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Abstract—Total Value Locked (TVL) aims to measure the
aggregate value of cryptoassets deposited in Decentralized Fi-
nance (DeFi) protocols. Although blockchain data is public, the
way TVL is computed is not well understood. In practice, its
calculation on major TVL aggregators relies on self-reports
from community members and lacks standardization, making
it difficult to verify published figures independently. We thus
conduct a systematic study on 939 DeFi projects deployed in
Ethereum. We study the methodologies used to compute TVL,
examine factors hindering verifiability, and ultimately propose
standardization attempts in the field. We find that 10.5% of
the protocols rely on external servers; 68 methods alternative
to standard balance queries exist, although their use decreased
over time; and 240 equal balance queries are repeated on
multiple protocols. These findings indicate limits to verifiability
and transparency. We thus introduce “verifiable Total Value
Locked” (vTVL), a metric measuring the TVL that can be
verified relying solely on on-chain data and standard balance
queries. A case study on 400 protocols shows that our estimations
align with published figures for 46.5% of protocols. Informed by
these findings, we discuss design guidelines that could facilitate a
more verifiable, standardized, and explainable TVL computation.

Index Terms—Decentralized Finance, DeFi, Total Value
Locked, TVL, Ethereum.

I. INTRODUCTION

The core value proposition of Decentralized Finance (DeFi)
lies in its transparency and reliance on permissionless on-
chain infrastructure [1]. As Total Value Locked (TVL) has
become a primary metric for assessing the economic scale
of DeFi — measuring the value of assets deposited in smart
contracts — it is essential that its calculation upholds the same
principles, remaining fully anchored in on-chain data and fully
reproducible calculations. In spite of this, TVL computation
today suffers from a lack of standardization and is difficult to
verify independently.

In practice, TVL estimates are published by aggregators
like DappRadar, Stelareum, and DeFiLlama, which typically
adopt a community-driven approach. The latter, for instance,
allows anyone to integrate a new DeFi protocol and its TVL
computation methodology by developing a protocol-specific
plugin and publishing it in an open-source GitHub reposi-

tory [2]. Contributors are encouraged to use only on-chain
data for TVL calculations [3]. However, some plugins rely
on data from external services and use self-defined functions
for on-chain computations. Moreover, there is variability in
how the values of assets deposited in contract accounts are
calculated. At the end of 2024, Ethereum TVL estimates
published by different aggregators vary from approximately
$80 bln to $190 bln, indicating that remarkable differences
exist in the methodologies used for TVL computation.

The need for independent verifiability has been demon-
strated in cases where DeFi developers on the Solana
blockchain deliberately designed their protocols to inflate the
actual value of deposited assets, ultimately manipulating TVL
figures [4]. The necessity for a standardized approach has
become evident with the recognition that crypto deposits
can be double-counted across DeFi protocols [5]–[7]. This
issue has recently been addressed by proposing an alternative
metric, Total Value Redeemable (TVR), which refines TVL by
excluding cryptoassets that derive their value from underlying
cryptoassets [8]. However, a comprehensive understanding of
the methodologies used to compute TVL is still lacking.

In this paper, we aim to fill this gap by conducting a
comprehensive measurement study to examine how TVL is
computed in practice and to assess the extent to which its value
can be recomputed and verified using on-chain data only. Our
contributions and key empirical findings are as follows:

1) We develop and apply a measurement instrument to 939
DeFi protocols on the Ethereum chain. Our findings
reveal that (i) 10.5% of them rely partially or entirely on
data from external services to compute TVL, impeding
full reproducibility; (ii) while the majority of protocols
(78.6%) use standard balance queries, a subset of non-
standard, self-defined balance functions (N = 68) is
employed; (iii) the usage of these alternative queries has
declined from 28.2% in January 2023 to 8.9% in January
2024; (iv) 240 balance queries executed on the same
contracts and tokens are repeated on multiple protocols.

2) We introduce verifiable Total Value Locked (vTVL), a



metric assessing to what extent individual projects’ TVL
can be reconstructed using blockchain data and standard
balance queries, and the Discrepancy Ratio, to quantify
differences between published data and our estimates.
A case study on 400 protocols shows that discrepancies
are negligible for 23.5%, and estimations align with
published figures for another 23%.

3) We propose design guidelines, informed by the chal-
lenges we identified, that could lead to a more verifiable
and standardized TVL computation: (i) compute TVL
from on-chain sources; (ii) publish protocol-specific
contracts and tokens lists; (iii) favor standard balance
methods whenever possible; (iv) publish the token cat-
egorizations used; and (v) define common standards for
protocol selection criteria and version management.

As DeFi continues to mature, it is essential to rely on clear
and reproducible metrics, especially when these are heavily
used for business and investment decisions. Standardization
is crucial in this regard, and verifiability should be part of a
broader discussion on auditing within the DeFi ecosystem.

Section II introduces background and related work; Sec-
tion III discusses how TVL is currently computed, while Sec-
tion IV reports the case study. Section V and VI respectively
discuss design guidelines and conclusions. Our data and code
are available at https://github.com/PietroSaggese/TVL_Study.

II. BACKGROUND AND RELATED WORK

A. Cryptoassets: derivative and non-derivative tokens

Cryptoassets represent and facilitate transfer of value in
a Distributed Ledger Technology (DLT) [1]. They can be
categorized according to different factors [9]–[11]. In our
context, we distinguish between derivative and non-derivative
tokens [8]. Non-derivative or plain tokens are those with-
out an underlying cryptoasset. They include native tokens
such as Bitcoin, governance tokens, and non-crypto-backed
(NCB) stablecoins, i.e., cryptoassets like USDC whose value
is pegged to a target currency and whose reserves are not
composed of cryptoassets. Derivative tokens represent instead
a receipt token that grants a claim on an underlying cryp-
toasset. They (non-exhaustively) include liquidity pool (LP)
tokens [12], interest-bearing tokens [13], [14], liquid staking
tokens (LSTs) [15], and other financial products like synthetic
tokens and tokenized baskets of assets. Derivative tokens also
include crypto-backed stablecoins such as DAI.

B. Total Value Locked

DeFi protocols operate on a peer-to-pool model: investors
deposit their cryptoassets into accounts that pool the invested
funds to offer financial services [12], [16]. Total Value Locked
is the primary metric for assessing the performance of DeFi
protocols and the broader DeFi ecosystem, and it is computed
as the aggregate value of cryptoassets deposited in the smart
contracts that constitute one protocol.

More formally, let P = {p1, . . . , pn} be the set of all DeFi
projects or protocols and A = {a1, . . . , ak} be the set of all
cryptoassets deployed on a DLT (we remove time subscripts

for ease of notation). For one project p, Cp = {cp1, . . . , cpm}
is the set of project-specific contracts. The association of a
contract to a project must be mutually exclusive, i.e. Cp∩ Cp′

=
∅. For each contract c ∈ Cp, a vector q of length k indicates
the amount of tokens locked into the contract, and the price of
each token a ∈ A is πa, denominated in a common currency.
We then construct the matrices

Qp =


qpc1,a1

· · · qpc1,ak

qc2,a1
· · · qpc2,ak

...
. . .

...
qcpm,a1

· · · qcpm,ak

 , Π =


π1

π2

...
πk

 , V p =


vp1
vp2
...
vpm


Where V p = Qp ·Π. Then TV Lp, denoting the value locked

in a protocol, and TV L, denoting the value deposited in a DLT,
are respectively computed as:

TV Lp =

m∑
i=1

vpi , TV L =

n∑
p=1

TV Lp

C. TVL aggregators

Several aggregators publishing DeFi TVL estimations ex-
ist, e.g. DappRadar [17], Stelareum [18], DeFi Pulse [19],
Coingecko [20], and DeFiLlama [21]. The estimations they
report ultimately rely on on-chain token volumes and price
information, but the methods used to compute these figures and
the completeness of the related documentation vary greatly.

DeFiLlama is one of the most comprehensive aggregators in
terms of TVL information disclosure [8]. Its core infrastruc-
ture, the DefiLlama-Adapters GitHub repository [2], enables
the community to integrate new protocols through plugins,
supposedly developed by the protocols’ own maintainers, and
is public — so anyone can observe how TVL is computed.
However, since the plugins are contributed directly by the com-
munity, transparency and reliability concerns may arise. The
DeFiLlama maintainers discourage the use of data not directly
sourced from cryptocurrency nodes (with the exception of
exchange rates from Coingecko) [3], but the framework does
not impose strict limitations on off-chain data sources. Even
when utilizing on-chain data only, the plugin creators can use
self-defined, not documented on-chain functions to compute
TVL, and the projects do not publish explicitly the contracts
and tokens utilized to compute TVL. This information is
implicit in the plugin code and no further documentation is
provided by protocols. Moreover, the computing code may
depend on specific implementations and therefore vary across
time. There is also no description informing whether plugin
contributors are actual protocol maintainers or other users.

Other aggregators provide more limited documentation, and
in some cases, we could not find their TVL-computing code.
Some aggregators require DeFi projects to submit a request
to be included in TVL calculations, publishing only the final
TVL values [18], [19]. These differences can introduce self-
selection bias, i.e. the reported TVL may differ consistently
across platforms if protocols share information selectively.

