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Soybean yield prediction in Argentina using climate data*   

Emiliano Basco†, Diego Elías†, Maximiliano Gómez Aguirre†, Luciana Pastore†   

July 2025 

 

Abstract 

Agriculture, and especially soybean production, has a critical role in Argentina’s economy, as a 

major contributor to GDP and export revenue. This paper studies the impact of climate variability 

on soybean yields in Argentina using a novel department-level dataset spanning 1980–2023. We 

estimate a fixed effects spatial error model (SEM) to quantify the long-run effects of weather 

shocks—measured by extreme heat, precipitation, and ENSO phases—while controlling for 

economic and technological factors such as seed technology and relative prices. Our results show 

that extreme heat significantly reduces yields, while moderate rainfall boosts them up to a 

nonlinear threshold. El Niño phases increase yields, whereas La Niña events are detrimental. 

Technological adoption and favorable price signals also enhance productivity. These findings 

highlight the importance of accounting for both climatic and spatial dynamics when analyzing 

agricultural outcomes. The model provides a strong empirical basis for forecasting soybean yields 

and informing policy decisions under increasing climate uncertainty. These models can be 

employed as effective tools for anticipating yield outcomes under different climate scenarios and 

utilized in climate-related stress exercises. This work provides valuable insights for policymaking 

decisions, contributing to prepare for potential economic impacts stemming from climate risks on 

Argentina’s agricultural sector. 
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1. Introduction 

Agriculture is a fundamental sector within the Argentine economy. In 2021, primary agriculture 

and agrifood value chains contributed an estimated 16% to the nation’s GDP (World Bank, 2024). 

Agricultural exports account for around 60% of the country’s total exports, emphasizing the 

sector's importance in generating foreign currency and supporting economic stability. 

The soybean complex is the main agricultural production chain in Argentina, characterized by a 

strong export profile. It involves the industrialization of primary grain production and represents 

the country’s largest export chain, accounting for nearly 28% of total exports in 2022, surpassing 

both the cereal and automotive sectors. Soybeans are the second most important agricultural crop, 

following corn, averaging a production of 46 million tons annually over the last five campaigns 

(2018-2022). Another important aspect of the soybean sector is its volatility, since it experiences 

high production variability from year to year compared to other crops. 

Argentina plays a critical role in global agricultural markets, being the third largest producer and 

exporter of soybeans worldwide and the top exporter of soybean oil and soybean meal. Oilseed 

exports are a significant component of Argentina's trade, representing over 31% of total exports 

in recent years (e.g., 2021 and 2022). This sector's significant contribution reflects its importance 

for both domestic economic stability and global food markets. 

Climate events such as droughts in the Pampas Region have severe repercussions, decreasing 

yields of essential crops such as soybeans, corn, and wheat, and consequently affecting their entire 

supply chains. The impacts of these declines also influence multiple sectors within the economy. 

Reductions in agricultural production caused by droughts have a spillover effect, with 

implications for upstream and downstream industries. 

The agricultural sector's vulnerability to droughts also has broader economic consequences. A 

downturn in crop yields reduces fiscal revenue, lowers international reserves, and puts pressure 

on the exchange rate, impacting Argentina's economic resilience. 

For example, the recent drought in 2022-2023 had a significant impact on the yield and production 

of Argentina's main crops: wheat, corn, and soybeans. The effects were felt directly in agricultural 

production and, through the agribusiness chain, extended to other sectors. The substantial decline 

in exports also created a shock to government revenue and the balance of payments due to its 

influence on the exchange rate and international reserves. 

Two major climatic phenomena that impact moisture conditions and can cause droughts in the 

productive regions are La Niña and El Niño. La Niña results from cooling along the equatorial 

Pacific Ocean, leading to lower-than-average rainfall and causing droughts of varying severity 

across South American regions. In contrast, El Niño is a climate event marked by the warming of 
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the equatorial Pacific Ocean, which tends to bring above-average precipitation in Argentina. In 

this paper we consider the influence of El Niño and La Niña indicators, along with the rest of the 

climate information. 

In this paper, we examine the impact of climate variability on soybean yields in Argentina by 

combining a unique department level dataset covering 1980–2023 with daily weather 

observations—temperatures and precipitation—aligned to the crop’s phenological calendar. We 

augment these climatic controls with economic and technological variables, including 

international soybean and fertilizer prices, transgenic seed adoption rates, and land use change 

indicators. We employ spatial panel econometric techniques to capture both local fixed effects 

and spatially correlated unobservables, improving our understanding of how climate and regional 

interdependencies shape yield outcomes. 

Our empirical strategy unfolds in two stages. First, we estimate a fixed effects spatial error model 

(SEM) panel to quantify the long run relationship between weather shocks—measured by 

growing degree days, cumulative hours above 30 °C, precipitation, and El Niño and La Niña 

indicators—and soybean yields, while controlling for economic and technological covariates. We 

find that extreme heat consistently dampens yields, moderate precipitation increases them up to a 

nonlinear threshold, and lagged El Niño anomalies (warm phases) enhance yields while La Niña’s 

dry conditions are detrimental. Technological progress, as proxied by transgenic seed use and 

favorable price ratios, further elevates yields, and the highly significant spatial error term confirms 

the importance of unobserved, regionally correlated factors. 

In the second stage, we translate these insights into forecasting exercises by constructing different 

time series models based on the available weather information. We evaluate forecast performance 

via rolling window exercises and the Giacomini–White test, benchmarking against the USDA’s 

monthly yield forecasts with same data availability. We find early information models that 

systematically outperform USDA forecasts, while those models with information closer to the end 

of the growing season, our forecasts are as reliable as USDA ones. 

These findings carry important policy implications. By demonstrating that climate driven models 

can deliver accurate yield projections months before harvest, we provide a tool for anticipating 

foreign exchange pressures and informing monetary and fiscal policy responses. Our framework 

also lays the groundwork for constructing climate stress scenarios—simulating droughts, heat 

waves, or ENSO events—to evaluate potential economic vulnerabilities in Argentina’s 

agricultural sector. Finally, because the methodology relies on spatially disaggregated yield and 

weather data, it can be readily adapted to other crops or regions, underscoring the broader value 

of high resolution climate data in modern agricultural risk management and policy planning. 
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This paper contributes to the understanding in the relationship between climate variability and 

soybean yields in Argentina. We introduce a large data set that leverages georeferenced, 

delegation‑level records to uncover both local and regional climate–yield relationships and to 

account for spatial interdependencies among production zones. This new data set allows us to get 

a spatial error panel model that reveals how extreme heat, nonlinear precipitation, and ENSO 

phases affect soybean yields, while capturing technological gains. Finally, we provide statistically 

robust and accurate forecasts benchmarked against USDA projections. 

