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Abstract

We show that the informational quality of stablecoin (SC) issuers’ reserve assets affects the

type of coordination game being played among SC holders and its equilibria. When the

volatility of reserve assets is unknown, par convertibility is resilient to small shocks but

fails with large negative public shocks to reserve asset values, even if they are initially high.

Public information disclosure increases (reduces) run risk for sufficiently low (high) holders’

priors about reserve quality. Transparency and quality of reserve assets have distinct effects

on issuer failure risk. Our results point to a trade-off between peg stability and issuer

fragility.
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1 Introduction

Stablecoins (SCs) are crypto tokens that live on distributed ledgers and promise to be

always worth a dollar.1 Variously likened to banks (Gorton and Zhang, 2023), exchange

rate pegs (Levy Yeyati and Katz, 2022) and a combination of money market and exchange

traded funds (Anadu et al., 2024; Ma et al., 2023; Oefele et al., 2023), the key defining

feature of stablecoins is their promise to deliver par convertibility to the sovereign unit of

account (Aldasoro et al., 2023). To make that promise credible, stablecoin issuers hold a

variety of reserve (collateral) assets, including fiat-denominated money market instruments,

Treasuries, bank deposits and other cryptoassets (including other stablecoins).

Public information and perceptions regarding the quality, transparency and volatility of

reserves are thus key for stablecoin peg stability. This was evident during the March 2023 US

banking turmoil. As stress in Silicon Valley Bank (SVB) mounted, the stablecoin USD Coin

(USDC, known to have a yet-undisclosed amount of deposits at SVB) broke par (see Figure

1, red line). The situation deteriorated when Circle, the issuer of USDC, disclosed it held

$3.3 billion of its cash reserve at SVB (first vertical dashed line). This episode illustrates

how a negative shock arising from increased transparency of reserves led to a shift in the

aggregate behavior of coin holders. USDC had served as a stable reserve asset for other

stablecoins such as Dai, which shortly thereafter lost its peg as well (solid black line): a

negative shock to the perceived quality of reserves that did not affect other (dollar-backed)

stablecoins.2 The situation only improved when the US government announced a backstop

for SVB (third vertical dashed line).

This paper analyzes how stablecoins’ peg stability is affected by the perceived quality and

volatility of reserve assets, as well as reserve disclosure and transparency. In an environment

where the volatility of the portfolio of reserve assets is unknown, the dollar value of these

assets is characterized by a fat-tailed distribution. Par convertibility is maintained in the

1Stablecoins arose from the need for a safe and stable unit of account within the volatile crypto ecosystem.
They saw a meteoric rise from $5 billion market capitalization in early January 2020 to $190 billion in early May
2022, followed by a steady decline over a couple of years. More recently they resumed growth, standing at a
record $203 billion as of December 2024. They established themselves as the medium of exchange of, and gateway
into, crypto. We focus on stablecoins pegged to the US dollar, as they make the lion’s share of the market.

2Crypto-backed stablecoins such as Dai or Frax provide constant public visibility of the composition of reserves
through on-chain mechanisms. Others like Circle do not continually disclose reserve assets and instead publish
regular reports and attestations. We refer to transparency as relating to the frequency and credibility of this
kind of public information, which contrasts with reserve volatility – large-scale fluctuations in the dollar value of
reserves that may or may not be made transparent to the public. We use Dai for illustrative purposes in Figure
1 due to better quality of data at the minute frequency. For empirical analysis we will focus instead on another
USDC-backed stablecoin (Frax), given several characteristics of Dai make it unfit for purpose.
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Figure 1: Stablecoin pegs around the run on Silicon Valley Bank.
Notes: Based on minute-by-minute data. The first vertical dashed line denotes Circle’s disclosure that $3.3 billion of its

cash reserve was held at SVB; the second line denotes the announcement by Circle that normal liquidity operations would

resume by Monday 13 March; and the third line denotes the announcement of a backstop by the US government. Figure

15 in Appendix C zooms in on the event to highlight more clearly the sequencing (USDC first, then Dai). Figure 16 shows

this was a common feature of USDC-backed stablecoins, whereas those backed by other cryptoassets remained stable.

Source: Cryptocompare.com.

face of small shocks (a resilience effect) but collapses under large negative public shocks,

even for high initial collateral values (a change effect). In turn, increased transparency has

a nuanced effect on run risk. When stablecoin holders’ priors about reserve quality are

sufficiently weak (which arise if the peg was recently broken), greater transparency amplifies

run risk. Conversely, when priors about reserve quality are strong (which arises in the

absence of severe pressure on the peg in previous periods), transparency can reduce run

risk. An implication is that a long history of stability with frequent disclosures is overall

conducive to peg stability. Drawing on several case studies and using a synthetic control

approach to address endogeneity concerns, we find empirical support for the implications of

the model.

We model a run on a stablecoin issuer as a global game of regime change (Morris and Shin,

2003).3 This class of models is well suited to the study of stablecoins because, by design,

3Global games have been extensively studied in applications ranging from bank runs (Goldstein and Pauzner,
2005; Rochet and Vives, 2004) and currency crises (Morris and Shin, 1998; Angeletos et al., 2006), to political
protests (Edmond, 2013; Little et al., 2015; Chen and Suen, 2016), the emergence of tax havens (Konrad and
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they operate as a unilateral exchange rate peg to a reference asset (usually fiat money).

The breaking of par convertibility can be avoided when a sufficiently small proportion of

stablecoin holders demand conversion. We extend the global games approach to study an

environment characterized by model uncertainty, reflected in unknown structural parameters

governing the distribution of reserve assets. This transforms the coordination game into a

generalized, second-generation global game that features multiple, locally-unique equilibria

(Morris and Yildiz, 2019). Our approach allows us to disentangle the distinct effects that

transparency (i.e., public information about reserve assets) and reserve quality (i.e., variance

of reserve assets around their reference value) have on run risk.

The model extends across two dates. At the initial date, the dollar value of a stablecoin

issuer’s collateral is realized and stablecoin holders observe noisy signals about it. At the

final date, stablecoin holders decide whether to convert their SC back to fiat money, or to

maintain their holding. The issuer observes the aggregate size of redemption requests and

is not able to defend par whenever the liquidation value of reserve assets is smaller than

the value demanded by stablecoin holders. We assume that owing to positive but small

transaction costs, stablecoin holders prefer to maintain a holding of coins (e.g. because

holding yields benefits such as the option value of remaining in the crypto universe using

stablecoins as collateral for investment/speculation purposes). But since the issuer may be

unable to defend par and collapse altogether, each stablecoin holder may prefer to dash for

cash to avoid losing the value of their claims. The strategic interactions among stablecoin

holders depend on their rank beliefs – the probability each one assigns to the event that

others have more pessimistic signals about the issuer’s ability to meet conversion requests.

As a result, the degree of flight risk to which the issuer is exposed depends on the nature of

stablecoin holder benefits and the type of collateral held by the issuer.

Stablecoin issuers vary in the type of reserves they hold: fiat-denominated instruments,

commodities and other crypto assets, including other stablecoins.4 We present an environ-

ment that can accommodate this variety, where the volatility of reserve assets is not known

Stolper, 2016), and financial crises (Bebchuk and Goldstein, 2011). Recent work on stablecoins, discussed in
more detail below, also employs global game techniques (e.g. d’Avernas et al., 2023; Bertsch, 2023; Ma et al.,
2023; Gorton et al., 2022; Li and Mayer, 2021).

4In the extreme, algorithmic stablecoins employ policies that increase or decrease the supply of the stablecoin,
often using other highly volatile crypto-assets – effectively attempting to guarantee stability by shifting volatility
to a paired token. To be sure, the backing of algorithmic coins cannot be likened to that of, say, a stablecoin
backed by U.S. Treasury securities. However, the market capitalization of paired tokens (think of Luna in the
case of TerraUSD) operates effectively as a proxy for reserve assets from the perspective of stablecoin holders
(Liu et al., 2023), and as such it can act as a catalyzer of shifts in stablecoin holders’ beliefs.
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and agents perceive it to be fat-tailed, i.e. there is model uncertainty (Morris and Yildiz,

2019). Fat tails capture the relatively high probability that stablecoin holders assign to

extreme realizations of reserve asset values, generating uncertainty about the issuer’s ability

to honor redemption requests. We show how, as the perceived volatility of reserve assets

becomes small (i.e. variance uncertainty declines), the model environment converges to

global game models of regime change in the tradition of Morris and Shin (1998) where the

perceived distribution of reserve assets is thin-tailed.