Finally, some platforms publish information related to their
asset selection criteria, describing what tokens are included



in TVL computations [19], [21]. To date, this process is not
standardized. Notably, also DeFiLlama’s framework allows to
select or exclude, e.g., governance tokens, borrowed tokens,
and others [6]; its TVL estimations at the end of 2024 for
Ethereum range from 80 to 190 bln$.

D. Related work

Surprisingly, despite the limitations discussed above and the
central role TVL plays in DeFi, little research has systemati-
cally examined how TVL is computed. This is especially im-
portant considering that several studies base their analyses on
TVL, e.g., to investigate DeFi growth rates [22] or its relation
to ETH returns [23], used it as a variable in econometric [24]–
[26] and machine learning models [27], or examined it in the
context of relevant DeFi indicators [28], [29].

One major limitation of TVL identified by the academic
community is the double counting problem [5], [30]. A first
solution to this issue was proposed by Luo et al. [8], who
focused on asset selection criteria and devised a novel metric
to address double counting. Total Value Redeemable (TVR) is
defined as the value that can be ultimately redeemed from
a DeFi ecosystem, i.e., the sum of non-derivative tokens
deposited in DeFi protocols.

Instead, we are not aware of any prior work assessing
comprehensively the reproducibility and verifiability of TVL
estimates. Our study fills this gap and complements existing
literature [8] by investigating empirically how TVL is effec-
tively computed, what methodologies are used, and the extent
to which TVL is reproducible using available on-chain data.

III. TVL COMPUTATION IN PRACTICE

In this section, we examine how TVL is computed in prac-
tice, what data sources are used and what potential challenges
to reproducibility and standardization arise from those design
decisions. We focus on the projects listed on DeFiLlama for
the reasons discussed in Subsection II-C (in principle, the
analysis could be conducted on other aggregators publishing
their TVL-computing code). We restricted the blockchain data
collection to Ethereum as it plays a major role in DeFi with
66% of total TVL according to DeFiLlama. We expect that
our findings can be generalized to most alternative chains that
are EVM compatible and mirror Ethereum’s ecosystem. The
pipeline of the analysis is shown in Figure 1.

Fig. 1: Analysis pipeline. For each protocol, we execute the
plugin code provided by the TVL aggregator and record all
interactions with both on-chain and off-chain sources.

Method Count Num. of
protocols Returns the . . .

balanceOf 102 655 641
. . . account balance of another account
(owner address) [32].

eth_getBalance 1696 170
. . . ETH balance of the account of
a given address [33].

totalSupply 2577 154 . . . total token supply [32].

getReserves 3016 121
. . . reserves of token0 and token1 used to
price trades and distribute liquidity [34].

token0 1040 94 . . . address of the first pair token [34].

token1 1040 94 . . . address of the second pair token [34].

symbol 1835 64 . . . symbol of the token. [32].

allPairsLength 46 45
. . . total number of pairs created
through the factory [35].

underlying 1613 43 . . . address of the underlying token [36].

totalAssets 236 26
. . . total quantity of all assets under control
of a Vault [37].

TABLE I: Most frequently queried functions. The balanceOf
method is the most commonly used in TVL computations,
along with eth_getBalance. Other functions, such as totalAs-
sets, offer alternative approaches to retrieving balances.

A. Measurement method and summary statistics

To conduct our analyses, we developed a data extraction
pipeline that proxies and systematically records all interactions
between the DefiLlama tooling and its runtime environment
during TVL computation. This encompasses all calls directed
towards the Ethereum node software, as well as interactions
with external hosts and web services. Our instrumentation
records on-chain interactions for arbitrary combinations of
Ethereum block height, commit, and chains (more details on
this procedure are reported in Appendix A).

Following the recording process, we filter and interpret the
collected on-chain data to identify the functionalities used and
accounts accessed per protocol. To interpret the data, we map
the signatures of the called functions either directly when
stored or using the Ethereum Signature Database 4byte [31].

Our main dataset consists of the interactions between the
DefiLlama repository and its environment, collected on Jan-
uary 4 2024 (commit 6764756f9270ab6a3047c06c13c0b1b2
d32a3247). It includes 939 projects deployed on Ethereum
out of 3494 total projects. It comprises their interactions with
external servers and the blockchain infrastructure, the latter
resulting in 197 775 proxied calls. To validate consistency, we
repeated the collection on four other dates (04 Jan 2023, 04
Apr 2023, 04 Jul 2023, 04 Oct 2023).

Table I reports the most relevant functions called on-chain,
ranked by number of protocols using them and complemented
by a short description of their use. As expected, the most
frequently called methods are balance queries for ERC-20
compatible tokens (balanceOf ) and Ether (eth_getBalance),
but alternative functions exist (e.g., totalAssets). BalanceOf is
primarily queried on wETH, stablecoins, governance tokens,
and staked tokens (see Appendix A for further details). Other
methods are used to query supplementary information, e.g.,
the token address or its symbol (token0, token1, symbol), are



used to price trades and distribute liquidity (getReserves), or
retrieve token information (underlying, totalSupply).

B. Reproducibility and reliance on off-chain data

Relying on public and transparent on-chain information
entails a number of advantages compared to off-chain data
sources. The latter is easier to tamper with, creates more
dependencies not in control of the user, and is less transparent,
since one has limited visibility into web services’ internal
operations. We thus run each protocol’s computation code and
investigate whether the infrastructure relies solely on on-chain
data or also exploits external hosts. We also document whether
the computation executes correctly or if errors occur.

Figure 2 represents graphically the space of 939 DeFiLlama
projects analyzed. For the largest group (N = 729), the proce-
dure is executed without errors and no external hosts are used.
While 73 projects utilized both external hosts and on-chain
data sources, for 26 protocols we observe interactions with
external hosts but no direct on-chain data could be retrieved;
since no errors occurred in their collection procedure, we infer
that they solely rely on external services. The TVL of the
remaining protocols is either computed despite errors being
produced during computations (N = 28) or not computed
at all (N = 62). Finally, 22 projects did not produce any
interaction and were discarded.

Among the 64 external servers identified, some pose a
smaller threat to verifiability, e.g., TheGraph, an indexing
protocol for accessing blockchain data; others appear to be
associated with third parties or specific protocols. The errors
are mostly related to technical failures such as the block height
provided not being accepted, missing fields or parameters, and
asynchronous operations that were not completed successfully.
Further details are reported in Appendix B.

Arguably, TVL is computable with on-chain data alone, but
in practice we find several instances where other data sources
are used. Despite the clarity of the DeFiLlama maintainers’ ob-
jectives, certain protocols (10.5%, including Uniswap V1 and
V2) rely partially or entirely on data extracted from external
servers for computations, partially compromising verifiability.

C. Heterogeneity of on-chain interactions

Even when utilizing on-chain data only, challenges to ex-
plainability may arise. Projects use a wide set of functions
alternative to standard eth_getBalance and balanceOf queries
to acquire on-chain balance data. These could hinder inter-
pretation and introduce sources of tampering or inaccuracies
if their logic is unclear. We thus focus on the 197 775 calls
directed to an Ethereum node and analyze to what extent the
methods used to compute TVL are heterogeneous and the
computation approach standardized across protocols.

First, to study if certain functions play an outsized role or if
anomalous patterns emerge, we fit to a power-law distribution
the frequency of occurrence both of the functions called and
of the token calls in balanceOf functions. Analyzing the
frequency of occurrence of the functions called, we observe
that balanceOf emerges as an extreme value with respect to the

On-chain calls
produced

External hosts used

Errors are raised729 27 62

1
0

26

72

Others = 22

Total = 939

Fig. 2: Projects using off-chain in addition to on-chain
sources. Projects are categorized based on their reliance on
external hosts and whether any errors occurred during data
collection. While for 729 projects, on-chain calls were exe-
cuted without errors and without the use of external sources,
99 projects depend on external servers.

power-law fit, further highlighting its central position in TVL
measurement. In general, the results of the fit are consistent
with the behavior of a heavy-tailed distribution; the estimated
α range from 1.63 to 1.85, coherently with findings of previous
network studies on Ethereum blockchain data [38], [39].

Next, we devise an approach to identify the functions
alternative to balanceOf and eth_getBalance (used by 78.6%
of protocols) whose name and description indicate that they are
likely alternative functions self-defined by projects to compute
TVL. We conduct a keyword-based search through regular
expressions on the function signature names. We find 68 al-
ternative functions, used by 14.2% of protocols, that plausibly
contribute to TVL computation. Out of these, four functions,
called 94 times only, have name balanceOf, but different
signatures than the standard ERC-20. The remaining protocols
either rely on external hosts or exploit functions (N = 88) that
are not clearly matched to a balance-querying functionality
after a manual check. While standard functions are simpler
to interpret, the alternative functions are specific to a few or
just one project, and their logic is hard to interpret without
investigating the code in depth. One illustrative example is
represented by Lido, whose TVL is computed through one
single function (getTotalPooledEther) that likely returns as
output the total protocol TVL.

