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Abstract

This paper studies how El Niño Costero, a large climatic event, generates physical
risks disrupting business cycles and hindering the effectiveness of monetary policy.
Using Peruvian data, we find consistent empirical evidence that El Niño shocks
leave a footprint on the economy akin to a supply-side shock: it exerts inflationary
pressures while simultaneously contracting GDP. The effects are very persistent
and reflect the differentiated effects across sectors in the economy. Primary sectors
response is more immediate and larger but persistent. Conversely, non-primary
sectors experience lagged effects that become considerably more persistent and
important later on. We integrate these empirical findings into a semi-structural
model that incorporates five non-linear transmission channels through which El
Niño affects the economy. These non-linearities present a challenge for monetary
policy design, as the economic uncertainty and the cost in stabilizing the economy
depends on the frequency of El Niño events. Faced with such large-scale shocks,
hawkish conventional monetary policy remains a relevant, though limited, tool for
stabilizing inflation dynamics.

Keywords: Climate, Extreme Weather Events, Growth, Inflation, Financial and
Macroeconomic Stability.
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1 Introduction

In recent years, the frequency, intensity, and unpredictability of adverse weather events
have notably increased worldwide. It is estimated that in 2022, global GDP decreased
by 1.8%, primarily due to extreme weather events, and with disproportionate losses
in low income regions (Rising, 2023). Global warming is expected to exacerbate this
trend, leading to greater uncertainty about environmental conditions and future economic
stability (Marticorena, 1999; Ribes et al., 2020). As a response to this evolving reality,
central banks have increased their efforts to evaluate the wide-ranging impacts of climatic
events on overall macroeconomic stability, as highlighted by Schnabel (2022). In this
paper, we examine the economic impact of a large weather shock, El Niño Costero, in
Peru.

El Niño Costero event, which is an important physical climate risk for several economies,
including Peru, is a local version of El Niño-Southern Oscillation (ENSO).1 In this
document, we use “El Niño” or “ENSO” interchangeably to refer to El Niño Costero,
which is the relevant climate phenomenon for our study. Cai and Santoso (2023) found
that ENSO events occur more frequently due to climate change and lead to more
intense weather events, such as droughts, floods, and heatwaves. Throughout history,
El Niño-Southern Oscillation has significantly influenced weather patterns in Peru and
had substantial economic impacts (Vargas, 2009). Major ENSO events in the 1982-1983
and 1997-1998 periods caused economic losses equivalent to 11.6% and 6.2% of annual
GDP, respectively (Senamhi, 2014). Future projections by Callahan and Mankin (2023)
estimate that, even with current national commitments to reduce emissions, the increase
in frequency and intensity of ENSO events will cost the global economy $84 trillion in
this century.

We delve into the case of Peru, a country vulnerable to the effects of El Niño, to
understand the wide range of effects of its shocks on inflation, inflation expectations,
aggregate output, and sector-specific inflation and economic activity. From this evidence,
we draw implications for monetary policy. In particular, this paper seeks to answer the
following questions: What is the dynamic response of inflation and economic activity after
a El Niño shock? What underlying forces drive the short- and medium-term responses of
these macroeconomic variables? What are the implications of these types of shocks for
the design of monetary policy?

First, we explore the significance of large weather shocks caused by ENSO in the Peruvian
economy by using three methodologies: state-contingent Local Projections, as our main
methodology, and a TVP-VAR model and a Threshold-BVAR model, as our robustness
methodologies.2 With respect to our main framework, Local Projections (LP) are not only
relatively more robust to missspecification but also easy to estimate, via linear regression
(Jordà and Taylor, 2024). With this tool in hand, our empirical analysis identifies key
stylized facts about the nonlinear effects of large weather shocks, observed during El
Niño events, on inflation and economic activity. Furthermore, this approach enables us to
extend the analysis by examining how these shocks impact various sectoral components

1 This irregular but recurrent phenomenon cause significant year-to-year variations in global climate
conditions (Greenberg, 2023).

2 For the estimation of dynamic effect of the El Niño on aggregate macroeconomic variables we use
a non-linear specification of the original Local Projection (Jordà, 2005), by following the literature
that studies the responses to monetary and fiscal policy shocks, allowing for variations across regimes
determined by a state variable (among other see for example Tenreyro and Thwaites (2016); Auerbach
and Gorodnichenko (2012)). For the TVP-VAR-SV model we follow Canova and Pérez Forero, 2015
and for the Threshold-BVAR model we closely follow Alessandri and Mumtaz, 2019.

3



underlying the broader macroeconomic aggregates.

Our measure of weather shocks is the ICEN index (́Indice Costero El Niño), which
captures both the occurrence and the intensity of El Niño Costero events. This index is
produced by the Peruvian ENSO Center and is based on the three-month moving average
of sea surface temperature anomalies in the 1+2 region of the Pacific Ocean, relative to
the long-term mean (calculated over the 1981–2010 period). We focus on large El Niño
Costero shocks: events with an intensity of Moderate or higher (ICEN higher than 1). Our
identification relies on the exogeneity of the ICEN evolution. However, because the ICEN
index exhibits serial correlation, it introduces bias into the coefficient of contemporaneous
temperature. Accordingly, we refine our Local Projections (LP) specification by modifying
the lag structure of the El Niño regime identifier, and incorporating an ICEN shock.
We estimated the LP impulse responses of macroeconomic variables to an ICEN shock,
calibrated to represent the typical characteristics—both in duration and intensity—of
historically strong El Niño events.

In the first year following the onset of the El Niño shock, annual inflation rises sharply
by nearly 4%. This rise in the CPI level proves persistent, with prices remaining elevated,
even three years after the shock. This persistent effect on overall prices reflects the
differential response of its two main components: within one year, the response of food
and energy CPI dominate the total price dynamics, while its medium-term dynamics is
driven by core CPI (non food and energy CPI). The response of inflation expectations
to an ENSO shock emerges with a two-quarter lag, after which expectations begin to
rise persistently. It is only after two years that these elevated inflation beliefs gradually
subside, returning close to their pre-shock levels.

In response to the ENSO shock, the aggregate GDP declines by approximately 0.6% in
the first quarter, a contraction largely driven by the primary sector, which falls by about
3.7% in the first quarter and nearly 6% over the following three quarters. While the initial
GDP contraction appears modest, the negative effects deepen over time. By the second
year after the shock, GDP reaches its lowest point, with output nearly 5% below its pre-
shock level. This substantial decline is primarily driven by the delayed response of the
non-primary sector. These empirical findings indicate that El Niño generates large and
statistically significant effects on potential GDP, relative to the output gap. Fluctuations
in the primary sectors primarily reflect supply-side shocks, which are closely tied to
changes in potential output. In contrast, variations in non-primary sectors are influenced
by a combination of demand and supply shocks. However, the highly persistent nature
of El Niño’s effects suggests that trend shocks—those affecting potential GDP—are the
dominant force at play.

The empirical findings suggest that El Niño shocks exhibit characteristics similar to
supply-side shocks, as they simultaneously generate upward pressure on inflation and
reduce GDP. These effects are particularly persistent, affecting both the price level and
aggregate output over an extended period. These features of the El Niño events pose
challenges for monetary policy implementation.

Second, to assess the significance of El Niño for inflation and output stabilization
we integrate the empirical findings into a semi-structural model, via impulse response
matching. Our semi-structural model incorporates the asymmetry of the El Niño shock
by including five nonlinear transmission channels. The first four are motivated by our
empirical results and depend on the El Niño coastal index level (ICEN, for its acronym
in Spanish), while the last one is driven by concerns that these events may become more
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frequent and intense in the future, which could impact the bank’s ability to anchor public
expectations.

When the ICEN index exceeds one, two channels are activated: (i) an inflationary
channel, driven by rising food prices, which in turn triggers (ii) a demand channel, as
higher food prices reduce consumers’ disposable income which i turn reduces demand.
Furthermore, when El Niño shock intensifies and the ICEN index surpasses the level of
two, two additional channels are activated: (iii) a potential GDP loss channel, due to
extreme weather events like droughts and floods that disrupt production and damage the
infrastructure, and (iv) an inflation expectation channel, where persistent inflation and
production disruptions lead to heightened inflation expectations. The final channel our
model accounts for is (v) the credibility channel. Frequent inflation deviations from its
target, caused by El Niño, can undermine trust in monetary authorities and alter the way
market participants form their inflation expectations.

This model enables us to explore the implications of climate-related shocks, alongside
other structural disturbances, for monetary policy design. Our findings underscore the
importance of accounting for the intensity of El Niño and the sensitivity of monetary
policy in devising strategies to stabilize the economy.

In this nonlinear framework, the economic uncertainty and the costs of stabilizing
the economy are closely linked to the frequency of El Niño events. The irregular and
unpredictable nature of these climate shocks complicates the formulation of effective
monetary policies. In the presence of an El Niño shock, conventional monetary policy
strategies aimed at stabilizing headline inflation, core inflation, and inflation expectations
tend to entail significant trade-offs, leading to a wider output gap and greater exchange
rate appreciation. Nevertheless, a more hawkish monetary policy, characterized by higher
interest rates and tighter monetary conditions, continues to play a crucial role in
stabilizing inflation dynamics in the presence of large-scale shocks like El Niño. As a
result, the effectiveness of these approaches must be assessed carefully, balancing the
need to control inflation against the goal of sustaining economic growth.

Furthermore, for El Niño events that are more frequent and intense over time, deviations
in inflation from its target undermine the credibility of monetary authorities, requiring
additional monetary policy instruments or alternative measures. Repeated supply shocks
lead to higher inflation fluctuations and reshape how economic agents form their
expectations, which can potentially cause inflation expectations to become unanchored.
Consequently, traditional monetary policy loses effectiveness, creating opportunities
for alternative tools such as improved communication strategies or broader fiscal and
structural policies. Therefore, carefully calibrating monetary policy is essential to reducing
negative impacts on both inflation and real economic activity.

The reminder of this paper is organized as follows. Section 2 provides the literature
review. Section 3 presents an empirical exploration of the economic consequences of El
Niño on inflation and both aggregate and disaggregated GDP. In Section 4 we incorporate
a transmission mechanism of ENSO in a semi-structural model, which is matched with
our empirical results. It is through the lens of this model that we are able to discuss
monetary design once these shocks hit. Finally, Section 5 concludes.

2 Literature Review

This paper draws on empirical literature that examines the effects of anomalous
temperature changes on the economy. Hsiang et al. (2017) observe that in the U.S., a
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1°C increase in temperature on average, results in a 1.2% contraction in GDP. Colacito
et al. (2019) find that a 1°F increase in summer temperatures in the U.S., reduced annual
growth rates by between 0.15 and 0.25 percentage points. Using time series techniques,
Kim et al. (2021) observe that even in a developed economy like the U.S., increases in
severe weather can result in persistent reductions in growth and disrupt price stability.

Using annual data from 180 economies between 1950-2015, Acevedo et al. (2020)
show that, in countries with relatively low average temperatures, rising temperatures
have a marginally positive effect on output. However, the effect on countries with
warmer climates is negative, and these negative effects appear stronger in developing
economies (Bandt et al., 2021). Dell et al. (2012) find that elevated temperatures depress
economic growth rates in developing economies, and negatively impact agricultural
output, industrial production and political stability. Faccia et al. (2021) show that rising
temperatures may increase inflation via higher food prices in the short run, and although
these effects occur in both advanced and emerging economies, they are more pronounced
in the latter group.

Chirinos (2021) finds that, if current global temperature deviations persist, income per
capita in Peru could decrease by 9% by 2050 and by 22% by 2100 (compared to the income
per capita that would be expected in 2050 and 2100, respectively, if the temperatures
maintains a similar trend than between the years 1960 and 1990), with agriculture and
fishing being the most affected sectors. Chirinos stresses the importance of developing
better models to evaluate and respond to climate change. In her study on Peru, Vargas
(2009) projected that a 2°C increase in temperature, coupled with a 20 percent rise in
precipitation variability (deviation of rainfall from its sample average) by 2050, could
result in a 20% reduction in the country’s potential GDP.