Heightened uncertainty about fundamentals undoes the uniqueness that characterizes

traditional global games, leading to local multiplicity when the value of reserve assets enters

an intermediate range. We embed the model in a dynamic global game and appeal to

hysteresis equilibrium (Morris and Yildiz, 2019; Romero, 2015) to form predictions about

the effect of such tail risk on the probability of a stablecoin run. Importantly, whereas

the thin-tailed global game predicts runs whenever collateral value drops below a threshold

level, the fat-tailed global game requires both a fall in collateral value below a threshold

and a sufficiently large change relative to previous periods to make running a uniquely

rationalizable response by stablecoin holders.

We then examine how run risk is related to the degree of transparency of the issuer’s

collateral portfolio. Increasing the degree of transparency of reserves – through, for example,

issuing public broadcasts or portfolio audits on a regular basis – provides stablecoin holders

with more common knowledge about the variance of reserve assets. We find that the effect of

public disclosure on run risk is ambiguous. Greater transparency can lead to increased run

risk whenever stablecoin holders have sufficiently low priors about reserve assets to begin

with. Conversely, heightened transparency lowers run risk when priors are strong. Our

results highlight the nuanced but important role that public information has on stablecoin

runs.

Our model generates a set of testable implications. Whenever priors about reserve assets

are not weak, pressure on the peg should decrease following public disclosures that provide

information about their quality. Conversely, the broadcasting of public information on

reserves when there are doubts about the issuer’s reserve adequacy should lead to greater

peg instability. More generally, when stablecoin reserves’ value enters a “ripe for run” region,

holders pay close attention to past events and peg stability depends on shock size: the par

promise is resilient to small negative shocks to collateral value (a resilience effect), but it
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breaks down in the face of large negative public shocks, even when initial collateral values

are relatively high (a change effect).

For most analyses, we estimate the causal effect of information disclosure events on sta-

blecoin peg stability. In particular, we assess the effects of changes in collateral quality (real

or perceived) based on public information disclosures on stablecoins’ average daily absolute

price deviations from $1 (Lyons and Viswanath-Natraj, 2023). To address endogeneity con-

cerns we employ regression methods inspired by the synthetic control literature to construct

counterfactual time series of stablecoin peg deviations that we compare against realized peg

deviations before and after each event (Abadie and Gardeazabal, 2003; Doudchenko and

Imbens, 2016). Using the pre-event sample, we first estimate dynamic regressions of the

treated stablecoin’s peg deviations on a set of control units: measures of cryptoasset and

(when feasible) financial market volatility along with the peg deviations of other non-treated

stablecoins.5 The sequence of post-event counterfactual peg deviations are generated by ap-

plying the parameter estimates to the post-event observations of the control units.

The first case study analyzes the sudden de-peg suffered by USDC during the turmoil at

Silicon Valley Bank in March 2023 (Figure 1). We interpret the disclosure of Circle’s $3.3

billion of reserves deposited with SVB as an exogenous public information shock regarding

the stablecoin’s reserve adequacy, since priors were weak in light of the knowledge that Circle

banked with SVB. Our model predicts a deterioration in USDC’s peg stability following the

disclosure. And indeed we find strong evidence of significantly larger absolute peg deviations

compared to counterfactual peg deviations using minute-by-minute data.

Our second set of analyses also look at transparency and disclosures, but focuses on

Tether, the largest stablecoin. In particular, we conduct two exercises. First, we exploit a

series of publicized concerns about Tether’s reserve adequacy in 2018, signaling a reduction

in the perceived quality of its reserves. Tether temporarily lost its peg due to rising concerns

that it was not 100% backed by US dollar assets (contrary to repeated, yet unsubstantiated,

claims by the issuer) and the alleged co-mingling of customer funds. Second, we zoom in

on Tether’s peg stability before and after the February 28 and March 30 2021 attestation

report releases, the first such reports after two and a half years without any disclosure on

reserves and the only time where two such reports were released in two consecutive months.

We focus on these attestation reports for two reasons. First, given they were the first after a

5We carefully select these control units such that they are likely to impact the price stability of the treated
stablecoin but unlikely to be themselves affected by the policies or conditions of the treated stablecoin.

5



long period without any news on reserves, they carry high informational value. Second, the

multiplicity and frequency of attestations (i.e. “treatments”) thereafter makes a synthetic

control analysis difficult.

The results from the second case study are consistent with model predictions. For one,

our model predicts a deterioration of Tether’s peg stability following the publicized con-

cerns over its reserve adequacy in 2018. Indeed, we do find significant deviations in the

actual series which are statistically significantly different from the synthetic counterfactual.

Moreover, when zooming in on the two consecutive attestation reports in the sample, we

find a statistically significant reduction in actual peg deviations relative to counterfactuals

following the attestation releases.

Our third case study revisits the SVB event but examines Frax instead of USDC. Frax

is a crypto-collateralized stablecoin, which among other cryptocurrencies held USDC as

collateral going into March 2023. As a result, the sharp de-pegging of USDC served as a

reserve volatility shock for Frax investors. Consistent with the change effect predicted by

the model arising from a negative shock to Frax collateral values, we find that Frax peg

deviations increased significantly following Circle’s disclosure and the associated de-peg of

USDC.

Finally, the fourth case study examines the TerraUSD stablecoin. TerraUSD was the

largest algorithmic stablecoin and third largest stablecoin overall at its peak before imploding

in May 2022.6 TerraUSD’s peg was underpinned by Luna, a self-issued and highly volatile

cryptoasset. Luna effectively operated as a reserve asset for Terra, though (to put it mildly)

it is of course not of the same quality as those that back the stablecoins in the previous event

studies (i.e. actual assets). Consistent with the predictions of the model, we find that large

negative public shocks – measured from the time-varying volatility of Luna’s daily returns

– were associated with larger peg deviations in TerraUSD’s price even before its collapse.

This link becomes stronger whenever the “equity value” of Terra, defined as the market

capitalization of Luna minus that of TerraUSD, is low and hence the stablecoin is more

vulnerable to a run (i.e. it is in a “ripe for run” region). These findings help rationalize the

May 2021 UST depegging event (consistent with the resilience effect) as well as the final

collapse in May 2022 (consistent with the change effect).

Our paper contributes to the understanding of stablecoins along multiple dimensions.

6See Uhlig (2022) for a model of TerraUSD and Liu et al. (2023) for a detailed analysis of the Terra ecosystem
and its demise, consistent with our model predictions.
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We consider how (i) the quality of issuers’ reserve assets and (ii) public information about

these assets change both stablecoin exposure to run risk and the type of global game being

played among stablecoin holders. We provide a stylized setting that allows us to speak to

various stablecoin arrangements by providing a general model of global games that nests

the most standard type used in much of the literature on stablecoins. And we develop and

empirically test theoretical predictions using event studies and a synthetic control approach

across stablecoins. While previous literature situates run risk in the broader stablecoin

ecosystem, we study this run risk in detail, providing a richer classification of different types

of stablecoins and their distinct run dynamics.

Our results underscore the similarities and differences between increased precision in

public information (via heightened disclosure and transparency) and reserve asset quality on

run risk. One implication of our general model and our results is that, over time, stability

can breed more stability as it supports path dependence on strong priors about reserve

assets. Coupled with a policy of systematic disclosure, one can expect the main stablecoins

to converge from the generalized model to one where the distribution of reserve assets is

perceived as thin-tailed. In other words, the choice of reserve assets (coupled with disclosure)

dictates the type of coordination game being played among stablecoin holders and issuer.

A second implication is that transparency has a distinct on run risk from the asset

quality affecting the composition of reserves. Whereas the former dictates the propensity

of SC holders to run on the issuer (i.e., a proxy for market risk which, in turn, affects

issuer peg stability), the latter shapes the density over the region where the issuer fails

for a given level of flight risk (thus affecting the issuer’s fragility). Together, these results

suggest a trade-off between high issuer fragility but a stable peg on the one hand, and

low issuer fragility but more flighty investors on the other. This conceptual distinction

arises only in the generalized model, and suggests that regulation of issuer disclosure should

not happen without consideration of collateralization. Given that stablecoin issuers are

currently largely outside the scope of traditional financial regulation, our work contributes

to the policy debate over whether stablecoins should hold loss-absorbing resources to buffer

against run risk. More broadly, insights from our model could potentially be applied to

other settings with run risk, including money market funds and fractional reserve banking.

Roadmap. Section 2 reviews the related literature in detail and highlights our contribu-

tion. Section 3 introduces the model and discusses: how large shocks trigger runs (Section
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3.4), the effect of transparency through public disclosure on stablecoin run risk (Section 3.5)

and how reserve asset quality affects run risk (Section 3.6). Section 4 combines market data

on stablecoins with event studies to empirically test the predictions of the model. Section 5

concludes. All proofs are contained in Appendix A.

