

t−1 + ϵm
t ,

where ρm ∈ [0,1) and ϵm
t is i.i.d. N(0,1). Solving the model with the method of undetermined

coefficients — also known as guess-and-verify — by conjecturing ŷt = aξm
t and πt = bξm

t ,

where a and b are the coefficients I want to obtain, and discarding explosive paths for output

and inflation leads to

a =− 1−βρm

(1−ρm)(1−βρm)+Ω(ν−ρm)
< 0 (12)

b =− 1

(1−ρm)(1−βρm)Ω−1 + (ν−ρm)
< 0 (13)

where both coefficients imply that a positive monetary policy shock always reduces inflation

and output in the canonical New Keynesian model.

Figure 3 plots coefficients a and b for different values of ν and Ω, under the calibration

of Rupert and Šustek (2019)9. As expected, flexible prices reduce output elasticity to zero at

the same time that inflation elasticity is at its maximum. Moreover, a more active monetary

policy reduces both elasticities.

Note: Darker colors imply higher (absolute) elasticity values.

Figure 3: Output and inflation elasticity to a monetary policy shock

9The following calibration includes deep parameters, as well as parameters that will later be incorporated

into the model presented in this paper: β = 0.99, η = 1, ε = 0.83, θ = 0.7, ν = 1.5, ρm = 0.5, α = 0.3, δ = 0.025.
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The real interest rate deviation from steady state can be derived from the Fisher identity,

r̂t = ît −Et πt+1. Substituting my solution, I have

r̂t =

1− 1

1+ 1−ρm

ν−ρm
1−βρm

Ω︸ ︷︷ ︸
∈[0,1]


︸ ︷︷ ︸

≥0

ξm
t (14)

whose coefficient on ξm
t , which is never negative, implies that the real interest rate always

increases/decreases right after a positive/negative monetary policy shock. This is observa-

tionally and structurally consistent with monetary policy being transmitted through a real

interest rate channel.

3.2 Model with endogenous state variable

Next, I expand the reduced canonical New Keynesian model of equations (10) and (11) with a

generic endogenous state variable in the Phillips curve, ẽt−1, whose data generating process

is elastic to ξm
t by a factor of ω. To simplify, I assume this endogenous state variable is

purely explained by the history of exogenous monetary policy shocks, as in equation (17).10

I replace hat variables with tilde variables in this session to make the comparison with the

canonical model clearer.

−ỹt =−Et ỹt+1 +νπ̃t +ξm
t −Et π̃t+1

π̃t =Ωỹt +βEt π̃t+1 + ẽt−1

ẽt =ωξm
t


(15)

(16)

(17)

After conjecturing ỹt = ãξm
t and π̃t = b̃ξm

t , where ã and b̃ are the coefficients I want to

obtain, and discarding explosive paths for output and inflation (ρm ∈ (0,1)) leads to

ã = a

1+ω
(
ν−ρm

)
ρm

(
1−βρm

)︸ ︷︷ ︸
> 0

 ?︸︷︷︸
sign depends on ω

0 (18)

b̃ = b

1−ω
(
1−ρm

)
Ωρm︸ ︷︷ ︸
> 0

 ?︸︷︷︸
sign depends on ω

0 (19)

10Assuming ẽt−1 is purely an exogenous shock which is correlated to ϵm
t can generate similar impulse

response functions, but its interpretation as a puzzle is less obvious.

16



Now, despite a < 0 and b < 0, the signs of ã and b̃ will depend on the sign and size

of ω. Moreover, ã and b̃ can diverge in sign, allowing for an output expansion amid a

persistent disinflation, such as when the income effect of the monetary shock outweighs

its intertemporal substitution effect (see Section 4.3.3). Substituting the solution into the

Fisher relation, I find

r̃t = r̂t︸︷︷︸
same sign as ξm

t

+ ω

(
1−ρm

)
ρmΩ

(
1+ 1−ρm

ν−ρm
1−βρm

Ω

)
︸ ︷︷ ︸

>0︸ ︷︷ ︸
sign of ω

ξm
t (20)

This is equivalent to decomposition (3), but with respect to this model. It shows that, upon

the introduction of an endogenous state variable, the RIRG can go in any direction in the

period of a positive persistent monetary shock. Whether up or down will depend on the

sign and size of the elasticity of the state variables to the shock. In that sense, the capital

puzzle goes beyond capital.

3.3 Model with endogenous capital

This section incorporates endogenous capital and shows that the real interest rate channel

is reestablished once one uses the state-invariant RIRG definition. The full derivation of this

expansion of the canonical model is available in Appendix B.2.

3.3.1 What does change in the model?

Following Rupert and Šustek (2019), I assume an economy-wide rental market for capital,

so firms adjust holdings each period. Thus, capital is not firm-specific.11 Moreover, they

assume that whenever households change their stock of capital, there is a quadratic adjust-

ment cost, −κ
2 (kt+1 −kt )2, where kt is the stock of capital inherited from the previous period

and κ ≥ 0 is a parameter that governs the size of the adjustment cost in terms of foregone

real income. The production function now incorporates capital and labor proportionate to

constant returns to scale, where α is the Cobb-Douglas coefficient of capital and r k
t is the

latter’s rent.
11Altig et al. (2011) estimate a New Keynesian DSGE model for the U.S. and find that this modeling choice for

introducing endogenous capital results in firms enduring long spells before readjusting prices, up to 9 quarters

on average. They show that firm-specific capital can align that spell more with empirical evidence from micro

data to, say, once a year.

17



Comparing with the three-equation canonical model of Section 3.1, the reduced system

has now five equations (21 to 25). There is a new Euler equation for the capital asset (22) and

a more complex resource constraint (24), where δ ∈ (0,1) is the capital’s depreciation rate.

Moreover, qt is the price of capital in terms of current consumption, or Tobin’s q, such that

qt ≡ 1+κ (kt+1 −kt ). Finally, Gt+1 ≡ qt+1
qt

is the capital gain, so ĝ t = q̂t − q̂t−1 = κ
(
k̂t+1 − k̂t

)−
κ

(
k̂t − k̂t−1

)
, where κ = κk. For any variable X , X̂ ≡ X t−X

X
, with the exception of ît ≡ it − i ,

r̂t ≡ rt − r , and r̂ k
t ≡ r k

t − r k . The systems reduces to

−ĉt =−Et ĉt+1 + ît −Et πt+1

−ĉt =−Et ĉt+1 +Et ĝ t+1 + r k Et

(
ĉt+1 + 1+η

1−α ŷt+1 − 1+αη
1−α k̂t+1

)
πt =Ψ

(
η+α
1−α ŷt −α 1+η

1−α k̂t + ĉt

)
+βEt πt+1

ŷt = c

y
ĉt + k

y
k̂t+1 − (1−δ)

k

y
k̂t

ît = νπt +ξm
t



(21)

(22)

(23)

(24)

(25)

where Ψ ≡ χ
(1−θ)(1−θβ)

θ and χ is the real marginal cost at the steady state, such that when

prices are flexible,Ψ→∞.

3.3.2 The real interest rate gap

In the New Keynesian theory, the gauge of monetary policy stance is the real interest rate

gap, r̂ Gap . The conventional way of calculating the gap is by taking the difference between

the actual real interest rate, r̂t , and the real interest rate of a counterfactual economy without

nominal rigidities, r̂ n
t , as in (1). This approach does not take into account the fluctuation of

state variables, such as capital, which, I showed in Table 1, is the reason why Rupert and

Šustek (2019) find that the real interest rate channel of monetary policy transmission is only

observational and not structural in New Keynesian models.

Next, I decompose the effect of the shock into a purely exogenous component that emerges

from the counterfactual with fixed state variables, and one which depends on the existence

of the state variable, (27). After that, I can calculate a state-consistent RIRG, like in Woodford

(2003a), but whose sign reflects the actual monetary policy stance. I call this the state-

invariant RIRG. This last measure is consistent with the New Keynesian theory and shows

that the transmission of monetary policy is truly through a real interest rate channel, although

deviations of endogenous state variables from their long-run values blur that same mechanism.
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A steady-state economy inflicted with a positive monetary policy shock will always exhibit a

positive state-invariant RIRG in the period of the shock.