Evaluating data of past ENSO in Peru, CEPAL (2014) concludes that El Niño and
La Niña3. have caused significant economic damage, particularly affecting fishing,
agriculture, and infrastructure. The report emphasizes the necessity of utilizing climate
models to estimate ENSO’s impacts, which will aid in planning adaptation and mitigation
strategies. Cashin et al. (2016) observe that the impacts of El Niño on inflation and GDP
vary greatly by country, and Peru experienced a greater decrease in GDP and more
inflation than most of the countries studied.

Our research builds on previous studies that have documented the inflationary
consequences of natural disasters. Faccia et al. (2021) developed a two-country, two-
sector model to explore how climate shocks influence inflation. Their findings show that
a temperature shock in the home country causes an immediate sharp increase in the
prices of domestically produced food and, consequently, a spike in overall inflation due
to the flexibility of food prices. However, this effect tends to dissipate quickly, or may
even slightly reverse, over the medium term. Using annual panel data for 107 countries
and VAR analysis, Mukherjee and Ouattara (2021) documented that temperature shocks
result in inflationary pressures that can last for years.

This paper also adds to recent literature that studies the categorization of climate risks
as supply or demand shocks. Ciccarelli and Marotta (2024) use data from a sample of
OECD countries from 1990–2019 and a VAR model to show that physical risks act like
negative demand shocks while transition risks induce downward supply movements. In
contrast, Pozo and Rojas (2024) observe that climate disasters data across a sample of

3 ENSO has two phases that are characterized by above average sea surface temperatures in the eastern
Pacific Ocean during El Niño and below average during La Niña.
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developed and developing economies provide evidence that physical risks from climate-
related events act as negative supply shocks: they are inflationary and lead to contractions
in both GDP growth and the output gap and, importantly, these effects are compounded
for low-income countries.

We aim to contribute to this empirical literature by documenting the impacts of extreme
temperature anomalies resulting from ENSO in Peru, an emerging market economy that
is exceptionally susceptible to weather shocks. We capitalize on El Niño’s exogeneity
to investigate how climate-related shocks impact both inflation and output. We further
explore the differentiated effects of El Niño across sectors, documenting distinct patterns
of shock propagation within these industries.

Additionally, we also contribute to the literature that studies the trade-off between output
gap and inflation stabilization in the face of sector-specific shocks or relative prices shocks
(Aoki, 2001; Blanchard and Gali, 2007; Auclert et al., 2023a). Using a simple semi-
structural model that integrates our empirical findings, we analyze the implications of El
Niño on inflation, output gap dynamics, and monetary policy actions within a general
equilibrium framework.

3 Empirical Exploration

This section presents our empirical strategy to characterize the dynamic effects of large
El Niño shocks on the Peruvian economy, by estimating impulse responses. First, an
overview of the data involved in the analysis is provided, including the weather data
used to identify El Niño shocks. Second, the Local Projections specification is presented,
which is our main methodology to estimate the impulse responses of macroeconomic and
sectoral variables to these shocks. For robustness, we also present results from two other
methodologies: a TVP-VAR, and a Threshold-BVAR.

3.1 ENSO and Local Variation

El Niño-Southern Oscillation (ENSO) is a large-scale periodic disruption of the climate
system in the central and eastern tropical regions of the Pacific Ocean. Two main phases
are identified: El Niño, characterized by the warming of sea surface temperatures, and La
Niña, characterized by below-average sea surface temperatures. These phenomena occur
cyclically, but La Niña events are typically shorter in duration and less frequent than
El Niño events. El Niño occurs every two to seven years and has dramatic impacts on
temperature, droughts, and rainfall. This paper will focus on a type of ENSO, El Niño
Costero, which is an ENSO that strikes in the coastal regions of Peru and Ecuador. Figure
1 presents the El Niño zones.
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Figure 1. El Niño Zones

The Peruvian ENSO center, Estudio Nacional del Fenómeno del Niño (ENFEN), monitors
the sea surface temperatures and report the ICEN index (́Indice Costero El Niño), which
determines the occurrence and magnitude of El Niño Costero. This index is derived from
the Extended Reconstructed Sea Surface Temperature series (ERSST) reported monthly
by The NOAA (National Oceanic and Atmospheric Administration). The calculation
involves taking the 3-month moving average of sea surface temperature anomalies, relative
to the long-term mean (average between the years 1981-2010), for the 1+2 Zone of the
Pacific Ocean. Figure 2 plots the time series of the ICEN index and Table 1 presents the
different categories for El Niño and La Niña according to their ICEN index values.

Table 1. ICEN Categories

Threshold

E
l
N
iñ
o Very Strong ICEN > 3.0

Strong 3.0 ≥ ICEN > 1.7
Moderate 1.7 ≥ ICEN > 1.0
Weak 1.0 ≥ ICEN > 0.4

Neutral 0.4 ≥ ICEN > −1.0

L
a
N
iñ
a Weak −1.0 ≥ ICEN > −1.2

Moderate −1.2 ≥ ICEN > −1.4
Strong −1.4 ≥ ICEN
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Figure 2. ICEN index and El Niño Costero

Throughout history, the ENSO has significantly influenced weather patterns in Peru and
had substantial economic impacts. Table 2 provides an overview of significant El Niño
events in Peru. Since 1980, there have been eleven El Niño events categorized as moderate
or greater (1.0 or higher on the ICEN index), with three reaching a peak intensity
classified as ‘strong’ and two as ‘very strong’. Major ENSO events in 1982-1983 and 1997-
1998 caused economic losses equivalent to 11.6% and 6.2% of annual GDP, respectively
(Senamhi, 2014). During both periods, severe flooding in the north and droughts in the
south disrupted agriculture and damaged infrastructure. Even shorter, more moderate
ENSO events in 1992 and 2014 led to GDP contractions of 2.5% and 2.3%, respectively
(BCRP, 1992, 2014). The most recent El Niño in 2023-2024 was characterized by intense
rains along the north coast and drought in the Andes, resulting in a 1.1% drop in GDP in
2023 (BCRP, 2023). Its effects are not only limited to economic damages. For example,
the ENSO in 2017 displaced more than 300,000 individuals (Raissi et al., 2015).

3.2 Data

The empirical exploration relies on monthly economic databases from the Central
Reserve Bank of Peru (BCRPData) for the 1994M1-2019M12, covering Peruvian economic
variables: total GDP index, primary GDP index, non-primary GDP index, sector-specific
production indices; consumer price index (CPI), food and energy CPI index, non food
and energy CPI index, and a measure of inflation expectations twelve months ahead.
Other variables are also selected as controls in our main specification: terms of trade,
foreign exchange rate (PEN soles per US dollar), short-term domestic interest rates,
total liquidity, oil prices, and copper prices. We also consider an extended sample until
2024M10 for robustness. We do not consider the extended sample until 2024M10 for main
estimates since after 2019M12 other large shocks increased the volatility of the data and
made the estimation process more difficult: Covid-19 pandemic and the post pandemics
large global inflation.

Our data on El Niño is sourced from the Peruvian ENSO Center (Estudio Nacional
del Fenómeno del Niño (ENFEN)). Following national convention, these events are
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Table 2. An overview of significant El Niño Events: 1980-2024

Event Dur.
(months)

Peak
severity

Event overview

9/1982-9/1983 13 Very
Strong

During this ENSO event, northern Peru
suffered severe flooding from heavy rains
and there were droughts in the south.a It
is estimated that this El Niño reduced
Global GDP by 11.6%, and by 1988
the losses from the event reached a
magnitude of $4.1 trillion.b

2/1987-11/1987 8 Moderate Not Available.

3/1992-6/1992 4 Strong Global GDP dropped by 2.5% in 1992 as
a result of El Niñoc.

4/1993-6/1993 3 Moderate Not Available

4/1997-7/1998 16 Very
Strong

Northern Peru suffered severe flooding
from heavy rains. Rainfall in urban
areas was lower than in 1982-83, but
catastrophic in the upper in Piura and
Chira River Basin.d It is estimated that
this El Niño reduced Global GDP by
6.2%, and by 2003, the losses from
the event reached a magnitude of $5.7
trillion.e

7/2008-08/2008 2 Moderate Not Available

5/2012 1 Moderate Not Available

6/2014-7/2014 2 Moderate The 2.3% Global GDP contraction in
2014, the greatest annual reduction since
1992, can be attributed to El Niño and
coffee leaf rust.f

5/2015-3/2016 11 Strong Not Available

2/2017-4/2017 3 Moderate This El Niño contributed to a 0.8% drop
in Global GDP in 2017.g

3/2023-1/2024 11 Strong This El Niño resulted in intense rain on
the north coast and drought in the Andes
(September - December 2022), where
frost persisted until January 2023. These
weather conditions were unfavorable for
both planting and harvesting seasons.
This El Niño contributed to a 1.1% drop
in Global GDP in 2023.h

Sources: aCross (2017), bCallahan and Mankin (2023), cBCRP (1992), dCross (2017),
eCallahan and Mankin (2023), fBCRP (2014), gBCRP (2023), hBCRP (2023)

10



categorized from “Weak” to “Very Strong”, reflecting the magnitude in which sea surface
temperatures (SST) reach values above historical averages for El Niño or below historical
averages for La Niña, as shown in Table 1. We focus on large climate El Niño shocks:
events with an intensity of Moderate or higher (ICEN higher than 1). Between 1993 and
2023, there have been thirteen periods with qualifying anomalous events: eight El Niño
and five La Niña events (see Figure 2).

3.3 Assessing the Impact of the ENSO on GDP and Inflation: LP Approach

A non-linear Jordà (2005) Local Projections (LP) methodology is used to estimate the
dynamic equilibrium response of prices and GDP after an anomalous climate shock
resulting in an El Niño state. This approach allows us to estimate impulse responses
that vary across ICEN index temperature regimes. Therefore, for a given outcome of the
log of variable y, we can derive state-dependent impulse responses to large El Niño shocks
using the following LP non-linear specification:4

yt+h − yt−1 = (1− It)[α0,h + β0,hxt +B0,hXt] + It[α1,h + β1,hxt + C1,hXt] + et+h ,
(3.1)

It = I(xt > 1) ,

where yt+h − yt−1 is a long difference, h = 1, . . . , 36, and x is the ICEN index, I(·) is an
indicator function, and as result I is a dummy variable with value of 1 to indicate if an
El Niño event (moderate or above) is identified based on the temperature index and Xt

is a vector containing a set of controls. Note that we specify the dependent variable not
in levels but in long-differences to reduce any small sample bias (Piger and Stockwell,
2023; Jordà and Taylor, 2024).

The coefficients of interest in equation (3.1) are β1,h for all h. These are dynamic responses
that indicate the cumulative change at horizon h of y (e.g., CPI or GDP in our case)
in response to an anomalous climate shock as a result of El Niño. The vector X collects
all the control variables considered. Common controls for prices and aggregate GDP as
outcome variables include the following: one lag of the dependent variable, one lag of the
controls: ICEN index, the oil price index growth, terms of trade, foreign exchange rate,
short-term interest rate, total liquidity.5 In our estimation, we include GDP as a control
variable when analyzing prices, and conversely, we include prices as a control variable
when analyzing GDP. When the dependent variable is a component of GDP or prices,
the remaining components are also included as controls. Furthermore, for the sectors of
GDP, the vector of controls also includes a dummy variable for the start of large mining
projects and the price of copper to allow control for idiosyncratic dynamics.

The outcome variable yt+h is a measure of CPI or economic activity at moment t+h. I is a
dummy variable indicating if an El Niño event (moderate or above) is identified based on
the ICEN index. Our identification relies on the exogeneity of the ICEN evolution, which
is considered to be orthogonal to any economic development, at least in the short-term.

4 This LP non-linear specification has been employed in the literature to estimate impulse responses to
monetary and fiscal policy shocks, allowing for variations across regimes determined by a state variable.
For example Tenreyro and Thwaites (2016); Angrist et al. (2018); Jordà et al. (2024) indicates that
monetary policy impacts vary with the state of the economy. Auerbach and Gorodnichenko (2012);
Jordà and Taylor (2016); Ramey and Zubairy (2018) show fiscal policy effects are economic cycle-
dependent.