2 Related literature

Our paper contributes to a growing literature on stablecoins.7 Arner et al. (2020) provide

an early non-technical overview that combines economic and legal perspectives, Mell and

Yaga (2022) provide a comprehensive assessment of stablecoins from a technical standpoint,

Barthélémy et al. (2023) show how stablecoin issuers’ reserve management can spill over to

the real economy, and Makarov and Schoar (2022) provide a broader overview of cryptoas-

sets.8 Lyons and Viswanath-Natraj (2023) highlight arbitrage design as a source of stability

for Tether and argue that decentralization of issuance and access to arbitrage trades with

the issuing treasury are key for peg stability. While they focus on arbitrage to assess what

makes a stablecoin stable, our question is rather what makes them unstable, with a focus

on the role of reserve transparency and quality. Li and Mayer (2021) derive stablecoin man-

agement strategies by issuers and agent demand for stablecoins in a dynamic model that

focuses on the interplay between the endogenously determined stablecoin price (the exchange

rate), reserve management and the issuer’s equity shares or governance tokens. Whereas

Li and Mayer (2021) shed light on issuer incentives around governance token issuance and

debasement to mitigate stablecoin price volatility, we focus on stablecoin holder strategic

incentives to maintain holdings for a given level of reserves and issuer equity. d’Avernas

et al. (2023) in turn theoretically study stablecoin issuance as a commitment problem, po-

tentially solvable through smart contracts. They consider various protocols for issuance and

redemption and zoom in on ex ante design. Instead, our focus is on how these factors may

affect run dynamics for a given design, explicitly featuring coordination, strategic uncer-

tainty and equilibrium selection. Moreover, their model does not focus on the role of reserve

transparency and the volatility of collateral, an important component of our analysis.

7More broadly, it also relates to, and builds on, an extensive literature on bank runs and currency attacks
mentioned above.

8See also Caramichael and Liao (2022), Eichengreen et al. (2023) and Levy Yeyati and Katz (2022), among
others. Klages-Mundt and Minca (2021, 2022) provide early studies of deleveraging spirals and stablecoin runs
within the computer science literature.

8



Closest to our paper are the recent contributions by Bertsch (2023), Ma et al. (2023)

and Gorton et al. (2022). Bertsch (2023) uses a first generation regime change global game

to capture stablecoin fragility stemming from concerns about the quality of the issuer’s

assets, giving rise to run risk; this is the same fragility we are concerned with. Bertsch

(2023) endogenizes the liability side of the stablecoin issuer’s balance sheet ex ante, before

the issuer is exposed to run risk. The issuer faces demand for stablecoins that arises from

heterogeneity in preferences by groups of consumers over holding different monies (Agur

et al., 2022), producing heterogeneous payoffs in the global game. The adoption stage links

stablecoin demand to outside options such as bank deposits, and allows Bertsch (2023) to

study the relationship between factors that increase adoption and shape stablecoin issuer

fragility. We abstract from tensions in the adoption stage, focusing instead on how differences

on the asset side of the issuer affect higher-order beliefs and run incentives among a fixed

mass of stablecoin holders. Our contribution is to unpack theoretically and test empirically

the effect of changes in issuers’ asset quality, transparency and volatility on incentives to

run.

Ma et al. (2023) also feature a first generation global game in the spirit of Goldstein

and Pauzner (2005), with Diamond and Dybvig (1983) style liquidity shocks. In addition,

they include a layer of arbitrageurs as firewalls, with the efficiency of the secondary market

being an indicator of the fragility of the stablecoin’s price. Their key finding is that higher

price volatility comes with lower run risk, and vice versa, emphasizing the role that the

concentration of arbitrageurs play in staving off run risk under normal market conditions.9

Our setup, by contrast, focuses on shocks to fundamentals that cast doubt over the solvency

of the issuer, leading the entire market, arbitrageurs included, to collapse when issuers can

no longer honor the promise of par convertibility. We demonstrate how transparency and

volatility of reserve assets affect run risk, rather than how the two-layer market infrastructure

of stablecoins affects stability of the stablecoin price in terms of market design.10 Finally,

our model allows for a broader class of both private and fundamental distributions, can

9Concentration of arbitrageurs leads to a trade off between price stability and run risk in their model. When
there are fewer authorized arbitrageurs, arbitrage is less efficient and therefore price deviations are more frequent.
But opening the door to more arbitrageurs increases run risk because it increases the first mover advantage for
arbitrageurs. We find a similar trade-off between price stability and run risk, but facilitated by the interaction
between reserve asset quality and the precision of information about reserve assets (transparency), for a given
number of arbitrageurs.

10In Appendix B, we present an extension to include a secondary market in which stablecoins can be traded,
and show that the existence of a secondary market can make arbitrageurs relatively more likely to demand
redemption. More importantly, our core results continue to hold in this expanded setting.
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accommodate non-fiat dollar backed stablecoins, and features a “large shock” result that is

absent from first-generation global games.

Gorton et al. (2022) argue that stablecoins are able to fulfill their par promise despite

being exposed to run risk and not paying any interest because levered traders (a third agent

in their model) provide compensation to stablecoin holders for lending their coins.11 As

in Bertsch (2023), Gorton et al. (2022) model a classic first generation global game with

uniform distributions. Therefore, they do not consider how variation in the information

structure influences run risk, which is our focus. Moreover, investors in their model may

learn about the proportion of safe assets only from issuer disclosures but do not study

the implications of this theoretically (rather, it is posed as an empirical challenge). We

contribute by formalizing how opaque portfolios held by issuers influence the beliefs of

stablecoin holders (formed by the convolution of various assets) and, thus, contribute to run

risk. We discuss when disclosure lowers/heightens run risk and how the magnitude of public

shocks (informational or fundamental) are critical in triggering runs.

The interaction between the precision of public information and run risk is well estab-

lished in the global games literature (Ahnert and Kakhbod, 2017; Metz, 2003; Prati and

Sbracia, 2010; Szkup and Trevino, 2015). Our contribution over and above these results is

twofold. Firstly, we disentangle the effects of transparency about reserve assets from the

degree of tail risk in their quality. Secondly, we use a model that features a much less re-

strictive informational environment than in standard global games (in the spirit of Morris

and Yildiz (2019)), allowing for a clearer distinction between the effects of transparency and

quality of fundamentals. We extend this model into a regime-change setting and study the

effect of changes in structural parameters on the equilibria. Our application to stablecoins

offers a rich landscape from which to test these distinct channels.

3 Model

In this section, we present our model of stablecoins to analyze how information and the

distribution of reserves influence runs. The model features uncertainty about the variance of

11Our model abstracts from the role of crypto speculators. However, we indirectly capture the interconnect-
edness that arises with such speculators by modeling the benefits to stablecoin holders from rolling over their
holdings as positively dependent on the dollar value of assets in the crypto space. With this payoff structure,
we argue that there is some correlation between the collateral value of the issuer and the expected payoffs to
stablecoin holders from transacting in the crypto ecosystem – whether it be via direct speculation or lending to
speculators.
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reserve assets, which introduces fat tails into the distribution of the value of reserve assets.

Fat-tailed distributions could capture, for example, sudden changes in reserve volatility,

or fundamental uncertainty about reserve assets. In the extreme, as variance uncertainty

declines and eventually converges to zero, the model we present nests more traditional regime

change global game models in the spirit of Morris and Shin (1998, 2003) and Goldstein and

Pauzner (2005). Some of the results we present (e.g. on transparency and disclosure) apply

as well in such more simplified settings, whereas others are unique to our model environment.

We draw on Morris and Yildiz (2019) to model the resultant global game and use hysteresis

equilibrium to analyze the role of large shocks in triggering runs.

3.1 Model elements

The model features a unit continuum of risk-neutral stablecoin (SC) holders, i ∈ [0, 1], and

a single issuer of stablecoins. One stablecoin is issued to each SC holder.12 For simplicity

we assume that SC holders have redemption rights with the issuer, and therefore abstract

from the role of the secondary market. In Appendix B, we show that our results are robust

to the inclusion of a two-layer market structure, similar to Ma et al. (2023).13 Stablecoins

are backed by a vector of reserve assets with a combined dollar value θ. SC holders per-

ceive θ as a random variable drawn from the portfolio-weighted convolution of all reserve

asset distributions, with realizations of θ equal to the portfolio-weighted realized values of

individual reserve assets (see Appendix C.1 for details).14

Cash is converted to stablecoins and redeemed at a one-to-one conversion rate, subject to

the issuer continuing to operate. The transaction costs collected by the issuer for conversion

are denoted by τ , with 0 < τ < 1.15

12While beyond the scope of our paper, the model can be extended to study the effect of large players
(“whales”) on run risk. See Corsetti et al. (2000) for an example in a currency crisis setting.

