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Abstract

Climate change poses a significant risk to financial stability by impacting sovereign
credit risk. Quantifying the exact impact is difficult as climate risk encompasses differ-
ent components – transition risk and physical risk – with some of these, as well as the
policies to address them, playing out over a long time horizon. In this paper, we use a
large panel of 52 developed and developing economies over two decades to empirically
investigate the extent to which climate risks influence sovereign yields. The results of
a panel regression analysis show that transition risk is associated with higher sovereign
yields, with the effect more pronounced for developing economies and for high-emitting
countries after the Paris agreement. In contrast, high-temperature anomalies do not
appear to be priced-in sovereign borrowing costs. At the same time, countries with high
levels of debt tend to record higher sovereign yields as acute physical risk increases.
In the medium term, using local projections, we find that sovereign yields respond
significantly but also differently to different types of disaster caused by climate change.
We also explore the nonlinear effects of weather-related natural disasters on sovereign
yields and find a striking contrast in the impact of climate shocks on sovereign bor-
rowing costs according to income level and fiscal space when the shock hits.
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1 Introduction

In addition to macroeconomic risks, specific fiscal risks may “arise from the realization of

contingent liabilities or other uncertain events, such as a natural disaster” (IMF, 2018). Such

risks can lead to fiscal outcomes that deviate significantly from expectations or forecasts.

Climate change introduces a complex array of risks to public finances through multiple and

often interdependent transmission channels. These include fiscal expenditures for adaptation

and mitigation, re-allocation of resources from productive investments to new technologies,

and the repricing of sovereign assets. Direct fiscal impacts arise from emergency aid and

disaster reconstruction, while indirect effects may include lower tax revenues due to produc-

tion disruptions, changes to commodity prices and increasing spending via food subsidies

(Schuler, Oliveira, Mele, and Antonio, 2019).1

Despite the profound implications of climate-related risks for sovereign borrowing costs,

systematic analysis of this relationship remains limited. Even more striking is that, while

the sovereign bond market is one of the largest asset markets and figures prominently within

institutional investors’ portfolios, it has received significantly less attention in terms of cli-

mate risk pricing compared to equities (Zhang, 2022; Bolton and Kacperczyk, 2023; Faccini,

Matin, and Skiadopoulos, 2023) and corporate bonds (Huynh and Xia, 2021). In addition,

existing research on sovereign bond markets has mainly focused on either physical risks –

examining specific climate-induced natural disasters or climate-vulnerability and resilience

indicators e.g. Kling, Lo, Murinde, and Volz (2018); Beirne, Renzhi, and Volz (2021b); Ce-

vik and Jalles (2022) or chronic risk e.g. Dell, Jones, and Olken (2012); Burke, Hsiang, and

Miguel (2015)– or transition risks e.g. Collender, Gan, Nikitopoulos, Richards, and Ryan

(2023), with few studies addressing both sources of risks comprehensively.

In this paper, we provide new empirical evidence through an in-depth empirical analysis

based on a large cross-sectional dataset of 52 developing and developed countries and detailed

1 Zenios (2022) suggests how integrated assessment models (IAMs) can be linked with stochastic debt
sustainability analysis (DSA) to inform our understanding of climate risks to sovereign debt dynamics and
assess the available fiscal space to finance climate policies.
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climate-risk data for a time period that covers about two decades, from 2000 to 2023. In

our analysis, we consider both sources of climate risk, i.e. transition risk and physical risk.

In line with previous literature, we measure transition risk as annual carbon dioxide (CO2)

emissions per capita. We further differentiate physical risk into two dimensions: chronic

risk measured by growth in annual temperature relative to the mean temperature between

1951 an 1980, and acute risk, measured by the frequency and severity of climate-related

natural disasters and considering both the economic and human cost. Chronic risk captures

long-term, gradual climate shifts while acute risks materialize over shorter time, often with

immediate and severe consequences. We use data for natural disasters from EM-DAT, one

of the most comprehensive, publicly available, datasets on natural disasters distributed by

the Centre for Research on the Epidemiology of Disasters (CRED).2

After controlling for macroeconomic variables and time-invariant variables, the analysis

reveals a strong positive relation between transition risk and 10-year sovereign bond yields. In

particular, an increase in CO2 emissions per capita has a positive and statistically significant

impact on sovereign bond yields, the effect more pronounced for developing economies and for

high-emitting countries after the Paris agreement. On the other hand, increased temperature

changes are not related to higher sovereign borrowing costs, revealing that chronic physical

risk has not been fully priced in sovereign bond yields. Although acute physical risk measures

appear not to have a systematic impact on sovereign borrowing costs, we find interestingly

that countries with high debt levels record higher sovereign yields as disasters increase both

in frequency and associated human impact.

To further enhance our findings on the impact of acute risk on sovereign yields and

better understand the mechanisms at play in the medium term, we use the local projections

(LP) method of Jordà (2005). In particular, we consider the impact of different types

of climate-related natural disasters both in terms of their frequency and severity. Across

2 EM-DAT focuses on large disasters, i.e. disasters with human and economic losses with at least one
of the following criteria: 10 fatalities; 100 affected people; a declaration of state of emergency; a call for
international assistance.
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all countries and for all types of disasters, the impact of climate-related natural disasters

appears positive but relatively small. However, there is significant heterogeneity in response

to different types of natural disasters and between income groups. The impact is immediate

and steeper for more severe (e.g. droughts) and more frequent (e.g. storms) events. For

advanced economies, the steepest and largest impact is observed from climate shocks related

to extreme temperature and storms, which are respectively events with long duration and

high frequency. In contrast, for emerging and developing economies, the response is more

immediate and steeper for all types of disasters. Finally, we find that the impact of climate

disasters on sovereign yields varies in a nonlinear fashion depending on the level of fiscal

space when the shock hits. For low-debt countries, natural disasters are associated with a

smaller impact, likely reflecting the robust fiscal response capabilities of these economies,

where governments can afford to increase spending to aid recovery efforts.

This study provides valuable insights for investors and policymakers. First, the impact

from climate change might be greater than previously anticipated3. Thus, policymakers need

to better understand how transition efforts, such as lowering carbon emissions, affect the cost

of borrowing. At the same time, the frequency and intensity of extreme weather events and

natural catastrophes are increasing, a trend that may be exacerbated in the coming decades

by long-term shifts in climate patterns. The differences in how climate-induced disasters

affect different income groups highlight the challenges faced by developing countries where

population is highly exposed to natural disaster risk. Finally, there is increasing awareness of

climate change as a potential source of imbalance, especially for high-debt, fiscally vulnerable

countries. We provide further evidence that there is a need for an international policy agenda

aiming to address both climate and sovereign debt challenges, acknowledging that the cost

of inaction compounds over time and might give rise to a vicious circle.

The remainder of this paper is structured as follows: Section 2 gives an overview of the

related literature. Section 3 describes data and variables used. Section 4 presents the panel

3 https://www.ngfs.net/sites/default/files/medias/documents/ngfs_first_comprehensive_

report_-_17042019_0.pdf
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regression models. In section 5, we discuss in-depth the various results of the local projection

analyses. Section 6 concludes.

2 Background

Our research bridges the field that studies the determinants of sovereign bond yields and

the field that specifically studies the impact of climate change risk thereon.

Determinants of sovereign bond yields and spreads have been extensively investigated.