The paper is structured as follows: first, we present a literature review related to the influence of 

climate on agriculture. In Section 3, we present some concepts that are crucial to understanding 

soybean production in Argentina, along with our data sources, treatment of the data, and the 

calculations involved in constructing the dataset. Section 4 contains an overview of the 

econometric methodology employed, and we present the results of our analyses. The last part 

concludes and discusses the implications of our findings and recommendations for future 

research.  

2. Related Literature 

A number of studies examine the effects of climate variations on crop yields. For example, 

Schlenker and Roberts (2009) studied the impact of variations of temperature on corn, soybeans, 

and cotton yields in the United States, using a panel data approach with nonlinear temperature 

effects. They found that extreme heat has significant negative impacts on yields, and defined heat 

thresholds for each crop, above which productivity is reduced. 

Deschênes and Greenstone (2007) explored the effects of annual variations in temperature and 

precipitations to estimate their influence on agricultural profits, using county level panel data in 

the United States. They estimated long-run effects and found heterogeneous and overall small 

outcomes across the US. 

Chen et al. (2013) conducted an analysis for corn and soybean yields in China, using spatial panel 

econometric techniques. They modeled the behavior of profit-maximizing farmers, and estimated 

changes on yields using climate variables, socioeconomic variables and variables representing 

farmers’ adaptation behaviors. They also found nonlinear and asymmetric relationships between 

yields and climate variables. 

Miao, Kanna and Huang (2016) examined the effects of climate variables and crop prices on corn 

and soybean yields and acreage in the United States, using a large spatial panel dataset. They 

found that prices have statistically significant effects on corn yields, and that the potential effect 
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of climate change on production is negative but highly heterogeneous, depending on climate 

scenarios and models. 

For Argentina, Cornejo and Ahumada (2021) analyzed the long-term relationships between 

climatic, technological, and economic factors and crop yields. They found that soybean yields 

adjust to technological improvements and that high temperatures have a negative effect. They also 

found evidence of CO2 fertilization. Cornejo (2021), using information on climate variables 

published in advance and with a frequency higher than soybean yields, found that there are 

forecasting gains when considering the maximum temperature during the plant's growth cycle. 

Additionally, when using precipitation data, the model based on annual data outperforms the 

others. 

These studies present different methodologies to assess the relationship between climate and 

agricultural productivity. Although technological advancements have improved overall yields, 

climate events, particularly droughts, continue to have a negative influence on agricultural 

production. 

3. Descriptive Analysis and Data 

3.1. Farmers production function 

Our study employs a production function as a framework to estimate the effects of climate 

conditions on yields. This method can be used to isolate the impact of weather on specific crops, 

while it is also necessary to capture the behavior of farmers and take into account for the range of 

compensatory responses they perform in reaction to climate variability. 

Soybean production, in particular, is determined by two key factors: the area planted and the 

yields achieved. The decision regarding the area to be cultivated is made in advance, based on 

expectations of profitability and risk. Producers take into account crop prices, macroeconomic 

conditions, and potential funding constraints.  

On the other hand, yield variability depends on multiple factors, including the application of 

inputs (fertilizers, pesticides), the adoption of advanced agricultural technologies, and the climatic 

conditions during the growing season. Price variables can also influence farmers' decisions on 

input use and production intensity. 

Our study focuses on yield variability as it is the variable which is more affected by climate 

shocks. While changing weather patterns, temperature and precipitation play a fundamental role 

in determining productivity, farmers decide the planted area before knowing the full extent of 

weather conditions.  
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Nevertheless, while climate conditions are a central focus of our study, we must also consider 

other determinants of yield variation, such as market prices, technological adoption, and land-use 

changes. By integrating these factors into our empirical framework, we aim to provide a more 

comprehensive understanding of how weather events influence agricultural production in a setting 

where adaptation strategies are critical. 

Figure 1: Farmers’ Production decision 

 

 

3.2. Soybean Phenological Calendar 

The phenological calendar in agriculture describes the different stages of plant development. For 

example, planting, germination and harvesting are part of the growing cycle of soybean plants. 

Each crop and region have a unique phenological calendar. This helps understand how climatic 

conditions influence plant development at critical stages, ultimately affecting yields. 

For first-crop soybeans in Argentina, the sowing period runs up until November, the germination 

and grain-filling period goes from November to February or March, depending on if it’s first or 

second crop soybeans. Harvesting starts in March in some regions, and extends through June.  

Monitoring and understanding these stages are essential for both producers and researchers, as 

this knowledge allows them to anticipate potential climatic impacts on crop yields. Climatic 

events during these key periods can significantly influence agricultural production. 

Table 1: Soybean 1st Crop Calendar 
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t-1 

Aug 

t-1 

Sep 

t-1 

Oct 

t-1 

Nov 

t-1 

Dec 

t-1 

Jan 

t 

Feb 

t 

Mar 

t 
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t 
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t 

Pre-Sowing x x                     

Sowing     x x                 

Germination-Grain filling         x x x x         

Harvest                 x x x x 

Production 

Planted Area Yield 

• Relative prices 

• Macroeconomic outlook 

• Government policies 

 

• Climate: Precipitation and 
Temperature 

• Technology 

• Pest and disease management 
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For this study we consider years starting in July and ending in June, for example for the production 

harvested in 2022, we consider the climate variables from July 2021 to June 2022.  

3.3. Production data 

The Secretariat of Agriculture, Livestock, and Fisheries (SAGyP) publishes an annual series of 

agricultural statistics by crop, campaign, province, and department of the Argentine Republic. 

They include data on production and sown and harvested areas, permitting yield calculations. 

Regarding soybean cultivation, information has been available since 1971. Starting with the 

2000/01 campaign, the information on soybeans is detailed according to whether it corresponds 

to first or second crop. However, we consider only the information corresponding to 1981 

onwards, due to the unavailability of daily climate variables before 1980. 

We analyze total soybean production nationwide, capturing total production in all provinces. Yield 

variations reflect diversity in climate, soil, and phenological calendars.  

The territorial division from the SAGyP, known as delegations network is used as a reference. 

Departments are the second-order political division available in Argentina. Delegations group 

departments in broader zones, sometimes covering an entire province. This division does not 

comprise the entire country, as it does not include the Patagonian region. However, it does include 

all the departments that inform soybean production in the period studied. For this study, 32 of the 

40 delegations available are considered, where the delegations excluded have negligible soybean 

production, and most years no soybean production overall1. 

On the other hand, the core zone is isolated, which includes parts of the provinces of Buenos 

Aires, Santa Fe, and Córdoba in the Pampas region. These are the best lands for soybean 

production (Figure 2). This area is critical within the humid Pampas region and covers 45 

departments of high relevance in Buenos Aires, Córdoba, and Santa Fe provinces. This 

subdivision was used to construct climate indicators used in the time series models. 