In summary, while most protocols (78.6%) use standard to-
ken balance queries, a subset of alternative functions (N = 68)
is employed; however, this makes it harder to understand
how TVL is computed for protocols utilizing such functions.
Further details on the network analysis and on the detection
of the alternative functions are reported in Appendix C.

D. Changes in TVL computation methods

Another thread to verifiability and consistency are changes
to the code itself. TVL computation relies on self-reports from
DeFi protocols maintainers, and evidence of manipulations
to purposedly inflate TVL exists [4], [7]. More generally,
computations may depend on specific implementations and
therefore vary across time. As our pipeline enables the data
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Fig. 3: Pairwise Jaccard similarity, computed for each
protocol on the set of balanceOf calls queried in the main
and four older commits. Each line reports the values relative
to one specific commit. Projects are ranked in descending order
based on their similarity score (ranging from 0 to 1). A value
of 1 indicates no changes among the compared sets.

collection for various commits, we repeat the data gathering
at four alternative dates (4th of January, April, July, and
October 2023) and analyze changes in the Ethereum queries
per protocol. We focus on balanceOf for the interpretability
of the associated calls and measure to what extent projects
called different addresses and tokens over time.

To do so, for each protocol we compare the set of balanceOf
calls executed in the main commit (Jan 4 2024) to the set of
balanceOf calls executed in each older commit analyzed1. We
quantify the differences between sets as the pairwise Jaccard
similarity; values range from 0 to 1, and a value of 1 indicates
no changes among the compared sets. Figure 3 shows the
results: each line reports the values relative to one specific
commit. Projects are ranked in descending order, based on
their Jaccard similarity score. We observe that in each older
commit the set of calls does not change for most projects.
The average Jaccard index ranges from 0.93% (Oct 2023,
black dashed line) to 0.89%, 0.86% and 0.81%, respectively
in Jul, Apr, Jan 2023. The Jaccard similarity decreases as
expected with time, but moderately. Protocols typically do
not modify the TVL computation code significantly across
time. This finding has a two-fold interpretation: on the one
hand, computation is relatively stable over time and thus less
challenges arise from this perspective; on the other hand, it
is possible that protocols are not systematically updating their
plugins despite smart contract changes being implemented.

Similarly, we measure how the use of functions alternative
to balanceOf varies across commits. We find that the ratio
between the number of alternative function queries over that

1We only compare protocols that existed at both commit dates and exclude
those that used hosts or raised errors during the data collection. We note
that we do not investigate commits executed earlier than 2023 because the
number of projects that can be compared decreases with time (from nearly
500 between Oct 2023 and Jan 2024 to less than 300 between Jan 2023 and
Jan 2024) and because our pipeline is optimized to capture data on recent
implementations of the repository.

of balanceOf and eth_getBalance calls is higher in older
commits (28.2% in Jan 2023, 22.7% in Apr 2023, 19.9% in
Jul 2023, and 12.2% in Oct 2023, against 8.9% in Jan 2024).
We interpret this as a sign that heterogeneity in computation
methods has reduced over time. Appendix D reports additional
data, such as the evolution in time of the number of standard
and non-standard calls, the full identifiers of older commits,
and additional results, including the Jaccard similarity scores
on all protocols and in absolute numbers.

E. Equivalent balance queries linked to multiple protocols

Double counting represents a major issue in the computation
of financial metrics like TVL. It occurs when the value of
an asset is counted more than once, leading to an inflated
representation of total assets within the system. Previous
research [8] introduced the Total Value Redeemable as an
alternative to TVL and partly addressed the problem by
counting the value of non-derivative tokens only. From a
technical perspective, double counting can also occur if a smart
contract included in the TVL calculation is not exclusively
associated with one project, causing the corresponding TVL
to be counted multiple times.

We thus search for balance queries that are not exclusively
linked to a single protocol, thus potentially leading to such
double counting. Notably, we identify 230 balanceOf and 10
eth_getBalance calls that appear to be associated with different
protocols on the same input smart contract and for the same
token address. A possible explanation for this finding is that
these contracts are managing interactions across protocols2.
We measure and discuss the magnitude of this phenomenon
in economic terms in the next section. Appendix E reports a
full list of the addresses and tokens involved.

IV. CASE STUDY: TVL RECONSTRUCTION FROM
ON-CHAIN DATA AND VTVL

In principle, TVL can be calculated entirely on public,
immutable blockchain information: this may provide a solution
to some of the challenges emerged in TVL computation
affecting its reproducibility and verifiability. Building on this,
we conduct a case study to assess to what extent the TVL
of individual projects can be recomputed and verified solely
relying on on-chain data and standard balance queries. We
call the resulting metric the verifiable Total Value Locked
(vTVL) of a DeFi project. This serves as a starting point
for discussing a set of recommendations and standardization
attempts to improve TVL computation.

A. TVL reconstruction approach

Having access to the functionalities and accounts queried
on-chain through the DeFiLlama infrastructure, we can acquire
a set of addresses per protocol containing deposited assets
and provide further insights on the TVL associated with each
protocol, solely relying on blockchain data (assuming that
addresses called during computation contribute to the project

2While we assume that balances queried during computation directly
contribute to the projects TVL, we acknowledge the possibility that they don’t.



TVL). To have a homogeneous and standardized represen-
tation, we focus on eth_getBalance and balanceOf queries.
We obtain a list of addresses contributing towards the locked
value for each project, along with a compilation of tokens
(N = 12 246) in which all projects hold value. For each
protocol, we extract cryptoassets quantities and prices on-
chain. We query the state of protocol-specific addresses for
their associated tokens and extract historical monthly balance
information from Jan 1st 2021 to Feb 1st 2024. We price
tokens by extracting exchange rate information from Uniswap
V2 DEX liquidity pools [40]; in total, using this approach, we
could price 942 tokens.

Having granular information on tokens deposited into con-
tracts, we can investigate TVL composition and increase
control over selected assets. We categorize tokens following
the distinction into non-derivative and derivative tokens [8]
and distinguish seven categories: Ether and its wrapped token
wETH, wrapped BTC (wBTC), non-crypto-backed stable-
coins, crypto-backed stablecoins, governance tokens, deriva-
tive tokens, and others. We note that we report separately
the balance queries that, as discussed in Subsection III-E, are
non-exclusively associated with one protocol and therefore
potentially contribute to double counting, as we could not
disentangle which project they should be associated with.

We thus recompute the value held by each protocol and
call these estimates the verifiable Total Value Locked (vTVL).
For comparison, we also download historical TVL values3

published per protocol from the DeFiLlama API service [41].
We compute for each project the Discrepancy Ratio, defined as
the average ratio of the vTVL estimations over the data posted
through the DeFiLlama APIs, normalized by subtracting one.
A value of zero indicates perfect correspondence, while −1
indicates that vTVL equals zero. To interpret this metric,
we recall that our estimations are an underestimation rather
than an overestimation of the reported figures. We stress that
the discrepancies should not be interpreted as a measure that
protocols are inflating values; rather, they indicate to what
extent we are able to independently verify the reported figures.
Further details on this are given in Appendix F.

B. Case study: analysis and results

We analyze 400 protocols with at least one eth_getBalance
or balanceOf recorded call and for which we could gather off-
chain API data. Panels (a) to (e) of Figure 4 show the results
for five protocols selected for their relevance in the DeFi
ecosystem: in order, Aave (v2 and v3), Compound-v3, dYdX,
Maker, and Uniswap-v3. Each panel shows a stacked plot of
the vTVL divided by token categories as discussed above.
The black line represents the (total) TVL value published
on DeFiLlama. We observe that vTVL is mostly composed
of ETH/wETH, wBTC, and non-crypto-backed stablecoins. In
most cases, the data reconstructed from on-chain and off-chain

3The API data are reported by DeFiLlama distinguished by chain and
type. We include all values associated with the Ethereum blockchain
(columns ‘Ethereum’, ‘Ethereum-borrowed’, ‘Ethereum-pool2’, ‘Ethereum-
staking’, ‘Ethereum-vesting’).

data are consistent; for some projects, the data match almost
perfectly, while for others, we observe a partial discrepancy,
but their overall trend is consistent. The discrepancies can arise
for varying reasons, e.g., the use of alternative methods to
compute balances, the reliance on external hosts to produce
values (e.g. Maker) or the presence of errors during the
interception procedure (e.g. Uniswap V3), but also for the lack
of price data for certain tokens. Further details are reported in
Appendix F and limitations are discussed in Section V.

Panel (f) reports instead the evolution over time of the value
held in the contract accounts identified in Subsection III-E for
the balance queries that are repeated over multiple protocols,
thus potentially contributing to double counting. Notably, the
value reached a peak of almost 16bln$ at the end of 2021:
double counting is a threat to a correct interpretation of the
TVL metric also at the infrastructure level, and its potential
impact is economically relevant.