I start by recalling some definitions introduced in this paper, (1) to (4). r cc
t is the real in-

terest rate of a counterfactual economy in which capital is kept fixed at its long-run (steady-

state) value, r n,cc
t is the same counterfactual but with no nominal rigidities, r̂ Gap,cc

t is the

gap between them, while ηnk , ηnkk , ηk , and ηkk are constants.

r̂ Gap
t = r̂t − r̂ n

t (1)

r̂ n
t = r̂ n,cc

t + (
ηnk k̂n

t +ηnkkϵ
m
t

)
(2)

r̂t = r̂ cc
t + (

ηk k̂t +ηkkϵ
m
t

)
(3)

r̂ Gap,cc
t = r̂ cc

t − r̂ n,cc
t (4)

I can now proceed with the decomposition. I substitute (3) and (2) into (4), and then (1)

into its result to obtain (26).

r̂ Gap,cc
t = (

r̂t −ηk k̂t −ηkkϵ
m
t

)− (
r̂ n

t −ηnk k̂n
t −ηnkkϵ

m
t

)
r̂ Gap,cc

t = r̂ Gap
t −ηk k̂t +ηnk k̂n

t −ηkkϵ
m
t +ηnkkϵ

m
t

r̂ Gap
t = r̂ Gap,cc

t︸ ︷︷ ︸
state-invariant effect

+ηk k̂t −ηnk k̂n
t +ηkkϵ

m
t −ηnkkϵ

m
t︸ ︷︷ ︸

state-variant effect

(26)

As the only shock of the model is monetary, r̂ Gap,cc
t = r̂ cc

t , ηnkk = 0, and k̂n
t = 0.

r̂ Gap
t = r̂ cc

t︸︷︷︸
state-invariant effect

+ ηk k̂t +ηkkϵ
m
t︸ ︷︷ ︸

state-variant effect

(27)

Returning to the model equations, after fixing capital, I can get rid of (22). Assuming the

same policy rule as before, I have:

−ĉcc
t =−Et ĉcc

t+1 +νπcc
t +ξm

t −Et π
cc
t+1

πcc
t =Ψ

(η+α
1−α ŷcc

t + ĉcc
t

)
+βEt π

cc
t+1

ŷcc
t = c

y
ĉcc

t



(28)

(29)

(30)

I substitute (30) in (29) to eliminate ŷt . Using the undetermined coefficients methods, I

solve next.

ĉcc
t = aξm

t ⇒ Et ĉcc
t+1 = aEt ξ

m
t+1 ⇒ ĉcc

t = aϵm
t ⇒ Et ĉcc

t+1 = aρmϵm
t
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π̂cc
t = bξm

t ⇒ Et π̂
cc
t+1 = bEt ξ

m
t+1 ⇒ π̂cc

t = bϵm
t ⇒ Et π̂

cc
t+1 = bρmϵm

t

−ĉcc
t =−Et ĉcc

t+1 +νπcc
t +ξm

t −Et π
cc
t+1

πcc
t =Ψ

(
η+α
1−α

c

y
+1

)
ĉcc

t +βEt π
cc
t+1


−aϵm

t =−aρmϵm
t +νbϵm

t +ϵm
t −bρmϵm

t

bϵm
t =Ψ

(
η+α
1−α

c

y
+1

)
aϵm

t +βbρmϵm
t


a = 1

ρm −1

( (
ν−ρm

)
Θ

1− (
ν−ρm

)
Θ
+1

)
b = Θ

1− (
ν−ρm

)
Θ

(31)

(32)

whereΘ≡ Ψ
(
η+α
1−α

c
y +1

)
(1−βρm)(ρm−1) < 0.

Since Θ < 0 and
(
ν−ρm

) > 0, −1 < (ν−ρm)Θ
1−(ν−ρm)Θ < 0, so that a < 0, which means that con-

sumption always decreases with respect to the state-invariant effect of the shock. Moreover,

the numerator of b is negative and the denominator is positive, so that b < 0, which means

that inflation also falls as a consequence of the state-invariant effect of the shock. r̂ cc
t and

r̂ n,cc
t can now be analytically solved, and therefore, also r̂ Gap,cc

t .

r̂ cc
t = i cc

t −Et π
cc
t+1 = νπcc

t +ϵm
t −Et π

cc
t+1

r̂ cc
t = νbϵm

t +ϵm
t −bρmϵm

t = (
νb +1−bρm)

ϵm
t

r̂ cc
t =

(
1+ (ν−ρm)

Θ

1− (
ν−ρm

)
Θ

)
ϵm

t

r̂ cc
t =

1+ 1
1

(ν−ρm)Θ −1︸ ︷︷ ︸
> -1


︸ ︷︷ ︸

≥ 0

ϵm
t

A positive monetary policy shock will always result in a non-negative state-invariant

effect, r̂ cc
t ≥ 0 and therefore r̂ Gap,cc

t ≥ 0, but the sign of the state-variant effect will depend on

the interaction between the structure of the model economy and the policy rule. Therefore,

r̂ Gap
t will be negative if the state-variant effect is negative and has a higher magnitude than

the state-invariant effect. Tables (4) to (7) sweep the sign of the impulse response functions

of r̂ Gap
t and r̂ Gap,cc

t right after a positive monetary policy shock for different values of κ
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ranging from 0 to 0.5. Notice that r̂ Gap
t turns negative the more persistent is the shock, but

higherκdelays the sign switch to largerρm . What capital adjustment costs do in the model is

to introduce a friction to its state variable (i.e. capital), reducing its sensitivity to exogenous

shocks overall, and therefore attenuating the magnitude of the state-variant component of

the RIRG. Overall, the RIRG truly consistent with the monetary policy stance, and with the

real interest rate transmission channel, is the state-invariant one.

Table 4: Parameter sweep with δ= 0.025 and κ= 0.0

ρm = 0 ρm = 0.1 ρm = 0.2 ρm = 0.3 ρm = 0.4 ρm = 0.5 ρm = 0.6 ρm = 0.7 ρm = 0.8 ρm = 0.9 ρm =0.95 ρm =0.99

r Gap + - - - - - - - - - - -

r cc,Gap + + + + + + + + + + + +

Note: + indicates that the specific real interest rate gap increases right after a positive monetary

policy shock; - indicates that it decreases.

Table 5: Parameter sweep with δ= 0.025 and κ= 0.1

ρm = 0 ρm = 0.1 ρm = 0.2 ρm = 0.3 ρm = 0.4 ρm = 0.5 ρm = 0.6 ρm = 0.7 ρm = 0.8 ρm = 0.9 ρm =0.95 ρm =0.99

r Gap + + + + + + + + - - - -

r cc,Gap + + + + + + + + + + + +

Note: + indicates that the specific real interest rate gap increases right after a positive monetary

policy shock; - indicates that it decreases.

Table 6: Parameter sweep with δ= 0.025 and κ= 0.2

ρm = 0 ρm = 0.1 ρm = 0.2 ρm = 0.3 ρm = 0.4 ρm = 0.5 ρm = 0.6 ρm = 0.7 ρm = 0.8 ρm = 0.9 ρm =0.95 ρm =0.99

r Gap + + + + + + + + + - - -

r cc,Gap + + + + + + + + + + + +

Note: + indicates that the specific real interest rate gap increases right after a positive monetary

policy shock; - indicates that it decreases.
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Table 7: Parameter sweep with δ= 0.025 and κ= 0.5

ρm = 0 ρm = 0.1 ρm = 0.2 ρm = 0.3 ρm = 0.4 ρm = 0.5 ρm = 0.6 ρm = 0.7 ρm = 0.8 ρm = 0.9 ρm =0.95 ρm =0.99

r Gap + + + + + + + + + + - -

r cc,Gap + + + + + + + + + + + +

Note: + indicates that the specific real interest rate gap increases right after a positive monetary

policy shock; - indicates that it decreases.

3.4 The long-term real interest rate

In a weaker version of the real interest rate channel, monetary policy affects the economy

predominantly through the long-term real interest rate, r̂ l
t , instead of through shorter-term

real rates. r̂ l
t can be obtained by iterating forward the log-linearized Euler equation of bonds

(21) and imposing stationarity, which results in r̂ l
t being the sum of all one-period real rates

from today until infinity — the expectations hypothesis of the yield curve.

−ĉt =−Et ĉt+1 + r̂t ⇒−ĉt =−Et ĉt+2 + r̂t + r̂t+1 ⇒ ... ⇒−ĉt =−Et ĉt+∞︸ ︷︷ ︸
0

+
∞∑

j=0
r̂t+ j︸ ︷︷ ︸

≡r̂ l
t

⇒−ĉt = r̂ l
t

Therefore, r̂ l
t will have the opposite sign of ĉt whenever the economy is out of the steady

state. I showed in section 3.3.2 that consumption always decreases with respect to the

state-invariant effect of a positive monetary policy shock, what can now be extrapolated

to r̂ l
t always increases with respect to the state-invariant effect of a positive monetary policy

shock. Thus, even the weaker version of the real interest rate channel is also structural. It

is true that r̂ l
t may fall after a positive monetary policy shock, e.g., if the persistence of the

shock is large, like showed in Rupert and Šustek (2019), but that is a case in which the state-

variant effect – whose sign and size depend on the state elasticities to the shock and on the

strength of the endogenous component in the monetary policy rule – dominates. Section

4.3.3 shows an example in which this happens as the income effect of the monetary policy

shock outweighs its intertemporal substitution effect, pushing ĉt in the same direction of

the shock.
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4 Interest-rate smoothing

This section shows that adopting interest-rate smoothing in the Taylor Rule easily delivers

impulse-response functions for the state-variant RIRG, r Gap
t , with the sign consistent with

the real interest rate channel – at least within the empirically relevant parameter range.

This is possible as smoothing introduces a new endogenous state variable whose state-

variant effect offsets the state-variant effect of the capital dynamics identified in (27). This

finding significantly mitigates the identification problem from an empirical perspective and

provides new insight into its mechanics.