In general, the literature identifies domestic macroeconomic fundamentals as major deter-

minants of government bond yields and sovereign risk (Edwards, 1986; Eichengreen and

Mody, 1998; Arellano, 2008; Baldacci, Gupta, and Mati, 2011) or their volatility (Hilscher

and Nosbusch, 2010). The importance of macroeconomic fundamentals is also confirmed by

Duffie, Pedersen, and Singleton (2003). Studies from the conceptually related literature on

sovereign risk, proxied by credit ratings, corroborate the previous findings revealing an asso-

ciation between a country’s credit rating and a number of macroeconomic variables. These

include GDP growth, inflation, external debt Cantor and Packer (1996), exchange reserves or

the current account balance (Afonso, Gomes, and Rother, 2011; Ratha, De, and Mohapatra,

2011), fiscal balance, trade openness or institutions (Borio and Packer, 2004; Kling, Volz,

Murinde, and Ayas, 2021), the political business cycle (Block and Vaaler, 2004), or fiscal

transparency (Hameed, 2005). Furthermore, some empirical papers focus on extra-financial

factors. In particular, given the increasing importance of sustainability factors, recent liter-

ature investigates the relationship between ESG performance and sovereign risk (Margaretic

and Pouget, 2018; Capelle-Blancard, Crifo, Diaye, Oueghlissi, and Scholtens, 2019; Anand,

Vanpée, and Lončarski, 2023).

There is a range of channels through which the cost of sovereign borrowing may be af-

fected by climate change. First, adaptation and mitigation policies for climate change have

fiscal consequences (Bachner, Bednar-Friedl, and Knittel, 2019). Higher mitigation spending
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creates transition risk and puts pressure on public finance, but leads to more benign climate

change with milder impacts in terms of damages, growth and borrowing rates. Likewise,

adaptation also moderates the impact of climate change, but with potentially large fiscal ex-

penditures. Second, there is growing evidence that physical risks adversely impact sovereign

creditworthiness and borrowing costs through multiple transmission channels (Melecky and

Raddatz 2011; Koetsier 2017; Boehm 2022; Klusak, Agarwala, Burke, Kraemer, and Mo-

haddes 2023). Ex-post, natural disasters often lead to a higher likelihood of a subsequent

sovereign debt crisis and, in fact, they have in the past been contributing factors to sovereign

debt defaults.4 Klomp (2015) and Klomp (2017) find that large-scale natural disasters in-

crease significantly the onset probability of a sovereign debt default. More recently, Phan and

Schwartzman (2024) find that disaster risk and default risk together lead to slow post-disaster

recovery and heightened borrowing costs. Mallucci (2022) uses a quantitative sovereign de-

fault model and find that extreme weather restricts government’s ability to issue debt. At

the same time, ex ante, disaster-prone economies face significantly higher public debt than

economies that are less susceptible to disasters (Cabezon, Hunter, Tumbarello, Washimi, and

Wu, 2019). Recent research has shown that climate-vulnerable developing countries incur a

risk premium on their sovereign debt (Buhr, Volz, Donovan, Kling, Lo, Murinde, and Pullin,

2018). Kling et al. (2018) investigate the impact of climate vulnerability, as measured by

the Notre Dame Global Adaptation Initiative (ND-GAIN) sub-indices, on bond yields and

find a significant effect. Beirne, Renzhi, and Volz (2021a), Beirne et al. (2021b) and Cevik

and Jalles (2022) examine further the effect of climate change on sovereign risk by using

vulnerability and resilience indices using a sample of advanced and emerging economies.

We depart from the traditional approach centered mainly on climate vulnerability indices

and distinguish between chronic and acute physical risk in regression analysis, undertaking a

thorough investigation of natural disaster data sourced from EM-DAT. Boehm (2022) shows

that rising temperatures can considerably affect the creditworthiness of emerging economies

4 https://www.moodys.com/research/doc--PBC_1191686?docid=PBC_1191686.
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and that temperature anomalies have a detrimental impact on sovereign bond performance.

We extend these results to advanced economies. Importantly, we go one step further and

through a LP analysis we unveil that there is a positive significant effect of the frequency

of natural disasters. Cevik and Jalles (2024) use the LP method to estimate the impact of

climate shocks on inflation and economic growth and derive impulse response functions in a

panel setting. The subsequent analysis of the transmission channels shows that economies

more vulnerable to external economic conditions exhibit distinct responses to climate events.

Economies with greater external vulnerabilities, such as dependence on global commodity

markets or sensitivity to capital flows, often experience more pronounced economic impacts

from climate events due to amplified fiscal and financial pressures.

There are few papers on the transition risks which arise due to a country’s adjustment

process towards a greener economy in a government bond context. Painter (2020) finds that

the impact that climate change risk has on the municipal US bond market is meaningful. He

measures the exposure a county has to climate change by expected mean annual loss from

sea level rise as a percentage of GDP (Hallegatte, Green, Nicholls, and Corfee-Morlot, 2013).

Although this is a forward-looking measure, we opt to use carbon emissions and focus on

sovereign bonds for a large number of countries. More recently, Collender et al. (2023) show

that climate transition risks are currently priced into sovereign bond yields and spreads.

3 Data

We use several sources to construct a panel dataset with annual observations for an

original sample of 87 countries. First, we remove from the sample countries with severely

underpopulated observations and keep those that have at least five years of data in, ap-

proximately, the last 25 years. This reduces the initial sample to 52 countries, for the years

2000-2023. The sample includes 26 AEs and 26 EMDEs, according to the BIS country

classification. Table A1 shows the countries included in the analysis.
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Table A2 describes the variables and their sources and Table A3 presents summary statis-

tics. Economic and financial statistics are assembled from the IMF’s International Financial

Statistics (IFS) and the World Bank’s World Development Indicators (WDI) database. More

details on the variables are given in the next subsections.

3.1 Dependent variable

The dependent variable is countries’ 10-year government bond yield.5 This is inline with

related research from Kling et al. (2018); Painter (2020); Beirne et al. (2021a); Klusak et al.

(2023); Cevik and Jalles (2022); Collender et al. (2023) who employ 10-year government bond

yields to evaluate the cost of borrowing capital for governments in transitioning economies.

We also run the main model for 5-year maturities to capture a shorter to medium-run period.6

Sovereign yields are extracted from Bloomberg with a yearly frequency (end-year yields).

Figure 1 shows the annual generic yields of sovereign bonds averaged between the two

groups of countries from 2000 to 2023. As shown, sovereign bond yields show a downward

trend that is particularly pronounced for advanced economies. In the last three years, both

groups of economies have experienced increases in their yields. However, while AEs’ bor-

rowing cost did not exceed 4%, EMDEs have experienced an increase in yields from 6% to

9%. These differences in yields are another reason to separate the results of emerging and

advanced economies.