5 Following Jordà and Taylor (2024) we selected the optimal lag for the LP using the optimal lag chosen
by the Bayesian Information Criterion (BIC) criterion applied to a corresponding VAR model for the
variables considered.
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Although the ICEN index might evolve independently from the economy, it cannot be
used to measure the impact of El Niño on the outcome variable due to its high persistence.
In fact, the ICEN index follows a persistent dynamics, which is identified to be better
captured by an ARMA(2,3) model, given by6

xt = ρ0 +
2∑
j=1

ρjxt−j + εt +
3∑
j=1

ϕjεt−j with εt ∼ N (0, σ2
ε), (3.2)

Table 3 presents the estimated coefficients from estimating this identified ARMA model
applied to the ICEN index data. To use all information available, we estimated this model
using the monthly sample from 1950m2 to 2024m10.

Because the ICEN index exhibits serial correlation, it introduces bias into the coefficient
of contemporaneous temperature. Simply including lagged ICEN values is insufficient to
address this issue. Therefore, we modify equation (3.1) y adjusting the lag structure of
the indicator variable I, and incorporating an ICEN shock. This shock, represented by
ε̂t, is the maximum likelihood residual obtained from equation (3.2). See Appendix A for
a complete discussion on this problem derived from the persistence of x and the structure
of the dummy variable I, along with the derivation of the solution. Consequently, we
estimate the following specification:

yt+h − yt−1 = (1− It−1)[α0,h + β0,hε̂t +B0,hXt] + It−1[α1,h + β1,hε̂t + C1,hXt] + et+h
(3.3)

However, when the dependent variables, y, is the 12-month ahead inflation expectations,
we specify the model in levels of the form:

yt+h = (1− It−1)[α0,h + β0,hε̂t +B0,hXt] + It−1[α1,h + β1,hε̂t + C1,hXt] + et+h (3.4)

Table 3. ICEN as an ARMA(2,3) process

Coef. Std. Err. z P > |z| [95% Conf. interval ]

ρ0 -0.233 0.109 -2.130 0.033 -0.446 -0.019
ρ1 1.712 0.077 22.37 0.000 1.562 1.862
ρ2 -0.755 0.068 -11.100 0.000 -0.888 -0.621
ϕ1 0.301 0.091 3.310 0.001 0.123 0.479
ϕ2 0.270 0.090 2.990 0.003 0.093 0.447
ϕ3 -0.659 0.089 -7.380 0.000 -0.833 -0.484
σ2
ε 0.151 0.003 49.430 0.000 0.145 0.157

Sample: Feb-1950 to Apr-2024 (891 observations)

Note: Maximum likelihood estimates.

6 Optimal ARMA model chosen using the Bayesian Information Criterion (BIC) criterion.
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Figure 3. LP: Quarterly Effects of El Niño on macroeconomic variables
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Note: LP impulses to an ICEN shock, provided that the initial ICEN index value is greater than 1.
Strong El Niño event (see the main text). Estimates from monthly LP estimates. y-axis in Panels A
to F the outcome is the cumulative change of 100 times the log of the variable. The variable is the
3-month moving average of the price or GDP index. Only the last month of each quarter is depicted.
For the y-axis in Panel G, the outcome is the change in inflation expectations. The quarterly response of
inflation expectations is as a 3-month moving average of the monthly impulse responses. x-axis: quarters
after the shock. Red shaded areas are one and two standard deviation pointwise confidence bands using
heteroscedasticity robust standard errors. Sample 1994m01-2019m12.
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Results

Figure 3 presents the quarterly LP impulse responses of macroeconomic variables to an
ICEN shock, calibrated to represent a strong El Niño event. Specifically, we use equation
(3.2) to generate a shock to the ICEN index that simulates an El Niño episode lasting nine
months, with an average magnitude of 1.7. This calibration closely reflects the typical
characteristics—both in duration and intensity—of historically strong El Niño events.7

Each panel in Figure 3 depicts the impact of an increase in temperature during El
Niño events, represented by a rise in the ICEN index from an initial value of 1, on a
macroeconomic variables over time. The y-axis represents the percentage change of the
macroeconomic variables, and the x-axis represents quarters after the shock. The red
solid lines represent the mean response, while red shaded areas are one and two standard
deviation pointwise confidence bands using heteroscedasticity robust standard errors.

It is important to note that later in Section 4 we align this LP impulse responses with
those from a semi-structural quarterly model. Consequently, our monthly estimation were
adjusted accordingly to obtain quarterly estimates. Specifically, we first apply a 3-month
moving average to the indices of prices and GDP, take the logarithms of these variables,
and then estimate our LP specification as outlined in equation (3.3). This transformation
ensures that the impulse response for the last month of each quarter approximately
matches the quarterly response to the shock. Thus, we plot the last month estimation
of each quarter. For inflation expectations, which are already expressed as a percentage
rate, we directly estimate equation (3.4) using our monthly data and derive the quarterly
response as a 3-month moving average of the monthly impulse responses. Appendix B.1
shows that the monthly LP without any 3-moving average transformation to the data of
prices and GDP give similar impulse responses, but with a much more noisier looking
responses and potentially less precise.

Effects of el Niño on prices

Panel A in Figure 3 shows that an El Niño shock triggers a sharp increase in prices
over one year. One year later, prices are almost 4% higher than at the onset of the
shock, equating to an annual inflation rate of nearly 4%. These effects are statistically
significant and persistent. The sharp inflationary effects begin to ease after the first year,
with subsequent increases slowing down until the cumulative price impact is just above
4% two years later. Three years after the shock, prices remain elevated and close to
4%. This persistent effect on overall prices reflects the differential response of its two
main components: the food and energy CPI, and the core CPI (which excludes food and
energy). In the short term—within the first year—the impact of food and energy prices
has the greatest influence on overall price dynamics. However, in the medium term, it is
the core CPI that drives the evolution of prices.

Panel C provides evidence that in the first year, the majority of overall inflation variation
is due to El Niño’s substantial impact on food and energy inflation. The total inflation
response mirrors that of the food and energy inflation, which, four quarters after the

7 Historical data on the ICEN index from 1951 to 2004 indicate the occurrence of 19 El Niño events with
an ICEN value exceeding 1, corresponding to at least moderate intensity. On average, these events lasted
5.3 months and had a mean ICEN magnitude of 1.5. Among them, seven events reached a classification
above strong, exhibiting an average duration of 9.86 months and an average ICEN magnitude of 2.1.
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shock, reaches around 4.5%. Subsequently, food and energy prices begin to decline
steadily, with the price index being about 1.5% lower, relative to the peak impact, two
years later, and the effects of the shock nearly dissipate by the third year. Panel E
indicates that in the quarters following the first year, the total CPI index is significantly
influenced by its non-food and energy price components. After two years, non-food and
energy prices are around 5.5% higher than at the shock’s onset and continue to rise,
showing only a slight indication of reversion 11 quarters later.

To understand in more detail the effects of El Niño shocks on prices, we computed the
impulse responses of the 2-digit and 3-digit components of the CPI.

Figure 4. LP: Quarterly Effects of El Niño on 2-digit components of
CPI

Food and Energy CPI index
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Note: LP impulses to an ICEN shock, provided the initial ICEN index value is greater than 1. Strong
El Niño event (see the main text). Estimates based on monthly data. y-axis is the cumulative change of
100 times the log of the price index. The variable is the 3-month moving average of the price index, with
only the last month of each quarter displayed. Red shaded areas are one and two standard deviation
pointwise confidence bands using heteroscedasticity robust standard errors. Sample 1994m01–2019m12.

Panel A in Figure 4 indicates that the short-term inflation response is primarily driven by
the direct effects of El Niño on the 2-digit components of food and beverages. Specifically,
Figure 11 in Appendix B.3 further indicates that the 3-digit food and beverages at home
component is mainly responsible for the short-run response of the total CPI. Conversely,
the 3-digit food away from home CPI component exhibits a lagged response. Panel B in
Figure 4 depicts the response of the CPI Energy index, which is almost null and even
negative during the first year following the shock.
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Panels C and D in Figure 4 illustrate that, in the medium term, overall inflation reflects
the broad and consistent rise across all 2-digit components of goods and services within the
core CPI. However, the goods CPI reacts more promptly to the El Niño shock compared to
the services CPI, which shows a more delayed response. Figure 11 in Appendix B.3 further
indicates that the 3-digit price components of furnishings, supplies, transportation, and
recreation commodities are the most responsive, followed by the prices of household
appliances. For the services CPI, most components show a minimal response during
the first year. However, substantial and steady increases are observed during the second
years, with prices remaining elevated thereafter. Later, there are weak and varied signals of
reversion after 10 quarters following the onset of the shock. An exception is transportation
prices, which only begin to show a sharp and significant increase seven months after the
shock occurs.

Effects of El Niño on output

Panel B of Figure 3 displays the GDP response following the ENSO shock. Aggregate
GDP declines by approximately 0.6% in the first quarter, a drop that is statistically
significant. As illustrated in Panel D, this contraction is largely driven by the primary
sector, which falls by about 3.7% in the first quarter and nearly 6% over the first three
quarters. These sector-specific effects are not statistically significant at the 95% confidence
level. We later demonstrate that this is due to the heterogeneous responses within the
primary sector.

While the initial GDP contraction appears modest, the negative effects deepen over time.
By the second year after the shock, GDP reaches its lowest point, with output nearly
5% below its pre-shock level. As shown in Panel F, this substantial decline is primarily
driven by the delayed response of the non-primary sector.

Overall, GDP exhibits a persistent downward trajectory. This sustained impact
suggests that the El Niño shock generates long-lasting disruptions, particularly in non-
primary sectors. One plausible explanation is the propagation of damages caused by
associated natural disasters, such as landslides and mudslides, which can destroy critical
capital infrastructure—including buildings, roads, and machinery—thereby impairing the
productive capacity of the economy. The results show that these effects are not merely
transitory but have enduring consequences for overall economic performance.

To better understand the heterogeneous effects of El Niño, we estimate impulse responses
by economic sector, as shown in Figures 5 and 6, which report results for both
primary and non-primary GDP components. Panels A, B, and D of Figure 5 highlight
the primary sectors most affected by El Niño shocks are fishing, agriculture, and
primary manufacturing. These sectors react immediately to the shock, with fishing
experiencing the most pronounced contraction, declining by approximately 27%. Primary
manufacturing follows with a reduction of around 8%, while agricultural output initially
drops by about 0.9%.

The maximum negative impact on these sectors is observed in the third quarter following
the shock. Fishing and primary manufacturing show relatively rapid recoveries thereafter,
although the responses are not statistically significant at the 95% confidence level. In
contrast, the agricultural sector exhibits a more gradual and persistent downturn. Its
output reaches a trough three quarters after the shock, with a cumulative decline of
roughly 5.5%. Compared to other primary sectors, agriculture demonstrates a notably

16



slower recovery, with negative effects persisting for over a year. This pattern suggests a
prolonged period of contraction in the agricultural sector following El Niño events.

In contrast, the mining sector (Panel C) shows negligible effects to an ENSO shock, with
any effects that are not statistically significant.

Figure 5. LP: Effects of El Niño on Primary GDP sectors
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Note: LP impulses to an ICEN shock, provided the initial ICEN index value is greater than 1. Strong
El Niño event (see the main text). Estimates from monthly LP estimates. y-axis: the outcome is the
cumulative change of 100 times the log of the variable. The variable is the 3-month moving average of
the GDP sector index. Only the last month of each quarter is depicted. x-axis: quarters after the shock.
Red shaded areas are one and two standard deviation pointwise confidence bands using heteroscedasticity
robust standard errors. Sample 1994m01–2019m12.

Figure 6 presents the impulse responses of non-primary sectors to an El Niño shock. In
contrast to the immediate and sharp responses observed in primary sectors, the non-
primary sectors display more delayed and moderate effects in the first year of the onset
of the shock. An exception is the electricity sector, which exhibits a small but positive
initial response. But, the negative impacts, when they do emerge, appear with varying
lags: one quarter in the services sector, three quarters in commerce, and five quarters in
construction and non primary manufacturing.