13In practice, for the biggest stablecoins only a selected group of authorized participants (arbitrageurs) has
direct redemption rights with the issuer, and provide liquidity in the secondary market. Ma et al. (2023) show how
more efficient arbitrage can exacerbate run risk. Since our focus is squarely on runs, we zoom in on the dynamics
between stablecoin holders as a function of the transparency and volatility of SC reserves, in circumstances where
pressure on the peg is strong, and abstract away from the intermediate arbitrageur layer.

14Our model can easily accommodate an analysis of the effect of increasing the weight of low-risk assets in
the reserve portfolio. Tether’s transition away from commercial paper and towards short-term safe assets is an
example. Formally, an increase in the weight on low-risk assets lowers the variance in reserve asset values, which,
as we show in Proposition 3, lowers the risk of issuer failure due to a run.

15We assume that transaction costs are fixed at the time SC holders decide whether or not to demand con-
version. In practice, transaction costs are likely endogenous (e.g. some issuers may charge so-called “gas fees”
on redemption, potentially increasing with transaction volume or the economic environment). Endogenizing the
value of transaction fees would complicate the analysis and make issuers relatively more resilient to small shocks
to fundamentals, but our core insights would be unchanged. We provide comparative statics on the value of τ in

11



The game extends over two stages. In the first stage, Nature selects θ and the issuer

observes the dollar value of reserve assets. In the second stage, SC holders decide whether to

demand conversion to cash, ai = 1, or to maintain their stablecoin holding, ai = 0. During

this stage, the issuer processes aggregate conversion requests, A ∈ [0, 1], and becomes unable

to defend par whenever A > θ, i.e., whenever the conversion value of reserve assets, θ, is

smaller than the value of fiat currency demanded. The inability to meet redemptions by

relying on the liquidation of reserve assets effectively renders the issuer insolvent. But note

that the key problem facing the issuer is one of liquidity : what matters is not the value of

reserve assets relative to liabilities (i.e. a solvency concern), but rather whether assets can

command enough resources to liquidate liabilities.

The interaction between SC holder redemptions and the issuer’s balance sheet produces a

tripartite classification of fundamentals (Morris and Shin, 1998). There is a lower threshold,

θL = 0, such that for all θ ∈ (−∞, 0), the issuer is fundamentally insolvent even if no SC

holders demand conversion (i.e., A = 0). Similarly, there is an upper threshold, θU = 1, such

that for all θ ∈ [θU ,∞), the issuer is solvent even if all SC holders demand conversion (i.e.,

A = 1). We consider the stablecoin to be in a “ripe for run” region whenever θ ∈ [θL, θU ).

The payoffs received by SC holders based on their actions for each possible state of the

issuer are summarized in Table 1. The payoff per unit accruing to SC holders is captured

by π : R → R with π(θ) ≥ 1− 2τ for all θ.16 Such a payoff could reflect returns from using

stablecoins as collateral in decentralized finance applications, from realizing gains in the

crypto space without costly conversion back to fiat currency, or revenue from illicit activities

such as tax evasion. The returns may depend on fundamentals in the crypto environment,

such that π′(θ) ≥ 0. The link between the value of the assets used in the reserve portfolio

and the crypto returns to SC holders is not necessary for our results (indeed, we allow for

π′(θ) = 0), but rather illustrates interdependency between issuer and holder, particularly

when crypto assets are used as collateral.

In states where the issuer is solvent, SC holders prefer to maintain their holdings, and

receive a strictly higher expected payoff from demanding conversion in states where the

the Appendix.
16This mapping restricts the image of π to real numbers and ensures that two-sided limit dominance is satisfied

for all θ ∈ R and for any arbitrarily small transaction cost τ . An example of a function satisfying this condition
is π(θ) = eθ + 1, which suggests that SC holders receive at least their claim of $1 plus additional benefits from
transacting in the crypto environment. A well-defined dominance region is crucial for the uniqueness of a global
game equilibrium, since it relies on iterative deletion of strictly dominated strategies (Milgrom and Roberts,
1990). See Goldstein and Pauzner (2005) for a discussion of one-sided strategic complementarity.
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issuer is rendered insolvent. If a SC holder demands conversion and the issuer is rendered

insolvent, the SC holder faces a sequential service constraint, and is able to obtain her fiat

money converted at the pegged value, net of transaction costs, with a probability that is

inversely proportional to aggregate withdrawals as she has to wait in line. In the event of

issuer failure, she receives zero if abstaining from the run. If the issuer remains solvent, SC

holders who demand conversion to cash re-enter the market by buying the stablecoin again,

maintaining their dollar claim on the issuer but incurring fees on their exit and re-entry,

whereas they receive π(θ) if they abstained from demanding conversion.17

Issuer solvent Issuer insolvent

ai = 1 1− 2τ (1− τ)/A
ai = 0 π(θ) 0

Table 1: Stablecoin holder payoffs. Action ai = 1 denotes demanding conversion; action ai = 0
denotes maintaining a holding.

3.2 Information structure

Under complete information, there are multiple equilibria for all θ ∈ [θL, θU ). If SC holders

anticipate A > θ, it is a best response to demand conversion (since 1 − τ > 0). If they

anticipate A ≤ θ, it is a best response to maintain their holding (since π(θ) > 1− 2τ).

SC holders, however, do not observe the quality of reserve assets θ directly. Instead,

they receive noisy private signals about θ. We assume that θ is normally distributed, and

we also assume this distribution and its mean, y < y < y, are common knowledge to all SC

holders, while the true variance, σ2
θ , is unknown.

18 The assumption of common knowledge

of all structural parameters is standard in most global games models, as it allows to focus

on the higher-order uncertainty inherent in these settings (see Morris and Shin (2003)). We

take a Bayesian approach to emphasize the uncertainty prevalent in the stablecoin universe.

We assume a collective belief by stablecoin holders that the variance is drawn from an

inverse chi-squared distribution. This reflects a degree of model uncertainty in the environ-

ment, whereby SC holders do not fully understand the properties of reserve assets sustaining

17We normalize the benefit from holding coins to SC holders to zero with a defunct issuer, as there are currently
no resolution procedures in place for stablecoins (see Bains et al. (2022)).

18The restriction on y ensures that the global game is not dominance-solvable as in Morris and Yildiz (2019).
See the Appendix for derivations of y and y. The assumption of normality greatly simplifies notation without
loss of the key insights, and allows us to place more probability mass on certain values, as opposed to, say, using
the uniform distribution. One way to interpret the θ is as deviations from average values, to allow for negative
numbers.
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the issuer’s promise.19 Effectively, stablecoin holders perceive that the reserve portfolio is

drawn from a distribution with fat tails (i.e., with positive excess kurtosis). In addition

to being able to shed light on the role of transparency and public information disclosures,

our model can also help explain why markets sometimes remain relatively optimistic even

in the face of gradually deteriorating reserve assets, or why events seemingly unrelated to

fundamentals can trigger runs.

3.3 Equilibrium analysis

In the second stage of the game, SC holders observe noisy private signals about the quality

of reserve assets:

xi = y + zi, (1)

where zi = σxεi+η, with independently and identically distributed components ε ∼ N (0, 1)

and η ∼ t(ν) = G(η; ν), with degrees of freedom, ν > 2.20 The degrees of freedom are

proportional to the number of past observations that SC holders have for θ. The second

term in equation (1) is an aggregated noise component that SC holders disentangle to form

beliefs about fundamentals and the mass of aggregate withdrawals.

Let

R(z) = Pr[zj ≤ z|zi = z] =

∫
Φ (ε)ϕ(ε)g(z − σxε)dε∫

ϕ(ε)g(z − σxε)dε
, (2)

denote the rank belief of SC holder i. Agent i’s rank belief represents the proportion of

other SC holders who observe a lower signal than i, conditional on her own signal. Rank

beliefs form a mapping between an individual’s private signal and the withdrawal mass she

expects.21 With strategic complementarity among SC holders, and the fact that a sufficiently

large mass of withdrawals causes the issuer to fail, rank beliefs form a crucial part of the

equilibrium in switching strategies. Given the variance uncertainty SC holders have over θ,

the rank belief function is non-monotonic in z and approaches 1
2 as z grows large in either

direction (see Figure 2).