5 The sample does not include green and sustainable and sustainability-linked sovereign bonds. This type
of bonds offers a way of linking issuance and climate-related economic strategies of governments. Green
bond issuance has increased significantly in the past few years and especially since 2019. However, they
remain marginal to sovereign issuance. As per 2024 Q1 they represent only 18 percent of total sovereign
bond issuance and they are too few to materially influence governments’ cost of financing. https://www.

climatebonds.net/2024/06/record-start-year-sustainable-debt
6 Although yield spreads calculated as the difference between the interest rate paid by a country on its

external US denominated debt and the US Treasury bond rate offered on debt of comparable maturity is
widely accepted, we acknowledge that it might bring some complications, especially in climate risk analyses
given that US exhibit a relatively high degree of both transition and physical climate risk exposure due to
their generally low climate policy performance.
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Figure 1. Average 10 year sovereign bond yields for AEs and EMDEs

3.2 Climate risk variables

The data on transition and chronic risk are extracted from the World Bank. The former

is defined as CO2 emissions per capita. The latter is proxied by the difference in annual tem-

perature relative to the mean temperature between 1951 and 1980. The rise in temperature

is one of the most significant risks and the risk most studied by climatologists. For the second

source of physical risk, we use the frequency of natural disasters related to climate change

and their losses expressed as annual economic costs due to damages from natural disasters or

the total number of people affected. Table A3 shows that the AEs have, on average, higher

carbon emissions per capita compared to the EMDEs and experienced a higher temperature

growth. However, EMDEs experienced an average of total and uninsured losses from natural

disasters similar to that of AEs, but with twice the volatility, as measured by the standard

deviation.

We source natural disaster data from the International Disaster Database (EM-DAT),

hosted by Universite Catholique de Louvain. Despite its limitations, this is one of the most
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comprehensive publicly available datasets that contains detailed information about more

than 17,000 natural disasters worldwide since 1900. The database is compiled from sev-

eral sources and distributed by the Centre for Research on the Epidemiology of Disasters

(CRED). EM-DAT classifies disasters into two groups of hazards: natural and technologi-

cal. The natural group is further classified into six broad groups; biological; climatological;

geophysical; hydrological; meteorological and; extra-terrestrial, each one containing several

disaster types and subtypes. Since 2000, the dataset has documented almost 10,000 natural

disasters.7 In addition, the database contains information such as the date and duration of

each event, the damage caused, and the number of causalities. Total damage is the value of

all economic losses directly or indirectly resulting from the disaster, in thousands of dollars

adjusted for inflation. The human impact of disasters is described by the total number of

deaths and the total number of people affected8.

From a climate perspective, the most relevant groups are the climatological, hydrological

and meteorological ones. We focus on floods, storms, extreme temperature, droughts and

wildfire.9 Figure 2 shows the distribution of climate-related natural disasters in EM-DAT

by type and estimated impact. The most common type, by far, is floods, the second being

storms. Each of the rest occurs about 10 times less frequently compared to the most frequent.

In total, the dataset contains information on about 7,700 climate-related natural disasters.

Although storms are the most costly natural disasters in economic terms, droughts have a

far greater human toll in terms of affected, injured, and left homeless.10

7 Natural disasters in EM-DAT include earthquake, mass movement (dry), volcanic activity, extreme tem-
perature, fog, storm, flood, landslide, wave action, drought, glacial lake outburst, wildfire, epidemic, insect
infestation, and animal accident.

8 Which is the sum of the number of injured people due to the disaster, the number of people requiring
immediate assistance due to the disaster and the number of people requiring shelter due to their house being
destroyed or heavily damaged during the disaster.

9 EM-DAT documentation reports that data on events prior to 2000 are particularly subject to reporting
biases, and hence the analysis will not consider those.
10 It should be emphasized that these figures are likely underestimates of the actual numbers, as mentioned
in the database documentation.

9



Figure 2. Distribution of climate-related natural disaster events (left panel) and their
human and economic impact (right panel) by type, since 2000. Average economic impact is
reported in % of GDP.

Figure 3 shows the average duration (in days) of natural disasters by type. Interestingly,

while droughts occur far less frequently, they last by about an order of magnitude longer

compared to the second in ranking, exhibiting a mean duration of about 230 days. This is
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probably one of the reasons for its large human cost, shown in Figure 2. In contrast, the

most frequent and impactful types of natural disaster, floods and storms, last, on average,

ten and two days, respectively.

Figure 3. Average duration of climate-related natural disaster events by type, since 2000.

Figure 4 presents the distribution of climate-related natural disaster events by year and

suggests that natural disasters are relatively uniformly distributed over time. However, this

does not mean that there is no increase in disasters, especially when looking at specific types

of event or specific locations. It is also uninformative about the intensity of disasters.
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Figure 4. Distribution of climate-related natural disaster events by year.

Table 1 presents average measures of frequency, duration, number of deaths, number of

affected people, and damages for each type of disaster. For AEs, floods and storms are the

most frequent, with average damages exceeding 1.4 billion USD per event, while droughts,

though infrequent, have the longest duration and the highest economic damage. In contrast,

EMDEs face floods more frequently and endure slightly longer droughts, with far higher

numbers of people affected, in all types of natural disasters. Interestingly, although the

average economic impact of natural disasters is almost always greater in absolute terms in

AEs than in EMDEs, the damage, when measured as a share of GDP, is often comparable or

even twice as large in EMDEs. This indicates that the stress on the economies of the latter

is substantially higher.

3.3 Control variables

Through the analysis, we select the most appropriate macroeconomic and fiscal controls

for the model specifications based on the literature on the determinants of sovereign bonds.

First, we include GDP growth and consumer price index. The high growth rates in countries

12



Table 1. Climate-related natural disasters: Frequency and severity
Statistics calculated for the country sample of Table A1, from 2000 until 2023.

All Drought Extreme temperature Flood Storm Wildfire

AE

Frequency 1436 19 141 440 751 128
Duration (avg., in days) 7.57 245.50 27.46 5.52 3.06 15.85
Deaths (avg.) 149 144 1035 8.48 15.30 13.28
Affected (avg.) 127727.50 26000 10706 48298 238287 12620
Damages (avg., in bn USD, adjusted) 2.56 5.66 1.83 1.43 3.24 1.35
Damages (avg., % of GDP) 0.06 0.20 0.14 0.06 0.05 0.07

EMDE

Frequency 1746 50 88 975 669 42
Duration (avg., in days) 7.95 255.29 22.72 9.27 2.44 5.38
Deaths (avg.) 47.76 61.00 122.94 34.81 55.86 12.51
Affected (avg.) 1268499 8693631 2838348 1120503 868496 260959
Damages (avg., in bn USD, adjusted) 0.80 1.59 3.30 0.97 0.48 0.31
Damages (avg., % of GDP) 0.13 0.23 0.23 0.12 0.13 0.12

point to a better ability to repay debt in the future (Cantelmo, Giovanni, and Papageorgiou,

2023). As for the inflation rate, although the overall impact on yields might be ambiguous,

a high inflation rate increases the overall uncertainty and implicitly impacts the yields of

bonds. To control for the strength of a government finances, we employ general government

debt as a percentage of GDP with the expected impact being positive. To account for

exchange rate effects, we control for a country’s (log) exchange rate vis-a-vis the U.S. dollar.

From Table A3 the comparison of the two country groups reveals the expected disparities in

macroeconomic characteristics.

Furthermore, countries differ in their ability to withstand climate change; for example,

countries with more diversified economies can cope better with climate risks and absorb

them more easily. Importantly, the institutional framework of a country also matters (Borio

and Packer, 2004; Kling et al., 2021). For this reason, we use two variables to account for the

institutional quality of a country, namely the government efficiency and political stability

measures(Cevik and Jalles, 2024).
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4 Panel data regressions: A historical perspective

In this section, we investigate whether climate risk has influenced sovereign yields by

estimating a fixed-effect panel regression model. The advantage of this approach is that it

allows us to estimate average effects of climate risk over a large sample of countries over a

long period of time, exploiting both the cross-sectional and time period variation. In our

specification, we include both physical and transition risks, as both sources of climate risk

can influence sovereign yields directly and indirectly. Furthermore, we differentiate between

the two sources of physical risks: (i)chronic risk and (ii)acute risk.