Finally, to obtain a broader understanding of the entire
ecosystem, we compute for each project the Discrepancy
Ratio. Figure 5 shows the results. Each dot represents a project
and its size is proportional to the amount of TVL they hold
(according to off-chain estimations). Projects are ranked in
descending order with respect to the Discrepancy ratio. The
ones shown in Figure 4 are labeled. For 94 projects (23.5%),
the difference lies within ±0.05, indicating almost perfect
consistency, while for 186 projects (46.5%), the difference lies
within ±0.5, indicating that figures are aligned but discrepan-
cies exist. In 98 cases the ratio is either larger than 1 (top left)
or equal to −1 (bottom right), indicating large discrepancies.
The latter are mostly small and less relevant protocols.

In summary, the case study shows that with vTVL, which
reproduces TVL using solely on-chain data and interpretable
balance queries, we can independently verify just a part of
the reported TVL. Discrepancies between our estimations and
published data are close to zero for about one quarter of
protocols (23.5%) and are aligned for about half (46.5%).
Concurrently, the study shows that it is possible to follow a
more transparent approach for computing TVL. The approach
we used for vTVL removes potential off-chain sources of
tampering, minimizes heterogeneity in computation methods,
reveals patterns that can only be investigated on-chain, like
the association of one contract to multiple protocols, and
enables control over the selected assets, ultimately improving
reproducibility, verifiability, transparency and interpretability.

V. DISCUSSION: TOWARDS TVL STANDARDIZATION

TVL today remains largely non-standardized and its com-
putation open source to third parties. Against this backdrop,
informed by the challenges identified in TVL computation and
the case study conducted, we discuss a series of recommenda-
tions that may help guide the design of reproducible, verifiable,
transparent and interpretable TVL estimations.

First, TVL can and should be computed from available
on-chain sources. As discussed in Sections III and IV, relying
on external services may hinder verifiability and reproducibil-
ity, raise concerns about transparency and create opportunities
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Fig. 4: Verifiable Total Value Locked (vTVL). We query on-chain information for relevant DeFi protocols — Aave v2 and
v3 (a), Compound v3 (b), dYdX (c), Maker (d), Uniswap v3 (e) — and compare it to published off-chain TVL data. Each
plot represents the evolution in time of their vTVL as a stacked plot, divided in seven categories: Ether and wETH, wBTC,
governance tokens, non-crypto-backed stablecoins, crypto-backed stablecoins, and uncategorized tokens. Panel (f) shows instead
the evolution in time of the value of 240 balanceOf and get_ethBalance queries called on the same contracts and tokens but
associated with different protocols (see Subsection III-E), potentially contributing to double counting.

for manipulation or double counting. Furthermore, third par-
ties need to know explicitly what protocol-specific smart
contracts and associated tokens are utilized to count value.
This also allows to verify if the association of a contract to a
project is unique or a potential source of double counting.

The use of standard balance methods should be preferred
over custom functions whenever possible, in order to stan-
dardize computation methods and enhance interpretability of
the metric. As discussed in Section III-A, the most common to-

kens are ERC-20 compliant and therefore it is straightforward
to understand how their balance is quantified. If tokens are
non-standard or rely on alternative functions, proper documen-
tation is required to interpret results. A promising finding in
this sense is the increased predominance over time of standard
functions, which revealed a trend towards homogenization.

We propose that aggregators publish their token cate-
gorizations and enable third parties to independently select
which assets to include or exclude in computations, with
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Fig. 5: Differences between vTVL and published TVL.
Projects are dots ranked in descending order based on the
Discrepancy ratio, i.e., the ratio of on-chain estimations to
off-chain data, normalized by subtracting one.

particular attention to derivative and non-derivative tokens.
While aggregators today allow to include or exclude certain
tokens from computations, such as governance tokens, bor-
rowed tokens in lending protocols, and others [6], we could
not find a detailed list of what assets are included in each
category. Furthermore, as indicated in previous research [8],
derivative tokens are responsible for double counting, and this
aspect needs to be taken into account. In our case study, we
grouped tokens into categories and identified derivative tokens
to provide deeper insights on TVL composition, allowing
direct control on the assets selected for computation.

More broadly, it is also necessary to define common stan-
dards for protocol selection criteria and maintain a public
list with included protocols. According to DeFiLlama APIs,
the protocols we analyzed are grouped into 39 categories: the
most common ones are DEXs, Yield, Lending, and Services
(respectively N = 78, 68, 55, 34). Notably, N = 28 are
labeled as CEXs. It is also arguable whether other categories
belong to DeFi (Gaming, Oracle, Wallets) or what their
purpose is (SoFi, Launchpad, Chain). Furthermore, relying
on self-reporting also implies self-selection bias to a certain
extent: some protocols might not be interested in reporting
data to all TVL aggregators and viceversa. Related to protocol
selection, it is important to complement protocol-specific
information with metadata for version management. From
the analysis in Section IV-A, it emerged that protocols plugins
do not manage versions consistently. As protocols often deploy
new versions, it is important to have a clear vision of what
funds are deposited in each protocol version.

We acknowledge that future research might address some
limitations of our study. First, our work is limited to the
DeFiLlama infrastructure and to Ethereum alone, but DeFi
is spread across DLTs; whilst we believe our findings can
be generalized to other blockchains that replicate Ethereum,
future analyses could pay specific attention to bridges and
multi-chain protocols, and include other blockchains like
Solana. Second, alternative computation methods to standard
ones should be investigated in detail, to understand what

functionalities they offer and why they are used. Third, the
token categorization needs improvement. Currently, there is
no comprehensive method for identifying derivative tokens,
nor a clear and shared definition. Similarly, the collection of
token prices can be improved. We could not price all tokens in
our dataset with our approach (but we did cover all the most
relevant ones), and on-chain prices should be extracted from
multiple DEXs and liquidity pools to account for low-liquidity
scenarios. The price of certain tokens, like NFTs, might need
to be complemented with exchange market price data. Fourth,
relying only on on-chain sources is likely more costly and less
efficient computationally. This approach might face resistance
due to the varied nature of the platforms involved. Following
the suggested approach, protocols might have to disclose more
information than they do today. As this comes at a gain in
terms of transparency and verifiability, it is important to further
investigate how to balance these aspects.

Beyond our analysis, we note that TVR [8] is devised for
application on an entire ecosystem and therefore helps stan-
dardize TVL at the ecosystem level. However, it remains still
unclear how to conduct asset selection at the protocol level.
Appendix G provides further analyses on TVL composition
changes in relation to TVR and across protocol category, size,
and time. Further research should focus on this aspect.

Finally, we remark that the verifiability and transparency of
TVL computations is part of a broader discussion on DeFi-
related risks and issues. Indeed, DeFi automation and the
removal of human involvement has introduced or heightened
certain risks, e.g. diminishing oversight and control, or paving
the way for new types of intermediaries [42]. Just as TVL
should be verifiable, proof-of-reserve systems are essential
for stablecoins and cryptoasset trading platforms [43], [44].
Moreover, the need for governance makes some degree of
centralization unavoidable [45], and structural aspects of the
system contribute to the concentration of power in the hands
of few developers [46], [47].

VI. CONCLUSIONS

In this work, we conduct a systematic study on 939 DeFi
projects deployed in Ethereum. We first provide a compre-
hensive understanding of the methodologies currently used
for TVL computation; next, we examine the extent to which
TVL is reproducible and verifiable using available on-chain
data by introducing a new metric, the verifiable Total Value
Locked (vTVL). Informed by these analyses, we propose
design guidelines and possible standardization attempts in the
field.

TVL is a fundamental financial metric in the DeFi ecosys-
tem. Reaching common standards and publishing verifiable
figures is critical to obtaining a clear overview of the true
dimensions of the DeFi ecosystem, informing correctly users’
investment decisions, and guaranteeing fair competition across
protocols. This also supports the need for greater financial
transparency and accountability to address the expectations of
diverse stakeholder groups, including users, investors, and reg-
ulators. This work provides several insights in this direction.
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APPENDIX

A. Implementation Details

To investigate how TVL is technically computed in practice,
we devised a data extraction pipeline that captures interactions
of the DefiLlama Adapters GitHub repository with its environ-
ment (e.g., nodes, websites, etc.) during TVL computation. In
this Section, we provide additional implementation details on
how to intercept and record such interactions.

To integrate a project into DeFiLlama, users need to develop
plugins that contain the logic for computing TVL. The De-
FiLlama Adapters GitHub repository provides an SDK to sim-
plify this integration process. Once the project is successfully
integrated, a dedicated folder is created within the repository,
containing the protocol plugin and the necessary information
to compute TVL.

To intercept the interactions, we instrument the runtime
environment and execute each project’s plugin at the specified
Ethereum block height and DeFiLlama commit. Refer to
https://github.com/mswjs/interceptors for details on how
we intercept all HTTP calls made by the Node.js process. In
this way, we systematically capture all interactions (via http
calls) with the environment involved in generating the TVL for
a specific project. This notably encompasses all calls directed
towards the Ethereum node software, as well as interactions
with external hosts.

Table II reports additional information on the calls directed
to the Ehtereum node. Specifically, it shows the most common
tokens queried in balanceOf calls. TVL is computed mostly
on wETH and wBTC (respectively 10 984 and 1415 queries),
on stablecoins (USDC, 4236; USDT, 2197; DAI, 2144), gover-
nance tokens (UNI, 891; COMP, 790; AAVE, 777), and staked
tokens (stETH; 654).