Once these effects materialize, however, they tend to persist longer than those in the
primary sectors. Among non-primary sectors, commerce experiences the most prolonged
and statistically significant downturn. The non primary manufacturing and the services
sector begins to recover after approximately seven quarters, while construction shows
early signs of improvement after eight quarters. These recoveries are weak and uneven
across non-primary sectors.

In summary, the impulse responses of GDP across all economic sectors indicate a marked
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difference between primary and non-primary sectors. The primary sectors, which are more
closely linked to potential GDP, experience a more significant decline. This suggests that
it is pertinent to consider an immediate impact on potential GDP, as we have already
deduced from the impulse responses of aggregate GDP. Additionally, the persistent
negative responses in the non primary GDP sectors indicate that the more significant
effects on potential GDP also materialize with some lag.

Figure 6. LP: Effects of El Niño on Non Primary GDP sectors
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Note: LP impulses to an ICEN shock, provided the initial ICEN index value is greater than 1. Strong
El Niño event (see the main text). Estimates from monthly LP estimates. y-axis: the outcome is the
cumulative change of 100 times the log of the variable. The variable is the 3-month moving average of
the GDP sector index. Only the last month of each quarter is depicted. x-axis: quarters after the shock.
Red shaded areas are one and two standard deviation pointwise confidence bands using heteroscedasticity
robust standard errors. Sample 1994m01–2019m12.

Effects of El Niño on inflation expectations
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Finally, Panel G of Figure 3 shows the response of inflation expectations to an ENSO
shock. The initial effect is slightly negative but not statistically significant. By the third
quarter, however, expectations begin to rise, reaching a peak of approximately 45 basis
points one year after the shock. Although the effects gradually decline thereafter, inflation
expectations remain elevated relative to their pre-shock level for an additional four
quarters. Two years after the shock, the higher inflation beliefs dissipate, and return
close to their initial level.

3.4 Robustness

Our sample covers the period until 2019 and excludes a very strong El Niño event in 2023.
This is due to heightened data volatility after 2019, driven by significant global disruptions
such as the COVID-19 pandemic and the spike in global inflation. We consider robustness
to include the post-COVID-19 data.

Our previous analysis of the effects of El Niño on the Peruvian economy, using LP impulse
responses, captures the average impacts by aggregating all El Niño events. However, the
intensity of specific El Niño events varies, which leads to a range of economic impacts.
To gain insight into this temporal heterogeneity, we employ a Time-Varying Parameters
Vector Autoregression with Stochastic Volatility (TVP-VAR-SV) approach to identify
the effects of ICEN index shocks. Appendix C.1 describes the specification of the model.

We also explore the robustness of our LP results by estimating the effects of the ICEN
shocks using a Threshold BVAR approach. We consider that a value of the ICEN of 1
could trigger a regime switch. Appendix C.2 offers a complete description of the model.

These results are consistent with our estimates using LP impulse responses in Section
3.3, in terms of direction, size, and persistence.

Results

Our main findings remain robust when extending the sample to include the post-COVID-
19 period, as illustrated in Figure 10 in Appendix B.2. The local projection impulse
responses are largely unchanged, with the notable exception of inflation expectations,
which exhibit a more immediate increase following the onset of the shock, with subsequent
responses that are stronger and more persistent.

The robustness results from the TVPBVAR and Threshold BVAR models are consistent
with our estimates using LP impulse responses in Section 3.3, in terms of direction,
size, and persistence. Panel A and B of Figure 13 in Appendix C show how the impulse
responses of inflation and economic activity evolved over time following a shock in the
ICEN index. In general, we observe that positive temperature shocks cause an increase
in inflation and contraction in GDP over time. The most pronounced responses correlate
with severe El Niño episodes, specifically those in 1998, 2017, and most recently, 2022-
2023.

Figure 14 in Appendix C illustrates the impulse responses within the Threshold BVAR
model. We find that there are potential differences in the responses to shocks in the ICEN
variable, depending on whether the initial conditions are below or above the threshold.
The complete description of both models is presented in Appendix C.
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3.5 Discussion

The empirical findings from the previous empirical exploration suggest that the economic
impacts of El Niño shocks resemble those of supply-side shocks, by simultaneously
exerting inflationary pressures and contracting GDP. These effects are notably persistent,
in both prices and aggregate output. In the short run, the inflationary response is
primarily driven by food prices, which tend to normalize within a year. However, over
the medium term, core components of the Consumer Price Index begin to dominate
the inflation dynamics. Notably, both core inflation and inflation expectations exhibit
persistence, remaining elevated for more than a year.

This distinctive macroeconomic pattern carries important implications for monetary
policy. El Niño shocks disrupt the typical relationship between inflation and economic
activity, much like other supply-side disturbances. The central bank’s policy response is
limited or even absent if the shock is perceived as temporary and does not de-anchor
inflation expectations. However, if inflation expectations begin to drift, the central bank
faces a more complex scenario, and need to respond, given its constitutional mandate
to maintain monetary stability. We further explore these challenges in the next section
using a semi-structural model framework.

Our results also show heterogeneous effects across sectors. The impact on primary sectors
is more immediate and larger, but the effects on non-primary sectors while smaller in the
first year, are much more larger and persistent later on. The contractionary effects of El
Niño in the short run are driven by sharp declines in primary sectors, mainly agriculture,
fishing and primary manufacturing, while in the medium run, they are sustained by the
persistent negative impacts on almost all non-primary GDP sectors. Overall, the very
persistent negative effects points to the dominance of negative trend shocks associated
with lower potential GDP.

In the following section we further discuss this large aggregate consequences of El Niño
shocks for monetary policy using a semi-structural model calibrated for the Peruvian
economy.

4 A Semi-Structural Model with ENSO Shocks

In this section, our goal is to evaluate how climate distress, within a macro framework
that consider other structural shocks, may be operating in the Peruvian economy and
explore the implications for monetary policy design.

4.1 The Model

We leverage our empirical results to calibrate a semi-structural model. Given that El Niño
affects the economy through complex and non-linear channels, this modeling framework
is particularly appropriate. Its flexibility allows for the straightforward incorporation of
ad hoc components, making it well-suited to capture the multifaceted nature of these
shocks.

In particular, we incorporate into the semi-structural model of Aguirre et al. (2022) five
non-linear transmission channels through which El Niño affects the economy. When the
ICEN index surpasses one, it activates two channels: (i) an inflationary surge driven
by increased food and energy prices, and (ii) a demand reduction as higher food and
energy prices diminish consumer disposable income, leading to decreased spending on
other goods. As the El Niño shock intensifies, pushing the ICEN index above 1.7, two
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additional channels emerge: (iii) a potential GDP loss due to El Niño’s extreme weather,
which harms capital, reduces the labor factor and destroyed infrastructure, and (iv) an
inflation expectations channel, where prolonged high inflation and production disruptions
cause households to anticipate further price increases.

The final channel for which our model accounts is (v) the credibility channel. Frequent
deviations of inflation from its target, caused by El Niño, can undermine trust in monetary
authorities and alter the way market participants form their inflation expectations.

Those channels are consistent with the empirical results and depend upon the ICEN
index: As illustrated in the impulse response function of GDP in Figure 3, the El Niño
shock results in a permanent reduction in the GDP level. To capture this, we posit its
effects on both potential GDP and the output gap. Primarily, we define El Niño as an
extreme supply shock, leading to heightened levels and persistence of food and energy
inflation, coupled with a demand contraction. Furthermore, in the case of a severe El Niño
event, additional channels become active. These events induce a decrease in potential
interannual GDP growth due to capital destruction and losses of lives. The output gap is
influenced by a counteracting effect: demand declines, but at a slower rate than potential
output, resulting in a temporary positive output gap. Finally, inflation expectations
are affected solely during severe El Niño episodes, with (de-)anchoring consistent with
observed increases in the persistence and level of inflation expectations following extreme
supply shocks, as noted in BCRP (2017).

In the rest of the section, we focus on presenting how El Niño events activate the first four
non-linear mechanisms within the semi-structural model, and defer a complete description
of the model to the AppendixD.1. The credibility channel is explained in the next section.

The ENSO shocks and its transmission channels

We consider that ENSO shocks are governed by an exogenous stochastic process, which
is also persistent. It is introduced in our quarterly model as an ARMA(3,4) process.8

ICENt = α0 +
3∑
j=1

αjICENt−j + εt +
4∑
j=1

βjεt−j with εt ∼ N (0, σ2
ε) (4.1)

Consistent with our empirical estimation, we assume that the relationship between the
extreme supply shock, El Niño, and macroeconomic variables is nonlinear and dynamic.
We characterize this by making the effects of El Niño on output and inflation components
dependent on the level of the ICEN index and whether it reaches certain thresholds. The
nonlinear, asymmetric effect of ENSO shocks considered here is represented in Table 4.
ENSO only has an impact on output gap and inflation of food and energy when the
ICEN index is bigger or equal than than 1. The model identifies another non-linearity
associated with El Niño: when the ENSO index reaches or exceeds 1.7, it is considered
sufficiently strong to disrupt production (by impacting production factors) and to cause
de-anchoring of inflation expectations.

8 In the empirical analysis presented in Section 3.3, we fit an ARMA(2,3) model to the monthly ICEN
index. However, for the quarterly ICEN index—calculated as the average of the monthly indices within
each quarter—a better fit is achieved with an ARMA(3,4) model. This is the best ARIMA(p,d,q) model
for the ICEN in quarterly frequency following the BIC criterion.
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Table 4. Nonlinear effects of ENSO

Effect on ...

ICEN > 1 Inflation of food and energy Output gap
ICEN > 1.7 Inflation expectations Potential GDP

The effect of the ENSO on GDP

We adopt a structural interpretation of GDP decomposition into potential output and
the output gap. GDP growth is decomposed as:

∆Yt = yt − yt−4 +∆Y p
t (4.2)

where ∆Yt is interannual GDP growth, yt is the gap in production, and ∆Y p
t is potential

interannual GDP growth. The potential GDP corresponds to the level of production that
the economy can reach given that the inflation is on its long term level. The potential
GDP is supposed to be an exogenous process in our model. However, in the presence of a
extreme supply shock like a strong El Niño event, destruction of capital goods and lives
occur, leading to a reduction of the level of product that can be sustained in the long
term. Our specification for potential output, follows:

∆Y p
t =(1− λp)∆Y + λp∆Y p

t−1 + Ωf/p
[
I(ICENt>1.7)ICENt + I(ICENt−1>1.7)ICENt−1

+I(ICENt−2>1.7)ICENt−2 + I(ICENt−3>1.7)ICENt−3 − I(ICENt−4>1.7)ICENt−4

]
+ ϵpt
(4.3)

where ∆Y is the GDP growth rate in the steady state, I(ICENt>1.7) is a dummy variable
that takes the value of one when ICENt > 1.7 and zero otherwise. This specification of
the El Niño effect on the potential growth rate follows the idea of a delayed impact over
time. When the FEN is strong, it affects crop areas, water resources, and other productive
factors in such a way that its impacts will materialize months or even quarters after the
initial event.

In modeling the output gap, we account for two distinct effects. First, when an El Niño
event begins to materialize — identified by ICENt > 1 — a delayed negative impact
emerges. This threshold signals the onset of a negative wealth effect, as rising prices and
declining economic activity reduce aggregate demand. Given that these effects unfold
gradually, they are modeled with a one-quarter lag. Second, when the intensity of the
shock increases — specifically when ICENt > 1.7 — potential output contracts more
rapidly than demand, generating a temporary positive output gap. These effects are
modeled as contemporaneous. The dynamic of output gap, yt, is determined therefore by:

yt =ayyt−1 + aey
(
yt−1 +∆yet+1

)
+ aϕϕt−1 + aqqt + aggt + aττt

+ ay∗y
∗
t + Ωf/yI(ICENt−1>1)ICENt−1 + Ωf/p

y I(ICENt>1.7)ICENt + ϵyt
(4.4)

where ∆yet is economic agents’ expectations regarding the output gap, which do not
necessarily correspond with rational expectations, ϕt is a monetary condition index, qt is
the real exchange rate gap, gt is the fiscal impulse, τt is the terms of trade impulse, y∗t is
the gap in external output, I(ICENt>1) is a dummy variable that takes the value of one
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when ICENt > 1 and zero otherwise and ϵyt is the aggregate demand shock. Analogously,
Ωf/yICENt captures the reduction that El Niño causes on output gap after a quarter
when ICENt is bigger than one and Ω

f/p
y ICENt is the increase in the output gap when

ICENt is bigger than 1.7.