As the scale of the transition to a greener economy required to address climate risk

increases, the cost of implementing mitigation policies and developing a more climate-friendly

economy is expected to rise, with implications for public finance. This should be reflected

in a rising risk premium on sovereign borrowing costs captured in the corresponding bond

yields. We thus expect climate risk measures to be positively associated with an increase in

sovereign bond yields and as a result an increase in expected government borrowing costs.

We postulate that the intensity of carbon dioxide emissions, as a measure of transition

risk, is positively related to sovereign bond yields. Finally, we expect severe climate events

such as natural disaster events to also influence sovereign yields. Both the frequency and

intensity of such events increase over time with a potential more persistent total effect on the

economy. Severe natural disasters have a real impact on the economy in terms of lower GDP

growth, and this effect tends to be comparatively large for developing countries, e.g.Cavallo,

Becerra, and Acevedo (2022), Shabnam (2014), Khan, Anwar, Sarkodie, Yaseen, and Nadeem

(2023).11

Our baseline specification is the following:

11 Cavallo et al. (2022) take into account all types of natural disasters, including geophysical ones, occurring
during 1970-2019 for a sample of developing and developed countries, as recorded by EM-DAT. They rank
natural disasters by associated mortality and consider particularly severe events. They find that during the
year of the disaster, real GDP per capita growth declines by 3.7 percentage points on average compared to
the average pre-disaster growth. They also find that the occurrence of a natural disaster affects real GDP
per capita growth in the medium term (six years after the disaster), suggesting that affected economies suffer
a loss that is not subsequently offset by above-average post-disaster growth.
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Yi,t = αi + βt + γClimate riski,t−1 + δ′Xi,t−1 + ϵi,t. (1)

where Yi,t is the log of sovereign bond yields, Climate riski,t denotes either transition risk

and measured by (log) CO2 emissions per capita, or chronic risk and measured by annual

temperature changes relative to the mean temperature between 1951 and 1980, or acute

physical risk measured by the frequency of climate-induced natural disasters (number of

natural disasters) and their economic and human impact. For the economic impact, we use

total economic costs (% GDP) and total uninsured costs (% GDP). For human impact, we

use the total number of people affected (% total population).12 Xi,t−1 includes government

debt as a share of GDP, inflation, GDP growth, (log) exchange rate, government efficiency

and political stability indicators. To account for potential endogeneity, we use the lag of

the control variables. To control for time-invariant characteristics and other unobserved

country-specific variables we include country αi and time βt fixed effects when appropriate.

ϵi,t represents the error term. We use standard errors clustered at the country level.

As a baseline, we estimate equation 1 for each of the climate risk variables by using

the standard fixed effects model. We start with a specification including the transition risk

and then the chronic physical risk. Next, we investigate the impact of acute physical risk

on sovereign yields and repeat the baseline specification for the number of climate-related

natural disasters and the three measures of losses due to climate-induced disasters. Table 2

shows the results. The coefficient for CO2 is positive and statistically significant, indicating

that transition risks are priced in sovereign yields and suggesting that progress in climate

transition performance is associated with lower 10-year maturity bond yields (Collender

et al., 2023). However, increased chronic physical risks do not appear to be associated

12 EM-DAT reports total damages and total insured damages. We calculate total uninsured losses as the
difference between these two. We divide losses with GDP in local currency unit and the USD exchange
rate at yearly frequency from World Bank data. Similarly, we divide total number of people affected with
population from World Bank data.
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with higher sovereign yields (Dell et al., 2012; Burke et al., 2015; Boehm, 2022)). At the

same time, models (3)-(6) show that variables for acute risk are generally not statistically

significant, with the only exemption the number of disasters which is slightly significant. In a

recent paper, Cappiello, Ferrucci, Maddaloni, and Veggente (2025) find that acute physical

risk variables explain sovereign credit ratings, but only marginally in terms of economic

impact.13 Overall, the model provides robust results that transition risk appears to shift up

the sovereign’s cost of borrowing. However, the model above is reduced-form and therefore

the findings do not allow making causal statements. Although endogeneity concerns were

addressed, it is not possible to fully exclude that some bias may still arise from omitted

variables, measurement errors in variables, and reverse causality.

4.1 Distinction between countries

Given the varying development status of countries in our sample, we also conduct hetero-

geneity analysis by splitting our sample of countries into developed and EMDEs (emerging

market and developing economies). Tables 3 repeat the baseline specification presented for

the two groups of countries: AEs and EMDEs using the BIS classification. The analy-

sis reveals that the effect of transition risk is significantly more pronounced for developing

economies. This could partially suggest that the large imposition of green financial poli-

cies by advanced economies offsets the transition risk premium (Cheng, Gupta, and Rajan,

2023). However, developing countries with higher carbon emissions and a less sustainable

growth trajectory will find it more difficult to smoothly transition to a decarbonized economy,

thereby raising transition risks. This will further impact projections for economic growth,

fiscal health, and external sector vulnerability, which, in turn, will feed into markets’ per-

ceptions of their risk profile and raise yields on sovereign bonds. Finally, physical risk is

partially priced in sovereign yields with a difference between the significance of frequency or

13 Table B1 in the Appendix includes all three climate risks in one specification.

16



Table 2. Baseline model with climate risk
The table reports coefficient estimates and standard errors (in parentheses) from estimates
using the transition risk in model (1), the chronic risk in model (2) and acute physical
variables in models (3)-(6). The dependent variable is the 10-year sovereign bond yield.
Definitions for all variables are in Table A2. Estimation method is OLS with country and
time fixed effects, and standard errors clustered at the country level. The sample period
is 2000-2023. The lower part of the table also reports the number of observations and the
R-squared. The ***, **, and * marks denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

(1) (2) (3) (4) (5) (6)

CO2 1.014***
(0.150)

Temperature −0.027
(0.027)

NaturalDisasters 0.045*
(0.022)

TotalCosts/GDP −0.008
(0.033)

TotalUninsured/GDP −0.038
(0.037)

TotalAffected/Population −0.006
(0.006)

DebtGDP 0.005*** 0.003* 0.002 0.002 0.002 0.002
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002)

Inflation −0.010** −0.008 −0.003 −0.004 −0.003 −0.003
(0.005) (0.005) (0.009) (0.010) (0.010) (0.010)

GDPgrowth −0.024*** −0.028*** −0.030*** −0.030*** −0.030*** −0.029***
(0.006) (0.007) (0.007) (0.007) (0.007) (0.007)

ExchangeRate 0.538*** 0.502** 0.558*** 0.572*** 0.571*** 0.576***
(0.149) (0.191) (0.127) (0.129) (0.129) (0.129)

PoliticalStability 0.001 0.003 0.001 0.001 0.001 0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

GovernmentEfficiency −0.010* −0.004 −0.002 −0.001 −0.001 −0.001
(0.005) (0.007) (0.006) (0.006) (0.006) (0.006)

Observations 727 747 565 550 550 550
R-squared 0.903 0.873 0.874 0.871 0.871 0.871
Country Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
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severity for advanced and developing economies.14