4.1 Smoothing the policy rule

I substitute the Taylor rule (25) with one that includes interest-rate smoothing (33), whose

persistence is governed by ρi ∈ [0,1).

it = ρi it−1 +
(
1−ρi

)
(i +νπt )+ξm

t

}
(33)

The reduced 4-equation system with the new policy rule becomes:

−ĉt =−Et ĉt+1 +ρi ît−1 +
(
1−ρi

)
νπt −Et πt+1 +ξm

t

−ĉt =−Et ĉt+1 +Et ĝ t+1 + r k Et

(
ĉt+1 + 1+η

1−α ŷt+1 − 1+αη
1−α k̂t+1

)
πt =Ψ

(
η+α
1−α ŷt −α 1+η

1−α k̂t + ĉt

)
+βEt πt+1

ŷt = c

y
ĉt + k

y
k̂t+1 − (1−δ)

k

y
k̂t



(34)

(35)

(36)

(37)

To determine whether the negative response of real interest rates to a positive monetary

policy shock persists as an identification problem, I sweep the combinations of parameter

values for ρm ∈ [0 : 0.1 : 0.9,0.95,0.99] and ρi ∈ [0 : 0.1 : 0.9,0.95,0.99]. Table 8 displays the

sign of the reaction of the real interest rate right after the shock for all combinations under

δ= 0.025 and κ= 0.0. Tables 9 and 10 increase κ to 0.1 and 0.5, respectively. As one can see,

under the hypothesis of no adjustment costs, ρi must be at least 0.95 to guarantee a positive

response under all values of ρm . However, even a small adjustment cost, like κ = 0.1, is

enough to largely increase the parameter range consistent with a real interest rate channel

of monetary policy transmission.
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Table 8: Parameter sweep with δ= 0.025 and κ= 0.0

ρi = 0 ρi = 0.1 ρi = 0.2 ρi = 0.3 ρi = 0.4 ρi = 0.5 ρi = 0.6 ρi = 0.7 ρi = 0.8 ρi = 0.9 ρi =0.95 ρi =0.99

ρm = 0 + + + + + + + + + + + +

ρm = 0.1 - - - - - - - + + + + +

ρm = 0.2 - - - - - - - - - + + +

ρm = 0.3 - - - - - - - - - + + +

ρm = 0.4 - - - - - - - - - - + +

ρm = 0.5 - - - - - - - - - - + +

ρm = 0.6 - - - - - - - - - - + +

ρm = 0.7 - - - - - - - - - - + +

ρm = 0.8 - - - - - - - - - + + +

ρm = 0.9 - - - - - - - - - + + +

ρm =0.95 - - - - - - - - + + + +

ρm =0.99 - - - - - + + + + + + +

Note: + indicates that the real interest rate increases right after a positive monetary policy shock; -

indicates that it decreases.

Table 9: Parameter sweep with δ= 0.025 and κ= 0.1

ρi = 0 ρi = 0.1 ρi = 0.2 ρi = 0.3 ρi = 0.4 ρi = 0.5 ρi = 0.6 ρi = 0.7 ρi = 0.8 ρi = 0.9 ρi =0.95 ρi =0.99

ρm = 0 + + + + + + + + + + + +

ρm = 0.1 + + + + + + + + + + + +

ρm = 0.2 + + + + + + + + + + + +

ρm = 0.3 + + + + + + + + + + + +

ρm = 0.4 + + + + + + + + + + + +

ρm = 0.5 + + + + + + + + + + + +

ρm = 0.6 + + + + + + + + + + + +

ρm = 0.7 + + + + + + + + + + + +

ρm = 0.8 - + + + + + + + + + + +

ρm = 0.9 - + + + + + + + + + + +

ρm =0.95 - + + + + + + + + + + +

ρm =0.99 - + + + + + + + + + + +

Note: + indicates that the real interest rate increases right after a positive monetary policy shock; -

indicates that it decreases.
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Table 10: Parameter sweep with δ= 0.025 and κ= 0.5

ρi = 0 ρi = 0.1 ρi = 0.2 ρi = 0.3 ρi = 0.4 ρi = 0.5 ρi = 0.6 ρi = 0.7 ρi = 0.8 ρi = 0.9 ρi =0.95 ρi =0.99

ρm = 0 + + + + + + + + + + + +

ρm = 0.1 + + + + + + + + + + + +

ρm = 0.2 + + + + + + + + + + + +

ρm = 0.3 + + + + + + + + + + + +

ρm = 0.4 + + + + + + + + + + + +

ρm = 0.5 + + + + + + + + + + + +

ρm = 0.6 + + + + + + + + + + + +

ρm = 0.7 + + + + + + + + + + + +

ρm = 0.8 + + + + + + + + + + + +

ρm = 0.9 + + + + + + + + + + + +

ρm =0.95 - + + + + + + + + + + +

ρm =0.99 - + + + + + + + + + + +

Note: + indicates that the real interest rate increases right after a positive monetary policy shock; -

indicates that it decreases.

So, how restricting is the direction-switching behavior of the real interest rate in response

to a monetary policy shock for the estimation of VARs and DSGEs? We have seen that, in the

presence of interest-rate smoothing, an empirically validated (Coibion and Gorodnichenko,

2012), theoretically desirable (Woodford (2003b), Sack and Wieland (2000)), and prevalent

feature of medium-scale DSGE models (Smets and Wouters (2003) estimates ρi = 0.956 for

the Euro Area; Smets and Wouters (2007) estimates ρi = 0.75−0.84 for the United States), a

plausibly small adjustment cost is enough to reestablish the sign consistency with the real

interest rate channel. Thus, observational equivalence is obtained in medium-scale New

Keynesian models through a combination of realistic endogenous state variable rigidities.

4.2 The mechanics of smoothing

Now, using the method of undetermined coefficients, I explicitly derive the solution for the

real interest rate and compare it to the case without smoothing.

Originally, there are three state variables (k̂t , ξm
t−1, ît−1) and one shock (ϵm

t ).12 To reduce

the number of coefficients I have to solve for, this representation can be simplified to just

three state variables (k̂t , ξm
t , ît−1) using the monetary policy shock process equation. For

12In Dynare code, there is an additional state variable, kt−1, that is used just for plotting capital at the

beginning of the period.
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the four jump variables, I assume ĉt = a0k̂t + a1ξ
m
t + a2ît−1; πt = b0k̂t +b1ξ

m
t +b2ît−1; ŷt =

d0k̂t +d1ξ
m
t +d2ît−1; k̂t+1 = f0k̂t + f1ξ

m
t + f2ît−1. The set of coefficients to be determined for

the solution of the full system is {a0, a1, a2, b0, b1, b2, d0, d1, d2, f0, f1, f2}.

With the log-linearized Fisher relation, r̂t = ît −Et πt+1, and the Euler equation (34) I can

write:

r̂t = Et ĉt+1 − ĉt

=
(
a0 f0 −a0 +a2

(
1−ρi

)
νb0

)
k̂t +

(
a0 f2 −a2 +a2ρ

i +a2

(
1−ρi

)
νb2

)
ît−1︸ ︷︷ ︸

= 0 at the shock

+


ρm a1 −a1︸ ︷︷ ︸
ex-smoothing

+a2

(
1−ρi

)
νb1 +a2︸ ︷︷ ︸

smoothing︸ ︷︷ ︸
indirect effect of capital

+a0 f1︸ ︷︷ ︸
direct effect of capital


ξm

t

When I remove interest-rate smoothing, that is, when ρi = 0, a2 = 0, b2 = 0, d2 = 0, and

f2 = 0, the model is the same as the one portrayed in Rupert and Šustek (2019).

The decision rules (first-order solutions) from Dynare (Adjemian et al. (2024)) yield nu-

merical coefficients, each representing a partial derivative with respect to a state variable

or a shock (e.g., a0 ≡ ∂ĉt

∂k̂t
). With that in mind, I can decompose the immediate effect of the

shock on the real interest rate into a direct effect of capital and an indirect one. The direct

effect is analytically the same as in Rupert and Šustek (2019) since it depends only on the

existence of endogenous capital in the model. The indirect effect, on the other hand, can

be decomposed into two components: ex-smoothing and smoothing. The ex-smoothing

component is the full indirect effect in Rupert and Šustek (2019), whereas the smoothing

component appears in my model whenever ρi > 0. Although the direct effect of capital is

always negative, the indirect effect can switch signs depending on how much consumption

smoothing is allowed. For that, the shock’s persistence, the policy rate’s smoothing, and

capital adjustment costs are key.13 I call the total effect the sum of the direct and indirect

effects.

13The depreciation rate of capital, δ, is also important because it sets the k = K
Y

, but I prefer to keep it fixed

to simplify the analysis.
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∂r̂t

∂ξm
t

= (
ρm −1

) ∂ĉt

∂ξm
t︸ ︷︷ ︸

ex-smoothing

+
(
1+

(
1−ρi

)
ν
∂π̂t

∂ξm
t

)
∂ĉt

∂it−1︸ ︷︷ ︸
smoothing︸ ︷︷ ︸

indirect effect of capital

+∂ĉt

∂k̂t

∂k̂t+1

∂ξm
t︸ ︷︷ ︸

direct effect of capital < 0

Under the benchmark calibration, with no adjustment costs and no interest-rate smooth-

ing, the direct effect of capital on the real interest rate from a monetary policy shock is

negative for all possible values ofρm , while the indirect effect is mostly positive. The absolute

indirect effect is larger than the direct one only at the lowest range of ρm , as seen in Figure

4a. Note that for considerably persistent monetary policy shocks (ρm > 0.7), the indirect

effect can be negative, which implies ∂ĉt
∂ξm

t
> 0, an atypical situation in which the prospect of

a long spell of deflation motivates a consumption increase in the present due to the income

effect.14 Meanwhile, in Figure 4b, I show that raising κ to 0.1 increases both components of

the total effect, amplifying the range with the sign observationally consistent with the real

interest rate channel.