The specification of El on potential GDP and output intent to capture our empirical
results. Our empirical results in Section 3.3 indicates that El Niño produces large
significant effects on potential GDP relative to the output gap. El Niño has highly
persistent effects on overall GDP. These effects are primarily driven in the short-run
by the strong responses of its primary components, namely agriculture and fishing, and
in the medium-run, by large and persistent responses of the non-primary GDP sectors.
On one side, the fluctuations in the primary sectors mainly reflect supply shocks, which
are directly associated with changes in potential GDP. On the other hand, movements in
the non-primary sectors tend to reflect both demand and supply shocks. But, the very
persistent effects of El Niño suggest the predominance of trend shocks that are linked to
potential GDP changes. Therefore, we capture that in the semi-structural by making the
effect on the output gap as a fraction of the effect on potential GDP.

The effect of the ENSO on inflation

Total inflation, πt, is calculated as the aggregation of two components: inflation excluding
food and energy, πsaet and food and energy inflation: πaet .

πt = csaeπ
sae
t + (1− csae)π

ae
t (4.5)

Food and energy inflation is modeled using the next equation:

πaet =(1− λf/ae) [bsπ
sae
t + (1− bs)π

m
t ] + λf/aeI(ICENt>1)π

ae
t−1 + . . .

. . .+ Ωf/ae
[
I(ICENt>1)ICENt

]
+ ϵaet

(4.6)

This equation describes the law of motion of food and energy inflation when El Niño
occurs (ICENt > 1). It accounts for i) a direct shift (Ωf/ae), and ii) an increase in
persistence (λf/ae) due to changes in the ICEN index.

In contrast, a standard Phillips curve still links core inflation (inflation excluding food and
energy) with marginal cost which is determined by the output gap. The core inflation rate
is not directly affected by El Niño shock, but only indirectly via inflation expectations.

πsaet =bmΠ
m
t + (1− bm)

[
bsaeπ

sae
t−1 + (1− bsae)Π

e
t

]
+ byyt−1 + ϵsaet (4.7)

The equation for forming inflation expectations includes both rational and adaptive
components, where EtΠ

sae
t+4 is the rational expectation of core inflation trend (excluding

food and energy) four quarters in the future, Πt−1 is the inflation trend of the
previous quartes, which is the average of previous four quarters, and ϵΠ

e

t is the inflation
expectations shock:

Πe
t =λΠeΠe

t−1 + (1− λΠe)
[
cπeCt−1EtΠ

sae
t+4 + (1− cπe)Πt−1

]
+ . . .

. . .+ (1− Ct−1) [Πt−1 −Meta] + Ωf/expI(ICENt−3>1.7)ICENt−3 + ϵΠ
e

t

(4.8)
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The direct transmission channel of El Niño shocks to inflation expectations is captured by
term Ωf/expICENt−3. The ENSO shock only has an effect on inflation expectations when
it becomes deanchored, and we consider that it will only happen when the economy is hit
by a strongly high weather shock, i.e., when ICENt > 1.7 and effects occurs three quarters
later, as supported by our empirical results. Ct−1 represents the credibility stock of the
monetary authority, ranging between 0 (no credibility) and 1 (maximum credibility).
When the credibility stock variable is less than 1 it weakens the prospective component
of the inflation expectation and generates an inflation bias ([1− Ct−1] [Πt−1 −Meta]),
which increases inflation expectations in proportion to the deviation of the inflation trend
of the previous quarter’s from the inflation target. The dynamics of the credibility stock
are explained in the next section.

4.2 Modeling the Effects of the ENSO on Central Bank’s Credibility

Market participants form their inflation expectations based on the confidence they have in
the monetary authorities. Often, deviations of inflation from its target can alter the trust
the market has in these authorities, subsequently changing the way inflation expectations
are generated.

From figure 3, we see that a strong El Niño episode significantly impacts inflation
expectations for over seven quarters.

This issue holds importance for policymakers, as the effectiveness of monetary policy,
particularly in achieving price stability, is contingent upon well-anchored inflation
expectations. Consequently, we integrate this credibility channel into our analysis and
assess its impact through simulations. Credibility is introduced through the stock variable
Ct, following Benes et al. (2017), which ranges from 0 (absence of credibility) to 1 (full
credibility) with law of motion:

Ct = η1Ct−1 + (1− η1)st (4.9)

where η1 is the parameter that governs the persistence of the credibility balance, and
st represents the credibility revision signal. This signal, constrained between 0 and 1,
dynamically adjusts the credibility balance. The credibility revision signal is derived from
an expectation formation mechanism that allows agents to switch between:

1. Expectations of High inflation (H): a pessimistic expectation formation
process, which assigns weight to past realized inflation and a high inflation value.

2. Expectations of Low inflation (L): an anchoring expectation formation process,
which is anchored to long-term inflation and allocates weight to past inflation and
the monetary authority’s target.

An increase in the credibility revision signal st indicates a greater reliance on the anchoring
component in expectation formation. This signal is determined by the mean squared
prediction errors of the aforementioned expectation formation models, exhibiting the
following dynamics:

st = 1− η2
(ϵLt )

2

(ϵHt )
2 + (ϵLt )

2
(4.10)
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ϵHt = Πt − [ρHΠt−1 + (1− ρH)πH ] (4.11)

ϵLt = Πt − [ρLΠt−1 + (1− ρL)π̄] (4.12)

where η2 is the coefficient that indirectly sets a minimum threshold for the central bank’s
credibility level, ϵLt is the law of motion for the anchoring model, and ϵHt is the law of
motion for the pessimistic model. The anchoring model is a low-inflation regime where
agents believe that inflation will converge to the announced target (π̄). The pessimistic
model, on the other hand, is a high-inflation regime where agents believe that the central
bank can only achieve a high level of inflation above the target (πH > π̄).

Additionally, the following boundary conditions are defined:

• High credibility state: inflation is less than the one predicted by the anchoring
model.

st = 1 if ϵLt < 0 (4.13)

• Low credibility state: inflation is more than the one predicted by the pessimistic
model.

st = 0 if ϵHt > 0 (4.14)

Thus, the credibility of the central bank can be established based on the parameter η2,
which represents the weight agents place on the credibility signal and is inversely related
to current inflation. Consequently, a more credible central bank diminishes the influence
of current inflation on household expectations relative to the inflation target.

4.3 Calibration

We calibrate the model to replicate some relevant unconditional and conditional moments
for the Peruvian economy. We consider four sets of parameters: the core set of MPT
parameters as in Aguirre et al. (2022), the set of parameters that govern the ICEN, the
transmission of El Niño in the economy and parameters that determine the dynamics of
the credibility stock.

The first group of model coefficients is estimated in Aguirre et al. (2022); hence, they
are calibrated at their estimated posterior means. To incorporate the direct impact of
climate change shocks on macroeconomic variables, we estimate the relevant coefficients
using impulse response function matching estimators. Specifically, we align the impulse
responses generated by our extended semi-structural model with those obtained from our
LP estimation.

Figure 7 presents the results of the impulse response functions matching for CPI inflation,
food and energy inflation, inflation expectations, and GDP growth. In the figure, blue lines
with markers represent point estimates, while shaded areas indicate the corresponding
95% confidence intervals. Solid red lines depict the IRFs generated by our semi-structural
model. To align the model with the four empirical IRFs, we estimate four key parameters:
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(1) the sensitivity of potential growth to the ENSO shock, denoted as Ωf/p; (2) the
sensitivity of food and energy inflation to the ENSO shock, denoted as Ωf/ae; (3) the
increase in the persistence of food and energy inflation, denoted as λf/ae; and (4) the
sensitivity of inflation expectations to the ENSO shock, denoted as Ωf/exp; and (5)
the parameters that represent the sensitivity of the output gap to the ENSO shock
(Ωf/y,Ω

f/p
y ) when is strong(ICEN > 1) and severe(ICEN > 1.7) are calibrated as a

fraction of Ωf/p. We have four IRFs and five parameters to calibrate. The last parameter,
which assesses the impact of ENSO on the output gap, is set as a fraction of its effect
on potential output. We estimate these effects to be in a proportion of 1 to 10.9 These
parameters are presented in Table 5.

Table 6 presents the parameter estimates of the ARMA(3,4) model, which is the best
empirical fit for the exogenous univariate model representing the ICEN index.

Finally, the parameters governing the dynamics of the credibility stock and its signal are
presented in Table 7. We simulate three scenarios: (i) no endogenous credibility; (ii) high
credibility; and (iii) low credibility. In the baseline scenario, η1 is set to one, eliminating
any scope for endogenous credibility in our model. For the subsequent two scenarios, η1
is set to 0.80, representing a credibility stock can vary over time and is persistent. The
inflation target is calibrated to the midpoint of Peru’s target range (π̄ = 2.00) and the
high inflation level for the pessimistic model is set to the upper bound of the target
range (πH = 3.00). Then, the second scenario, representing high trust in the monetary
authority, is achieved by setting η2 = 0.25. At last, the third scenario, representing low
credibility, is characterized by η2 takes the value of 1.

Table 5. Parameters estimated by IRF Matching

Parameters Value

Potential GDP Ωf/p -0.3982

Ouput Gap Ωf/y/Ω
f/p
y -0.0398 / 0.0398

Inflation Expectations Ωf/exp 0.2844
Inflation of Food and Energy - Persistence λf/ae 0.5058
Inflation of Food and Energy - Sensitivity Ωf/ae 2.8368

Table 6. ICEN: ARMA(3,4) parameters

AR Parameters Value MA Parameters Value
α0 -0.2521 β1 0.8058
α1 0.3029 β2 1.3588
α2 -0.7739 β3 0.7796
α3 0.4105 β4 0.3289

9 We partially confirm this calibration by computing impulse response functions (IRFs) to the trend
and cycle components from the application of a one-sided HP filter to the non-primary GDP. The
cumulative effects on the cycle are 0.11 of the total effects on the trend.
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Figure 7. IRF Matching

2 4 6 8 10 12

0

2

4

6

8
CPI Inflation

2 4 6 8 10 12

0

2

4

6

8
Inflation of food and enery

2 4 6 8 10 12

-8

-6

-4

-2

0

GDP grow

2 4 6 8 10 12

-0.2

0

0.2

0.4

0.6

Inflation Expectation

Empirical
Model

Table 7. Credibility block parameters

Parameter No end. cred. High cred. Low cred.
η1 1.00 0.80 0.80
η2 0.00 0.25 1.00
πH 3.00 3.00 3.00
π̄ 2.00 2.00 2.00

ρL/ρH 0.50 0.50 0.50

4.4 Results

In our model, El Niño affects the economy through nonlinear mechanisms, leading to:
(i) disruptions in economic activity by impacting both potential GDP and the output
gap, and (ii) inflationary pressures due to fluctuations in food and energy prices, as well
as inflation expectations. Figure 8 shows the impulse responses of key macroeconomic
variables to an ENSO shock generated by this framework10.

Each panel in Figure 8 shows the dynamic response of a macroeconomic variable to
such an event. Additionally, the figure presents three different parameterizations of the
interest rate response to inflation deviations, as defined by the Taylor rule coefficient, ϕπ.
Given the qualitative similarity of the macroeconomic responses across parameterizations,

10 We characterize the shock by an ICEN index exceeding 1.7 for two consecutive quarters and remaining
above 1 for an additional quarter. This configuration represents an El Niño event of strong or greater
intensity.
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we first analyze the general shape of the responses and leave the examination of their
quantitative variations for an exercise with repeated ENSO shocks.