Our first result, summarized in Proposition 1, comprises equilibrium thresholds for both

SC holders and the SC issuer that are locally unique. For all SC holders, there is a common

19Representing model uncertainty in this way has been widely used in the finance literature (Weitzman (2007)).
20The inverse χ2 distribution is a conjugate prior for the variance of the normal distribution which forms a

posterior student’s t-distribution over fundamentals.
21For a comprehensive exposition of rank beliefs and “(q, p)-evident events” that determine rationalizability,

see Morris et al. (2016).
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Figure 2: Rank belief function with fat-tailed distribution of reserve assets.
Notes: The rank belief function for SC holders when they perceive tail risk in the reserve portfolio. Rank beliefs represent

conditional beliefs about the proportion of other SC holders who observe lower signals. They are non-monotonic and

approach uniformity in the limit as |z| (the absolute value of aggregate noise) grows large.

signal threshold, xc ∈ {ˆ̂x, x̂}, that drives SC behavior and produces consistent higher-order

beliefs about the strategies of other SC holders. For the SC issuer there is a fundamental

threshold, θc ∈ { ˆ̂θ, θ̂}, that dictates the point at which the mass of redemption requests

becomes so large that the issuer is rendered insolvent. The SC holder of type xc holds

a posterior belief over the probability of issuer failure greater than or equal to ρ(θc) ≡
π(θc)+2τ−1

π(θc)+2τ−1+(1−τ)/R(zc)
, where ρ(θc) is the belief over the event of issuer failure that renders

her indifferent between demanding conversion and maintaining the holding. The threshold

noise component zc = xc−y produces a rank belief that is equal to the anticipated withdrawal

mass, since all SC holders with lower signals are expected to run on the issuer.

Proposition 1. Fix τ < τ̂ and σ2
x > σ̂2

x. There are two locally unique thresholds,
ˆ̂
θ =

y + ˆ̂η > θL and θ̂ = y + η̂ < θU , such that the issuer is rendered insolvent if θ <
ˆ̂
θ and

remains solvent if θ ≥ θ̂. There are multiple equilibria for all θ ∈ [
ˆ̂
θ, θ̂).

For each threshold on the value of reserve assets,
ˆ̂
θ and θ̂, there is a corresponding
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unique individual signal, ˆ̂x and x̂, such that each SC holder runs on the issuer if xi < ˆ̂x,

and maintains a holding if xi ≥ x̂. Both actions are rationalizable for all xi ∈ [ˆ̂x, x̂).

Proposition 1 pins down equilibrium thresholds in the global game among SC holders and

the issuer. SC holders use Bayesian inference to determine the probability that others have

equally or more pessimistic signals than their own, allowing them to weigh the expected

benefits and costs of early withdrawal. For ai = 1 (demand conversion) to be uniquely

rationalizable, and given a critical portfolio return θc, SC holder i must believe with a

sufficiently high probability that at least θc other SC holders will demand conversion.

Conditional on a switching strategy around
ˆ̂
θ, threshold ˆ̂x represents the signal that

renders a SC holder just indifferent between redeeming and rolling over. Two conditions

characterize this indifference. First, for all xi < ˆ̂x, the payoff from withdrawing is at least

as large as from maintaining a holding under belief F (
ˆ̂
θ|xi) which, in turn, reinforces other

SC holders’ decisions to demand conversion. Second, for all signals below ˆ̂x, the expected

withdrawal mass, A, is at least as large as the value of reserve assets, E[θ|xi]. For the SC

holder of type ˆ̂z = ˆ̂x − y, this mass is A = R(ˆ̂z). The decision rule among SC holders

aggregates into a threshold for the dollar value of collateral such that the issuer experiences

a large-scale run that leads to failure whenever θ <
ˆ̂
θ. Similarly, threshold θ̂ is the lowest

value of reserve assets that ensures issuer survival when SC holders form a switching strategy

around threshold x̂.

Extreme beliefs generate contagion. In particular, even if held by a small proportion

of SC holders with very pessimistic or very optimistic signals, extreme beliefs catalyze a

decision to withdraw or hold that extends towards SC holders with more moderate signals

(i.e. signals that are closer to the true value of fundamentals, θ). Given that all SC holders

who observe sufficiently low signals will demand conversion, those whose signals are slightly

higher will also find it optimal to demand conversion, since their own beliefs about the

likelihood that the issuer survives are low and they anticipate that everyone with even lower

signals will definitely run.22 This, in turn, causes SC holders with even larger signals to

follow suit, and so on. On the other extreme, SC holders who have a strictly dominant

22Formally, there exists a lower threshold, x such that

P[θ ≤ 0|xi = x] =
π(0) + 2τ − 1

π(0) + 2τ − 1 + (1− τ)/R(z)
,

where z = x − y. When xi ≤ x, SC holders have an optimal strategy to withdraw even if the anticipated
withdrawal mass is zero.
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strategy to maintain a holding justify the decisions of others with more moderate signals

to refrain from the run.23 This justifies those with beliefs that reserve assets are of lower

value to refrain from running, until a SC holder is just indifferent. The thresholds ˆ̂x and

x̂ bound two regions of uniquely rationalizable actions, resulting in determinate outcomes

when reserve assets are subject to large positive or negative shocks.

The technical restrictions in Proposition 1 pin down local uniqueness. Transaction costs

must be sufficiently low, τ < τ̂ , to produce strategic complementarity among SC holders

so that they form consistent beliefs about the actions of others. In a restricted case where

σ2
x ≤ σ̂2

x, we obtain the well-established unique equilibrium found in the global games

literature (Morris and Shin, 1998, 2003).24 If we take ν → ∞, the t−distribution approaches

a standard normal distribution, rank beliefs become monotone in z, and as long as private

noise is small enough, the thresholds θ̂ and
ˆ̂
θ converge to the unique equilibrium θ∗.25

3.4 Large shocks and equilibrium shifts

We now focus on equilibrium shifts (i.e., when do we expect a run on stablecoin issuers

and under what conditions can the peg be re-established?) and the role that sudden, large

shocks to reserves play in such shifts. The result of the static global game can be easily

transformed towards a dynamic application.26 At the beginning of each period t ≥ 0, there is

an expected dollar value of reserve assets, yt. Common shocks (ηt) and idiosyncratic shocks

(εit) are independently drawn across time and SC holders, who decide ait = {0, 1} (i.e.,

roll over or withdraw) after observing a signal xit as in the static game above, aggregating

to a withdrawal mass At. The commonly held prior over the dollar value of reserve assets

23The analogous upper threshold x is given by

P[θ ≤ 1|xi = x] =
π(1) + 2τ − 1

π(1) + 2τ − 1 + (1− τ)/R(z)
,

where z = x−y. When xi > x, SC holders always find it optimal to maintain their holding, even if the anticipated
withdrawal mass is one.

24The intuition for the equilibrium switching point is identical in both the unique-equilibrium and generalized
settings. However, certain properties of the threshold break down when we allow for fat tails. We contrast the
comparative statics in the unique equilibrium case with the results in Proposition 1 in Appendix A.1.

25It is worth noting that the locally unique thresholds θ̂ and
ˆ̂
θ are qualitatively different from θ∗, because

in the fat-tailed environment the individual indifference condition is decoupled from the critical mass condition,
with different comparative static results reported in Appendix A.1. See also Duley and Gai (2023) for a formal
treatment. Our generalized environment permits a larger degree of idiosyncratic noise than the traditional
environment.

26To be clear, we do not extend the model into a rich dynamic arrangement of the kind studied in d’Avernas
et al. (2023) or Li and Mayer (2021). Instead, we simply re-frame the model as a sequence of plays of the static
model, linking a global games framework across two dates t−1 and t, along the lines of Morris and Yildiz (2019).
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in the current period, yt = Y (θt−1), is determined by a known process, Y : R → R,

with θt = yt(θt−1) + ηt. We denote the sample size of past observations by |Θt| where

Θt ≡ {θt−1, θt−2, . . . θ0}, that determine the degrees of freedom νt ∝ |Θt| in distribution

G(·).27

To address the indeterminacy of outcomes in the presence of multiple equilibria in Propo-

sition 1, we focus on hysteresis equilibrium. This equilibrium corresponds to games that

exhibit path dependence, so that agents’ actions are systematically shaped by the aggre-

gate outcomes or payoff parameters in previous periods.28 With this equilibrium selection

method, we resolve the indeterminacy of outcomes for moderate values of θt by arguing that

agents will play the less aggressive decision rule (i.e., run if xit < ˆ̂xt) if their choice was to

maintain a holding in the previous period, and will play the more aggressive decision rule

(i.e., run if xit < x̂t) otherwise.
29 Corollary 1 summarizes this.