(a) κ= 0 (b) κ= 0.1

Figure 4: Decomposition of the effect of capital on r̂t from a monetary policy shock when

ρi = 0

In Figure 5, I introduce interest-rate smoothing by setting ρi = 0.5, with no capital ad-

justment costs. In that case, the total effect curve becomes flatter near the zero axis. Raising

14This case is explored in more detail in Section 4.3.3.
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the adjustment cost to κ= 0.1, as in Figure 6, is enough to turn the total effect curve positive

for all possible values of ρm even with just a little interest-rate smoothing (ρi = 0.1).

Figure 5: Decomposition of the effect of capital on r̂t from a monetary policy shock when

ρi = 0.5 and κ= 0

Figure 6: Decomposition of the effect of capital on r̂t from a monetary policy shock when

ρi = 0.1 and κ= 0.1

4.3 Different solutions for the capital puzzle

In this section, I explore different solutions for the capital puzzle while maintaining the con-

ventional state-variant definition of the RIRG. For that, I plot impulse response functions

28



of the New Keynesian model augmented with endogenous capital, adjustment costs, and

interest-rate smoothing. I calibrate the standard deviation of the monetary policy shock

to 1 p.p. The graphs display percentage deviations from steady-state values, except for in-

terest rates, which are measured in p.p. deviations from steady-state values. As expected,

output, consumption, and inflation respond negatively in the event of a contractionary

monetary policy shock, except for the atypical case in which the income effect dominates

the intertemporal substitution of consumption effect. In this last case, output and inflation

fall, but consumption expands. The capital stock always decreases, but with a lag due to my

timing convention. The nominal interest rate may react either positively or negatively, as the

sign depends on inflation expectations and actual inflation, both of which may decrease sig-

nificantly in the presence of persistence of the monetary policy shock, a well-documented

pattern (Galí (2015) and Woodford (2003a, sec. 4.2.4)). Most importantly, the state-invariant

RIRG, r Gap,cc
t , is always positive right after a positive monetary policy shock.15

4.3.1 Fixing with very high interest-rate smoothing

Figure 7 shows that high interest-rate smoothing (ρi = 0.95) restores the observational equivalence

with the real interest rate channel of monetary policy transmission. However, without capital

adjustment costs, the model predicts excessive output fluctuations.

15Interest-rate smoothing introduces a new state variable, which is lagged interest rate. Fixing that state

would violate the determinacy condition of the model, therefore I refrain from fixing it in the calculation of

r Gap,cc
t for the graphs of this section.
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Note: hat variables are deviations from the zero-inflation-target steady state. ît denotes the nominal interest

rate; r̂t the real interest rate; πt inflation; r̂ Gap,cc
t the real interest rate gap with constant capital; ŷt output; ĉt

consumption; k̂t capital at the beginning of period; and x̂t investment.

Figure 7: Impulse response function to a one-standard-deviation monetary policy shock

under ρi = 0.95 and κ= 0

4.3.2 Fixing with very low interest-rate smoothing and small adjustment cost

Figure 8 shows that simply combining a very low level of smoothing (ρi = 0.1) with a small

adjustment cost (κ = 0.1) resolves the identification problem. The adjustment cost still

prevents output from overreacting right after the shock. Moreover, the negative association

between changes in inflation and changes in the real interest rate does not depend on inflation

expectations, differing from what is observed for changes in the nominal interest rate, whose

sign depends on the persistence of the monetary policy shock.

30



Note: hat variables are deviations from the zero-inflation-target steady state. ît denotes the nominal interest

rate; r̂t the real interest rate; πt inflation; r̂ Gap,cc
t the real interest rate gap with constant capital; ŷt output; ĉt

consumption; k̂t capital at the beginning of period; and x̂t investment.

Figure 8: Impulse response function to a one-standard-deviation monetary policy shock

under ρi = 0.1 and κ= 0.1

4.3.3 An atypical situation: when the income effect dominates

Figure 4a showed that for considerably persistent monetary policy shocks, say ρm > 0.7,

the indirect effect of capital can be negative, which implies ∂ĉt
∂ξm

t
> 0. This atypical outcome

in representative agent New Keynesian (RANK) models arises because the expectation of a

prolonged period of deflation encourages households to increase their consumption in the

present as they need to save less today to smooth their future consumption. This counterin-

tuitive reaction to a monetary policy shock occurs because, in the absence of either capital

or investment adjustment costs, investment becomes significantly more responsive (elastic)

to the shock than consumption and, therefore, than output as well. In this scenario, the

income effect of the monetary policy shock outweighs the intertemporal substitution effect,

leading to the observed increase in current consumption.16 As can be seen in Figure 9, by

16Kaplan, Moll and Violante (2018) comment that, for reasonable parameterizations, monetary policy in

RANK models works almost exclusively through intertemporal substitution, while in heterogeneous agent

models, indirect effects, such as the ones arising from changes in labor income, play a larger role.
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comparing the impulse responses to a contractionary monetary policy shock for ρm = 0.5

and ρm = 0.95, the inconsistency with the real interest rate channel is present in this atypical

case, but can also be solved with interest-rate smoothing, as shown in Figures 5 and 6. Here,

the interpretation of r̂ Gap,cc
t is more challenging and raises a caveat. Although its sign at the

impact of the monetary policy shock is consistent with theory, the total size of the tightening

is smaller when ρm is higher and the income effect dominates.

Note: hat variables are deviations from the zero-inflation-target steady state. Nominal interest rate (ît ), real

interest rate (r̂t ), inflation (πt ), real interest rate gap with constant capital (r̂ Gap,cc
t ), output (ŷt ), consumption

(ĉt ), capital at the beginning of period (k̂t ), and investment (x̂t ).

Figure 9: Impulse response function to a one-standard-deviation monetary policy shock

under ρm = 0.5 and ρm = 0.95

5 Can Smets and Wouters (2007) do it?

Moving from textbooks to real-world central banking practice, how likely is it that the real

interest rate channel identification problem will appear? In normal times, quite unlikely.

Medium-scale New Keynesian models often include some additional ingredients that smooth

consumption and investment, complementing interest-rate smoothing in the Taylor rule.

Consumption habits, sticky wages, and investment adjustment costs all favor smooth changes

in endogenous state variables. A more complete rule specification, which responds to output

32



change, the output gap, and inflation expectations, may also support gradualism in mone-

tary policy. In that sense, there are plenty of endogenous state variable frictions which, at the

end of the day, guarantee observational equivalence with the real interest rate channel. Most

clearly, Smets and Wouters (2007) note that investment adjustment costs induce hump-

shaped dynamics that appear in real data. Shutting them off and re-estimating the model

significantly deteriorates its marginal likelihood to the extent that these costs are the most

empirically important real friction in the model. In this re-estimation, the need for heightened

persistence is distributed over the remaining frictions: more persistent exogenous shocks,

increased nominal rigidities, and more interest-rate smoothing.

5.1 Impulse response functions

Using Smets and Wouters (2007) calibrated at the posterior mode, I replicate the real interest

rate channel identification problem by slashing the investment adjustment cost parameter

(κi ) from 5.4882 to as low as 0.0001 and setting ρm = ρi = 0 (Figure 10).17 Since κi is a

structural parameter, not a policy choice like ρm and ρi , the negative association between

changes in the real interest rate and changes in inflation is arguably much more robust than

that between the latter and changes in the nominal interest rate, as it is immune to the Lucas

(1976) critique. In this simulation, investment falls by more than 300%, likely exceeding the

limits of the log-linear approximation of the model around a nonstochastic steady state. It is

remarkable that the profound drops in output and consumption are not reflected in the real

interest rate, but are clearly noticeable from the sign and the amplitude of r̂ Gap,cc
t , which

reaches more than 20 p.p.18 This indicates that r̂ Gap,cc
t is not only sign-consistent with the

stance of monetary policy, but it also may be a better gauge of its intensity.

In Figure 11, I change the policy parameter ρm , keeping ρi = 0, and apply the same mon-

etary policy shock. Immediately after the shock, it is possible to make the nominal interest

rate to move in either the same or the opposite direction as inflation. Nonetheless, r̂ Gap,cc
t

17At that calibration, the sign switching requires higher values of κi . I thank Johannes Pfeifer for providing

Dynare codes for the replication of Smets and Wouters (2007).
18r̂ Gap,cc

t is calculated by fixing capital stock, capital services, capital utilization and investment. The

removed equations are the "Investment Euler Equation" (SW Equation 3), the "Definition of capital services"

(SW Equation 6), the "Definition of degree of capital utilization" (SW Equation 7), and the "Law of motion for

capital" (SW Equation 8). In the remaining equations, references to capital stock, capital services, degree of

capital utilization or investment are fixed at their steady-state levels.
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is always positive on the impact. Note that r̂ Gap,cc
t can turn negative in a future period after

the shock, which did not happen in the canonical model augmented with capital (Section

4.3). This happens in this medium-scale model due to the effect of the other state variables

that exist in it and, for convenience, are still allowed to vary in our calculation of r̂ Gap,cc
t .