Following the shock, GDP growth declines while inflation initially increases, mainly due
to rising food and energy prices. Interestingly, the transmission mechanisms of El Niño
result in distinct persistence patterns for its negative effects on potential GDP and the
output gap. The immediate and substantial decline in GDP growth primarily reflects
the response of potential GDP growth, which reverts to its pre-shock level after ten
quarters. Conversely, the output gap experiences a smaller initial increase due to a more
rapid decline in potential output relative to aggregate demand. Following one quarter,
the output gap begins to contract, exhibiting more persistent effects due to El Niño’s
spillover impacts on aggregate demand. Regarding inflation, the trajectory and magnitude
of core inflation closely align with the response of inflation expectations, contributing
to a prolonged effect of the ENSO shock on headline inflation. To manage inflationary
pressures and stabilize the economy, the central bank responds by increasing the policy
interest rate. The monetary tightening yields an exchange rate appreciation, which helps
to dampen inflationary pressures by reducing the cost of imported goods.

It is important to mention that the overall form of impulse responses to this shock
resembles a cost-push shock as described by Woodford (2003), or relative price shocks as
discussed by Aoki (2001); Del Negro et al. (2023). However, an El Niño event is unique
in that it directly impacts the output gap, potential GDP, inflation of food and energy
and inflation expectations through nonlinear mechanisms, introducing new challenges for
the formulation of monetary policy.

To provide insights on the challenges faced by central banks in stabilizing both inflation
and real economic activity, particularly given the breakdown of the “Divine Coincidence”
(Woodford, 2003), we conduct a simulation exercise were ENSO shock occurs repeatedly.
We focus on an objective function that minimizes a weighted sum of the volatilities
of inflation and the output gap. Specifically, we consider a loss function formulated as
follows:

L = α var(y) + var(π)

where α ≥ 0 is the relative weight related to fluctuations in the output gap.11

Table 8 provides a numerical illustration of the trade-off monetary policy faces, when
stabilizing inflation and the output gap, after successive ICEN shocks. 12. The table
evaluates the loss function under different monetary policy stances (as captured by
varying the sensitivity of the Taylor rule to inflation, ϕπ), at varying frequencies and
magnitudes of El Niño events (represented by the variance of the ICEN shock, σ2

ICEN),
and at three different levels of credibility (accomplished by setting different values for the
parameter η2).

For each of the three levels of credibility, the table considers three values for the Taylor
rule’s inflation sensitivity parameter: ϕπ = 1.2, ϕπ = 1.5 (the baseline) and ϕπ = 2. A
higher value of this parameter indicates a more aggressive monetary policy response to
inflation deviations. Additionally, for a given monetary policy stance, we consider three
possible values for the standard deviation of the ICEN shock (σICEN = 0.5, σICEN = 1

11 This expression as described in Woodford (2003) can be motivated as the micro-founded welfare
criterion for a central bank in the standard three equation NK model under certain assumptions.
Following Woodford (2003) we set α = 0.048

12 In this simulation exercise we consider only ICEN shocks
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- the baseline - and σICEN = 2), each representing a different shock intensity. These
variations capture changes in the frequency and magnitude of El Niño events. Therefore,
each cell in the table shows the average outcome derived from 103 simulations over a
20-year period, based on each specified parameter setting.

When the ENSO shock standard deviation is low (σICEN = 0.50), the loss function value
is close to 0 for any value of ϕπ, indicating no cost in stabilizing the economy. At low
variance levels of the ICEN shocks, the frequency of El Niño events with a magnitude
exceeding the value of 1 is small (1.28 percent of the time), which prevents a significant
activation of nonlinear effects.

As the shock standard deviation increases to the baseline calibration (σICEN = 1.0), the
loss function rises for all values of ϕπ and for every level of credibility. This reflects a
higher incidence of El Niño in the economy and its non-linear effects. For this calibration,
the ENSO occurs on average 8.47% of the time (around 6 quarters out of 80) and it
reaches strong ENSOs in 3.23% of the time (approximately 2 quarters out of 80). This
frequency is sufficient to gauge significant welfare loss for all values of ϕπ. It can be seen
in Table 8 that the variances of the key macroeconomic variables increase considerably.
For example, in the case with no endogenous credibility, the volatility of the nominal
interest rate increases from 0.010 when ϕπ = 1.2 to 0.21 when ϕπ = 1.5, and reaches 0.23
when ϕπ = 2.0. Consequently, overall uncertainty in the economy increases substantially.
And since the utilized loss function is derived for a simple economy, it is probable that
the welfare loss implied by the loss function is underestimated.

Further, when the ICEN standard deviation doubles the baseline calibration (σICEN = 2),
the overall uncertainty of the economy and the loss function become significantly greater.
In this case, ENSO materializes 15.91% of the time (12 quarters out of 80) and reaches
strong ENSOs 11.32% of the time (9 quarters out of 80). At this frequency, the loss
function rises sharply, highlighting the importance of the nonlinear effects of ENSO
shocks.

Notice that, For σICEN = 2, where El Niño events are more frequent and intense, still
a more reactive central bank to the inflation rate (higher ϕπ) leads to a decrease in the
loss function. The reduction in the loss function is primarily due to a larger decrease in
inflation volatility compared to the increase in GDP volatility. Furthermore, the decrease
in inflation volatility is also reflected in the volatility of inflation expectations, which
more than compensates for the increase in the volatility of variables related to economic
activity. These reactions suggest that, in the face of significant supply shocks like ICEN, a
stronger emphasis on controlling inflation is only possible after more economic instability.
Also, as shown in Figure 8, output gap and foreign exchange depreciation display
significantly more pronounced responses. These findings underscore the importance of
carefully calibrating monetary policy to minimize the adverse impacts on both inflation
and real economic activity.

However, the nonlinear effects of ENSO shocks are accentuated or attenuated by the
credibility of the monetary authority. In the case of no endogenous credibility, the
persistent propagation mechanism of ENSO shocks to inflation is only due its direct effects
in inflation expectations. The central bank reacts to the higher inflation by increasing the
interest rate. However, with endogenous credibility, the ENSO shock induces an inflation
bias, generate a loss of credibility, which increases the weight of the backward-looking
component of inflation expectations which further rises inflation expectations.

In the low credibility case, still a more aggressive monetary policy help to stabilize the
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economy if various episodes of strong and severe El Niño occurs (σ2
enso = 2). However,

the lack of credibility increases the welfare losses in the economy, as the overall volatility
increases. In this scenario, the central bank struggles to manage inflation expectations
due to a lack of trust from economic agents. When repeated ENSO shocks occur, the
inflation expectation becomes highly volatile as agents doubt the central bank´s ability
to control inflation, and higher current inflation influence higher expectations. In this
scenario, the central bank is forced to be more aggressive, as a more dovish monetary
policy stance implies a higher loss of credibility overtime that will require more interest
rate adjustments to control inflation. For example, for σICEN = 2, , the volatility of the
interest rate decreases from 6.83 to 5.83 as ϕπ increases from 1.2 to 2.0.

In the high credibility scenario, the central bank’s strong reputation helps anchor inflation
expectations, even in the presence of large ENSO shocks. While inflation expectations
may still be somewhat elevated compared to the case of perfect credibility, they remain
significantly more stable than in the low credibility scenario. For example, the volatility
of the interest rate is more than three times higher than in the case without endogenous
credibility, but it remains substantially lower than in the low credibility case. With
high credibility the benefits of adopting a more hawkish monetary policy become most
apparent, particularly as El Niño episodes grow more frequent, with notable improvements
in the loss function.

These results indicate that the credibility of the central bank act as a complement
instrument for the effectiveness of conventional monetary policy, and a good
communication strategy, can be more important the presence these large shocks.
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Figure 8. Semi-Structural model: Effects of El Niño on the peruvian
macroeconomy
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Table 8. Uncertainty, loss function and monetary policy stance

ϕπ 1.20 1.50 2.00

σ2
ENSO 0.50 1.00 2.00 0.50 1.00 2.00 0.50 1.00 2.00

ENSO> 1 1.28% 8.47% 15.91% 1.28% 8.47% 15.91% 1.28% 8.47% 15.91%
ENSO> 1.7 0.05% 3.23% 11.32% 0.05% 3.23% 11.32% 0.05% 3.23% 11.32%

holaaaaaaaaaNo Endogenous credibility case: Perfect credibility

Πe 0.01 0.31 0.96 0.01 0.29 0.89 0.01 0.27 0.81
πsae 0.01 0.23 0.71 0.01 0.21 0.63 0.01 0.18 0.54
i 0.01 0.19 0.61 0.01 0.21 0.66 0.01 0.23 0.72
λ 0.01 0.19 0.61 0.01 0.21 0.65 0.01 0.23 0.72
πm 0.01 0.14 0.47 0.01 0.15 0.49 0.01 0.16 0.52
πae 0.64 3.05 6.97 0.64 3.04 6.92 0.64 3.02 6.86

π 0.287 1.430 3.354 0.287 1.416 3.302 0.286 1.399 3.240
y 0.020 0.228 0.651 0.021 0.241 0.692 0.021 0.258 0.745

L 0.082 2.047 11.271 0.082 2.008 10.924 0.082 1.962 10.522

holaaaaaaaaaLow credibility case

Πe 0.11 1.85 7.17 0.10 1.51 5.69 0.09 1.20 4.41
πsae 0.09 1.57 6.10 0.08 1.24 4.70 0.07 0.94 3.48
i 0.10 1.70 6.83 0.11 1.60 6.25 0.12 1.53 5.83
λ 0.10 1.70 6.81 0.11 1.59 6.23 0.12 1.52 5.81
πm 0.08 1.30 5.53 0.08 1.18 4.89 0.09 1.09 4.38
πae 0.64 3.13 7.14 0.64 3.07 6.88 0.64 3.01 6.65

π 0.301 1.956 5.454 0.299 1.787 4.736 0.296 1.638 4.118
y 0.025 0.222 0.746 0.022 0.223 0.629 0.022 0.291 0.857

L 0.091 3.827 29.776 0.089 3.196 22.445 0.088 2.687 16.991

holaaaaaaaaaHigh credibility case

Πe 0.04 0.71 2.80 0.04 0.63 2.38 0.03 0.54 1.99
πsae 0.03 0.58 2.31 0.03 0.49 1.90 0.03 0.41 1.50
i 0.04 0.57 2.36 0.04 0.59 2.33 0.05 0.61 2.35
λ 0.04 0.57 2.35 0.04 0.58 2.32 0.05 0.61 2.34
πm 0.03 0.43 1.84 0.03 0.43 1.77 0.03 0.43 1.72
πae 0.64 3.10 7.19 0.64 3.06 7.03 0.64 3.03 6.87

π 0.289 1.576 4.079 0.289 1.528 3.826 0.288 1.478 3.584
y 0.021 0.198 0.515 0.021 0.228 0.630 0.021 0.266 0.778

L 0.084 2.485 16.649 0.083 2.338 14.659 0.083 2.188 12.877

Notes: a The ENSO frequency is calibrated via σICEN . The loss function, L, is defined as a weighted
sum of inflation and output gap volatility, αvar(y) + var(π), with α = 0.048 as in Woodford (2003).
The variables π, πsae, and Πe denote the annualized quarterly measures of the inflation rate, inflation
excluding food and energy, and the 4-quarters ahead expected inflation, respectively. The nominal current
and expected depreciation rates are λ and Λe. The nominal interbank interest rate and the real marginal
conditions are represented by i and rmc, while y is the output gap and x represents the expected economic
growth.
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5 Conclusion

We leverage the exogeneity of El Niño and its significance for the Peruvian economy to
investigate the impact of this climate shock on both inflation and output. Empirically and
using a semi-structural model we show for the Peruvian economy that El Niño disrupts
the conventional relationship between inflation and economic activity, akin to persistent
supply shocks.

The unique nature of El Niño, with its direct and indirect nonlinear effects on the output
gap, potential GDP, food and energy inflation, core inflation, and inflation expectations,
introduces additional complexities for monetary policy. Furthermore, the nonlinear effects
of these extreme supply shocks become increasingly prominent if they become more
frequent: repeated ENSO shocks alter the way agents form their expectations, making the
impact of each hit on the economy increasingly severe. Our results indicate that hawkish
monetary policy still influences the stabilization of inflation dynamics following large
supply shocks such as El Niño. This is true even in the case of low credibility, although
to a lesser degree.