 
1 The delegations area division is used to construct a panel dataset, as will be detailed below. 
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Figure 2: Map of the soybean core zone region 

 

Source: Instituto Geográfico Nacional (IGN) 

Drought years have led to heightened yield volatility, which, in turn, has had significant 

macroeconomic implications. These fluctuations in yield impact participants across the soybean 

supply chain and, ultimately, the country's GDP. 
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Figure 3: Soybean sown area, total production and yield yearly variations 

 

Source: Secretariat of Agriculture, Livestock, and Fisheries (SAGyP) 

3.4. Historical weather data  

The meteorological data used in this study is obtained from the National Meteorological Service 

(SMN) of Argentina, comprising daily records of precipitation, minimum temperatures, and 

maximum temperatures for each SMN station. This dataset starts in January 1980.  

Given the need for monthly data in the analysis, the daily meteorological records are aggregated 

to generate monthly series for each station. This includes calculating monthly minimum and 

maximum temperatures and the cumulative precipitation for each month. 

For maximum temperatures, we construct an additional variable that takes into account the 

amount of time the crops have been theoretically exposed to extreme heat. To achieve this, we fit 

a sine curve to daily minimum and maximum temperatures (Baskerville & Emin, 1969). This 

allows a calculation of time above a certain threshold for each day considered. Since soybean 

yields have been found to be sensitive to temperatures above 30ºC (Schlenkler & Roberts, 2009), 

we compute the hours above that temperature for each month from November to March. 
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Figure 4: Fitted sine curve for a day with minimum and maximum temperatures 22ºC and 35ºC 

 

We calculate an additional temperature indicator, Growing Degree Days (GDD). This indicator, 

widely used in agriculture estimations, measures heat units during the growing season of the plant. 

It is usually computed as the sum of truncated degrees between two bounds (Schlenker and 

Roberts, 2009), defined as the theoretical beneficial heat segment for the plant. In this case we 

use 30º Celsius as the boundary for harmful heat, and 8º Celsius as a floor for heat computation. 

The GDD data is estimated using daily maximum and minimum temperatures, considering the 

fitted sine curve in Figure 4.  

For each SMN station, we incorporate spatial coordinates and link them to the monthly data, in 

order to perform spatial interpolation. We use ordinary kriging to estimate the spatial distribution 

of meteorological variables across the study area, resulting in monthly grids for each variable 

(minimum temperature, maximum temperature, maximum temperature over 30ºC and 

precipitation) over the study period. Each grid covers the study area, showing values between 

meteorological stations based on spatial correlation. 

As an illustration, Figure 5 displays the kriging results for November 2022, with the computed 

precipitation values across the grid. The map of delegations is shown for reference, where the 

irregularities in some delegations’ borders show the departments without any history of soybean 

production. Department-level geographical data were obtained from the National Geographic 

Institute (Instituto Geográfico Nacional), which provides a CSV file containing department 

boundaries in spatial coordinates. 
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Figure 5: Spatial interpolation of monthly precipitation- November 2022 

 

Sources: SMN, IGN, own calculations 

To link the meteorological data with political divisions, a cross-referencing process is employed. 

Initial attempts to match the kriging grids with department boundaries were made, but some 

smaller departments were not sufficiently represented due to the grid cell size exceeding certain 

department areas. Instead, broader delegation divisions are selected as the primary spatial units 

for analysis. A Python program is used to cross-reference the data, matching the grid points to 

their respective delegations. A panel dataset is then constructed, consisting of 43 years of data 

across all delegations. 

In preliminary findings, a significant relationship was observed between precipitation deviations 

for each growing season (relative to historical averages) and yields. This suggests that variations 

in precipitation strongly influence crop yields (Figure 6). Additionally, precipitation contributions 

appear to show diminishing marginal returns, with a point beyond which further precipitation no 

longer raises yields. 
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Figure 6: average precipitation deviation from historical mean vs soybean yields (tn per hectare) 

 

3.5. La Niña / El Niño 

Understanding the effects of El Niño and La Niña is crucial when analyzing Argentina’s climate 

conditions and their impact on soybean production. These phenomena significantly influence 

precipitation patterns in various regions worldwide, which, in turn, affect crop yields. Although 

these shifts can vary slightly between El Niño events, the most intense changes typically remain 

consistent across specific regions and seasons. 

The El Niño–Southern Oscillation (ENSO) is monitored through sea surface temperature (SST) 

anomalies in the equatorial Pacific Ocean. The primary measure used is the Oceanic Niño Index 

(ONI), which averages SST anomalies in the Niño 3.4 region (170°W–120°W). 

El Niño conditions occur when SST anomalies exceed 0.5°C for five consecutive months, 

indicating a warming phase. La Niña conditions are characterized by SST anomalies below –

0.5°C, signaling a cooling phase. These climate anomalies disrupt global rainfall patterns, 

affecting various agricultural regions worldwide. 

Unlike other soybean-producing regions, Argentina experiences reduced rainfall during La Niña 

years, leading to drought conditions that significantly impact crop yields. Historical observations 

confirm a negative correlation between La Niña events and soybean production in Argentina, as 

shown in Figure 7. This underscores the climatic vulnerability of Argentine agriculture to ENSO 

fluctuations. 
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Figure 7: Relationship between changes in soybean yield and El Niño/La Niña episodes 

 

We also explore whether early signals of La Niña events—typically available before the sowing 

season—have any measurable impact on soybean planting decisions, particularly in terms of total 

planted area. The evidence suggests that, in the Argentine context, anticipated La Niña conditions 

do not significantly affect the area sown with soybeans. As a result, the primary channel through 

which La Niña affects soybean production in Argentina is through its adverse effects on yields. 

This reinforces the relevance of focusing on yield responses—rather than acreage—as the key 

margin of adjustment when modeling climate impacts and building predictive models.2  

A key economic mechanism that could mitigate the impact of lower yields is price adjustment, 

which may dampen the broader macroeconomic effects. If La Niña–induced droughts were to 

significantly reduce global soybean supply, international prices could rise, partially offsetting 

farmers’ income losses. This, in turn, could help stabilize export revenues, consumption, and 

investment. However, this adjustment mechanism is less straightforward in the case of Argentina. 

The main reason is that La Niña does not affect all major soybean-producing regions equally. 

While Argentina tends to suffer from droughts and yield losses, Brazil and parts of the United 

States often experience favorable growing conditions, leading to increased output in those regions 

 
2 In meetings with specialists from the agricultural sector, they were specifically asked whether the risk of 

El Niño/La Niña events was taken into account in planting plans (such as the choice of crop mix, the more 

or less intensive use of inputs, etc.), as this could introduce some form of endogeneity. Their response was 

negative. 
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(see Figure 8). As a result, global supply may not fall significantly, and price increases are limited. 