14 We also divide the countries into high and middle/low income countries using the World Bank indicator
for 2021, while to go one step further, we also split developing countries using the ND-GAIN indices (below
and above median ranking) which capture a country’s overall susceptibility to climate-related disruptions and
capacity to deal with the consequences of climate change. However, since our sample of developing countries
is small and biased toward higher income developing countries, only one-third of the EMDEs observations
is below the median ND-Gain we decided to leave these results out of our analysis.
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Table 3. Advanced vs emerging and developing economies and climate risk
The table reports coefficient estimates and standard errors (in parentheses) from estimations for the advanced economies in
models (1), (3), (5) and (7) and for the emerging and developing economics in models (2), (4), (6) and (8). The dependent
variable is the 10-year sovereign bond yield. Definitions for all variables are in Table A2. Estimation method is OLS with
country and time fixed effects, and standard errors clustered at the country level. The sample period is 2000 – 2023. The lower
part of the table also reports the number of observations and R-squared. The ***, **, and * marks denote statistical significance
at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
AE EMDE AE EMDE AE EMDE AE EMDE

CO2 0.172 0.939***
(0.271) (0.186)

Temperature −0.035 −0.035
(0.035) (0.052)

NaturalDisasters 0.027 0.036*
(0.027) (0.020)

TotalAffected/Population 0.007** −0.002
(0.003) (0.005)

Observations 460 290 484 287 322 261 310 254
R-squared 0.909 0.891 0.905 0.855 0.903 0.873 0.900 0.870
Country Yes Yes Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes Yes Yes
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4.2 Further results

Given the importance of the Paris agreement in raising public awareness of climate

change, we also study whether the relevance of climate-related risks for sovereign borrow-

ing costs changed after this exogenous event. We estimate a double difference-in-differences

model for transition risk and PostPA, a dummy variable that takes the value of one for years

after the Paris Agreement entered into force at the end of 2015. We also estimate a triple

difference-in-differences model for transition risk, PostPA and LowEmitters, a dummy that

equals one if a country has emissions per capita lower than the 75th quantile distribution in

that year. The results in Table 4 column (3) show that following the Paris Agreement, coun-

tries with greater exposure to transition risk receive comparatively higher sovereign yields,

suggesting that credit investors are increasingly recognizing the importance of transition risk.

As extreme weather events become more frequent and severe, the economic costs (as

the costs of adaptation) are likely to put considerable strain on government finances, which

will in turn raise government borrowing costs and lead to a feedback loop for more strained

public finances. We test whether countries with better fiscal stance receive relatively lower

sovereign yields as acute physical risk intensifies. The results in Table 5 from a double

interaction with a LowDebt dummy which equals to one if a country has debt to GDP ratio

lower than the median of the distribution show a partial effect.

Finally, the impacts of climate risks, particularly chronic risks such as temperature in-

creases, can exhibit nonlinear patterns, with effects intensifying beyond certain thresholds.

We tested the nonlinear effects of temperature rise using interaction terms with GDP growth

or squared temperature changes (Burke et al., 2015). Interestingly, results in Table 6 show

that there are nonlinear effects, indicating that the positive effect of chronic risk on sovereign

yields increases with the country’s growth rate.

20



Table 4. High emitters and Paris agreement
The table reports coefficient estimates and standard errors (in parentheses) from estimates
for the double interaction between post-Paris agreement dummy and transition risk variable
in model (1), double interaction between LowEmitters dummy and transition risk variable
in model (2), and triple interaction between post-Paris agreement dummy, transition risk
variable and LowEmitters dummy in model (3). The LowEmitters dummy is equal to one
for a country if CO2 in that year is below the 75th quantile of CO2 per capita distribution
of that year. Estimation method is OLS with standard errors clustered at the country level.
The sample period is 2000-2023. The lower part of the table also reports the number of
observations and the R-squared. The ***, **, and * marks denote statistical significance at
the 1%, 5%, and 10% levels, respectively.

(1) (2) (3)

CO2 × PostPA −0.053
(0.080)

CO2 × LowEmitters 0.242 0.190
(0.214) (0.267)

LowEmitters × PostPA 1.582**
(0.627)

CO2 × LowEmitters × PostPA −0.642**
(0.265)

Observations 727 727 727
R-squared 0.844 0.903 0.844
Country Yes Yes Yes
Time No Yes No

4.3 Robustness

Finally, we perform sensitivity checks to validate the robustness of our baseline empir-

ical results. First, we estimate our model with different types of fixed effects and without

adjusting standard errors with clustering (Abadie, Athey, Imbens, and Wooldridge, 2023).

Second, we use alternative measures for the transition risk. Instead of carbon emissions

intensity, we tried using CO2 total emissions in column (1) of Table 6 and the results remain

unchanged. As a final check, we use the logarithm of the proportion of renewable energy

use from the World Bank as an alternative measure of the transition risk (Collender et al.,

2023). Increasing renewable energy use can significantly reduce climate risk, and countries

with higher renewable energy consumption have a discount on their sovereign borrowing
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Table 5. High debt and physical risk
The table reports coefficient estimates and standard errors (in parentheses) from estimates
for the double interaction between LowDebt dummy and acute physical risk variables. The
LowDebt dummy is equal to one for a country if Debt/GDP in that year is below the median
of distribution of that year. Estimation method is OLS with standard errors clustered at
the country level. The sample period is 2000-2023. The lower part of the table also reports
the number of observations and the R-squared. The ***, **, and * marks denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4)

NaturalDisasters × LowDebt −0.013
(0.038)

TotalCosts/GDP × LowDebt −0.079*
(0.046)

TotalUninsured/GDP × LowDebt −0.075
(0.062)

TotalAffected/Population × LowDebt −0.010
(0.009)

Observations 643 625 625 625
R-squared 0.879 0.877 0.877 0.877
Country Yes Yes Yes Yes
Time No Yes Yes Yes

costs. The results in column (2) in Table 6 validate that transition risk positively impact

sovereign yields. Finally, we run the baseline model for 5-year maturities in Table 7 and

results remain unchanged.
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Table 6. Different transition risk variables and nonlinear effect of temperature
The table reports coefficient estimates and standard errors (in parentheses) from estimates
using (log) CO2 total in model (1), (log) ratio of renewable in model (2), double interaction
between chronic risk and real GDP growth in model (3). Estimation method is OLS with
standard errors clustered at the country level. The sample period is 2000-2023. The lower
part of the table also reports the number of observations and the R-squared. The ***, **,
and * marks denote statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3)

CO2total 0.992***
(0.129)

RenewRatio −0.242***
(0.063)

Temperature × GDPgrowth 0.025***
(0.007)

Observations 727 530 747 747
R-squared 0.907 0.907 0.877 0.878
Country Yes Yes Yes Yes
Time Yes Yes Yes Yes
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Table 7. Climate risk with 5-year yields
The table reports coefficient estimates and standard errors (in parentheses) from estimations
using the transition risk variable in model (1), the chronic physical variable in model (2)
and the acute physical in models (3)-(6). In all models the dependent variable is the 5-year
sovereign bond yield. Definitions for all variables are in Table A2. Estimation method is OLS
with country fixed effects, and standard errors clustered at the country level. The sample
period is 2000 – 2023. The lower part of the table also reports the number of observations
and the R-squared. The ***, **, and * marks denote statistical significance at the 1%, 5%,
and 10% levels, respectively.