Corollary 1. Under hysteresis equilibrium, each SC holder maintains a holding if and only

if xit ≥ xc where

xc =


ˆ̂xt(yt) if t = 0 or At−1 < 1

2

x̂t(yt) otherwise.

(3)

This equilibrium formulation suggests inertia in majority behavior by SC holders. If the

issuer was solvent in the previous period and a SC holder observes a modest deviation from

her prior, maintaining her holding is uniquely rationalizable. Aggregating this behavior,

whenever the value of reserve assets experiences small shocks, there is a resilience effect by

SC holders and the peg is maintained. However, a large negative shock (i.e., θt < ˆ̂xt(yt))

induces a change effect, making withdrawing uniquely rationalizable for the median SC

holder who observes xt = θt.

Figure 3 illustrates withdrawal dynamics under hysteresis equilibrium. Time is on the

horizontal axis, whereas the vertical axis captures a sample path of fundamentals (value

27That is, common past observations of θ provide public information that SC holders use to learn about the
population parameters governing the distribution of reserve assets. The shape of the t distribution is influenced
by this sample of past observations. Our approach differs from the dynamic global game application in Angeletos
et al. (2007) in which fundamentals do not change over time, but instead players observe a sequence of past plays
which helps them learn about the value of fundamentals.

28See Bebchuk and Goldstein (2011), Rajan (1994) and Romero (2015) for similar characteristics of persistence
in coordination games.

29The nature of the global game is unchanged. We do not alter the timing of the game nor the payoff
parameters. Instead, we assume the history of past play (as summarized by the observed mass of conversion
requests and commonly held beliefs over reserve asset quality in the previous period) is instructive in resolving
multiplicity.

18



of reserve assets) and aggregate behavior of SC holders (determining the stablecoin price).

With small variance in idiosyncratic noise, aggregate behavior is always close to one or

zero. There are two periods in which the peg is maintained: at the beginning, the major-

ity rolls over their holdings even though there are downward drifts in the value of reserve

assets. However, a large enough negative shock in the value of reserve assets, coupled with

withdrawing becoming a p−dominant response for the median SC holder, causes a major-

ity of SC holders to run on the stablecoin and its price drops significantly.30 Subsequent

increases in the value of reserve assets do not recover the peg as long as withdrawing re-

mains p−dominant for the median SC holder. A large positive shock that exceeds x̂(yt) near

t = 80 triggers an optimistic shift in higher-order beliefs for the median SC holder, causing

a majority reversion to an equilibrium SC holding close to one.
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Figure 3: Equilibrium shifts under hysteresis equilibrium.
Notes: The issuer is solvent only during the early and final stages (shaded time intervals) for a given path of the dollar

value of reserve assets (blue solid line).

The hysteresis equilibrium in Corollary 1 gives rise to two predictions.

30Demanding conversion is said to be p−dominant whenever it is a best response to the conjecture placing
probability p on the event that the issuer is rendered insolvent (Morris et al., 2016). In our formulation, SC

holders must believe with probability at least p = ρ(θt) ≡ π(θt)+2τ−1
π(θt)+2τ−1+(1−τ)/A

that the issuer will fail to make
withdrawing a rationalizable response.
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Prediction 1. Resilience effect. When the dollar value of reserve assets enters a region

where it is “ripe for a run” (i.e., the dollar value of reserves backing each coin, θ, is between

0 and 1), the SC peg is resilient to small shocks in reserve asset values (i.e., θt(yt) ≥ ˆ̂
θt(yt)).

Prediction 2. Change effect. When the dollar value of reserve assets enters a region

where it is “ripe for a run” (i.e., the dollar value of reserves backing each coin, θ, is between

0 and 1), a large negative shock in reserve assets triggers a run on the SC, even if the value

was initially close to $1 (i.e. θt(yt) <
ˆ̂
θt(yt)). Analogously, after a destabilizing run on the

SC, the peg may recover following a large enough positive shock in reserve asset values, even

if the value of reserve assets is not $1 (i.e., when θt(yt) ≥ θ̂t(yt)).

To test the change effect described above, we analyze how USDC’s exposure to SVB

served as a large reserve volatility shock to Frax investors in section 4.5, and we compare

the difference between the effects of small and large shocks to fundamentals by testing peg

deviations of TerraUSD in Section 4.6.

3.5 Reserve transparency and run risk

Does a commitment to transparency by stablecoin issuers in the form of broadcasting reserve

portfolios mitigate or aggravate the probability of a run (i.e., P[θ ≤ θc])? An increase in

transparency helps to resolve uncertainty among SC holders over the parameters governing

the distribution of reserve assets. Both the disclosure of public information about reserve

assets in period t and past realizations of the dollar value of reserve assets bring the perceived

distribution closer to the true distribution (determined by the issuer’s reserve asset portfolio).

Disclosure by the issuer is assumed to be commonly observed by all SC holders, and thus acts

as a public signal that increases transparency and affects perceived fundamental parameters.

This is conceptually distinct from changes to the dispersion in private information, σx, which

comes from the likes of social media, word of mouth, and so on.31 To compare the effects

of transparency on run risk with that of issuers holding varying-quality reserve assets, we

provide a comparative static result on reserve asset value thresholds
ˆ̂
θt and θ̂t that correspond

with the signal thresholds in Proposition 2 below.

Proposition 2. (i) Fix τ < τ̂ and σ2
x > σ̂2

x(ν). The release of public information or a

longer time since the issuer’s launch, that increase degrees of freedom (νt), lowers ˆ̂xt and

31Indeed, one of the benefits of our generalized setting over the traditional global game environment is that
we allow for substantial variance in idiosyncratic signals.
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ˆ̂
θt, and increases x̂t and θ̂t.

Proposition 2 presents the role of transparency and issuer age under hysteresis equi-

librium. Figure 4 illustrates the effect on thresholds of the underlying global game that

characterize the hysteresis equilibrium. Increased transparency towards SC holders who be-

lieve that reserves are subject to high volatility has a negative influence on the probability

of a run if no run occurred in the previous period, and increases the probability of a run

continuing if one took place last period. In other words, runs on the issuer become less

likely as SC holders receive more precise public information, but recoveries from a run (i.e.

SC holders finding it optimal to maintain a holding) also become more difficult once a run

is triggered. To the extent that SC holders use past events to learn about the issuer, this

result gives theoretical support to evidence that issuers that have been around for longer

are subject to less price volatility than their younger peers (Kosse et al., 2023). Descriptive

evidence, for e.g. Tether, is in line with this, as over time and in the wake of systematic

disclosures the peg becomes more stable, as evident in Figure 19 in the Appendix. We

explore this more systematically in the next section.

x

x̂̂2 x̂2x̂̂1 x̂1run on issuer maintain holdingM.E.

R(z)

E[θ|x]

(a) An increase in transparency widens individ-
ual indifference conditions that define switching
point signals for stablecoin holders.

θ

θ̂̂1θ̂̂2 θ̂1 θ̂2issuer fails issuer survivesM.E.

θ

Φ((x̂̂ − θ)/σx) Φ((x̂ − θ)/σx)

(b) A widening of switching points also shifts
the mass of withdrawals, Φ(·), at every given
value of reserve assets, θ, widening failure

points,
ˆ̂
θ and θ̂.

Figure 4: The greatest and least Bayes-Nash equilibrium signal thresholds, (x̂, θ̂) and (ˆ̂x,
ˆ̂
θ),

are sensitive to disclosure or increases in transparency by the stablecoin issuer. An increase in
transparency raises the degrees of freedom, ν, that form a structural parameter in the unknown
value of reserve assets, lowering the lower switching point, ˆ̂x1 to ˆ̂x2, and increasing the upper
point, x̂1 to x̂2.

What does this mean for the probability of a run? Intuitively, when market expecta-

tions are poor, a commitment to higher transparency of information about reserves makes
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relatively smaller pessimistic signals carry greater weight in SC holders’ strategic reasoning.

Every SC holder anticipates that every other SC holder will be relatively flighty when a run

has already occurred in the previous period. Under these conditions, greater precision of

public information amplifies the contagion process that determines the switching point x̂.

As a result, the critical dollar value θ̂ increases, widening the event space where a run takes

place, (−∞, θ̂). Such a dynamic was very clearly at play during the breaking of USDC’s

peg as stress in SVB mounted (Figure 1): the large shock brought on by the bank distress

induced a run, and increased transparency about the value of dollar reserves (i.e. cash held

at SVB), acted as a focal point for SC holders to coordinate on sell-offs.