This is consistent with the evidence that the ENSO index does not systematically anticipate 

international soybean prices. 

Figure 8: El Niño and La Niña Teleconnections Map (Lenssen, Goddard & Mason, 2020) 

Figure 8.a. El Niño 

 

Figure 8.b. La Niña 

 

 

3.6. Technology and other variables 

In addition to climate effects, it is necessary to consider the context of soybean cultivation in 

Argentina. This section describes some factors that allowed its expansion in volume and territory, 

which have led to the incorporation of specific variables in the models. 
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Commercial soybean production began in Argentina in the 1970s. According to Cadenazzi (2009), 

soybean was initially introduced as a second crop after wheat, as its ease of management and 

adaptability represented a more profitable rotation, replacing the traditional agriculture/livestock 

rotation. 

In the 1980s, soil erosion effects were observed in the Pampas region due to intensive agricultural 

activities. However, by the mid-1990s, soybean production expanded with technological 

advancements that also allowed for the use of lower-quality land both in the core zone and outside 

of it, expanding the agricultural frontier and increasing yields. 

Internationally, a sustained increase in soybean demand was observed, driven by population 

growth and the need for food, as well as the growing demand for other uses. Better prices in the 

global market also stimulated supply. As mentioned earlier, before planting begins, producers will 

define the area to be cultivated, taking into account the market context and expectations. For this 

reason, the international price of soybeans and its recent volatility were incorporated as variables. 

The introduction of transgenic soybean in 1996, specifically RR soybean, marked a turning point 

in agricultural production in Argentina. This variety of soybeans is resistant to the broad-spectrum 

herbicide glyphosate, which eliminates all weeds. This translates into cost reductions as it is easy 

to apply. 

The practice of no-till farming also spread during this period. It involves eliminating plowing 

while the residue from the previous harvest conserves moisture and serves as fertilizer. Sowing is 

carried out with specially designed machines, with minimal soil disturbance. This method reduces 

fieldwork time and soil erosion. 

No-till farming, along with the use of RR soybean and glyphosate, complement each other since 

the former leads to an increase in weed quantity. These techniques, along with the development 

of new agrochemicals such as herbicides, pesticides, and fertilizers, as well as the development 

of specific machinery, contributed to the expansion of soybean production, as they increase yields 

and reduce production costs. This makes it feasible to produce in areas that were previously not 

viable, resulting in increases in both yields and cultivated areas. 

We incorporated the price and volatility of Diammonium Phosphate (DAP), a fertilizer commonly 

used for soybean production, as a signal of the variable costs for agricultural producers. 

Additionally, a variable representing the proportion of the planted area where transgenic varieties 

were established was included as an indicator of the technological advancement in the production 

sector, as this represents a shift in the soybean production model. Information on technological 

advancement in each delegation was not available. 
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With respect to land use, following Chen et al. (2013), we constructed an indicator of land use 

change, computing the year-on-year reduction in the planted area of crops other than soybean 

inside each delegation. This indicates the portion of cultivable land that can be made available to 

soybean production each year, and eventually have an effect on yields. 

4. Methodological Approach and Results 

4.1. Strategy for Model Selection 

In order to develop a tool with robust predictive capacity to predict soybean yields in Argentina, 

we explore different specifications using delegation-level data from across the entire country. 

These specifications differ based on the type of variable used, the frequency of the variables 

incorporated, the combination of frequencies (monthly, annual, and quarterly), and the 

construction of indicators from the same variable. This generates a multiplicity of data structures 

that can be used to predict yield, each of which requires different estimation methods. 

Our starting point is a panel data model designed to understand the underlying drivers of yield 

variation. While it is crucial to understand how climatic variables directly affect soybean yields 

in Argentina, these factors operate within an economic and financial context that can mitigate or 

exacerbate climatic effects. By detecting the most relevant variables in both the climate and the 

economic and financial aspects—and by examining their specific distributions—we are able to 

inform the configuration of alternative time series model specifications. 

4.2. Panel Data Model: Specification and Results 

In this section, we present a detailed analysis of our panel regression methods and results. First, 

we test the panel unit root hypothesis, and then we proceed to estimate the proposed model using 

the fixed effects estimator for a stochastic production function. All panel unit root tests3—across 

multiple specifications—consistently reject the null hypothesis of a unit root, indicating that the 

series are stationary in levels and do not require differencing prior to estimation. 

Second, we estimate the proposed model using the fixed effects estimator for a stochastic 

production function. This approach relies in the production function mentioned in Section 3.1, 

along with production incentive variables, to achieve impact estimates by varying one or more 

input variables, such as temperature, precipitation, the sea surface temperature indicator of the 

Pacific Ocean, and the use of incentive variables like soybean prices and input costs along with 

their volatility.  

 
3 Levin, Lin & Chu (LLC) test, Im test, Pesaran & Shin (IPS) and Dickey Fuller 
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We utilize the fixed effects model for our panel data for two reasons. The main reason is that the 

fixed effects model allows us to estimate a unit-specific effect for each delegation in the model. 

Additionally, the fixed effects model does not require the restrictive assumption that the specific 

effect of the delegation is independent of the included covariates, as is the case with the random 

effects model (See Appendix 2 for the Hausman test results). Also, we are using the total 

population (all the soybean producing delegations), which prevents us from needing a random 

effects estimation to generalize sample data to a broader population. 

The dependent variable for this model is the logarithm of soybean yields for each delegation (as 

described above). We estimate the following regression: 

log 𝑌𝑖𝑡 =  𝑍𝑖𝑡 𝛽 + 𝑐𝑖 +  𝜀𝑖𝑡   (1) 

𝜀𝑖𝑡 =  𝜌 ∑ 𝑊𝑖,𝑗𝜀𝑗𝑡 +  𝜙𝑖𝑡𝑗    (2) 

Where log 𝑌𝑖𝑡 indicates log crop yield in delegation i and year t. The term 𝑍𝑖𝑡𝛽 includes weather 

variables, a time trend and quadratic time trend, and other technological, land use change and 

economic variables. The term 𝑐𝑖 is included to account for the delegations’ fixed effects, and 𝜀𝑖𝑡 

is the error term. 

Following Chen et al. (2013) and Schlenker et al. (2006), we allow for spatial correlation in the 

error term. In equation 2, 𝜌 is the spatial correlation factor, 𝑊𝑖,𝑗 is a spatial weighting matrix that 

identifies neighbors for each delegation, and 𝜙𝑖𝑡 are the error terms that are independently 

normally distributed with E=0 and variance= 𝜎2.  