(1) (2) (3) (4) (5) (6)

CO2 1.299***
(0.244)

Temperature −0.036
(0.046)

NaturalDisasters 0.061**
(0.026)

TotalCosts/GDP 0.019
(0.050)

TotalUninsured/GDP −0.017
(0.064)

TotalAffected/Population −0.006
(0.008)

Observations 708 725 550 535 535 535
R-squared 0.865 0.826 0.828 0.825 0.825 0.826
Country Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
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5 Local projection model: Medium-term effects of nat-

ural disasters

To determine whether climate shocks as measured by the occurrence of climate-related

natural disasters or their intensity impact sovereign yields in the medium term, we employ

the local projections method developed by Jordà (2005), in which impulse responses are

derived from separate regressions for each forecast horizon t+ h, conditional on a given set

of variables at time t. The regression model is:

Yi,t+h = βhNDi,t +
3∑

j=1

γh
j Yi,t−j +

3∑
j=1

δhjXi,t−j + αh
i + αh

t + ϵi,t+h (2)

where Yi,t+h represents 10-year sovereign yields (log); NDi,t is the climate shock variable

which is measured by either the number of climate-related disaster events (frequency) or the

associated total damages (% GDP) (severity) and treated as an exogenous event that cannot

be anticipated nor correlated with past changes in sovereign yields15; Xi,t is the vector of

control variables as in the panel regression analysis; αh
t are time fixed effects and αh

i are

country fixed effects. Following Montiel Olea and Plagborg-Møller (2021), we include lags

of the dependent variable to augment local projections. In our LP baseline analysis, we

consider three lags of all control variables, but we also assess the sensitivity of the estimates

when using up to five lags.16

The main parameter of interest is β associated with NDi,t, which measures the change

in sovereign bond yields from period t to t + h due to a climate shock related to one more

15 EM-DAT defines disasters as situations or events which overwhelm local capacity, necessitating a request
for external assistance at the national or international level. Disasters are unforeseen and often sudden events
that cause significant damage, destruction, and human suffering. Also, following Cevik and Jalles (2024)
large-scale climate events are considered to be country-wide shocks.
16 In the lag selection process, we followed the recommendation in Montiel Olea and Plagborg-Møller (2021)
and adopted a conservative approach, favoring more lags over fewer. This approach generally entails minimal
asymptotic efficiency costs and has a negligible impact on finite samples. However, as stated in Montiel Olea
and Plagborg-Møller (2021), the inclusion of sufficient control variables should always be prioritized over
the determination of the exact number of lags, ensuring that the model adheres to the conditional mean
independence condition, which is more important than the precise number of lags.
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natural disaster or to an additional average total damage (% GDP). We estimate the model

using ordinary least squares and impulse response functions are then employed by plotting

the estimated β with 68 percentage confidence intervals over a five year period. As Cevik and

Jalles (2024) mentions, bands that correspond to a 68 percent posterior probability — or one

standard deviation shock - provide a more precise estimate of the true probability. As for the

climate shock variable, we also consider separately the five different types of climate-related

events: droughts, storms, floods, wildfires, and extreme temperature.17

The impulse response functions in Figure 5 and Figure 6 demonstrate that there is hetero-

geneity in the response of 10-year sovereign yields to climate shocks related to the frequency

and severity of each type of natural disaster. The yields experience the largest increases

in response to climate shocks related to droughts. These are the natural disasters with the

longest mean duration and the highest human toll. Although shocks related to storms, the

most common type of natural disasters, also have positive effects on yields, their impact is

significant only for the third year after the incidence of the event.

We also explore the impact of a climate shocks as measured by the total associated

damages on 10-year sovereign yields when splitting the sample between advanced (Figure 7)

and developing economies (Figure 8).18 For AEs, impulse responses suggest that climate

shocks related to extreme temperature have the largest, more immediate and more persistent

impact on sovereign borrowing costs. At the same time, the impact from storms and droughts

becomes significant after the second year after the shock hits. In other words, in AEs, what

has the most significant impact are those disasters causing unusually many deaths and have

large monetary damages. For EMDEs, the response is much more immediate and more

severe for all types of disasters. The strongest reaction over longer horizons is with respect

to droughts. Storms also have positive effects, although their impact is generally smaller.

This could suggest that developing economies face increased sovereign risk in the aftermath

17 In regressions for individual types of natural disasters we always control for the occurrence of any other
climate related disaster. This does not affect the estimated responses significantly.
18 Frequency of natural disasters shows a large heterogeneity between the two group of economies as well
as within the debeloping countries.
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Figure 5. Impact of climate shocks on sovereign yields: Disaster frequency

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock as mea-
sured by the occurrence of natural disasters. Shaded areas refer to 68% confidence intervals. The
first panel is for all climate related natural disasters, i.e. drought, extreme-temperature, flood,
storm and wildfire.

of such events, potentially due to their dependence on agriculture and natural resources,

which are directly affected by these disasters. The more muted response for AEs could

reflect better-developed infrastructure and financial mechanisms to manage these risks.19

Overall, the difference in the magnitude and timing of responses between advanced and

emerging markets reflects the vulnerability of emerging markets to climate-related risks.

Sovereign yields in these economies are more sensitive, likely due to weaker institutional

frameworks and greater exposure to economic and financial shocks following natural disas-

ters. Developing economies are considered to be exposed to this type of risk due to their

geographic location and propensity to experience natural climate-related disasters, while they

also face greater challenges following natural disasters (Boehm, 2022; Beirne et al., 2021b).

19 The responses when we replace 10-year yields with 5-year yields are shown in the Appendix.
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Figure 6. Impact of climate shocks on sovereign yields: Disaster severity

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock as
measured by the total damages of natural disasters (% GDP). Shaded areas refer to 68% con-
fidence intervals. The first panel is for all climate related natural disasters, i.e. drought, extreme-
temperature, flood, storm and wildfire.

On the other hand, advanced economies typically have a greater ability to manage extreme

climate events. In any case, our resulting sub-samples are rather small, which reduces the

statistical power of our analysis.
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Figure 7. Advanced economies impact of climate shocks on sovereign yields

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock measured
by the total damages of natural disasters (% GDP). Shaded areas refer to 68% confidence intervals.
The first panel is for all climate related natural disasters, i.e. drought, extreme-temperature, flood,
storm and wildfire.
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Figure 8. EMDEs impact of climate shocks on sovereign yields

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock measured
by total damages of natural disasters (% GDP). Shaded areas refer to 68% confidence intervals.
The first panel is for all climate related natural disasters, i.e. drought, extreme-temperature, flood,
storm and wildfire.
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To further assess the impact of the severity of climate shocks as measured by total

damages (% GDP) due to climate-related events on sovereign yields, we estimate the equation

(2) using a binary indicator to classify events as severe high vs. severe low events using four

different severity measures – duration, total damages, deaths and affected population. A

high-severity event is one above the 75th percentile. Figure 9 shows that the medium-

term positive impact of climate shocks on sovereign yields comes from high- and low-severity

events in terms of duration, number of affected people (% population), and number of deaths

(% population). However, in long-term for duration only high-severity events drive the

impact. The results highlight that the severity of natural disasters plays an important role

in influencing sovereign yields.