Address Symbol Count

0xC02aaA3... WETH 10 984
0xA0b8699... USDC 4236
0xdAC17F9... USDT 2197
0x6B17547... DAI 2144
0x2260FAC... WBTC 1415
0x5149107... LINK 1002
0x1f9840a... UNI 891
0xc00e94C... COMP 790
0x7Fc6650... AAVE 777
0xD533a94... CRV 760
0x9f8F72a... MKR 715
0x6B35950... SUSHI 690
0xae7ab96... stETH 654
0x7D1AfA7... MATIC 646
0x1111111... 1INCH 616
0x408e418... REN 615
0x4Fabb14... BUSD 570
0x0F5D2fB... MANA 564
0xc944E90... GRT 556
0x0000000... TUSD 549

TABLE II: Most frequently called tokens in balanceOf
functions. Wrapped ETH and BTC, stablecoins, governance
and staked tokens play a primary role.

B. Reproducibility and reliance on off-chain data

In this appendix, we provide additional information on the
servers and errors that were detected during TVL computation.
Table III reports a list of the documented errors categorized
by typology. The most occurring ones are related to the
block height provided not being accepted, or are caused by
a collection of asynchronous operations that did not complete
successfully. Other errors can be reconducted to the lack of
missing fields or parameters and other technical problems. Ta-
ble IV reports a full list of the detected servers. While the one
occurring most frequently is part of TheGraph infrastructure,
an open-source software used to collect, process, and store
data from various blockchain applications, the majority are
servers from third parties. We note that we excluded the server
‘coins.llama.fi’, as it is likely associated with DeFiLlama itself
and used for internal operations.

Error Count

Block height 53
Asynchronous calls failed 17
Key required 5
Missing field/parameter 5
Undefined/null object 4
Call method failed 3
Invalid token/balance 2
GraphQL error 1

TABLE III: Errors occurred during TVL computation.
Most of them are related to technical issues when running
the TVL-computing code.

C. Heterogeneity of on-chain interactions

We now discuss the network analysis results for the fre-
quency of occurrence in absolute terms of the functions called,
of the number of protocols calling each specific function,
and for the number of token calls in balanceOf functions.
Following established methodologies [48], [49], we estimate
the parameters θ̂ = (k̂min, α̂) and conduct a goodness-of-fit
test via a bootstrapping procedure (N = 1,000). The resulting
p-value indicates if the power law is a plausible fit for the
empirical data (i.e., p ≥ 0.1) or not. A log-likelihood ratio
(R) test is conducted to compare the power-law fit against
other heavy-tailed distributions (exponential, lognormal, and
weibull). While the bootstrap analysis shows that the hypoth-
esis that a power-law distribution is a good fit holds only
for the distribution of the number of protocols calling each
specific function, in all three cases the power law is either
a better fit with respect to the other distributions, or the test
is inconclusive. An inflection point in the distribution of the
number of token calls in balanceOf functions, between the
values 400 and 1,000 of the x-axis, indicates that values on
the right of the elbow are overrepresented and potentially the
existence of a transition region.

Next, we comment the approach used to identify alternative
functions likely used to compute TVL. Table V reports the
most called on-chain functions in absolute terms, rather than



Server Count Server Count

api.thegraph.com 29 config.rampdefi.com 1
raw.githubusercontent.com 5 analytics.back.popsicle.finance 1
sushi-analytics.onrender.com 3 api.affinedefi.com 1
rpc.ankr.com 3 bridge.orbitchain.io 1
vault-content-api.teahouse.finance 2 api.angle.money 1
tvl-adapter-cache.s3.eu-central-1.amazonaws.com 2 api.axelarscan.io 1
api.myso.finance 2 api.beefy.finance 1
crucible.alchemist.wtf 1 api.clipper.exchange 1
data.cian.app 1 api.cream.finance 1
devapi.ease.org 1 api.daomaker.com 1
knit-admin.herokuapp.com 1 api.debridge.finance 1
explorer.poly.network 1 api.defiedge.io 1
f8wgg18t1h.execute-api.us-west-1.amazonaws.com 1 api.exchange.coinbase.com 1
files.insurace.io 1 api.flashstake.io 1
gateway-arbitrum.network.thegraph.com 1 api.flokifi.com 1
counterstake.org 1 api.goldsky.com 1
graph-node.mainnet.termfinance.io 1 api.hord.app 1
graph-proxy.nftx.xyz 1 api.hotcross.com 1
homora-api.alphafinance.io 1 api.mean.finance 1
messina.one 1 api.multibit.exchange 1
lsd-subgraph.joinstakehouse.com 1 api.nodes-brewlabs.info 1
bsc-dataseed1.defibit.io 1 api.resonate.finance 1
metabase.internal-streamflow.com 1 api.staking.ankr.com 1
midgard.ninerealms.com 1 api.studio.thegraph.com 1
moonbeam.public.blastapi.io 1 api.tokensfarm.com 1
partner-api.stafi.io 1 api.unrekt.net 1
polygon-rpc.com 1 api.vesper.finance 1
preserver.mytokenpocket.vip 1 app.everrise.com 1
stakehouse-subgraph.joinstakehouse.com 1 assets.nabox.io 1
static.optimism.io 1 backend.mochi.fi 1
token-list.solv.finance 1 beaconcha.in 1
universe.staderlabs.com 1 bsc-dataseed.binance.org 1

TABLE IV: External servers utilized in TVL computations. An occurrence is counted each time a protocol interacts with a
server. While some pose a smaller threat to verifiability, e.g., TheGraph, others appear to be associated with specific protocols.

Method Count N of protocols Method Count N of protocols

balanceOf 102655 641 underlying 1613 43
getLockedTokenAtIndex 44022 1 escrows 1203 1
balanceOfUnderlying 4191 3 token0 1040 94
getCurrentTokens 3436 10 token1 1040 94
getReserves 3016 121 tokenByIndex 875 2
totalSupply 2577 154 balance 874 9
token 2456 24 get_coins 814 2
symbol 1835 64 pool_list 809 1
eth_getBalance 1696 170 getEthBalance 791 7
poolInfo 1672 25 calcTotalValue 773 1

TABLE V: Most called functions in absolute terms. A number of functions (e.g., balanceOfUnderlying, balance) have names
indicating that they are likely used to compute balance in a non-standard way.

being ranked by the number of protocols that call them. We
notice that a number of function names (balanceOfUnderlying,
balance, as well as totalAssets that appeared in Table I),
indicate functions that are likely to compute balance in al-
ternative ways with respect to the balanceOf most common
method. To identify all these functions, we use a set of regular
expressions that capture any method whose function name
includes the term ‘balance’, or a case-insensitive combina-
tion of the following terms: ‘total, get, locked’ AND ‘tvl,
Ether, ETH, stake, underlying, reserve, amount, supply, value,

locked, shares, asset, liquidity’. Furthermore, we conduct a
manual check to remove functions that are clearly not com-
puting TVL but provide supplementary functionalities, such
as totalSupply or getReserves. Table VI reports the full list
of alternative functions to balanceOf likely used to compute
TVL. In total, we remove the following 21 functions: getAsset-
Info, getAssetsPrices, getAssetsWithState, getBNFTAssetList,
getLiquidityPools, getLockedTokenAtIndex, getNumLockedTo-
kens, getReserveData, getReserves, getReservesData, getRe-
servesList, getUnderlyingAsset, getUnderlyingOfIBTAddress,



Function name Hex Signature Function name Hex Signature

accountedBalance [’0x0937eb54’] getTotalRPLStake [’0x9a206c8e’]
allBalances [’0x555b6162’] getTotalReserves [’0x242693d3’]
balance [’0xb69ef8a8’] getTotalUnderlying [’0xb40494e5’]

balanceOf [’0x00fdd58e’, ’0x35ee5f87’,
’0x3656eec2’, ’0xf7888aec’] getTotalValueInPool [’0xc8ecaf30’]

balanceOfUnderlying [’0x3af9e669’] getTrackedAssets [’0xc4b97370’]

balances [’0x4903b0d1’, ’0x065a80d8’,
’0x8909aa3f’, ’0x27e235e3’] getTvl [’0xd075dd42’]

borrowBalanceStored [’0x95dd9193’] getUnderlying [’0x9816f473’]
calcTotalValue [’0xc7de38a6’] getUnderlyingBalances [’0x1322d954’]
checkBalance [’0x5f515226’] getUnderlyings [’0xf65baefa’]

currencyBalance [’0x5c75347a’] getUnderlyingsAmounts-
FromClusterAmount [’0x9bb1bebb’]