Note: hat variables are deviations from the zero-inflation-target steady state. ît denotes the nominal interest

rate; r̂t the real interest rate; πt inflation; r̂ Gap,cc
t the real interest rate gap with constant capital; ŷt output; ĉt

consumption; k̂t capital at the beginning of period; and x̂t investment.

Figure 10: Smets and Wouters (2007)’s impulse response function to a one-standard-

deviation monetary policy shock underκi = 0.0001 andκi = 0.001. Both calibrations assume

ρm = 0 and ρi = 0
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Note: hat variables are deviations from the zero-inflation-target steady state. ît denotes the nominal interest

rate; r̂t the real interest rate; πt inflation; r̂ Gap,cc
t the real interest rate gap with constant capital; ŷt output; ĉt

consumption; k̂t capital at the beginning of period; and x̂t investment.

Figure 11: Smets and Wouters (2007)’s impulse response function to a one-standard-

deviation monetary policy shock under ρm = 0.90 and ρm = 0.99. Both calibrations assume

ρi = 0

5.2 Interest-rate smoothing

To show how interest-rate smoothing also helps with the identification problem in the Smets

and Wouters (2007) model, I raise the investment adjustment cost parameter from 0.001 to

0.005 in Table 11 and sweep for different values of ρm and ρi . Note that increasing interest-

rate smoothing makes that channel more likely, as in the textbook model. Finally, in Table

12, I double the investment adjustment costs parameter and reestablish the real interest rate

channel.

35



Table 11: Smets and Wouters (2007)’s parameter sweep with κi = 0.005

ρi = 0 ρi = 0.1 ρi = 0.2 ρi = 0.3 ρi = 0.4 ρi = 0.5 ρi = 0.6 ρi = 0.7 ρi = 0.8 ρi = 0.9 ρi =0.95 ρi =0.99

ρm = 0 + + + + + + + + + + + +

ρm = 0.1 + + + + + + + + + + + +

ρm = 0.2 + + + + + + + + + + + +

ρm = 0.3 + + + + + + + + + + + +

ρm = 0.4 + + + + + + + + + + + +

ρm = 0.5 + + + - - - - - - + + +

ρm = 0.6 - - - - - - - - - + + +

ρm = 0.7 - - - - - - - - - + + +

ρm = 0.8 - - - - - - - - - + + +

ρm = 0.9 - - - - - - + + + + + +

ρm =0.95 - - + + + + + + + + + +

ρm =0.99 + + + + + + + + + + + +

Note: + indicates that the real interest rate increases right after a positive monetary policy shock; -

indicates that it decreases.

Table 12: Smets and Wouters (2007)’s parameter sweep with κi = 0.01

ρi = 0 ρi = 0.1 ρi = 0.2 ρi = 0.3 ρi = 0.4 ρi = 0.5 ρi = 0.6 ρi = 0.7 ρi = 0.8 ρi = 0.9 ρi =0.95 ρi =0.99

ρm = 0 + + + + + + + + + + + +

ρm = 0.1 + + + + + + + + + + + +

ρm = 0.2 + + + + + + + + + + + +

ρm = 0.3 + + + + + + + + + + + +

ρm = 0.4 + + + + + + + + + + + +

ρm = 0.5 + + + + + + + + + + + +

ρm = 0.6 + + + + + + + + + + + +

ρm = 0.7 + + + + + + + + + + + +

ρm = 0.8 + + + + + + + + + + + +

ρm = 0.9 + + + + + + + + + + + +

ρm =0.95 + + + + + + + + + + + +

ρm =0.99 + + + + + + + + + + + +

Note: + indicates that the real interest rate increases right after a positive monetary policy shock; -

indicates that it decreases.

6 Forecasting inflation with the real interest rate gap

Neiss and Nelson (2003) find that the state-variant RIRG contains informational content that

helps forecasting inflation, although the very own real interest rate is still a better, and more
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readily available, indicator. Next, I conduct a similar exercise with the models presented in

Smets and Wouters (2007) and Smets and Wouters (2024). By scrutinizing the 9 regression

specifications in Table 13, I find that the state-invariant gap frequently outperforms other

measures of the RIRG.

Model Specification

1 Includes only lagged inflation as the predictor.

2 Adds the state-variant real interest rate gap
(
r̂ Gap

)
.

3 Adds the state-consistent real interest rate gap
(
r̂ Gap,cons

)
.

4 Adds the state-invariant real interest rate gap
(
r̂ Gap,cc

)
.

5 Adds the real interest rate (r̂ ).

6 Combines lagged inflation,
(
r̂ Gap

)
, and (r̂ ).

7 Combines lagged inflation,
(
r̂ Gap,cons

)
, and (r̂ ).

8 Combines lagged inflation,
(
r̂ Gap,cc

)
, and (r̂ ).

9 Combines lagged inflation,
(
r̂ Gap

)
,
(
r̂ Gap,cons

)
,
(
r̂ Gap,cc

)
, and (r̂ ).

Table 13: Regression specifications

6.1 The importance of investment adjustment costs

To test how sizable investment adjustment costs affect the puzzle, I simulate the Smets and

Wouters (2007)’s model with all its different types of shocks activated19. Starting from the

non-stochastic steady state and with the model calibrated at the posterior mode estimated

by the authors,20 I simulate 250,000 periods and drop the first 50,000 periods. I find that the

state-invariant gap has similar properties to the state-variant gap, also helping with forecast-

19There are seven orthogonal structural shocks: TFP, risk premium, investment-specific technology, price

markup, wage markup, exogenous spending, and monetary policy. The two markup shocks are not present in

the version of the model without nominal rigidities. Steady-state distortion due to monopolistic competition is

not undone, which results that real disturbances affect the natural rate of interest and a counterfactual efficient

rate differently.
20Estimation relies on seven macroeconomic quarterly time series for the United States: log difference of

real GDP, real consumption, real investment, real wage, log hours worked, log difference of the GDP deflator,

and the federal funds rate. The effective sample ranges from 1966Q1 to 2004Q4, where previous data starting

in 1957Q1 is used as a training sample.
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ing∆4πt+4, annual inflation 4-period ahead (Tables 14 and 15), but with the clear advantage

of indicating the right sign for the monetary policy stance.

When investment adjustment costs are realistic or sizable, such as at the mode of the

estimated parameters’ posterior distribution, r̂ Gap,cc
t is as effective a predictor as r̂ Gap

t and a

better predictor than r̂ Gap,cons
t .21 This is evidenced by lower and similar adjusted R-squared

statistics and root mean square errors achieved in Model 2 and Model 4. However, when

investment adjustment costs are negligible, such as by setting κi = 0.0001 while all other

parameters remain unchanged, the more volatile endogenous state variables make r̂ Gap
t

a generally better predictor than r̂ Gap,cc
t . This can be explained by the fact that the first

carries information about the state variables, which become more relevant for explaining

the dynamics of the model in this case. Nevertheless, only r̂ Gap,cc
t is sign-consistent with

actual monetary policy stance. Overall, r̂t is the variable that individually improves fore-

casting performance the most, but only when adjustment costs are sizable. Combining all

variables in the regression (Model 9) achieves the highest adjusted R-squared statistic and

the lowest root mean square error across all forecasting set-ups, including those presented

in Tables OA1 to OA6 in the Online Appendix. These last tables display the same forecasting

exercise for πt+1, ∆4πt+1, and πt+4.

The forecasting capability of the state-invariant gap can also be assessed by plotting

the root mean square error of inflation regressions on lags of the three RIRGs, separately,

across different horizons, while including lagged inflation as a predictor. Figure 12 plots the

statistic for horizons from 1 to 10 periods ahead. As expected, the forecasting error grows

as the horizon is pushed forward and it is higher if capital is more volatile. When invest-

ment adjustment costs are realistic, the state-invariant gap is as good a predictor as the

state-variant gap, albeit, in longer horizons, the state-consistent gap outperforms the others.

When adjustment costs are negligible, the state-variant gap is a slightly better predictor than

the other two gaps.

21The state-consistent natural interest rate has the same policy function as the state-variant one, but the

state variables are replaced by sticky-price ones.
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Figure 12: Root mean square error of simulating Smets and Wouters (2007)’s model with

random data for different horizons

6.2 Forecasting with historical data

The historical performance of the state-invariant gap is evaluated through a quasi-final es-

timation of the model, in the typology proposed by Orphanides and Norden (2002), where

parameters are constant and estimated with the full sample, but unobservable states are

recovered with data up to the period of the observation by a Kalman filtering process.22

22Orphanides and Norden (2002) differentiate four types of estimation: real-time, quasi-real, quasi-final,

and final. Real-time estimation uses all data available up until the period of the observation but that are

still subject to further revision; quasi-real uses the same data but parameters are time-varying as they are

re-estimated with data available up until the period of each observation; quasi-final estimates parameters

with the full final sample, but states are recovered using data available up until the period of the observation
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Figure 13 displays observed inflation for the United States from 1966Q1 to 2004Q4 as well

as filtered natural real interest rates and filtered RIRGs for the same period generated by the

Smets and Wouters (2007)’s model, after feeding it with the same historical data the authors

used for estimating its parameters. Note that the state-invariant gap is considerably more

negative than the state-variant one until the beginning of the 1980s. From then onward,

both measures become numerically closer.