Panel models that include an interaction effect in the error term -called SEM (spatial error 

models)-, indicate that units might have a similar behavior because of shared unobserved 

characteristics (Elhorst, 2017). In this case, yield might be influenced by factors that are not 

included in the model, such as regional policies, soil quality or seed varieties used, that are 

spatially correlated over delegations. We test for the significance of the spatial error term and 

found it to be statistically significant (see Appendix 3). 

The model specification requires complete data for all delegations; consequently, we exclude 

seven delegations with missing or zero values from the estimation. The excluded delegations add 

up to 2% of the total production on average. 
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Table 2: SEM with spatial fixed effects.  

  Coefficient Std. Error z P>|z| 

Trend -2,323 0,907 -2,560 0,010 

Quadratic trend 0,001 0,000 2,570 0,010 

El Niño temperature anomaly (-1) 0,030 0,006 4,590 0,000 

Transgenic Soybean 0,328 0,087 3,760 0,000 

Ratio of soybean price/fertilizer price (-1) 0,119 0,081 1,470 0,140 

LUC indicator 0,087 0,051 1,700 0,088 

GDD  -0,000 0,000 -2,540 0,011 

GDD over 30ºC -0,000 0,000 -2,280 0,023 

Precipitation 0,002 0,000 7,530 0,000 

Precipitation squared -0,000 0,000 -5,470 0,000 

Spatial correlation 0,608 0,028 21,640 0,000 

Number of groups =        32         

Panel length =        35         

 

The SEM panel estimation results are shown in Table 2, and the summary of the effects found is: 

• GDD and GDD over 30ºC: These variables represent the growing degree days and 

cumulated hours with temperatures above 30°C during the growing season respectively. 

Coefficients are both negative, small (due to scaling of the variables), and statistically 

significant. A negative coefficient associated with the variable GDD over 30ºC suggests 

that temperatures above 30 degrees negatively impact yields. The coefficient for the 

variable GDD is also negative, suggesting that the effect of high temperatures is dominant 

over the summer soybean growing season, having a negative effect on yields overall. 

• Precipitation and Precipitation squared: These variables reflect the cumulative 

precipitation and the squared cumulative precipitation between July and March along the 

same campaign. The coefficients associated with these variables (positive and negative, 

respectively) show a nonlinear relationship between precipitation and yields: more 

precipitation increases yields, but beyond a certain threshold, the impact starts to increase 

at a decreasing rate. 

• El Niño temperature anomaly: This variable reflects an expanded yearly Oceanic Niño 

Index (ONI), that shows the presence of the El Niño and La Niña events along with their 

intensity. The variable is lagged one year, to show the conditions prior and during the 

early stages of each campaign. The coefficient is positive and statistically significant, 

suggesting that warm conditions (associated with the El Niño events) are favorable for 

yield. Conversely, negative values of ONI indexes indicate La Niña events that promote 
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dry conditions over the soybean producing areas of Argentina, and would have a negative 

effect on yields. 

Regarding trend, market and technology variables, we incorporated the following: 

• Trend and Quadratic trend: The linear and quadratic trends represent long-term effects. 

The negative coefficient on the trend indicates a slight decrease in yield over time; while 

the positive quadratic trend suggests that the rate of change in yield may stabilize or even 

slightly increase in recent years due to factors not included in the estimation. 

• Ratio of soybean price/fertilizer price: It is the ratio between the soybean price variable 

and the price of DAP (Diammonium Phosphate fertilizer) on the year prior to sowing. 

The positive coefficient observed in this ratio indicates potential increases in farmer 

benefits, which in turn lead to higher yields. This is likely due to farmers trying to increase 

production per area in response to their perception of higher future benefits. 

• LUC indicator: The land use change indicator shows the year-on-year reduction in the 

planted area of crops other than soybean inside each delegation. The resulting coefficient 

is, although small, indicative of the fact that reductions in areas dedicated to other crops 

are being shifted to soybean planting. 

• Transgenic Soybean: The impact of the percentage of transgenic soybean use yields a 

positive and significant coefficient, indicating that as the use of transgenic soybean in the 

productive area has increased, it has contributed to improved yields regardless of climatic 

impacts. 

4.3. Time series: model specification and data structure 

Using insights from the panel approach, we construct time‑series models to evaluate different 

strategies for predicting Argentina’s aggregate soybean yield. 

The independent variable remains the logarithm of soybean yields. For the explanatory variables, 

we generate a time series dataset based on the panel data, considering different aggregation 

methods. First, we average the delegations’ climate variables over the spatially interpolated data 

used in the panel model for the whole soybean areas. Second, we generate another dataset by 

averaging directly all soybean-producing zone’s meteorological stations records. Lastly, we create 

another dataset with climatic variables measured in the core zone only, in order to generate a 

leading indicator. The idea is to explore a uniform region in terms of climate, production, and 

management. 

We then test different combinations of variables. Our first set of time series models (Group G1) 

uses the same variables as the panel data estimation, where the weather variables were averaged 
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over the whole soybean-producing zone. In the second step, we identify the optimal model—

based on entropy—using variables from the panel‐model for key month of the growing‐season 

calendar. This yields different time‐series models, each corresponding to the weather information 

available at successive stages (December, January, February, and March).  

To provide robustness to the comparison, we also incorporate a second group of models designed 

to capture different features of the phenomenon at hand. This second set of models (Group G2) 

contains combinations of variables different from those on group G1, and also takes into account 

the availability of data for different months. The explanatory variables are the total panel averages 

for all the soybean producing region.  

The third group (Group G3) takes into account different formulations using variables with annual, 

monthly, and quarterly frequencies, as is the case with ENSO. This mix of frequencies requires 

the use of different estimation methods such as MIDAS (Mixed Data Sampling4). Models in group 

G3 use as explanatory variables the weather averages using indicators measured within the core 

zone only. The independent variable is the same as the previous groups, the logarithm of the total 

soybean yield in Argentina. 

4.4. Forecast comparison 

Our model selection strategy is driven by the goal of anticipating or outperforming the forecast 

results published by the US Department of Agriculture (USDA), a globally recognized authority 

in agricultural production forecasting. Therefore, we consider two dimensions: the ability to 

anticipate and the ability to predict.  

In this context we use the term "anticipate" referring to the comparison between two models with 

information available at different points in time. A model with inputs that are more recent or closer 

in time to the event being predicted is expected to have greater predictive capacity than a model 

with inputs that are more distant in time. When a model with information that is more distant in 

time predicts a contemporary variable better than a model with more recent information, we say 

that the latter anticipates the former; even if these two models are not able to differentiate their 

predictive capacity (they predict the same thing).  