In a framework where monetary policy lacks credibility as defined by Chang (1998),
large and persistent supply shocks can significantly impact long-term economic stability
through an additional credibility channel. This diminished credibility of monetary policy
authorities raises the cost of stabilizing the economy. These challenges call for a more
nuanced approach to monetary policy, where traditional tools may need to be adjusted
to effectively stabilize both inflation and economic activity. Relying on unconventional
tools may also be effective. Communication strategies can act as a monetary policy tool
by enhancing credibility and managing expectations 13. Therefore, careful calibration of
the monetary policy strategy is essential to minimize adverse effects on both inflation
and real economic activity.

In the face of more frequent El Niño events, traditional monetary policy may become less
effective, necessitating the exploration of complementary or alternative policy measures.
Fiscal policy is one such alternative, offering a valuable means to address significant and
persistent supply shocks, although it may also lead to unintended consequences14. Other
potential strategies include targeted transfers, price controls, contingency planning, and
the establishment of precautionary funds. However, a detailed analysis of these and other
policies is beyond the scope of this paper.

The future research agenda should focus on developing models that more accurately
capture the impact of large climate shocks like El Niño and exploring how policy makers
can adapt their strategies to manage these unique challenges while ensuring economic
stability.

13 SeeGoy et al. (2022).
14 See, for example, Auclert et al. (2023b)
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Appendices

A Bias in Local Projections

For simplicity, assume a local projection regression without the non-linear feature in
Section 3.3, that is, A.1:

yt+h = ah + γhxt +BhXt + et+h (A.1)

where the control variable X may include lags of x. Consider x to be persistent (as the
ICEN); hence, it can be modeled as an AR process. Assume x ∼ AR(p). That is,

xt = ρ0 +

p∑
i=1

ρixt−i + εt. (A.2)

From this autocorrelation equation, the population equation for yt+h should look
something like

yt+h = ah + γhxt +BhXt + . . .+
h∑
i=1

ciEtxt+i + vt+h︸ ︷︷ ︸
et+h

. (A.3)

As a result, xt is endogenous since cov(xt, et+h) =
∑h

i=1 cicov(xt, Etxt+h) ̸= 0. From A.2,
the contribution to Etxt+j from xt can be calculated as

∂Etxt+j
∂xt

= ϱj; hence, Etxt+j = ϱjxt + . . . ,

for instance, ϱj = ρj1 in the case of an AR(1) process. Adding the regressor Etxt+j in A.1
yields

yt+h = ah +

(
γh +

h∑
i=1

ciϱi

)
xt +BhXt + et+h. (A.4)

If γ̂h comes from the estimation of A.1, from A.4 it is known that γ̂h = γh+
∑h

i=1 ciϱi. As

a result, the bias is
∑h

i=1 ciϱi. This bias is expected to be negative as ci < 0 (note that
ci is unknown). Consequently, the estimation will be downward biased. The solution to
this problem is to replace x with the OLS estimate of ε in A.2 as it is an i.i.d. process.

Now let’s address the non-linearity. To do so, the indicator function is added to identify
the ENFEN state, which occurs when xt > 1. That is,

yt+h =I(xt−1 > 1) [a1,h + γ1,hε̂t +B1,hXt + e1,t+h]

+ (1− I(xt−1 > 1)) [a2,h + γ2,hε̂t +B2,hXt + e2,t+h] ,
(A.5)

notice that the indicator function is lagged rather than contemporaneous. This lag
structure is used to ensure exogeneity. To see this, note that A.5 can be written as

yt+h =γ2,hε̂t + (γ1,h − γ2,h)I(xt−1 > 1)ε̂t

+ I(xt−1 > 1) [a1,h +B1,hXt + e1,t+h]

+ (1− I(xt > 1)) [a2,h +B2,hXt + e2,t+h] .

(A.6)
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As ε̂t is exogenous, the estimation of γ2,h is consistent. With a similar argument as in the
linear case, the regressor I(xt−1 > 1)ε̂t must be uncorrelated with the omitted variable
EtI(xt+j−1 > 1)ε̂t+j in A.6. As ε̂t+j is orthogonal to xt+j−1, then EtI(xt+j−1 > 1)ε̂t+j = 0,
which implies the required exogeneity.

A consequence of the lag structure is that the ENFEN effects, {γ1,h}h≤H , can be estimated
only one month after the event materializes.

∂yt+h
∂εt

= γ2,h + (γ1,h − γ2,h)I(xt−1 > 1) =

{
γ2,h, if xt−1 < 1

γ1,h, if xt−1 > 1
(A.7)
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B Robustness to Local Projections Estimation

B.1 LP Monthly Estimation

Figure 9. LP: Monthly Effects of El Niño on aggregate macroeconomic
variables
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Note: LP impulses to an ICEN shock, provided the initial ICEN index value is greater than 1. Strong
El Niño event (see the main text). y-axis: In Panels A to F the outcome is the cumulative change of 100
times the log of the variable; and Panel G the outcome is the change of inflation expectations. x-axis:
Months after the shock. Red shaded areas are one and two standard deviation pointwise confidence bands
using heteroscedasticity robust standard errors. Sample 1994m01–2019m12.
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B.2 LP Estimation with Sample Post COVID-19 Pandemics

Figure 10. LP: Quarterly Effects of El Niño on aggregate
macroeconomic variables with sample post COVID-19 pandemics
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Note: LP impulses to an ICEN shock, provided the initial ICEN index value is greater than 1. Strong
El Niño event (see the main text). Estimates from monthly LP estimates. y-axis in Panels A to F the
outcome is the cumulative change of 100 times the log of the variable. The variable is the 3-month moving
average of the price or GDP index. Only the last month of each quarter is depicted. y-axis in Panel G
the outcome is the change in inflation expectations. The quarterly response of inflation expectations is
as a 3-month moving average of the monthly impulse responses. x-axis: quarters after the shock. Red
shaded areas are one and two standard deviation pointwise confidence bands using heteroscedasticity
robust standard errors. Sample 1994m01–2024m10.
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B.3 LP Estimation for 3-digit CPI Components

Figure 11. LP: Quarterly Effects of El Niño on 3-digit CPI components
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Note: LP impulses to an ICEN shock, provided the initial ICEN index value is greater than 1. Strong
El Niño event (see the main text). Estimates based on monthly data. y-axis is the cumulative change of
100 times the log of the price index. The variable is the 3-month moving average of the price index, with
only the last month of each quarter displayed. Red shaded areas are one and two standard deviation
pointwise confidence bands using heteroscedasticity robust standard errors. Sample 1994m01–2019m12.
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Figure 12. LP: Quartely Effects of El Niño on 3-digit CPI components
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Note: LP impulses to a one-degree change in temperature during an El Niño event, i.e., an increase of
one unit in the ICEN index (provided the initial ICEN index value is greater than 1). Estimates based
on monthly data. y-axis is the cumulative change of 100 times the log of the price index. The variable is
the 3-month moving average of the price index, with only the last month of each quarter displayed. Red
shaded areas are one and two standard deviation pointwise confidence bands using heteroscedasticity
robust standard errors. Sample 1994m01–2019m12.
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C Robustness to Empirical Results

Our analysis of the effects of El Niño on the Peruvian economy, using LP impulse
responses, captures the average impacts by aggregating all El Niño events. However,
the intensity of El Niño events varies, leading to a range of economic impacts. Also, we
consider a different technique, a Threshold BVAR to contrast our LP results.

C.1 Assessing the Impact of the ENSO on GDP and Inflation: a TVP-VAR-SV
Approach

The intensity of specific El Niño events varies, which leads to a range of economic impacts.
To gain insight into this temporal heterogeneity, we employ a Time-Varying Parameters
Vector Autoregression with Stochastic Volatility (TVP-VAR-SV) approach to identify
the effects of ICEN index shocks.

We consider a vector yt that includes the ICEN index along with key macroeconomic
variables: headline inflation, economic activity index, terms of trade, interest rate, money
aggregates, and exchange rate. The observed vector yt over a sample of T periods,
t = 1, . . . , T , is assumed to be represented with a finite order autoregression:

yt = B0,tDt +B1,tyt−1 + . . .+Bp,tyt−p + ut (C.1)

where B0,t is a matrix of coefficients; Bi,t, i = 1, . . . , p are square matrices containing the
coefficients of the lags of the the endogenous variables and ut ∼ N(0,Ωt), where Ωt is
symmetric, positive, definite, and full rank for every t. The reduced form error ut does
not have an economic interpretation. Structural shocks are denoted by εt ∼ N(0, I) and
let the mapping between structural and reduced form shocks be:

ut = A−1
t Σtεt (C.2)

where At denotes the contemporaneous coefficients matrix and Σt is a diagonal matrix
containing the standard deviations of the structural shocks. The structural VAR(p) model
that correspond to the reduced VAR, in equation is (C.1):

yt = X ′
tBt + A−1

t Σtεt (C.3)

where X ′
t = IM ⊗ [D′

t, y
′
t−1, . . . , y

′
t−k] and Bt = [vec(B0,t)

′, vec(B1,t)
′, . . . , vec(Bp,t)

′]′. As
is standard in the literature, we assume that the parameter blocks (Bt, At,Σt) evolve as
independent random-walks:

Bt = Bt−1 + νt

αt = αt−1 + ζt

log(σt) = log(σt−1) + ηt

where αt denotes the vector of free parameters of At, and σt = diag(Σt), where stochastic
vectors εt , νt , ζt , ηt are orthogonal.

This setup is able to capture time variations in i) the lag structure, ii) the
contemporaneous reaction parameters, and iii) the structural variances. This method
allows us to compute impulse responses at each point in time, providing a dynamic
perspective on the economic effects of El Niño shocks. By doing so, we can better
understand how the impacts of El Niño have evolved. This approach is also particularly
valuable in guiding our understanding of the uncertainty and potential future effects of
more frequent and intense El Niño events.
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We estimate the TVP-VAR-SV model in equation (C.3) for the sample period between
December 1994 and March 2024. We use the methodology proposed by Canova and
Pérez Forero (2015), with the correction made by Del Negro and Primiceri (2015).

C.2 A Threshold BVAR Approach

We specify the following two-regime Vector Auto-Regressive model (Threshold-BVAR),
which closely follows Alessandri and Mumtaz (2019):

yt =

(
c1 +

p∑
j=1

β1,jyt−j +
J∑
j=0

γ1,jλt−j + Ω
1/2
1t εt

)
S̃t+(

c2 +

p∑
j=1

β2,jyt−j +
J∑
j=0

γ2,jλt−j + Ω
1/2
2t εt

)(
1− S̃t

) (C.4)

where the vector of variables yt is the same as in the previous model, and where the
shocks are normally distributed, i.e., et ∼ i.i.d.N

(
0, Idim(y)

)
.

The binary regime indicator S̃t is defined by:

S̃t = 1 ⇐⇒ Ft−d ≤ Z∗ (C.5)

and where both the delay d (which follows a discrete distribution d = 1, . . . , d∗), and the
threshold Z∗, are unknown parameters that need to be estimated. Moreover, we employ
as a threshold variable Ft, the ICEN indicator.

The covariance matrix for the error term Ω
1/2
it et for each regime i = 1, 2 is such that:

Ω1t = A−1
1 ΣtA

−1
1

′
(C.6)

Ω2t = A−1
2 ΣtA

−1
2

′
(C.7)

with Ai as a lower triangular matrix and Σt as a matrix defined by:

Σt = exp (λt)× S (C.8)

with S being a diagonal matrix that captures the constant heteroskedasticity:

S =


s1 0 . . . 0
0 s2 . . . 0
. . . . . . . . . . . .
0 0 . . . sdim(y)

 (C.9)

with sj > 0 for j = 1, . . . , dim (y). The matrices Ai are lower triangular with the main
diagonal governed by ones and free parameters below the main diagonal, i.e.:

A =


1 0 . . . 0
αi,1 1 . . . 0
. . . . . . . . . . . .
αi,k αi,k+1 . . . 1

 . (C.10)
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In this context, also recall that vec (Ai) = SAαi+ sA (Amisano and Giannini, 1997), with
SA and sA, are matrices governed by 0s and 1s. The latter is a useful transformation in
order to sample the full parameter of vector α (Canova and Pérez Forero, 2015).