Proposition 2 thus delivers clear testable predictions. In particular, it suggests that, for

a given level of fundamentals and a depegging in the prior period, At−1 ≥ 1
2 , pressure on

the peg should grow following an increase in transparency over reserve assets in the issuer’s

portfolio. To test this prediction, we analyze the stability of USDC’s stablecoin peg following

public disclosure about the size of reserves held in SVB deposits in Section 4.3, and analyze

market responses to the increased public scrutiny over Tether’s reserve portfolio following

the release of audit reports in Section 4.4.

From this proposition a corollary also emerges that links results in our setting to more

traditional global games settings:

Corollary 2. Fix τ < τ̂ . An increase in νt also increases σ̂2
x. For νt > ν̂t, where ν̂t solves

σ2
x = σ̂2

x(ν̂t), thresholds converge to a unique equilibrium characterized by (x∗
t , θ

∗
t ).

Corollary 2 shows how, all else equal, increases in transparency beyond a critical level

cause the thresholds ˆ̂x and x̂ to converge to the well known unique equilibrium in the

global games literature. It suggests, therefore, that in a generalized setting, increases in

transparency change not only the tendency of SC holders to run on a given signal, but also

the nature of the coordination game being played. The convergence to uniqueness follows by

virtue of rank beliefs becoming uniform and the greatest and least switching points, x̂ ≥ x∗,

and ˆ̂x ≤ x∗ respectively, converging to x∗.

3.6 Reserve quality and run risk

Results so far have emphasized issues related to the transparency of reserves. There is an

important distinction to be made, however, between reserve transparency and quality. In

this section, we show that changes in the distribution of the underlying assets that back an
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issuer’s stablecoins are qualitatively distinct from transparency in their effect on self-fulfilling

run dynamics among SC holders.

Corollary 1 shows that, conditional on issuer survival in the previous period, the probabil-

ity that an issuer fails due to a self-fulfilling run can be measured by P[θ ≤ ˆ̂
θt] = Φ

(
ˆ̂
θt−yt

σθ

)
.

Proposition 3 presents a comparative static result on the variance of reserve assets and the

probability of issuer failure:

Proposition 3. Suppose that t = 0 or At−1 < 1
2 . A reduction in the variance of the

distribution of reserve assets lowers the probability of issuer failure:

∂Φ(·)
∂σθ

=
−(

ˆ̂
θt − yt)

σ2
θ

ϕ

(
ˆ̂
θt − yt
σθ

)
≥ 0 . (4)

Insofar as the tightness of the distribution of θ captures the quality of reserve assets

(since negative deviations from the reference value, $1, mean that the issuer cannot honor

the promise of par conversion), an improvement in asset quality (i.e., a reduction in σθ)

lowers the probability of failure, irrespective of the transparency of the issuer. This result

arises from the distinction between collective beliefs over the issuer’s balance sheet, which

determine the failure thresholds, and the probability of failure, which increases with the

density of the probability distribution over the failure range, (−∞,
ˆ̂
θ], for a given threshold.

Summary of model results and implications. Before moving to the empirical

applications, we take stock of the various results obtained from the model, and contrast

them with those from a more traditional version where variance is known.

Figure 5 summarizes our results by contrasting both the threshold(s) that characterize

the equilibria of the game and the type of coordination game being played. When an issuer

holds reserve assets whose value is drawn from a fat-tailed distribution and a majority of SC

holders did not demand conversion in the previous period, Corollary 1 demonstrates that

the probability of issuer failure is proportional to the size of the interval (−∞,
ˆ̂
θt). As model

uncertainty decreases and the structural parameters become common knowledge, Corollary

2 establishes convergence to the well-known unique equilibrium with a failure threshold

between the two fat-tailed switching points where issuer failure is proportional to the size of

the interval (−∞, θ∗t ). The distance of the second interval is (weakly) larger than the first.

But note that this does not necessarily imply that the probability of issuer failure, defined
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by P[θ ≤ θ∗], is also larger than that of an issuer with more opaque reserve assets, P[θ <
ˆ̂
θ].32

While transparency influences the size of these intervals by affecting the perceived quality

of reserve assets, the true quality of these assets is what matters for the probability that

an issuer fails. This is what distinguishes the effects of the quality of reserve assets on run

risk from transparency over the composition of reserve assets. Figure 6 illustrates this using

Frax, USDC and Tether as examples.

Figure 5: Model summary – switching thresholds in ripe for run region.
Notes: Switching thresholds in the ripe for run region [0, 1) that determine run risk on issuers whose reserve asset variance

is known (gray area, traditional global game) and those whose variance is unknown (blue area, generalized global game).

The summary in Figure 5 highlights a notable difference between the unique equilibrium

in traditional global games and our model environment. While results from a model with

known reserve variance suggests issuer solvency should teeter precariously around the fun-

damental threshold θ∗t , a stablecoin whose characteristics are not well understood among

SC holders features runs and recovery of confidence only following large public shocks.

This difference may seem surprising, as it implies that issuers with more opaque reserve

assets are more resilient to small shocks, but the inertia has a simple intuition. A SC holder

of slightly pessimistic type xi does not trust that her signal is representative of weak reserve

asset values, and believes that others harbor similar doubts about the information recovered

from their own signals. This prevents her from running on signals that would induce a

run in the unique equilibrium case. By contrast, a signal that is large in absolute terms,

such that xi < ˆ̂xt, causes the SC holder to interpret her signal as a fundamental shock

rather than idiosyncratic noise. With these beliefs, she no longer knows where she ranks in

32Notice, too, that the same inertia that prevents SC holders from running in the first place also prevents a
recovery in the event of a run once the dollar value of reserves picks up. The interval [θ∗t ,∞) over which an issuer
recovers the peg, is larger for issuers with tightly distributed reserve assets than those with high volatility assets,
for which the interval is [θ̂t,∞). In this way, the heightened strategic uncertainty introduced by fat tails in the
perceived distribution of reserve assets acts as a double-edged sword for stablecoin issuers.
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Figure 6: An illustration of reserve quality and transparency.
Notes: The left panel illustrates the reserve quality effect. It plots the probability density functions (PDFs) for a stablecoin

with high quality reserves (USDC) and more volatile reserves (Frax). While the run threshold (
ˆ̂
θ) is determined by collective

beliefs shaped by transparency, the probability of issuer failure is proportional to not only the threshold but also the (true)

variance of the reserve asset value. High-quality reserves (blue shaded area) have a lower probability of failure than low-

quality reserves (orange shaded area) for a given level of transparency. The right panel illustrates the reserve transparency

effect. It plots the PDFs for a high-quality reserve stablecoin (say, Tether in its current version) with transparent (true)

and opaque (perceived) reserve quality respectively. The run threshold (
ˆ̂
θ) is determined by the perceived distribution, but

the probability of issuer failure is dependent on the true distribution (blue shaded area).

the population (i.e., her rank beliefs are diffuse). Because running produces higher payoffs

than refraining under such beliefs, she is prompted to demand conversion. In this way, both

opacity about the reserve portfolio and volatility in the realized dollar value of reserve assets

serve to anchor runs around large, public shocks.

Together, Proposition 2 (how increased transparency affects run risk) and Proposition 3

(the true dispersion in reserve asset value) suggest a possible trade-off between peg stability

and issuer fragility. We show that on the one hand, conditional on model uncertainty about

the reserve portfolio and that a run is not already occurring, lower transparency by the

issuer lowers the tendency of SC holders to run on the issuer. In this sense, opacity can be

“good” for the issuer as the peg is more stable. But it also creates moral hazard. When the

disciplining effect of run risk is diminished, issuers are likely to seek higher returns in more

volatile assets, leading to greater fragility (left panel of Figure 6) since P[θ ≤ ˆ̂
θ;σθ] is larger.
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On the other hand, greater transparency leads SC holders to run on more moderate signals,

but also disciplines the issuer to hold assets that are more tightly distributed around the

reference value, which lowers fragility (right panel of Figure 6).

4 Empirical evidence

In this section we take the various predictions from the model to the data by analyzing peg

stability and the role of transparency, volatility and large shocks with four case studies. We

start by looking at two case studies that speak to implications also found in models with

known variance. As discussed in the previous section, this case is nested within our baseline

model. The first uses minute-level data on the sudden de-peg suffered by USDC during the

turmoil at Silicon Valley Bank (SVB) in March 2023 (Figure 1). For the second event we

look into daily data for Tether. In particular, we consider two different analyses: (i) the

period of heavy scrutiny over Tether’s collateral adequacy that began in October 2018 and its

effect on peg stability, and (ii) the effect of two early attestation report releases that carried

high informational value. We then move to two case studies that speak to implications

only found in our baseline model environment. The third case study goes back to the SVB

collapse in March 2023 but looks at hourly data on Frax, a decentralized stablecoin that

is backed in part by USDC and lost its peg in the wake of USDC’s de-peg event due to

its USDC collateral exposure. Finally, we also examine the stability of the now defunct

TerraUSD stablecoin and how it related to the volatility of its collateral asset Luna, both

in the presence of small and large shocks.