Forecasting observed inflation using the state-invariant gap demonstrates superior per-

formance compared to the state-variant or state-consistent gaps. This is true for both short

and long-term forecasts, or from 1 to 10 periods ahead, in the sample that ranges from

1966Q1 to 2004Q4 (Table 16 and top panel of Figure 14). Here, the state-invariant gap

performs better than even the filtered real interest rate. To investigate the stability of these

results, the same exercise is conducted for two subsamples with the parameters reestimated:

the "Great Inflation" from 1966Q1 to 1979Q2, when Paul Volcker was nominated chairman

of the Board of Governors of the Federal Reserve System,23 and the "Great Moderation" from

1984Q1 to 2004Q4. Overall, the state-invariant RIRG tends to perform better or nearly as

good up to four quarters ahead in both subsamples (Tables 17 to 18 in addition to middle

and bottom panels of Figure 14). Aligned with theory, forecasting errors are smaller during

the "Great Moderation", when inflation was relatively low and stable, compared to during

the "Great Inflation", when it was high and quite volatile.

(filtering); final estimates uses the full final sample to estimate parameters and recover the unobserved states

(smoothing). A real-time analysis of the forecasting properties of the state-invariant gap is left for future

research.
23Paul A. Volcker was nominated by President Jimmy Carter on 25 July 1979 (Carter, 1979).
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Figure 13: Observed and filtered data obtained from simulating Smets and Wouters (2007)’s

model with historical data
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Figure 14: Root mean square error of simulating Smets and Wouters (2007)’s model with

historical United States data for different horizons

I extend now the analysis to a more recent period by employing Smets and Wouters
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(2024)’s model, which extends Smets and Wouters (2007) in two ways.24 First, it allows

for intermediate monetary/fiscal policy regimes, which means that inflation may be only

partially backed by fiscal policy or even not backed at all. Second, it tackles the zero lower

bound challenge of the periods after the Global Financial Crisis (GFC) by incorporating

an additional monetary policy shock to accommodate for changes in the FED’s forward

guidance policy. The estimation sample ranges from 1965Q1 to 2019Q4 and it augments

the list of data series with the 1-year short-term interest rate and four fiscal variables: (1) the

market value of US government debt, (2) the total government primary balance, (3) social

security transfers and (4) government spending. Calibrating the parameters of the model at

the posterior mode, the validity of the state-invariant gap as a relevant measure of monetary

policy stance is confirmed.

Concerning the forecasting capability of the three different RIRGs, the state-invariant

definition performs similarly to the state-variant on average in the whole sample for quarterly

inflation in most horizons (Figure 15). Moreover, considering annual inflation four quarters

ahead, the state-invariant is the one that performs best as can be seen in Table 19, which

also shows that forecasting benefits from simultaneously incorporating the three different

measures of the RIRG. Table 20 summarises the RMSEs from all regression specifications

and shows the p-values from the respective Diebold-Mariano equal forecast accuracy tests

(Diebold and Mariano, 1995).25 While for 1-quarter-ahead quarterly inflation it is not possible

to discard that the autoregressive model forecasts as accurate as the models expanded with

RIRGs, for 1-quarter-ahead annual inflation, 4-quarter-ahead quarterly inflation and 4-quarter-

ahead annual inflation, the models expanded with RIRGs improve forecasting accuracy at

the 5% level and most specifications even at the 1% level.

In subsamples, rank positions change depending on the period.26 Forecasting beyond

the estimation sample period, during the COVID-19 pandemic age (2020Q1-2023Q3), when

investment plunged and then had a large recovery, and when forecasting errors were especially

large, the state-invariant gap was a better predictor of future inflation for all horizons up to 5

24I thank Frank Smets and Raf Wouters for kindly sharing the codes for both papers.
25Results should not be interpreted as comparisons between models (Diebold, 2015).
26Re-estimating the model in subsamples, during the Great Inflation (1965Q1-1979Q2), the state-consistent

and state-variant perform better in short horizons, while the state-invariant performs best starting from 7

quarters ahead. However, during the Great Moderation (1984Q1-2004Q4), there is not significant differences

in root mean square errors for most forecasting horizons.
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quarters ahead. Moreover, when inflation is only monetary-led or only fiscal-led, the state-

invariant measure is usually the best predictor (Online Appendix, tables OA25 to OA30).

Overall, there is not much robustness on ranking orders, but the result that combining the

three definitions for the RIRG improves forecasting is confirmed most times.

Figure 15: Root mean square error of simulating Smets and Wouters (2024)’s model with

historical United States data for different horizons
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Table 20: Forecasting performance from 1965Q1 to 2019Q4

RMSE Diebold-Mariano test p-value

π̂t+1 ∆4π̂t+1 π̂t+4 ∆4π̂t+4 π̂t+1 ∆4π̂t+1 π̂t+4 ∆4π̂t+4

Model 1 0.260 0.372 0.356 1.107

Model 2 0.979 0.974 0.951 0.962 0.424 0.000 0.012 0.000

Model 3 0.990 1.002 1.001 0.992 0.338 0.000 0.001 0.000

Model 4 0.994 0.941 0.924 0.936 0.247 0.000 0.014 0.000

Model 5 0.995 0.997 1.002 1.002 0.732 0.000 0.001 0.000

Model 6 0.973 0.973 0.953 0.964 0.552 0.000 0.012 0.000

Model 7 0.990 0.936 0.925 0.936 0.347 0.000 0.016 0.000

Model 8 0.970 0.931 0.926 0.936 0.756 0.000 0.013 0.000

Model 9 0.973 0.933 0.922 0.918 0.789 0.000 0.015 0.000

Note: Model specifications are available in Table 13. The entries in the first row show the RMSE of the

benchmark autoregressive forecast, while other entries show the ratio of the RMSE of forecasts based on that

row’s regression specification to the RMSE of the benchmark forecast. Therefore, a ratio below unity is an

improvement in forecast accuracy. Each p-value corresponds to the two-sided distributions of the equal-

forecast accuracy test of Diebold and Mariano (1995), where the null hypothesis is that both accuracies are

equal. The maximum lag order of the test is calculated from the Schwert criterion as a function of the sample

size. The loss criterion used is the mean-squared error. The kernel used in calculating the long-run variance is

Bartlett.

7 The monetary policy stance under a pre-pandemic lens

The Covid-19 pandemic outbreak in March 2020 posed significant challenges for interpreting

DSGE models. First, the lockdown and sanitary measures acted as both a negative demand

shock (forced savings) and a negative supply shock (labor hoarding). Second, to alleviate

the consequences of the economic slowdown, governments implemented income transfer

policies on an unprecedented scale. Third, the intensity and persistence of the shocks, as

well as their one-off nature, affected the seasonal adjustment processes adopted in the time

series used to evaluate economic models. Given the extent of these challenges, there is yet

to be a consensual adaptation of DSGE models to address them. In light of this, I use the
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Smets and Wouters (2024)’s model calibrated at the posterior mode of the estimation made

with data prior to the pandemic, that is, from 1965Q1 to 2019Q4, and filter the unobserved

state variables from 2020Q1 onward. By doing so, it is possible to recover the RIRGs and

determine how much of them is explained by the time-cumulative contribution of mone-

tary policy shocks27 under the lens of what was known about the structure of the economy

before the pandemic (Figure 16). While this approach is subject to criticism regarding the

uniqueness of the pandemic event, it serves as the minimum benchmark a central bank

would have access to in assessing the monetary policy stance. It also shows that in addition

to being a more robust signal of the latter, and of its enhanced forecasting capability (see

Section 6), the state-invariant RIRG also serves as a narrative instrument.

From a historical perspective, Figure 16 tells us that monetary policy was considerably

loose in the late 1960s and throughout the 1970s, the Great Inflation period. That stance

was abruptly reversed in 1979 with the escalation of interest rate hikes promoted by Paul

Volcker at the head of the Federal Reserve. Monetary policy crossed again the neutrality line

in the late 1980s to become moderately loose and remained largely so until the second half

of the 1990s, when it shifted in favor of even looser policy. This long period with a loose

monetary stance that started at the late 1980s and ended with the GFC is the so-called Great

Moderation period. From late 2007 onward, the sub-prime financial crisis that ignited the

GFC resulted in an involuntary contractionary shift of monetary policy as the real natural

rate became negative and the Federal Reserve was constrained by the effective lower bound

of the policy rate. Unconventional monetary policy measures may have reduced the con-

tractionary intensity of the monetary policy stance, but they were not enough to force the

latter consistently into stimulative territory. The overall normalization of monetary policy

in the late 2010s maintained a moderately contractionary stance. This is the situation faced

by the US economy when the Covid-19 shock hit in March 2020.