On the other hand, if two models’ inputs are available at the same time, the model that better 

predicts the target variable will be considered to have better forecasting power and therefore have 

better predictive capacity. 

To generate the forecasts, once the panel and time series models were defined, we divided the 

dataset into training and testing segments, a process often used in time-series analysis as setting 

 
4 See Ghysels, Santa-Clara and Valkanov (2006) 
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an "estimation window." Within this window, each model is trained to make predictions, 

projecting ‘h’ steps ahead.  

For example, we estimate the model using data from 1989 to 2016 and we obtain a prediction for 

the soybean yields one year ahead. Then we expand the sample to 1989 to 2017, and we forecast 

2018. Iterating this process results in a of RMSE for each model, to be compared with the USDA 

predictions’ RMSE.  

To compare the models, we use the Giacomini and White (2006) test, which allows us to evaluate, 

compare, and prioritize different models based on their predictive performance. This tool only 

indicates which model is the best within a set, but it does not provide information on how good 

the model is in absolute terms. To overcome this limitation, we use the USDA forecasts as a 

benchmark for comparison.  

Our benchmark is derived from a subset of the USDA’s series of predictions in their monthly 

reports. While USDA issues monthly Oilseeds reports, throughout the year, we take into account 

the reports published in January to April (the harvest starts in April and lasts until June). The 

reports are made available in the first days of each month, therefore we consider them to 

incorporate information up to the end of the previous month. For example, for the forecast 

included in the January report, we assume it incorporates information up until the last day of 

December of the previous year. 

Table 3 shows some of the results of the Giacomini-With tests. The test results allow us to compare 

all the forecasts coming from our panel Spatial Error Models (SEM) and Time series models from 

groups 1, 2 and 3 with published USDA forecasts. While we ran pairwise comparisons for all the 

available models, in this table we show the ones that outperform USDA forecasts5. 

Table 3: Model comparison (GW results) on models that perform better than USDA forecasts 

Model 1  Model 2 
Data 

Availability 
Coeff. 

Std. 

Error 
t-Statistic Prob. 

SEM_DEC  USDA_Jan_report DECEMBER -106,87 56,91 -1,87 0,1095 

TS_G2_01_DEC USDA_Jan_report DECEMBER -115,53 65,51 -1,76 0,1283 

TS_G3_03_JAN USDA_Feb_report JANUARY -150,24 80,26 1,87 0,1104 

TS_G2_06_JAN USDA_Feb_report JANUARY -137,35 72,93 -1,88 0,1087 

SEM_FEB USDA_Mar_report FEBRUARY -77,918 43,01 -1,81 0,1201 

 

The first two columns show the models being compared. "Data Availability" refers to the moment 

when the data becomes available for input into the model. For example, in the first row, the 

 
5 Results can be made available upon request to the authors. 
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SEM_DEC,  -the spatial error model- and the USDA_Jan_report forecast take into account data 

available in December. The “Coeff.” column shows the coefficient obtained from regressing a 

constant on the difference in RMSE between models, which is the basis of the Giacomini-White 

test. The last three columns present statistics from the test. 

The first row of the table compares the forecast obtained from a version of the SEM panel shown 

in Table 2 with the USDA’s January forecast, denoted as "USDA_Jan_report". The only difference 

between the model used in the first row of the Table 3 for the forecasting comparison and that 

shown in Table 2, is the way in which we incorporate the variable “El Niño temperature anomaly 

(-1)”, in the model.6   

Both forecasts use data available in December7. The test results in a negative coefficient, 

indicating that, on average, the panel model systematically exhibits a lower RMSE than the USDA 

forecast based on the same period. This suggests that we can obtain more accurate forecasts with 

the spatial error panel model than those in the USDA report. Moreover, the coefficient is 

statistically significantly different from zero (coef. < 0; p-value < 15%; = 10.95), reinforcing the 

advantage of the panel over the USDA’s December forecast. 

Similarly, the second row of Table 3 presents the results of comparing one of the Group 2 time-

series models for December— TS_G2_01_DEC—with the USDA forecast for the same period. 

As shown, this version also outperforms the USDA forecast. This model incorporates variables 

from the entire country, and we attempted to include climate characteristics at the beginning of 

the campaign, some trend-related aspects during the campaign, and climate volatility that could 

affect yields. In this way, we incorporate the ENSO annual index observed in the calendar year 

prior to the campaign as an indicator of climatic conditions ahead of the main part of the growing 

season. The results show a positive effect, suggesting that higher temperatures are likely 

associated with increased precipitation and improved soybean yields. In the aim of incorporating 

tendential aspect, we include a trend, a squared trend (that result in negative and positive 

coefficients respectively) and the intensity of use of transgenic Soybean. These aspects show a 

growth in the soybean yields along time. Finally, we incorporate volatility through the deviation 

from the average of accumulated precipitation and accumulated hours of heat over 30ºC; as we 

previously expect more precipitations results in better yield, while more extreme temperatures 

affect yields in a negative way. 

 
6 For forecasting purposes we modify the variable “El Niño temperature anomaly (-1)” because we want to 

capture different patterns inside the year. For more detail, see Appendix 4 
7 The results of SEM models based on information available for different months previous to the harvest 

season are shown in Appendix 5. 
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The forecast obtained using the time series model TS_G3_03_JAN corresponds to a MIDAS 

model with information from the core zone. We find that it further improves upon the USDA 

forecast for January information (USDA_Feb_report). The model incorporates precipitation 

information for two months at the beginning of germination period, specifically the deviation 

from the historical average of precipitation during December and January. Both coefficients in 

the regression show positive values, which is an indicator that precipitation over the historical 

average observed in the core zone improves the soybean yield in the total country.  

log(𝑟𝑖𝑛𝑑𝑒)𝑡 = 𝑐 + 𝛽1(𝐷𝑒𝑣_ℎ𝑖𝑠𝑡_𝑝𝑟𝑒𝑐𝑖𝑝_𝐷𝑖𝑐(𝑡 − 1)) + 𝛽3(𝐷𝑒𝑣_ℎ𝑖𝑠𝑡_𝑝𝑟𝑒𝑐𝑖𝑝_𝑗𝑎𝑛(𝑡)) +

∑ 𝑇𝑒𝑚𝑝. 𝑂𝑐𝑒𝑎𝑛. 𝑞𝑢𝑎𝑟𝑡𝑒𝑟(−6)𝑡−𝜏

𝑆

𝐻7
𝜏=0 (∑ 𝜏𝐽𝜃𝑗

4
𝐽=0 ) + 𝑒𝑡 (3) 

Equation (3) shows the formula for the MIDAS times series model TS_G3_03_JAN. Since ENSO 

is a quarterly indicator, it is included in the model within the polynomial of variables with a higher 

frequency. The interesting aspect of this result is that our yield variable, for example for the 

campaign that begins in 2020, is considered to end in 2021 in our model and is assigned 2021 as 

the calendar year. Therefore, the yield quantified for 2021 coexists with ENSO data from six 

previous quarters. These six lags in the calendar period correspond to the third quarter of 2020, 

meaning that the model identifies the relevant ENSO values as those observed in the quarter 

preceding the campaign. 