Finally, log-volatility λt enters both in the mean (with lags) and in the covariance matrix
Ωt. The log-volatility component can also be interpreted as an uncertainty measure, which
can be represented as a stationary AR(1) process with drift:

λt = µ+ F (λt−1 − µ) + ηt (C.11)

with 0 < F < 1 and ηt ∼ i.i.d.N (0, Q). A single scalar process governs the time
varying volatility (Carriero et al., 2016; Alessandri and Mumtaz, 2019), which is a more
parsimonious representation than other specifications where each shock has a different
time dependent variance (Primiceri (2005), Canova and Pérez Forero (2015), (Banbura
and van Vlodrop, 2018)).

The posterior distribution is computed using standard Markov Chain Monte Carlo
methods, and in this case the parameter space Θ is such that Θ =

{
β, γ, α, λT , S, µ, F,Q

}
,

plus the variances of the transition equations.

The impulse response functions should be computed as the difference of two forecasts
such that:

∂yt+h
∂ut

= E (yt+h | Θ, δ)− E (yt+h | Θ) , h = 0, 1, . . . , H (C.12)

Note that in the threshold model, the shock could trigger a regime switch. Therefore, in
this case, it is even more crucial to consider these two forecasts instead of relying on a
static power matrix formula.

Results

Figure 13 illustrates the impulse responses of inflation and economic activity to a shock
in the ICEN index over time, as computed using a Time-Varying Vector Autoregressive
model with Stochastic Volatility (TVP-VAR-SV). Each panel presents the surface plot
which demonstrates how these responses evolved following a shock. The y-axis represents
percentage changes, the x-axis corresponds to the time period of the sample, and the z-
axis indicates the number of months after the shock. At any point along the x-axis on the
surface plot, lines extending across the z and x axes depict the median estimated values
over time. Overall, the responses exhibit significant variation across periods, indicating
that the impact of the ICEN index shocks on inflation is dynamic and evolves over time.

In panel A and B of Figure 13, the surface plots show how the impulse responses of
inflation and economic activity evolved over time following a shock in the ICEN index. It
is generally observed that positive temperature shocks cause an increase in inflation and
contraction in GDP over time. The most pronounced responses correlate with severe El
Niño episodes, specifically those in 1998, 2017, and most recently, 2022-2023.

46



Figure 13. TVP-VAR-SV: ICEN shock and median value responses of
inflation and economic activity (1995-2023)

Panel A

Panel B

Note: TVP-VAR-SV impulse responses of macroeconomic variables to a one-degree change in
temperature (i.e., a one-unit increase in the ICEN index). The y-axis represents percentage changes, the
x-axis represents the time period of the sample, and the z-axis indicates the number of months after
the shock. At any given point on the x-axis, the lines show the median estimated values at that time.

Figure 14 illustrates the impulse responses within the Threshold BVAR model. We find
that there are potential differences in the responses to shocks in the ICEN variable,
depending on whether the initial conditions are below or above the threshold. Notably,
because the model is nonlinear, shocks starting below the threshold tend to be more
amplified, potentially triggering a regime switch within the forecast horizon.
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Figure 14. Threshold-BVAR-SV: ICEN shock and median value
responses of inflation and economic activity)

In addition, the model identifies regime switches for temperatures above 1 on the ICEN
index, as it is depicted by Figure 15, panel A. The identified periods coincide with the
dates when the El Niño phenomenon manifested most intensely. We also control for
Stochastic Volatility in means, a very useful component when working with data that has
outliers, such as the period associated with the COVID-19 pandemic (see panel B).
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Figure 15. Threshold-BVAR-SV: Estimated ICEN Regimes and
Volatility Component

Panel A

Panel B

To demonstrate the effects of severe temperature variations similar to an El Niño shock
through the lens of the TVP-VAR-SV model, Figure 16 depicts the median impulse
responses and 68% confidence intervals following the ICEN shock in 1998. The median
impulse responses show that the 1998 El Niño event initially caused a decrease in GDP
of approximately 20 bps, accompanied by a rise in headline inflation of about 22 bps.
The effect was temporary for economic activity but more persistent for inflation. The
economic response became statistically insignificant approximately six months following
the shock, but the inflationary effects were still present 15 months after the shock. It
is important to note that there is uncertainty about the effect’s size and direction, as
indicated by wider confidence intervals. Specifically, the negative GDP impact may have

49



been larger. These results are consistent with our estimates using LP impulse responses
in Section 3.3, in terms of direction, size, and persistence.

Figure 16. TVP-VAR-SV: ICEN shock and El Niño 1998

Note: TVP-VAR-SV impulse responses of macroeconomic variables to a one-degree change in
temperature (i.e., a one-unit increase in the ICEN index) in 1998Q3. The y-axis represents percentage

changes, the x-axis indicates the number of months after the shock. The blue line represents the
median value and red lines are the 68% confidence intervals.
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D Semi-Structural Nonlinear Model

D.1 The Model

The ENSO index

ICENt = α0 +
3∑
j=1

αjICENt−j + εt +
4∑
j=1

βjεt−j, ϵt ∼ N(0, σ2
f ) (D.1)

GDP Growth and Potential GDP Growth

∆Yt = yt − yt−4 +∆Y p
t (D.2)

∆Y p
t = (1− λp)∆Y + λp∆Y p

t−1 +−Ωf/p
[
I(ICENt>1.7)ICENt + . . .

. . .+ I(ICENt−1>1.7)ICENt−1 + I(ICENt−2>1.7)ICENt−2

. . .+ I(ICENt−3>1.7)ICENt−3 + I(ICENt−4>1.7)ICENt−4

]
+ εt (D.3)

Inflation

πsaet = bmΠ
m
t + (1− bm)

[
bsaeπ

sae
t−1 + (1− bsae)Π

e
t

]
+ byyt−1 + εt (D.4)

Πsae
t = (πsaet + πsaet−1 + πsaet−2 + πsaet−3)/4 (D.5)

πaet = (1− λf/ae) [bsπ
sae
t + (1− bs)π

m
t ] + λf/aeI(ICENt>1)π

ae
t−1 + . . . (D.6)

. . .+ Ωf/ae
[
I(ICENt>1)ICENt

]
εt (D.7)

Πae
t = (πaet + πaet−1 + πaet−2 + πaet−3)/4 (D.8)

πt = csaeπ
sae
t + (1− csae)π

ae
t (D.9)

Πt = (πt + πt−1 + πt−2 + πt−3)/4 (D.10)

Πe
t = λΠeΠe

t−1 + (1− λΠe)
[
cπeCt−1EtΠ

sae
t+4 + (1− cπe)Πt−1

]
. . .

holaa holaa . . .+ (1− Ct−1) [Πt−1 −Meta] + Ωf/expI(ICENt−3>1.7)ICENt−3 + εt(D.11)

Π̂t = EtΠ
sae
t+4 −Meta (D.12)

πmt = cmmπ
m
t−1 + (1− cmm)EtΠ

m
t+4 + cmq

[
πm$
t−1 + λt−1 − πmt−1

]
+ εt (D.13)
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Πm
t = (πmt + πmt−1 + πmt−2 + πmt−3)/4 (D.14)

Credibility Stock and Signal

Ct = η1Ct−1 + (1− η1)st (D.15)

st = 1− η2
(ϵLt )

2

(ϵHt )
2 + (ϵLt )

2
(D.16)

ϵHt = Πt − [ρHΠt−1 + (1− ρH)πH ] (D.17)

ϵLt = Πt − [ρLΠt−1 + (1− ρL)π̄] (D.18)

st = 1 if ϵLt < 0 (D.19)

st = 0 if ϵHt > 0 (D.20)

Interest rates in local currency

it = ρiit−1 + (1− ρi)
[
int + fπΠ̂t + fy [cfyyt + (1− cfy)yt−1]

]
+ εt (D.21)

int = (1− ρin)i+ ρini
n
t−1 + εt (D.22)

imnt = it + εt (D.23)

Rmn
t = imnt − Πe

t (D.24)

R
mn/eq
t = Zmn

t + cYmn
[
∆Y p

t+1 −∆Y
]
+ cRmn

[
∆Y

∗/p
t+1 −∆Y ∗

]
+ εt (D.25)

Zmn
t = czmnZ

mn
t−1 + (1− czmn)R

mn + εt (D.26)

rmnt = Rmn
t −R

mn/eq
t (D.27)

Interest rates in foreign currency

imet = i∗t + εt (D.28)

Rme
t = imet − Πe

t + Λet (D.29)
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R
me/eq
t = Zme

t + cYme
[
∆Y p

t+1 −∆Y
]
+ cRme

[
∆Y

∗/p
t+1 −∆Y ∗

]
+ εt (D.30)

Zme
t = czmeZ

me
t−1 + (1− czme)R

me + εt (D.31)

rmet = Rme
t −R

me/eq
t (D.32)

Exchange Rate

λt = ρλEtλt+1 + (1 + ρλ) [i
me
t + ξt − imnt + εt] (D.33)

Λt = (λt + λt−1 + λt−2 + λt−3)/4 (D.34)

Λet = ρλeΛ
e
t−1 + (1− ρλe)Λt+4 + εt (D.35)

ξt = ξeqt + εt (D.36)

ξeqt = (1− ρξ)ξ + ρξξ
eq
t−1 + εt (D.37)

Qt = π∗
t + λt − πt (D.38)

qt = qt−1 +
Qt −Qeq

t

4
(D.39)

Qeq
t = ρQqt + εt (D.40)

Output gap and its determinants

yt = aye [x
e
t + yt−1] + ayyt−1 + aψψt−1 + aττt + aqqt + ay∗y

∗
t + . . .

ho attt + aggt − Ωf/yI(ICENt>1)ICENt + Ωf/p
y I(ICENt>1.7)ICENt + εt (D.41)

xet = ρxex
e
t−1 + (1− ρxe) [Etyt+1 − yt−1] + εt (D.42)

ψt = − [cmnr rmnt + cmer rmet + chb(ξt − ξeqt )] (D.43)

tt = ρttt−1 + εt (D.44)

gt = ρggt−1 + εt (D.45)

Tt = ρTTt−1 + εt (D.46)

τt = (aτlargo + aτcorto)τt−1 − aτlargoaτcortoτt−2 + (aτlargo − aτcorto)
Tt
4

+ εt (D.47)
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Foreign economy

π∗
t = b∗ππ

∗
t−1 + (1− b∗π)EtΠ

∗
t+4 + b∗yy

∗
t−1 + εt (D.48)

Π∗
t = (π∗

t + π∗
t−1 + π∗

t−2 + π∗
t−3)/4 (D.49)

πm$
t = (1− cπm$)π∗$

t + cπm$π∗$
t−1 + εt (D.50)

i∗t = ρ∗i i
∗
t−1 + (1− ρ∗i )

[
i∗nt + f ∗

π(EtΠ
∗
t+4 − π∗) + f ∗

y y
∗
t

]
+ εt (D.51)

i∗nt = (1− ρin)i
∗ + ρini

∗n
t−1 + εt (D.52)

R∗
t = i∗t − Π∗

t+4 (D.53)

R
∗/eq
t = Z∗

t + cY ∗
[
∆Y

∗/p
t+1 −∆Y ∗

]
(D.54)

Z∗
t = (1− ρZ∗)R∗ + ρZ∗Z∗

t−1 + εt (D.55)

r∗t = R∗
t −R

∗/eq
t (D.56)

∆Y ∗
t = y∗t − y∗t−4 +∆Y

∗/p
t (D.57)

∆Y
∗/p
t = (1− ρ∆Y ∗/p)∆Y ∗ + ρ∆Y ∗/p∆Y

∗/p
t−1 + εt (D.58)

y∗t = a∗Eyy
∗
t+1 + a∗yy

∗
t−1 − a∗rr

∗
t−1 + εt (D.59)
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