As was the case during the onset of the sub-prime crisis, the immediate consequence

of the pandemic shock was an intense and involuntary contraction of the monetary policy

stance of up to near 30 p.p. on an annual basis, where a supposed delayed reaction by the

FED and the effective lower bound itself are only accountable for around 6 p.p., or 20% of

27The model includes two exogenous monetary policy shocks: one affecting the policy rate, which directly

influences short-term interest rates, and another affecting the 1-year zero-coupon yield, which captures ex-

pectations of future monetary policy.
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that tightening, in this decomposition.28 The FED’s reaction by aggressively cutting rates in

March by a total of 150 bps, to close to 0%, helped to loosen the monetary policy stance,

but most of the latter’s swing stemmed from the pandemic shock itself. As a consequence,

Figure 17 shows that quarterly inflation was the lowest in the sample that starts in 1965Q1,

while investment plunged almost 8.0% on a quarterly basis.29 In 2020Q3, the RIRG got into

stimulative territory, even though the effective lower bound of the monetary policy rate

continued contributing to a tighter monetary policy stance until 2021Q1, quarter in which

a rebound of the RIRG coincided with reinforced lockdown measures due to the emergence

of new strains of coronavirus.30 It was only from 2021Q2 onward that the US economy

consistently navigated a loose monetary policy stance, which lasted until 2023Q2, when the

RIRG reached neutrality. The loose monetary policy stance period overlaps with the period

in which inflation was above the 2% target (Figure 17), while investment remained subdued.

28As the effective lower bound is not explicitly incorporated into the model, it is also not incorporated into

agents expectations. This results into "unexpected" contractionary monetary shocks whenever the constraint

is binding.
29Nominal fixed private investment is deflated by GDP deflator, following the dataset choice of Smets and

Wouters (2024).
30US CDC (Centers for Disease Control and Prevention) released data in a Morbidity and Mortality

Weekly Report (MMWR) on the emerging and more transmissible COVID-19 B.1.1.7 / “Alpha” variant, and

recommended "universal and increased compliance with mitigation strategies, like social distancing and

masking, and higher vaccination coverage to protect the public" (CDC, 2025).
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Figure 16: Historical real interest rate gaps recovered from Smets and Wouters (2024)’s

model
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Figure 17: Historical inflation and investment in the United States

8 Conclusion

Yes, a central bank can tighten monetary policy and real interest rates fall under monetary

dominance. The puzzle arises when the elasticity to a persistent shock of an endogenous

state variable (e.g., capital) is so high that inflation expectations overreact, causing the en-

dogenous – or systematic – component of the monetary policy rule to sufficiently offset its

exogenous one. This finding has important implications for the design and implementation
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of monetary policy, particularly in periods when investment is significantly impacted, such

as a pandemic, a financial crisis or even a trade war.

This paper demonstrates that while the real interest rate channel is structural in New

Keynesian models, the identification problem revealed by Rupert and Šustek (2019) raises

concerns for the use of the real interest rate gap as a gauge of the monetary policy stance.

Simply comparing the actual real interest rate to a counterfactual without nominal rigidities

— the state-variant definition — as ubiquitously done in the literature (e.g., Neiss and Nelson

(2003)) or assuring state variables are the same as in Woodford (2003a) — the state-consistent

definition — can result in the wrong perception that monetary policy does not operate

through the real interest rate channel. This is so as both measures fail to isolate the influence

of dynamics in endogenous state variables, such as capital, which can amplify or offset the

effect of a monetary policy shock depending on their elasticity to it and the persistence of

the shock. The appropriate measure of the real interest rate gap, which accurately reflects

the sign of the monetary policy stance and called in this paper the state-invariant definition,

compares the counterfactual ex-ante real interest rate as if state variables were invariant to

its counterpart without nominal rigidities.

Furthermore, including empirically validated interest-rate smoothing into the Taylor rule

can mitigate the identification problem, a feature as prevalent in medium-scale New Keyne-

sian models as capital itself. The sign of changes in the real interest rate right after a positive

monetary policy shock is positive under realistic parameters, thereby reestablishing the ob-

servational equivalence with the real interest rate channel of monetary policy transmission

and weakening the empirical relevance of the New Keynesian capital puzzle. This finding

implies that VAR models can be reliably identified by imposing a same-sign restriction on

the real interest rate’s response to a monetary policy shock. It is also acceptable to sequentially

order nominal and real rates, as done in Cholesky decompositions. Moreover, using real

rates instead of nominal ones still — at least partially — captures monetary policy shocks.

Finally, the interpretation of impulse responses from canonical DSGE models via the real

interest rate channel remains consistent, provided the monetary policy rule incorporates a

sufficient degree of smoothing.

Ultimately, the state-invariant real interest rate gap effectively assesses the monetary

policy stance, gauges its intensity, improves inflation forecasting, and serves as a narrative

tool. All these features have been observed for actual historical data in the United States
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from 1965Q1 to 2023Q3. Alternatively, the state-variant real interest rate gap may be a good

approximation if one incorporates a somewhat realistic combination of endogenous state

variable rigidities, for example, acknowledging that at least some smoothing is the norm

in central banking and that capital adjustment costs are never negligible in the real world.

Overall, the negative association between changes in inflation and changes in either short-

or long-term real interest rates in New Keynesian models is more robust than that between

changes in inflation and changes in the nominal interest rate, which is more likely to be

ambiguous.
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A Glossary of symbols

Table 21: Model variables

Symbol Definition/Description

Original Variables (Levels)

ct Consumption

lt Labor

yt Output

wt Real wage

χt Real marginal cost

it Nominal interest rate

rt Real interest rate

πt Inflation

kt Capital stock (beginning of period)

r k
t Rental rate of capital

xt Investment

qt Tobin’s q (qt ≡ 1+κ(kt+1 −kt ))

Gt+1 Capital gain (Gt+1 ≡ qt+1/qt )

Log-Deviations from Steady State (Hat or Tilde Variables)

ĉt log(ct /c)

ŷt , ỹt log(yt /y)

k̂t log(kt /k)

x̂t log(xt /x)

r̂t , r̃t rt − r (real interest rate deviation)

ît it − i (nominal interest rate deviation)

r̂ k
t r k

t − r k (rental rate deviation)

π̂t , π̃t πt −π (inflation deviation, π= 0)

61



Table 22: Model variables (part 2)

Symbol Definition/Description

Shocks and Policy Variables

ξm
t Monetary policy shock (AR(1) process)

ϵm
t Innovation to ξm

t (i.i.d. normal)

ρm Persistence of ξm
t

Other Variables

r̂ n
t Natural real interest rate (flex-price counterfactual)

r̂ n,cons
t Natural real interest rate (flex-price counterfactual with consistent states)

r̂ n,cc
t Natural real interest rate with capital fixed (flex-price counterfactual)

r̂ cc
t Real interest rate with capital fixed

r̂ Gap
t State-variant real interest rate gap: r̂t − r̂ n

t

r̂ Gap,cons
t State-consistent real interest rate gap: r̂t − r̂ n,cons

t

r̂ Gap,cc
t State-invariant real interest rate gap: r̂ cc

t − r̂ ncc
t

∆4π̂t Annual inflation (4-period price level difference)
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Table 23: Model deep parameters

Symbol Name/Definition

β Subjective discount factor

η Inverse elasticity of labor supply

ε Elasticity of substitution between intermediate goods

θ Fraction of firms not adjusting prices (Calvo parameter)

ν Taylor rule coefficient on inflation

ρm Persistence of monetary policy shock

α Capital share in production (Cobb-Douglas)

δ Depreciation rate of capital

κ Capital adjustment cost parameter

ρi Interest-rate smoothing coefficient in Taylor rule

ω Elasticity of the endogenous state variable to the monetary policy shock

Smets-Wouters Model Additions

κI Investment adjustment cost parameter

Table 24: Model derived parameters

Symbol Definition/Description

Ω Slope of the Phillips curve in the canonical model:

Ω≡ (1+η)(1−θ)(1−θβ)
θ

Ψ Slope of the Phillips curve with capital:

Ψ≡χ (1−θ)(1−θβ)
θ

Θ Auxiliary coefficient:

Θ≡ Ψ
(
η+α
1−α

C
Y
+1

)
(1−βρm)(ρm−1)

κ Effective capital adjustment cost:

κ≡ κK
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Table 25: Additional coefficients

Symbol Definition/Description

a,b Canonical model decision rule coefficients for output and inflation

ã, b̃ Augmented model decision rule coefficients for output and inflation

a0, a1, a2 Consumption decision rule coefficients

b0,b1,b2 Inflation decision rule coefficients

d0,d1,d2 Output decision rule coefficients

f0, f1, f2 Capital decision rule coefficients

ηnk ,ηnkk Coefficients linking natural real rate to capital and shocks:

r̂ n
t = r̂ ncc

t +ηnk k̂n
t +ηnkkϵt

ηk ,ηkk Coefficients linking actual real rate to capital and shocks:

r̂t = r̂ cc
t +ηk k̂t +ηkkϵ

m
t

B Model derivation

B.1 Canonical closed economy (with omitted or fixed capital)

Consider a closed economy without fiscal policy, where a one-period risk-free nominal bond

is available in zero net supply and the central bank adopts a fixed-intercept Taylor rule. I

expand here on the simplified presentation made by Rupert and Šustek (2019) of the canon-

ical New Keynesian model of Galí (2015), with minor notational changes.