Figure 9. Impact of climate shocks on sovereign yields: Different severity measures

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock as
measured by four different measures of severity of natural disasters. Shaded areas refer to 68%
confidence intervals.
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5.1 Additional analysis: Nonlinear effects

We explore whether initial macro-fiscal conditions at the time of the shock influence the

impact of climate shocks as measured by total damages (% GDP) on sovereign yields using a

variant of LP to estimate state-dependent impulse response functions. In particular, we use

a model similar to the smooth transition autoregressive (STAR) model proposed by Granger

and Teräsvirta (1993), which allows the effect of climate shocks to change smoothly between

states, thus making the response more stable and precise (ADB, Furceri, and IMF, 2016;

Cevik and Jalles, 2024). Accordingly, the augmented LP model takes the following form:

Yi,t+h = βh
LF (zi,t)NDi,t + βh

H(1− F (zi,t))NDi,t +
3∑

j=1

γh
j Yi,t−j +

3∑
j=1

δhjXi,t−j + αh
i + αh

t + ϵi,t+h

(3)

with

F (zi,t) =
exp(−γzi,t)

1 + exp(−γzi,t)

where zi,t is either the real GDP growth or the public debt-to-GDP, standardized to have

mean zero and standard deviation one.20 The coefficients βh
L and βh

H capture the impact

of climate shocks in cases of recessions (low debt) and expansions (high debt) respectively.

Following Cevik and Jalles (2024), we choose γ = 1.5.

The results, presented in Figure 10 and Figure 11, show that both the state of the

economy and available fiscal space play critical roles in determining how climate shocks

affect sovereign yields growth in terms of magnitude and persistence over the long run, which

also varies with the type of the event. The impact of weather-related disasters is lower in

countries with greater fiscal space compared to countries that are fiscally constrained.

As a last exercise and to determine whether climate risk, in the form of climate-related

20 The weights assigned to each regime vary between 0 and 1 according to the weighting function F (zi,t),
so that this can be interpreted as the probability of being in a given space state.
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Figure 10. Disasters and the role of business cycle

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (3). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock as mea-
sured total damages (% GDP). The first panel is for all climate related natural disasters, i.e.
drought, extreme-temperature, flood, storm and wildfire. Shaded areas refer to 68% confidence
intervals.

natural disasters, is well priced in sovereign yields, we complement the baseline model pre-

sented with the following model allowing for a simplified “risk premium decomposition”. The

objective is to isolate the portion of sovereign yields that can be attributed specifically to

climate-related natural disasters, after accounting for standard macroeconomic risk factors.

First, we estimate a very similar model of sovereign yields on macro-financial variables

as in eq. 2, excluding the natural disaster variable from the regression. Second, we calculate

the residuals from this model to capture unexplained variation and regress these residuals

on climate-related natural disaster variables to isolate the climate risk premium:

ϵi,t+h = λhNDi,t + νi,t+h (4)
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Figure 11. Disasters and the role of fiscal space

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (3). Solid lines display the coefficients of (non-
cumulative) responses of the sovereign yields over the five years following a climate shock as mea-
sured total damages (% GDP). The first panel is for all climate related natural disasters, i.e.
drought, extreme-temperature, flood, storm and wildfire. Shaded areas refer to 68% confidence
intervals.

where the coefficient λh represents the additional yield attributable to climate risk, after

controlling for standard macroeconomic factors. It quantifies the additional yield investors

require as compensation for the risk associated with natural disasters, beyond what is ex-

plained by traditional macroeconomic variables.

Table 8 shows the regression results. The effect natural disasters in the baseline local

projection regressions is significant, but the coefficient λh from the risk premium decompo-

sition is mostly not. This suggests that natural disasters impact sovereign yields primarily

through their broader effects on general economic conditions, such as increased government

debt, reduced GDP growth, and higher inflation. If the estimated coefficient λh from the risk

premium decomposition would be significant, this would indicate that natural disasters have

a distinct and measurable effect on sovereign yields, beyond what is explained by traditional
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macroeconomic factors. Thus, we interpret the results as that investors do not explicitly dis-

tinguish climate risk related to natural disasters (physical climate risk) as a separate factor

when pricing sovereign yields. Instead, they perceive the impact of natural disasters as part

of the overall economic risk profile.

Table 8. Simplified risk premium decomposition
Panel A: Total damages

Dependent variable: residuals
(h=1) (h=2) (h=3) (h=4) (h=5)

Total costs of NDs -2.538 -3.524 -4.232* -4.671 -4.388
(3.221) (2.158) (2.315) (3.571) (3.579)

Observations 399 399 399 339 367
R2 0.011 0.018 0.007 0.005 0.004

Panel B: Frequency

Dependent variable: residuals
(h=1) (h=2) (h=3) (h=4) (h=5)

Frequency of NDs -0.198 -0.232** -0.215 -0.215 -0.219
(0.188) (0.098) (0.139) (0.237) (0.237)

Observations 399 399 399 399 367
R2 0.043 0.052 0.012 0.007 0.007

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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6 Conclusions

There is growing evidence that carbon emissions are increasingly priced in the equity

and option markets (Bolton and Kacperczyk 2021; Ilhan, Sautner, and Vilkov 2021; Bolton

and Kacperczyk 2023; Sautner, Van Lent, Vilkov, and Zhang 2023) and that extreme local

weather events affect asset prices (Hong, Li, and Xu 2019). This study adds new insights into

the impact of climate-related shocks on sovereign bond yields, with a focus on both physical

and transition risks. Using an extensive dataset from 2000 to 2023, we employ panel regres-

sion models and local projections to assess the effects of climate risks on sovereign yields.

Our findings highlight several important takeaways for both policymakers and investors.

First, the results indicate that transition risks are priced into sovereign bond yields. De-

veloping economies, which have in general implemented less green financial policies and have

lower fiscal capacity, tend to experience higher borrowing costs as they navigate the tran-

sition toward greener economies. This underscores the importance of proactively managing

transition risks to minimize their financial impact.

Second, chronic physical risks, such as rising temperatures, and acute physical risks, such

as natural disasters do not show to play a significant role in influencing sovereign yields in the

long-term. However, short to medium-term effects emerge when considering the frequency

and severity of disaster events induced by climate change, especially in developing markets,

which are more vulnerable to external shocks and economic disruptions following climate-

related disasters.

Third, our analysis of the nonlinear effects of climate risk reveals that climate change

emerges as a potential source of imbalance especially for high-debt, fiscally vulnerable coun-

tries. Low-income countries face the dual challenge of debt pressures and increased vulner-

ability to climate change. Climate-related shocks are growing in intensity and frequency

while the ability of developing countries to address climate challenges is heavily impaired by

unsustainable debt burdens (”climate debt trap”) highlighting the need for an international
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policy agenda to address both climate and debt challenges.21

21 https://unctad.org/system/files/official-document/presspb2022d12_en.pdf
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A Additional information on data

Table A1. Countries in the analysis
Country groups according to the BIS classification. In parenthesis the countries which are
excluded from the analysis due to small sample size of the dependent variable.