currentTotalStake [’0xce4843e9’] lockedBalances [’0x0483a7f6’]
getAllAssets [’0x2acada4d’] lockedLiquidityOf [’0xd9f96e8d’]
getAllStakes [’0x04238994’] lockedStakesOf [’0x1e090f01’]
getAssets [’0x67e4ac2c’] lockedSupply [’0xca5c7b91’]
getBassets [’0x1d3ce398’] poolBalance [’0x96365d44’]
getCacheBalances [’0x4a9d1036’] syncBalance [’0xfd9c652b’]
getContractValue [’0xdc82697c’] totalAsset [’0xf9557ccb’]
getETHPx [’0xab9aadfe’] totalAssetAmount [’0xfd27152c’]
getEthBalance [’0x4d2301cc’] totalAssetBorrow [’0x20f6d07c’]
getLockedVestings [’0x344e58d3’] totalAssets [’0x01e1d114’]
getPoolAmount [’0x945eb764’] totalBalance [’0xad7a672f’]
getPoolTotalValue [’0xf1437c16’] totalBalanceOf [’0x4b0ee02a’]
getRawFundBalances [’0xe2e4c60c’] totalETH [’0x36bdee74’]
getRawFund-
BalancesAndPrices [’0x0d8f8a90’] totalReserve [’0x4c68df67’]

getReserveTotalBorrows [’0xe6d18190’] totalReserves [’0x8f840ddd’]
getSupply [’0xf77ee79d’] totalSYNCLocked [’0xc3f4d79f’]
getSupportedAsset [’0x60a8b18a’] totalStaked [’0x817b1cd2’]
getSupportedAssets [’0xe5406dbf’] totalTokenBalanceStakers [’0x1878fbf3’]
getSupportedAssetsLength [’0xc0fd22b7’] totalValue [’0xd4c3eea0’]
getToken1Balance [’0x5153786b’] total_staked [’0xaf7568dd’]
getTotalAmounts [’0xc4a7761e’] underlyingBalance [’0x59356c5c’]
getTotalAsset [’0x2768385d’] virtualBalance [’0xdcd2af17’]
getTotalBalance [’0x12b58349’] virtualUsdtAccumulatedBalance [’0xd88953b4’]
getTotalPooledEther [’0x37cfdaca’] yvCurveFRAXBalance [’0xc645065e’]

TABLE VI: Alternative functions to balanceOf likely used to compute TVL. For each function we report the name
(1stcolumn) and its hex signature (2ndcolumn).

getUnderlyingPrice, getUnderlyingTokenAddress, totalShares,
totalSupply, totalUnderlying, totalUnderlyingSupply.

D. Changes to computation methods over time

The analysis in Section III-D follows the intuition that
developers can modify how TVL is computed and that the col-
lection may be dependent on one specific implementation, thus
TVL computations might change across time and commits. We
thus repeat the data gathering on the following commits:

• 6764756f9270ab6a3047c06c13c0b1b2d32a3247: Jan 4 2024;
• aef637c6413b5101667e567a0422769b1ca99564: Oct 4 2023;
• 1bfb7b5c798c7a491694882a7b390ed41385c315: Jul 4 2023;
• 72b764c5d0bb5896f2857dd8c2ced5e89e7fb063: Apr 4 2023;
• 679f52e123a19d9c5160d1aa79a33dd9de6dc5ec: Jan 4 2023;

As discussed in the main body of the paper, we do not analyze
data earlier than 2023: the structure of some critical files
within the DeFiLlama repository has changed in time, thus
making our data-gathering infrastructure less reliable on older
commits. In particular, the number of comparable commits
decreases steadily with time, and for commits older than
Aug 2021, our pipeline becomes not compatible with specific
changes made to the repository (see https://github.com/DefiL

lama/DefiLlama-Adapters/discussions/432). Table VII shows
that differences in the dataset of captured calls across commits
exist: the total amount of calls to an Ethereum node is not
stable over time, and few specific protocols play a relevant role
in this sense: as one can see in Table VII, the differences are
markedly smaller when some specific projects are excluded.

Jan 24 Oct 23 Jul 23 Apr 23 Jan 23

Total calls 197 775 333 239 262 512 314 280 254 259
Unicrypt calls 44 032 198 228 150 094 104 165 77 063
Other calls 153 743 135 011 112 418 210 115 177 196

TABLE VII: Dataset dimension in different commits. One
specific protocol (Unicrypt) is responsible for large variations
across commits.

Next, in Figure 6 we report additional information on
the Jaccard similarity analysis. We recall that the Jaccard
similarity coefficient, utilized for measuring the similarity
of overlapping sets, is defined as the ratio between their
intersection and their union, and ranges between 0 and 1. We
therefore favor it over alternative similarity metrics that mea-
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Fig. 6: Jaccard similarity. Panel (a) reports the same infor-
mation of Figure 3, but projects are reported on the x-axis
in absolute terms instead of being normalized. The sample of
comparable protocols decreases sharply when older commits
are compared. Panel (b) shows instead the Jaccard similarity
values when including also projects that raised errors in the
data-gathering process or used external hosts. Average values
range from 0.90% to 0.75%.

sure distances between text strings (e.g., Hamming), vectors
(e.g., cosine similarity) or that identify correlations across data
points (e.g., Spearman or Pearson). The left panel shows the
same information of Figure 3, but the x-axis is not normalized.
The right panel includes instead all protocols, therefore also
the ones that raised errors in the data-gathering process or used
external hosts. The average Jaccard values are 0.90%, 0.85%,
0.80%, and 0.75% respectively for Oct, Jul, Apr, and Jan 2023.
Notably, we cannot exclude that differences in older commits
are due to a less reliable collection. Therefore, our findings can
be interpreted as a lower boundary for the similarity values.

Finally, Table VIII reports information on the evolution
over time of the ratio between the number of standard and
alternative balance queries (excluding protocols that used hosts
or raised errors during the data collection).

Commit identifiers and date

676475
(2024
01-04)

aef637
(2023
10-04)

1bfb7b
(2023
07-04)

72b764
(2023
04-04)

679f52
(2023
01-04)

Alt. functions 6831 7554 6836 6882 7197
Std. balance queries 70073 54144 27534 23426 18367
Ratio 0.089 0.122 0.199 0.227 0.282

TABLE VIII: Evolution over time of the ratio between the
number of standard and alternative balance queries. Stan-
dard balance queries include balanceOf and eth_getBalance
calls.

E. Non-mutually exclusive smart contract calls

We report the list of duplicated addresses in Tables IX
and X. These correspond to calls executed by different proto-
cols (column ‘Protocols’) on the same input address (column
‘Input’) and token address (only for Table X, column ‘On’).
Upon closer inspection, we find that in most cases they
are related to interconnected protocols (see, e.g., metis and
metisBridge and Curve and Bent). One possible explanation
for this phenomenon is that these addresses are reported
directly by the project developers; we cannot exclude that
some of the smart contracts are incorrectly reported multiple
times only for a temporary time span and that they are further
removed by the maintainers of the DeFiLlama platform.

Input Protocols

0x3980c9ed79d2c191a89e02fa3529c60ed6e9c04b [’metis’ ’metisBridge’]
0x8301ae4fc9c624d1d396cbdaa1ed877821d7c511 [’curve’ ’bent’]
0xb576491f1e6e5e62f1d8f26062ee822b40b0e0d4 [’curve’ ’bent’]
0xd51a44d3fae010294c616388b506acda1bfaae46 [’curve’ ’bent’]
0xdc24316b9ae028f1497c275eb9192a3ea0f67022 [’curve’ ’bent’]

TABLE IX: Duplicated get_ethBalance functions.
get_ethBalance calls executed by different protocols on
the same input address (column ‘Input’).

F. TVL reconstruction from on-chain data

To conduct the analyses in Section F, we collect on-chain
data for each protocol-specific address and its associated
tokens as follows. We inspect calls that represent balance
queries for Ether or tokens, assuming that addresses queried
during computation contribute to the project TVL. We obtain
a list of addresses contributing towards the locked value for
each project, along with a compilation of tokens (N = 12246)
in which all projects hold value. Next, for each protocol, we
extract cryptoassets balances and prices. To obtain quantities,
we use the lists of protocol-specific addresses and tokens to
query their state and extract historical balance information
monthly from January 1st 2021 to February 1st 2024. To price
tokens in a common currency, for each token we search for
trading pairs between that token and wrapped Ether (wETH)
on the Uniswap V2 DEX until January 2024, extract the logged
liquidity changes occurring after any trading or liquidity
provision action, and compute their implied exchange rate