The simple model starts with seven variables: real consumption, ct ; labor lt ; real output,

yt ; real wage, wt ; real marginal cost, χt ; nominal interest rate, it ; and inflation, πt . Over-

lined variables represent their steady-state values. There are six parameters: the subjective

discount factor, β; the inverse of the elasticity of labor supply, η; the elasticity of substitution

between intermediate goods, ε; the fraction of producers not adjusting prices at any given

period, θ; the intercept of the Taylor rule, i ; and the Taylor-rule coefficient that gauges the

central bank’s reaction to current inflation, ν. There is also an exogenous monetary policy

shock variable, ξm
t .
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Assuming a per-period utility function of the form

ut = log(ct )− l 1+η
t

1+η (B.1)

and an intermediate goods aggregator like

yt =
[∫

y( j )εd j

] 1
ε

(B.2)

the equilibrium conditions of that economy are given by the Euler equation (B.3) in conjunction

with equations (B.4) to (B.9), namely the first-order conditions (FOC) of labor, the production

function, the real marginal cost, the New Keynesian Phillips curve under Calvo pricing already

linearized around a zero steady-state inflation, a Taylor rule, and the market-clearing condition.

1

ct
=βEt

(
1

ct+1

1+ it

1+πt+1

)
wt

ct
= lηt

yt = lt

χt = wt

πt = (1−θ)(1−θβ)

θ

(
mct −mc

)+βEt πt+1

it = i +νπt +ξm
t

yt = ct



(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

As usual, the equilibrium conditions above can be simplified to a three-equation system

linearized around a nonstochastic steady state (π= 0, y = 1). This is possible by first linearizing

(B.3) and substituting the market-clearing condition (B.9) into it, then eliminating (B.9),

(B.5), and (B.6) through the substitution of their respective expressions for ct , lt , and wt into

(B.4), which is later linearized such that ŷt ≡ yt−y
y . Finally, the Taylor Rule (B.8) is rewritten

as deviations of the interest rate from its steady-state value such that ît = it − i .

−ŷ =−Et ŷt+1 + ît −Et πt+1

πt =Ωŷt +βEt πt+1

ît = νπt +ξm
t


(B.10)

(B.11)

(B.12)

where

Ω≡ (1+η)(1−θ)(1−θβ)

θ
> 0 (B.13)
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B.2 Model with endogenous capital

I build on the model of Rupert and Šustek (2019), which assumes there is an economy-wide

rental market of capital so that firms can rent capital in every period. In that sense, capital

is not firm-specific. Moreover, they assume that whenever households change their stock of

capital, there is a quadratic adjustment cost, −κ
2 (kt+1 −kt )2, where kt is the stock of capital

inherited from the previous period and κ ≥ 0 is a parameter that governs the size of the

adjustment cost in terms of foregone real income.

Resuming from the canonical model of Appendix B.1, there is a new Euler equation for

the capital asset (B.14), where δ ∈ (0,1) is a depreciation rate, and qt is the price of capital

in terms of current consumption, Tobin’s q, such that qt ≡ 1+κ (kt+1 −kt ). The production

function (B.5) is replaced by (B.15), which incorporates capital and labor proportionate to

constant returns to scale, whereα is the Cobb-Douglas coefficient of capital. Equation (B.16)

is the condition for the optimal mix of capital and labor in production, which comes from

the FOC of the firm. The marginal cost (B.6) is updated to include the rent on capital, r k
t ,

(B.17). The resource constraint (B.9) must now account for the investment flow so markets

can clear (B.18).

1

ct
=βEt

(
1

ct+1

(
r k

t+1 −δ
qt

+ qt+1

qt

))
yt = kαt l 1−α

t

wt

r k
t

= 1−α
α

(
kt

lt

)

χt =
(

r k
t

α

)α ( wt

1−α
)1−α

yt = ct +kt+1 − (1−δ)kt + κ

2
(kt+1 −kt )2



(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

After substituting equation (B.16) into (B.17) by eliminating r k
t , and substituting equation

(B.4) into (B.15) so as to eliminate lt , the model is log-linearized around the zero-inflation

non-stochastic steady state (Appendix C). For any variable X , X̂ ≡ X t−X
X

, with the exception

of ît ≡ it − i , r̂t ≡ rt − r , and r̂ k
t ≡ r k

t − r k . After that, it is possible to eliminate r̂ k
t , χ̂t , ŵt ,

and l̂t to obtain the following reduced system with five equations, including the policy rule
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specification (B.23).

−ĉt =−Et ĉt+1 + ît −Et πt+1

−ĉt =−Et ĉt+1 +Et ĝ t+1 + r k Et

(
ĉt+1 + 1+η

1−α ŷt+1 − 1+αη
1−α k̂t+1

)
πt =Ψ

(
η+α
1−α ŷt −α 1+η

1−α k̂t + ĉt

)
+βEt πt+1

ŷt = c

y
ĉt + k

y
k̂t+1 − (1−δ)

k

y
k̂t

ît = νπt +ξm
t



(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

whereΨ≡ χ (1−θ)(1−θβ)
θ

, such that when prices are flexible, Ψ→∞. Moreover, Gt+1 ≡ qt+1
qt

is

the capital gain, so ĝ t = q̂t − q̂t−1 = κ
(
k̂t+1 − k̂t

)−κ(
k̂t − k̂t−1

)
, where κ= κk.

C Steady state

In this section, I derive the nonstochastic steady state of the canonical New Keynesian model

augmented with endogenous capital.31 From their definitions, capital gain and Tobin’s q

equal 1 at the steady state.

G = 1 (C.1)

Q = 1 (C.2)

I pick a zero-inflation steady state. The real rate of return on the implicit risk-free bond of the

model is the one obtained from the Fisher equation. Through the no-arbitrage condition,

I combine the two Euler equations of the model, (B.3) and (B.14), to get a relation between

the two real rates.

π= 0 (C.3)

i = r +π ⇒ i = r (C.4)(
1+ i

)
= (

1+π)(
1+ r k −δ

Q

)
⇒ i = r k −δ ⇒ r = r k −δ (C.5)

From the capital Euler equation (B.14) evaluated at the steady state I can isolate r k as a

function of the deep parameters:

1

C
=β

(
1

C

(
r k −δ

Q
+ Q

Q

))
⇒ r k = 1

β
+δ−1 (C.6)

31The steady state is the same with and without interest-rate smoothing.
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Substituting r k into the FOC of capital (B.16) at the steady state I get K
L

:

r k =αK
α−1

L
1−α ⇒ K

L
=

(
α

1
β −1+δ

) 1
1−α

(C.7)

The production function (B.15) at the steady state can be rewritten so as to put in evidence

K
L

on the right side of the expression:

Y =
(

K

L

)α
L (C.8)

Investment at the steady state only compensates for depreciated capital.

I = δK (C.9)

Now, the aggregate resource constraint (B.18) may be rewritten as auxiliary ratios by substituting

the just derived expressions for Y and I and then dividing by L.

Y =C + I ⇒
(

K

L

)α
= C

L
+ δK

L
(C.10)

Combining the condition for the optimal mix of capital and labor in production (B.16) and

the intratemporal condition at the steady state (B.4), I can write an expression for C
L

:

W = (1−α)K
α

L
−α

and
W

C
= L

η ⇒ C

L
= (1−α)

(
K

L

)α
L
−(η+1)

(C.11)

By substituting previously derived expressions for K
L

and C
L

into the aggregate resource constraint,

I obtain L as a function of the deep parameters of the model.

L =
((

1

1−α
)(

δα
1
β −1+δ

)) −1
η+1

(C.12)

I get the remaining steady-state variables as functions of the parameters by recursively substituting

(C.12) into my previously derived expressions: (C.7) ⇒ K , (C.8) ⇒ Y , (C.9) ⇒ I , and (C.11)

⇒ C and W . Finally, I obtain χ by substituting r k and W into (B.17) evaluated at the steady

state.
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Online Appendix

OA1 Forecasting other measures of inflation

This section extends the forecasting exercise of section 6 to other measures of inflation: πt+1,

∆4πt+1, and πt+4.

Results of tables OA1 to OA6 are similar to those previously found in the paper in the

sense that when investment adjustment costs are realistic or sizable, both r̂ Gap
t and r̂ Gap,cc

t

are equally as good predictors, r̂t is the individual best predictor, and adding all three vari-

ables as predictors achieves the highest adjusted R-squared statistic and the lowest root

mean square error. When investment adjustment costs are negligible, endogenous state

variables become more volatile and, in this case, more informative to the extent that r̂ Gap
t

is usually the best predictor. Yet, combining all three variables still turns out as the best

regression specification for forecasting.

Tables OA7 to OA15 extend the same exercise to actual historical data, with Smets and

Wouters (2007)’s model parameters re-estimated for each sample, and I find that the fore-

casting properties of the state-invariant RIRG remain valid. Tables OA16 to OA30 present

a robustness check obtained by extending the sample and employing Smets and Wouters

(2024)’s model.
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OA1.1 Canonical NK model expanded with endogenous capital
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