Country group No. Countries

Advanced economies (AE) 26 (28) Australia, (Austria), Belgium, Canada, Cyprus, Denmark, (Estonia)
Finland, France, Germany, Greece, Iceland, Ireland, Italy, Japan, Latvia
Lithuania, Netherlands, New Zealand, Norway, Portugal, Slovakia
Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States

Emerging market and developing economies (EMDE) 26 (32) (Albania), Argentina, (Bahamas), Botswana, Brazil, Chile, China
Colombia, Costa Rica, Croatia, Czech Republic, Dominican Republic
El Salvador, (Georgia), Guatemala, Hungary, Israel
Jamaica, Malaysia, Mauritius, (Mongolia), Panama, Philippines, Poland
Romania, South Africa, South Korea, Thailand, (Trinidad and Tobago)
Turkey, Ukraine, (Uruguay)
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Table A2. Description and sources of the main variables

Variable Source Description

10y yield Bloomberg 10-year maturity government bond annual
interest rate (in %)

CO2 World Bank Annual carbon dioxide emissions (chan-
hes, in metric tons per capita)

Temperature World Bank Annual temperature change relative to
1951-1980

NaturalDisasters EM-DAT Total number of climate-rated natural dis-
asters (changes)

TotalCosts/GDP EM-DAT Total costs from natural disasters (% of
GDP)

TotalUninsured/GDP EM-DAT Total costs minus insured costs (% of
GDP)

TotalAffected EM-DAT Number of affected people (% population)

DebtGDP IMF Central government debt (% of GDP)

GDPgrowth World Bank Real GDP growth (%) in constant na-
tional currency

Inflation World Bank Consumer price index

ExchangeRate with USD BIS Exchange rate as units of national cur-
rency per 1 USD (log)

PoliticalStability World Bank Political Stability and Absence of Vio-
lence/Terrorism: Percentile Rank mea-
sures perceptions of the likelihood of
political instability and/or politically-
motivated violence, including terrorism.
Estimate gives the country’s score on the
aggregate indicator, in units of a standard
normal distribution, i.e. ranging from ap-
proximately -2.5 to 2.5.

GovernmentEfficiency World Bank Government Effectiveness: Estimate cap-
tures perceptions of the quality of public
services, the quality of the civil service and
the degree of its independence from polit-
ical pressures, the quality of policy formu-
lation and implementation, and the credi-
bility of the government’s commitment to
such policies. Estimate gives the coun-
try’s score on the aggregate indicator, in
units of a standard normal distribution,
i.e. ranging from approximately -2.5 to
2.5.
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Table A3. Summary statistics

Variable No. of countries No. of obs. Mean Median Min. Max. SD

All countries

10y yield 52 1,001 4.612 4.020 -0.531 33.105 3.791
DebtGDP 45 1,020 62.421 53.899 3.901 261.289 38.171
GDPgrowth 52 1,196 2.831 2.936 -29.100 24.475 3.959
Inflation 52 1,196 4.064 2.559 -4.478 72.400 6.235
ExchangeRate 52 1,293 1.754 1.209 -0.694 8.363 2.206
CO2 52 1,092 6.299 5.857 0.788 20.470 3.861
Temperature 51 1,162 1.171 1.117 -1.305 3.550 0.622
TotalCosts/GDP 51 864 0.093 0.005 0 4.503 0.297
TotalUninsured/GDP 51 864 0.075 0.004 -0.047 3.386 0.245
TotalAffected/Population 51 916 1.110 0.018 0 71.991 4.171

AE

10y yield 25 543 2.939 2.950 -0.531 23.263 2.236
DebtGDP 24 552 72.898 59.966 7.202 261.289 45.378
GDPgrowth 25 575 2.106 2.242 -14.839 24.475 3.437
Inflation 25 575 2.182 1.875 -4.478 19.705 2.336
ExchangeRate 25 625 0.351 -0.081 -0.694 5.049 1.137
CO2 25 525 8.294 7.635 2.927 20.470 3.788
Temperature 25 575 1.329 1.282 -0.341 3.550 0.633
TotalCosts/GDP 25 386 0.092 0.011 0 1.244 0.183
TotalUninsured/GDP 25 386 0.064 0.007 -0.047 0.786 0.133
TotalAffected/Population 25 410 0.307 0.002 0 71.991 3.791

EMDE

10y yield 26 441 6.595 5.402 0.409 33.105 4.302
DebtGDP 20 445 47.931 46.563 3.901 97.053 19.161
GDPgrowth 26 598 3.524 3.891 -29.100 15.836 4.287
Inflation 26 598 5.847 3.834 -1.550 72.400 8.101
ExchangeRate 26 643 3.004 2.297 -0.454 8.363 2.174
CO2 26 546 4.376 3.791 0.788 12.216 2.905
Temperature 25 564 1.019 0.950 -1.305 3.026 0.578
TotalCosts/GDP 26 478 0.093 0.002 0 4.503 0.365
TotalUninsured/GDP 26 478 0.084 0.002 0 3.386 0.306
TotalAffected/Population 26 506 1.760 0.112 0 30.923 4.352

Note: The number of countries and observations refers to non-missing values for each of the variables
over the 2000–2023 period.
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B Additional regression results

Table B1. All climate risk
The table reports coefficient estimates and standard errors (in parentheses) from estimates
using the transition together with chronic risk in model (1) and acute physical variables in
models (2)-(5). The dependent variable is the 10-year sovereign bond yield. Definitions for
all variables are in Table A2. Estimation method is OLS with country fixed effects, and
standard errors clustered at the country level. The sample period is 2000-2023. The lower
part of the table also reports the number of observations and the R-squared. The ***, **,
and * marks denote statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5)

CO2 0.938*** 1.057*** 1.157*** 1.155*** 1.151***
(0.144) (0.180) (0.188) (0.188) (0.189)

Temperature −0.002 0.037 0.044 0.044 0.045
(0.026) (0.031) (0.033) (0.033) (0.034)

NaturalDisasters 0.015
(0.013)

TotalCosts/GDP 0.003
(0.029)

TotalUninsured/GDP −0.017
(0.034)

TotalAffected/Population −0.002
(0.004)

DebtGDP 0.005*** 0.006*** 0.008*** 0.008*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002)

Inflation −0.009** −0.007 −0.011 −0.011 −0.011
(0.004) (0.007) (0.007) (0.007) (0.007)

GDPgrowth −0.025*** −0.025*** −0.023*** −0.023*** −0.023***
(0.006) (0.006) (0.006) (0.006) (0.006)

ExchangeRate 0.442** 0.415** 0.460** 0.460** 0.463**
(0.181) (0.168) (0.177) (0.177) (0.179)

PoliticalStability 0.001 −0.001 0.000 0.000 0.000
(0.003) (0.003) (0.003) (0.003) (0.003)

GovernmentEfficiency −0.008 −0.006 −0.005 −0.005 −0.006
(0.006) (0.005) (0.005) (0.005) (0.005)

Observations 724 533 504 504 504
R-squared 0.901 0.903 0.904 0.904 0.904
Country Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes
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Figure B1. Impact of climate shocks on 5-year sovereign yields: Disaster frequency

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the 5-year sovereign yields over the five years following a climate shock as
measured by the occurrence of natural disasters. Shaded areas refer to 68% confidence intervals.
The first panel is for all climate related natural disasters, i.e. drought, extreme-temperature, flood,
storm and wildfire.
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Figure B2. Impact of climate shocks on 5-year sovereign yields: Disaster severity

Note: The figure shows impulse response functions constructed from regression results of the lag-
augmented local projection model in equation (2). Solid lines display the coefficients of (non-
cumulative) responses of the 5-year sovereign yields over the five years following a climate shock
as measured by total damages (% GDP) of natural disasters. Shaded areas refer to 68% confi-
dence intervals. The first panel is for all climate related natural disasters, i.e. drought, extreme-
temperature, flood, storm and wildfire.
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