Input On Protocols Input On Protocols

0x031816fd... 0x03e173ad... [’dodo’ ’thales’] 0x031816fd... 0xc02aaa39... [’dodo’ ’thales’]
0x0f41eade... 0xc36442b4... [’pawnfi-lending’ ’pawnfi-nft’] 0x16770d64... 0xc02aaa39... [’enzyme’ ’diva’]
0x19b080fe... 0x96e61422... [’keep3r’ ’curve’] 0x1a26ef65... 0x42bbfa2e... [’bobagateway’ ’boba’]
0x1a26ef65... 0xd26114cd... [’bobagateway’ ’boba’] 0x1ce8aafb... 0xae7ab965... [’enzyme’ ’diva’]
0x23012599... 0xba30e5f9... [’pawnfi-lending’ ’pawnfi-nft’] 0x25d6fe0d... 0x49cf6f5d... [’pawnfi-lending’ ’pawnfi-nft’]
0x27e49962... 0x790b2cf2... [’pawnfi-lending’ ’pawnfi-nft’] 0x27f23c71... 0xc02aaa39... [’enzyme’ ’nexus’]
0x306b1950... 0xeca82185... [’uma’ ’perlinx’] 0x325a0e5c... 0xae7ab965... [’swell-vault’ ’enzyme’]
0x325a0e5c... 0xc02aaa39... [’swell-vault’ ’enzyme’] 0x32ecc1de... 0xb7f7f6c5... [’pawnfi-lending’ ’pawnfi-nft’]
0x3980c9ed... 0x1f9840a8... [’metis’ ’metisBridge’] 0x3980c9ed... 0x2260fac5... [’metis’ ’metisBridge’]
0x3980c9ed... 0x3405a1bd... [’metis’ ’metisBridge’] 0x3980c9ed... 0x4fabb145... [’metis’ ’metisBridge’]
0x3980c9ed... 0x51491077... [’metis’ ’metisBridge’] 0x3980c9ed... 0x6226e00b... [’metis’ ’metisBridge’]
0x3980c9ed... 0x6b175474... [’metis’ ’metisBridge’] 0x3980c9ed... 0x6b359506... [’metis’ ’metisBridge’]
0x3980c9ed... 0x7fc66500... [’metis’ ’metisBridge’] 0x3980c9ed... 0x9e32b13c... [’metis’ ’metisBridge’]
0x3980c9ed... 0xa0b86991... [’metis’ ’metisBridge’] 0x3980c9ed... 0xba6b0dbb... [’metis’ ’metisBridge’]
0x3980c9ed... 0xd533a949... [’metis’ ’metisBridge’] 0x3980c9ed... 0xdac17f95... [’metis’ ’metisBridge’]
0x3a93e863... 0xeca82185... [’uma’ ’perlinx’] 0x3e75dcad... 0xa0b86991... [’domfi’ ’uma’]
0x3f1b0278... 0xfafdf0c4... [’keep3r’ ’curve’] 0x41284a88... 0x0bc529c0... [’percent’ ’balancer-v1’]
0x41284a88... 0xc02aaa39... [’percent’ ’balancer-v1’] 0x43b4fdfd... 0xbc6da0fe... [’curve’ ’bent’]
0x46f5e363... 0xeca82185... [’uma’ ’perlinx’] 0x4a2f0ca5... 0x1f573d6f... [’bancor’ ’ichifarm’]
0x4a2f0ca5... 0x903bef17... [’bancor’ ’ichifarm’] 0x4e8d60a7... 0xc02aaa39... [’degenerative’ ’uma’]
0x4f1424ce... 0xa0b86991... [’degenerative’ ’uma’] 0x505efcc1... 0x04abeda2... [’nest’ ’parasset’]
0x516f5959... 0xc02aaa39... [’degenerative’ ’uma’] 0x55a8a39b... 0x99d8a9c4... [’curve’ ’bent’]
0x55a8a39b... 0xa47c8bf3... [’curve’ ’bent’] 0x58378f5f... 0x903bef17... [’ichifarm’ ’balancer-v1’]
0x58378f5f... 0xc02aaa39... [’ichifarm’ ’balancer-v1’] 0x5a6a4d54... 0x99d8a9c4... [’curve’ ’bent’]
0x5eeaef7d... 0xed5af388... [’pawnfi-lending’ ’pawnfi-nft’] 0x5f0a4a59... 0xbc4ca0ed... [’pawnfi-lending’ ’pawnfi-nft’]
0x7514799c... 0xe012baf8... [’pawnfi-lending’ ’pawnfi-nft’] 0x799c9518... 0xa0b86991... [’degenerative’ ’uma’]
0x7c62e5c3... 0xc02aaa39... [’degenerative’ ’uma’] 0x7d0b6fb1... 0x60e4d786... [’pawnfi-lending’ ’pawnfi-nft’]
0x82c427ad... 0xc02aaa39... [’opyn-squeeth’ ’uniswap’] 0x8301ae4f... 0xc02aaa39... [’curve’ ’bent’]
0x8301ae4f... 0xd533a949... [’curve’ ’bent’] 0x8461a004... 0x95dfdc81... [’keep3r’ ’curve’]
0x8818a9bb... 0x5555f75e... [’keep3r’ ’curve’] 0x94e653af... 0xa0b86991... [’domfi’ ’uma’]
0x99e58237... 0x6b175474... [’percent’ ’balancer-v1’] 0x99e58237... 0xc02aaa39... [’percent’ ’balancer-v1’]
0x9a5c88ac... 0x04abeda2... [’nest’ ’parasset’] 0x9c2c8910... 0x1cc481ce... [’keep3r’ ’curve’]
0x9d046499... 0x62b9c735... [’curve’ ’bent’] 0x9d046499... 0xd533a949... [’curve’ ’bent’]
0x9fe9bb6b... 0x9ea3b5b4... [’delta’ ’core’] 0xaa5a67c2... 0x86537736... [’curve’ ’bent’]
0xaff95ac1... 0x903bef17... [’rari’ ’ichifarm’] 0xb1a3e5a8... 0xa0b86991... [’degenerative’ ’uma’]
0xb39edbc5... 0xe0a97733... [’tokensfarm’ ’bloxmove’] 0xb40ba947... 0xeca82185... [’uma’ ’perlinx’]
0xb576491f... 0x4e3fbd56... [’curve’ ’bent’] 0xb576491f... 0xc02aaa39... [’curve’ ’bent’]
0xba3436fd... 0x1a7e4e63... [’angle’ ’curve’] 0xba3436fd... 0x1abaea1f... [’angle’ ’curve’]
0xbaaa1f5d... 0x853d955a... [’curve’ ’bent’] 0xbaaa1f5d... 0x956f47f5... [’curve’ ’bent’]
0xbaaa1f5d... 0xbc6da0fe... [’curve’ ’bent’] 0xbebc4478... 0x6b175474... [’curve’ ’bent’]
0xbebc4478... 0xa0b86991... [’curve’ ’bent’] 0xbebc4478... 0xdac17f95... [’curve’ ’bent’]
0xc3160c5c... 0x40803cea... [’spool-v2’ ’spool’] 0xc48b8329... 0xc00e94cb... [’percent’ ’balancer-v1’]
0xc48b8329... 0xc02aaa39... [’percent’ ’balancer-v1’] 0xc697051d... 0x7fc66500... [’aave’ ’balancer-v1’]
0xc697051d... 0xc02aaa39... [’aave’ ’balancer-v1’] 0xca2531b9... 0xc02aaa39... [’degenerative’ ’uma’]
0xceaf7747... 0xa693b19d... [’curve’ ’bent’] 0xd3a0e00f... 0xa0b86991... [’domfi’ ’uma’]
0xd50fbace... 0xeca82185... [’uma’ ’perlinx’] 0xd51a44d3... 0x2260fac5... [’curve’ ’bent’]
0xd51a44d3... 0xc02aaa39... [’curve’ ’bent’] 0xd51a44d3... 0xdac17f95... [’curve’ ’bent’]
0xd632f226... 0x6c3f90f0... [’fraxfinance’ ’bent’] 0xd632f226... 0x853d955a... [’curve’ ’bent’]
0xd6ac1cb9... 0x69681f8f... [’keep3r’ ’curve’] 0xdc24316b... 0xae7ab965... [’curve’ ’bent’]
0xdcef968d... 0xa0b86991... [’curve’ ’fraxfinance’] 0xe010fcda... 0x51491077... [’percent’ ’balancer-v1’]
0xe010fcda... 0xc02aaa39... [’percent’ ’balancer-v1’] 0xe867be95... 0xba100000... [’percent’ ’balancer-v1’]
0xe867be95... 0xc02aaa39... [’percent’ ’balancer-v1’] 0xe969991c... 0xa0b86991... [’percent’ ’balancer-v1’]
0xe969991c... 0xc02aaa39... [’percent’ ’balancer-v1’] 0xeb85b2e1... 0xbc16da9d... [’percent’ ’balancer-v1’]
0xeb85b2e1... 0xc02aaa39... [’percent’ ’balancer-v1’] 0xee9a6009... 0x2260fac5... [’percent’ ’balancer-v1’]
0xee9a6009... 0xc02aaa39... [’percent’ ’balancer-v1’] 0xf083fba9... 0x4e3fbd56... [’curve’ ’bent’]
0xf083fba9... 0x9e0441e0... [’curve’ ’bent’] 0xf35a80e4... 0xc02aaa39... [’degenerative’ ’uma’]
0xf861483f... 0x853d955a... [’fpi’ ’curve’] 0xf8ef02c1... 0xc02aaa39... [’degenerative’ ’uma’]
0xfcfc434e... 0x1498bd57... [’delta’ ’core’] NaN NaN NaN

TABLE X: Duplicated balanceOf functions. BalanceOf calls executed by different protocols on the same token address
(column ‘On’) and input address (column ‘Input’).

determined by the liquidity ratio as in [40]. We exclude tokens
with very low liquidity and remove price outliers (more details
below); in total, using this approach, we could price 942
tokens. For comparisons with USD, we gather historical data
from Coingecko on the ETH/USD exchange rate.