As shown in Table 3, the times series model TS_G2_06_JAN outperforms the February USDA 

report. This model incorporates a tendential component, represented by the intensity of transgenic 

soybean use over time, and climate volatility, captured through differences between precipitation 

and its historical average. Additionally, the model places greater emphasis on initial climatic 

conditions. To account for this, we include the El Niño temperature anomaly at the beginning of 

the campaign (measured as the annual ENSO index lagged by one period) and the average 

temperature during the March–June period of the previous campaign. All the coefficients have 

the expected signs: greater utilization of transgenic soybeans is associated with higher yields; an 

increase in precipitation above the historical average also leads to higher yields; and a higher 

probability of El Niño correlates with increased yield. Finally, the increase in average temperature 

at the end of the previous campaign can be interpreted as reflecting the overall trend rather than 

extreme weather events. 

The spatial error model SEM_FEB is composed of the same variables as the panel data model 

shown in Appendix 5 and the SEM_DEC model; the only difference with the latter is that the 

panel model has been estimated using information available up to February. The forecast is then 

estimated, to be compared with the USDA results. 
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Another aspect to consider, which was already mentioned at the beginning of this section, is the 

forecasting (or anticipatory) ability of the models. In this context, a model should be able to 

outperform the USDA in terms of predictive capacity for a specific month, but this advantage 

should not be reversed the following month. That is, the model should maintain its performance 

relative to the USDA even when using less recent input information than what the USDA has 

available. 

Table 4 shows the predictive performance results of the panel spatial error model -SEM_DEC- 

compared to the USDA's January report, which was reported also in Table 3. The subsequent 

USDA reports, which include updated information, are not able to provide statistically superior 

forecasts compared to those generated by the panel. 

In this sense, we could say that the panel forecasts using information available in December yield 

results similar to those obtained by the USDA in the two following months, and therefore, we can 

say that the panel anticipates the USDA's results. 

Table 4: GW results of Spatial error model (SEM) December panel vs USDA report forecasts 

Model 1 

Data 

Avail. Model 2 

Data 

Avail. Coeff. Std. Error t-Statistic Prob.   

SEM_DEC DEC USDA_Jan_report DEC -106,87 56,91 -1,88 0,1095 

SEM_DEC DEC USDA_Feb_report JAN -21,31 36,47 -0,58 0,5804 

SEM_DEC DEC USDA_Mar_report FEB 65,82 43,77 1,50 0,1833 

The same occurs with TS_G2_01_DEC, which anticipates up to March, and with 

TS_G3_03_JAN and TS_G2_06_JAN, which anticipate up to April. 

5. Conclusion 

This paper studies the impact of climate variability on soybean yields in Argentina using a novel 

delegation-level panel dataset matched with high-frequency weather data aligned to the crop’s 

phenological calendar. Employing a two-stage empirical strategy, we first estimate a spatial error 

panel model that captures the effects of weather shocks, economic incentives, and technological 

adoption on yields. We then use these insights to construct time-series forecasting models—both 

at the national and regional levels—and benchmark their performance against USDA forecasts. 

Our findings confirm that extreme heat significantly depresses yields, while moderate 

precipitation and warm ENSO phases (El Niño) support them. Technological advances and 

favorable price ratios also contribute positively to yield growth. The significance of the spatial 

error term highlights the role of unobserved, regionally correlated factors. 
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On the forecasting front, we show that climate-based models, even those using only early-season 

data, can match or outperform USDA projections. The Giacomini–White test provides formal 

evidence of this predictive edge, particularly during years of heightened climate variability 

These results underscore the value of integrating high-resolution climate data into agricultural 

forecasting models. Improved early-season forecasts can enhance the anticipation of foreign 

exchange pressures and support more responsive macroeconomic policy. In addition, our 

framework offers a foundation for designing climate stress scenarios, helping policymakers assess 

the vulnerabilities of Argentina’s agricultural sector in the face of growing climate risks. 
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Appendices 

Appendix 1: Causality tests 

When analyzing two lags, we find that the null hypothesis that prices do not cause production 

cannot be accepted; however, Argentine production has no effect on prices. 

Table A1: DLPROD vs. DLPRECIO  

Pairwise Granger Causality Tests (1980 to 2024; 2 lags)  

 Null Hypothesis: Obs F-Statistic Prob.  

 DLPROD does not Granger Cause DLPRECIO  31  0.57428 0.5701 

 DLPRECIO does not Granger Cause DLPROD  3.57279 0.0426 

The null hypothesis of no Granger causality from planted area to yields cannot be accepted; 

whereas, the hypothesis that yields do not Granger-cause planted area cannot be rejected. 

On the other hand, the null hypothesis of no Granger causality between planted area and ENSO 

cannot be rejected in either direction, indicating that the effect of ENSO on yields is isolated from 

any potential changes in planted area induced by ENSO. 

Table A2: L_SUP, ENSO and LOG_RINDE  

Pairwise Granger Causality Tests (1989 to 2022; 2 lags) 

 Null Hypothesis: Obs F-Statistic Prob.  

L_SUP does not Granger Cause ENSO 32 0.3726 0.6924 

ENSO does not Granger Cause L_SUP 1.0931 0.3495 

LOG_RINDE does not Granger Cause ENSO 32 2.6924 0.0859 

ENSO does not Granger Cause LOG_RINDE  9.4367 0.0008 

LOG_RINDE does not Granger Cause L_SUP 32 0.2634 0.7704 

L_SUP does not Granger Cause LOG_RINDE   5.4377 0.0104 

There is no evidence of bidirectional Granger causality between the international price and the 

ENSO index, indicating that they are statistically independent in this context. 



29 

 

Table A3: DLPRECIO vs. ENSO 

Pairwise Granger Causality Tests (1989 to 2022; 2 lags) 

 Null Hypothesis: Obs F-Statistic Prob.  

ENSO does not Granger Cause DLPRECIO  32  0.3471 0.7100 

 DLPRECIO does not Granger Cause ENSO  0.5429 0.5875 
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Appendix 2: Hausman test for Fixed Effects and Random Effects panels 

Since we have data from all relevant delegations (i.e., the sample covers the entire population of 

regions), panel fixed effects estimations are preferred because they capture the individual 

heterogeneity of each region without assuming that these differences are random. A random 

effects estimation would be more appropriate if the data were a random sample from a larger set 

of regions. 