Finally, we categorize tokens following the conceptual-
ization of Section II. We extract data from Coingecko and
Coinmarketcap [50], [51] to identify stablecoins and gover-
nance tokens, and complement this with a semi-automated
search of derivative tokens and additional governance tokens
based on regular expressions on their names and symbols. We

divide tokens into seven different categories: Ether and its
wrapped token wETH, wrapped BTC (wBTC), non-crypto-
backed stablecoins, crypto-backed stablecoins, governance to-
kens, derivative tokens, and others (non categorized) tokens.
Specifically, we conduct the following steps:

• Stablecoins: we extract information from Coingecko [50]
and Coinmarketcap [51] on N = 64 stablecoins. We select
those with more than 20 mln$ market capitalization,
whose price is stable over time, and pegged to the US
dollar (stablecoins pegged to EUR or commodities like
gold clearly represent a minor market). Next, we look



into their documentation and distinguish those that are
decentralized and backed by other cryptoassets4 (N = 11)
and those that are issued by trusted entities after a deposit
of external assets such as cash, treasury bills, or other
cash equivalents5 (N = 9).

• Governance tokens: we exploit again Coingecko and
Coinmarketcap to extract a list of N = 110 governance
tokens; we complement it with a regular-expression-based
search on the dataset of 12 246 tokens being called
in DeFiLlama to compute protocols balances and label
additional tokens that contain the word ‘governance’ in
their name, for a total of N = 162 tokens;

• Bitcoin tokenized representations through bridges:
whilst other tokens in addition to wrapped Bitcoin
(wBTC) exist, wBTC is by far the largest one in the
ecosystem. For instance, renBTC and Houobi BTC, two
of the main alternatives to wBTC, have a market cap-
italization of around 20 mln$ against almost 9 bnl$ of
wBTC at the time of writing. Following a similar line of
thought, we only focus on Bitcoin, and do not investigate
other distributed ledgers and their native tokens.

• Derivative tokens: we utilize the dataset of 12 246 tokens
called in DeFiLlama to identify them. Upon a deep
inspection of the data, we found that token names follow
specific patterns; for instance, DEX LP token names
typically contain terms like ‘LP’ or ‘Pool’; interest-
bearing tokens from protocols like Compound and Aave
produce cTokens and aTokens that represent a claim on
the underlying asset; similarly, sTokens are receipt tokens
for the Synthetix protocol. We devise a procedure based
on regular expression searches executed on the token
names. We identify a total of 2222 derivative tokens.

We now provide additional details on the procedure envis-
aged to obtain token prices. As the price time series extracted
are noisy, we exclude the tokens having less than 10 000
points, i.e. those that are traded rarely and have very low
liquidity, assuming that they do not play a relevant role in
the ecosystem. Next, we implement a cleaning procedure to
remove from each price time series the outliers, i.e., individual
price values that diverge by several orders of magnitude from
the trend. To remove them, we compute the centered rolling
average on a time window of ten days and remove all values
where the difference between the rolling average and the
price time series is larger than 20%. While the approach
is relatively simple, it provides satisfying results for most
tokens, but it is not effective on tokens with low liquidity.
We then conduct manual sanity checks to ensure that prices
are cleaned correctly and additionally remove the prices of
80 tokens whose values have exceedingly high volatility and
therefore it was not possible to determine accurately their
correct trend. Future work could investigate these choices more
thoroughly and provide an alternative scenario that includes

4DAI, Liquity USD, FRAX, Ethena USDe, Decentralized USD, mkUSD,
sUSD, Alchemix USD, DOLA, MIM.

5USDT, USDC, True USD, BUSD, PAX Dollar, First Digital USD, Paypal
USD, Gemini Dollar, Verified USD.

also the removed tokens. However, as for most protocols the
value is concentrated in few and widely used tokens, we do not
expect findings to change substantially. Finally, we manually
check that the stablecoins included in the study did not deviate
from their peg and assume that their price is anchored to the
US dollar.
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Fig. 7: TVL reconstruction for the Ethereum DeFi ecosys-
tem. The plot shows the evolution in time of the vTVL value
for all protocols in the case study.

To provide a broader picture of the ecosystem, in addition
to the individual protocols described in Section IV-A, we
show in Figure 7 the sum of the vTVL of all protocols for
which we could recompute values and its evolution in time,
again compared to DeFiLlama API data. The off-chain TVL
value reported here for comparison is smaller than the TVL
of the entire DeFi ecosystem, first because it is computed
only on Ethereum, and second because our dataset includes
only projects for which we could extract both on-chain and
off-chain data. We observe that the vTVL is dominated by
Ether and non-crypto-backed stablecoins; the remaining token
categories play a less relevant role. It is also possible to notice
that the off-chain and on-chain sources correspond only until
the end of 2022. However, we argue that in this context
the comparison between on-chain data and DeFiLlama API
data is for reference and illustrative purpose only. Indeed, we
noticed that for some protocols the API data are reported only
after a certain date, while we find on-chain assets associated
with them also before that date. This inflates the quantity
of on-chain assets in comparison with the off-chain ones
for earlier dates. Second, our infrastructure did not capture
standard balance calls enabling to reconstruct the TVL of
the protocol Lido, which is one of the largest protocols in
terms of TVL according to DeFiLlama, especially after the
end of 2022. Third, by investigating the largest protocols,
we found that the API files do not always report data for
protocol versions separated consistently with respect to how
they are reported in the GitHub DeFillama repositories. For
instance, Aave APIs report together Aave v2 and v3 (the
repository reports one folder for Aave-v1 and one named



‘Aave’ seemingly for v2 and v3). The Uniswap API file reports
together v2 and v3; however, Uniswap-v1, -v2, and -v3 are
reported in a separate folder (we thus corrected API data
accordingly). We also note that Uniswap -v1 and -v2 values
are partly computed through the use of external hosts, while
for Uniswap v3 we captured on-chain interactions. Similarly, a
steadily discrepancy emerges for the protocol Maker at the end
of 2022. Also in this case, as explained in the main body of the
paper, this could be due to the use of external hosts to compute
TVL, but this pattern is also consistent with the possibility that
the APIs include both Maker and its related project Maker
RWA. All these considerations explains at least in part the
structural difference that emerges in the comparison of on-
chain and off-chain sources between and after end of 2022.
Finally, as the change also corresponds with the Merge (which
took place on September 2022), we cannot exclude that also
this event has a role. This aspect needs further investigation.

G. TVL Composition Changes Across Categories & Time

In this section we examine TVL composition changes
by posing specific attention to the tokens included in the
calculation of TVR introduced by Luo et al. [8]. Specifically,
we analyze how the ratio between the value of assets used to
measure TVR and the value of TVL, R = TV Ra

TV L , changes
across protocol category, protocol size, and time.

We utilize the API DeFiLlama data to avoid data loss and
utilize our token categorization to compute the amount of
each protocol as the US dollar amount of plain tokens, i.e.,
native tokens, governance tokens, and NCB stablecoins. We
focus on the subset of protocols (N = 412) with average
TVL larger than 5 · 104 USD to ensure noise reduction and
group them in DeFi categories as reported by DeFiLlama,
focusing on Derivatives (N = 19), DEXs (N = 69), Lending
(N = 46), Staking (N = 17), and Yield (N = 47) protocols.
The remaining ones (including Collateralized Debt Position
or CDP protocols, Services, Real World Assets or RWA, NFT
Marketplaces, . . . ) are categorized as ‘Others’. Figure 8 reports
the ratio R for these protocol categories without distinguishing
them based on size or time. We find that the median value of
R is respectively 90.4%, 68.3%, 55.3%, 94.4%, 23.8%, and
51.4%. Yield protocols highly rely on non-redeemable tokens,
while Derivatives and Staking protocols have the highest ratio,
indicating lower reliance on them.

Figure 9 shows two panels conveying additional information
on the ratio R, with protocols further divided by size (upper
panel) and time (lower panel). More precisely, on top we
divide protocols in small size (N = 117), medium size (N
= 232), and large size (N = 63), respectively when they have
average TVL below 106 USD, between 106 USD and 108

USD, and larger than 108 USD. On the bottom, we split the
R values for each protocol across time (2021, 2022, 2023,
2024). Interestingly, we do not find strong patterns when
distinguishing protocols by size. Instead, in Panel (b) we
observe that for DEXs, Lending, and Derivatives protocols
(excluding 2021), the median of R is steadily decreasing over
time, indicating increased reliance on non-redeemable tokens.
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Fig. 8: Ratio R for different protocol categories. We
compute R = TV Ra/TV L as the ratio between the value
of assets used to measure TVR and the value of TVL, and
compare it across protocol categories. Derivtives and staking
protocols have the highest R values.
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Fig. 9: Ratio of Total Value Redeemable over Total Value
Locked. Protocols are grouped by category and further divided
by size (a) and time (b). The y-axis indicates the ratio R
between TVR and TVL. DEXs and Lending protocols rely
more on non-redeemable tokens in 2024 w.r.t. earlier years.
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