To test the cross-section random effects, we conducted the Hausman Test. The results yielded a 

Chi-square statistic of 45.666 with 10 degrees of freedom, and a p-value of 1.648e-06. 

These results imply that fixed effects should be used. This suggests that the unobserved 

differences between regions are correlated with the explanatory variables, invalidating the key 

assumption of random effects.  
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Appendix 3: Moran and LM tests of spatial error correlation significance 

The spatial weight matrix used in the regression and for this test is a spatial contiguity matrix. 

This spatial contiguity matrix includes pairwise comparisons of all delegations, where the (i, j) 

element of W is unity if delegations i and j share a common boundary, and 0 otherwise. The matrix 

is normalized so that the sum of the elements in each row is equal to one. 

The Moran test is conducted over the cross-section of the delegations’ soybean yields for each 

year. 

Table A4: Moran test results 

Year Moran I p-value Year Moran I p-value Year Moran I p-value 

1989 4,197 2,70E-05 2002 2,639 8,32E-03 2015 3,629 2,85E-04 

1990 1,504 1,33E-01 2003 3,100 1,94E-03 2016 4,603 4,15E-06 

1991 2,024 4,30E-02 2004 3,549 3,87E-04 2017 0,917 3,59E-01 

1992 4,149 3,34E-05 2005 4,519 6,23E-06 2018 3,197 1,39E-03 

1993 0,325 7,45E-01 2006 2,271 2,31E-02 2019 2,932 3,37E-03 

1994 2,857 4,28E-03 2007 0,898 3,69E-01 2020 3,031 2,44E-03 

1995 2,002 4,53E-02 2008 0,925 3,55E-01 2021 2,602 9,26E-03 

1996 3,326 8,80E-04 2009 3,061 2,20E-03 2022 2,843 4,47E-03 

1997 1,739 8,20E-02 2010 0,262 7,93E-01   
 

 
1998 3,894 9,87E-05 2011 3,148 1,64E-03   

 
 

1999 2,950 3,18E-03 2012 6,473 9,62E-11   
 

 

2000 3,612 3,03E-04 2013 4,096 4,21E-05   
 

 

2001 0,232 8,17E-01 2014 0,659 5,10E-01   
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Appendix 4: SEM Panel models for forecasting 

We develop an alternative variable for all SEM forecasting models (SEM_DEC, SEM_JAN, 

SEM_FEB and SEM_MAR) that aims to capture within-year temperature patterns more 

effectively, which may provide valuable insights for yield prediction. 

To show the procedure applied, the following table describes the SEM_MAR model. The main 

difference between the Spatial Error Model (SEM) in Table 2 and the SEM_ MAR model lies in 

how they incorporate the frequency of the El Niño temperature anomaly.  

Specifically, when we refer to the El Niño temperature anomaly (-1) in the SEM Table 2 model, 

we are referring to the average temperature during the calendar year that starts just before the 

campaign. In this context, the anomaly (-1) includes temperature information both prior to and 

during the campaign. While this annual average anomaly provides useful information about the 

overall impact of temperature on yield, it may also obscure important intra-annual patterns that 

are relevant for forecasting. 

Table A5: SEM March 

 Coefficient Std. Error z P>|z| 

Trend -2,748 0,951 -2,890 0,004 

Quadratic trend 0,001 0,000 2,900 0,004 

El Niño temperature anomaly (Dec(-1)) 0,178 0,044 4,070 - 

El Niño temperature anomaly (Mar(-1)) -0,180 0,060 -2,990 0,003 

El Niño temperature anomaly (June(-1)) 0,057 0,038 1,500 0,134 

Transgenic Soybean 0,312 0,095 3,290 0,001 

Ratio of soybean price/fertilizer price (-1) 0,173 0,084 2,060 0,040 

LUC indicator 0,084 0,051 1,660 0,097 

GDD  -0,000 0,000 -2,620 0,009 

GDD over 30ºC -0,000 0,000 -2,260 0,024 

Precipitation 0,002 0,000 7,560 - 

Precipitation squared -0,000 0,000 -5,570 - 

Spatial correlation 0,595 0,029 20,580 0,000 

Number of groups =        32         

Panel length =        35        

In the table above we show the quarterly pattern, where we incorporate the quarterly variables 

that end in December, March and June, previous to the start of the campaign. The difference in 

signs between temperature in different periods indicates that different combinations of quarterly 

temperature could give different results of the soybean yields even if the average is the same.   
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Appendix 5: Estimation results: SEM with spatial fixed effects 

  

SEM 

December 
SEM January 

SEM 

February 
SEM March 

Trend -2,060 -2,192* -3,084*** -2,748*** 

  (1,257) (1,152) (1,017) (0,951) 

     
Quadratic trend 0,001* 0,001* 0,001*** 0,001*** 

  (0,000) (0,000) (0,000) (0,000) 

     El Niño temperature 

anomaly (-3Q) 0,219*** 0,220*** 0,202*** 0,178*** 

  (0,059) (0,054) (0,047) (0,044) 

     El Niño temperature 

anomaly (-2Q) -0,261*** -0,252*** -0,213*** -0,180*** 

  (0,080) (0,073) (0,065) (0,060) 

     El Niño temperature 

anomaly (-1Q) 0,139*** 0,113** 0,068 0,057 

  (0,051) (0,047) (0,042) (0,038) 

          
Transgenic Soybean 0,347*** 0,339*** 0,372*** 0,312*** 

  (0,130) (0,118) (0,102) (0,095) 

          Ratio of soybean 

price/fertilizer price (-1) 0,257** 0,194* 0,196** 0,173** 

  (0,112) (0,104) (0,090) (0,084) 

          
LUC indicator 0,077 0,076 0,079 0,084* 

  (0,052) (0,052) (0,051) (0,051) 

          
Growing degree days -0,0004* -0,0003** -0,0003***  -0,0002***  

  (0,000) (0,000) (0,000) (0,000) 

          
GDD over 30ºC -0,000058 -0,000007 -0,000139 -0,000260** 

  (0,000) (0,000) (0,000) (0,000) 

          
Precipitation 0,001*** 0,002*** 0,002*** 0,002*** 

  (0,000) (0,000) (0,000) (0,000) 

          

Precipitation squared 

-

0,000001*** -0,000001*** -0,000001*** -0,000001*** 

  (0,000) (0,000) (0,000) (0,000) 

          
Spatial correlation 0,694*** 0,668*** 0,624*** 0,595*** 

  (0,023) (0,025) (0,028) (0,029) 

Number of groups =        32         

Panel length =        35         

Standard errors are reported in parentheses. 

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively 
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