4.1 Identification strategy

A simple pre-post analysis of changes in stablecoins’ peg stability over time faces an im-

portant identification challenge. In particular, due to the endogenous nature of stablecoin

collateral policy shifts, such an approach may not estimate a causal effect of the event of

interest if additional factors that may also drive stablecoin peg stability were changing over

the same period.

To overcome this problem, for most of our analyses we construct counterfactual values

of peg stability in the respective post-event samples through a synthetic control inspired

approach (Abadie and Gardeazabal, 2003; Doudchenko and Imbens, 2016). Like in the
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synthetic control literature, we estimate pre-post changes in “synthetic” counterfactual peg

stability measures that can then be compared to the actual pre-post change in peg stability

in the spirit of a difference-in-difference exercise. But unlike difference-in-differences, which

requires multiple treated and control units, synthetic control techniques are designed for

settings with just one treated unit such as ours.

Our approach, however, differs from traditional synthetic controls in two important re-

spects. First, given the limited number of liquid stablecoins in the crypto ecosystem, the

number of control units (i.e. other stablecoins) that can be used to estimate the counter-

factual is very small – depending on the period considered, even zero. We therefore rely on

data beyond stablecoins that are likely to be important determinants of stablecoin variabil-

ity to estimate our counterfactuals (see discussion below).33 Second, one advantage of our

approach is that the relatively small number of covariates used to construct counterfactual

predictions implies that the risk of overfitting the counterfactual estimate is much lower

compared to a traditional synthetic control exercise, where the number of control units is

large and often exceeds the number of observations.

The outcome measure of interest across our empirical analyses is the stability of a stable-

coin’s dollar peg, obtained from secondary market data. Peg deviations capture the strength

of the pressure on a stablecoin’s peg, and act as a broad proxy for xc – the mass of investors

that have a best response to demand conversion for a given dollar value of reserve assets, θ.34

The positive association we posit between secondary market prices and run risk is further

substantiated in Appendix B where we introduce a two-layered market into our theoretical

model. As in Lyons and Viswanath-Natraj (2023), daily stablecoin peg stability is measured

in absolute price deviations from $1:

dt = |1− pst |, (5)

where dt is the minute, hourly, or daily price deviation and pst is the closing price of the

stablecoin corresponding to the same frequency.

33In this sense our approach can be viewed as a hybrid between traditional synthetic control event studies and
factor models, as it takes pre-treatment peg stability outcomes as benchmarks when choosing weights for control
units and uses correlations between treated and control units to predict treated counterfactuals (Xu, 2017; Chen,
2023).

34Since xc and θc are affiliated, an increase in θc corresponds with an increase in xc and vice versa. For
previous work that uses measures of investor flightiness to test global game predictions, see Prati and Sbracia
(2002) and Metz (2003).
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To construct the synthetic control we first estimate a dynamic regression of peg stability

as a function of its lagged value and additional variables that shape peg stability over the

pre-event sample period:

dt = α+ ϕdt−1 + βXt + et, (6)

where dt is the absolute peg deviation defined in (5), α captures differential averages

between dt and the estimated counterfactual d̂t, and Xt includes control units or covariates

that could impact stablecoins.

We consider covariates that capture both cryptoasset market conditions and broader

financial conditions. To proxy for crypto market conditions we use intraday range-based

volatilities of the two largest cryptoassets (Bitcoin and Ether).35 To proxy for broader

financial market conditions we rely on indicators from more conventional asset classes.36

These include the VIX index (as a proxy for broad financial market risk appetite), the

MOVE index for interest rate volatility (which shapes switching costs between money-like

instruments potentially serving as stablecoin substitutes), option-implied volatility of gold

(which serves as a gauge of uncertainty as well as of the riskiness of gold-backed stablecoins),

and option-implied volatility of the US dollar-euro exchange rate (capturing international

US dollar market conditions and also serving as a global risk barometer).

A threat to identification in our setting arises from the possibility that control units

in Xt are affected by the treated outcome or the policy change specific to the outcome

variable. This is also known as a violation of the Stable Unit Treatment Value Assumption

(SUTVA). We deal with this threat by carefully selecting variables in Xt that are unlikely

to be impacted by policy changes in the stablecoins studied. Take for instance the case

studies examining USDC and Frax. In light of their relatively small market capitalization

relative to the much larger BTC and ETH markets, it is unlikely that changing dynamics

in the former can affect the latter (let alone conventional financial markets). In the case of

Tether, while it features a considerably larger market capitalization ($80 billion in 2022)37,

it is still substantially smaller than ETH and BTC (around $500 billion and $1 trillion over

35These range volatility estimates are defined as: rvkt = ln pkt,high − ln pkt,low, where rvkt is the time t range
volatility of cryptoasset k ∈ {BTC,ETH} measured as the log-difference of the day’s high and low prices given
by pkt,high and pkt,low, respectively.

36The main results are largely unchanged when excluding these indicators, suggesting that the risk of over-
fitting is relatively low.

37This excludes very recent records, where it surpassed $100 billion and which fall outside our sample.
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the same period) and dwarfed by traditional financial markets. Finally, given the large size

difference between Tether and Frax/USDC and the outsized role played in stablecoin market

developments by Tether, we assume that Tether’s peg stability can impact that of Frax or

USDC but not vice versa. We thus include Tether’s absolute peg deviations in Xt when

studying other stablecoins’ peg stability, but not the reverse.

The pre-event sample counterfactual estimate is given simply by the fitted value recovered

from (6), d̂t,pre. The post-event counterfactual estimate, d̂t,post, is in turn given by:

d̂t,post = α̂+ ϕ̂E[dt−1,post|dT,pre,Xt−1,post] + β̂Xt,post (7)

where α̂, ϕ̂, and β̂ are estimates of α, ϕ, and β from the pre-event period, respectively.

We cannot directly incorporate post-event lagged peg deviations (dt−1) to construct the

counterfactual because those values are “treated”. Instead, we recursively estimate the

expected value of dt−1,post conditional on the last value of absolute peg deviations from

the pre-event sample (dT,pre) and lagged (post-event) values of the covariates (Xt−1,post).

The full counterfactual series of absolute peg deviations that we use to compare against

realized peg deviations is then constructed by joining the pre and post event estimates,

[d̂t,pre, d̂t,post]. This counterfactual path allows us to estimate an average treatment effect in

the post sample period using a t-test for the difference in means between d̂t,post and dt,post,

since the pre-event mean-differences average out to zero by design.

4.2 Data

The empirical analyses rely on minute, hourly and daily frequency exchange-level cryptoasset

data. Minute and hourly price data for various stablecoins and other cryptoassets are sourced

from cryptocompare.com. Daily prices are taken from a variety of sources. Ether and Bitcoin

data are from the Bitfinex exchange and Coingecko, whereas daily Tether prices are from

the Kraken exchange and Coingecko. These exchange-level price data are also sourced from

cryptocompare.com and the choice of exchange is based on coin-level exchange data quality

and transparency.38 We also make use of daily market capitalization statistics for Tether,

TerraUSD and Luna from Coingecko. Data on conventional financial market variables are

from FRED.39

38Figures 17 and 18 in Appendix C presents price series for the main cryptoassets considered.
39The interest rate, gold, and US dollar-Euro implied volatility indices are derived using the traditional VIX

formulation on US Treasury bond, gold ETF, and Euro ETF options, respectively. They are identified by the
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4.3 USDC loses peg during the SVB crisis

Our first case study uses minute-by-minute data around the large de-pegging event suffered

by USDC in March 2023. Stress in the regional bank SVB began to build up in early March.

The situation took a turn for the worse on Thursday March 9th when the share price of SVB

fell sharply after the company announced it planned to raise additional capital by issuing

stock. Some venture capital firms advised startups (key customers of SVB) to withdraw

their money. A run ensued and the FDIC announced one day later it was putting SVB

into receivership. Against this background, and after an attempt to withdraw funds did not

prosper, Circle (issuer of USDC) disclosed it held $3.3 billion of its cash reserve at SVB.40

Almost immediately, USDC fell dramatically (Figure 1, first vertical dashed line). This

episode is a clear illustration of a negative shock due to increased transparency, which led

to a shift in the aggregate behavior of coin holders.

Our model predicts peg instability against such increased transparency with weak priors.

To assess this, we fit the dynamic regression specification described in equation (6), where

USDC’s absolute peg deviations are modeled as a function of their own lag and the set of

controls discussed above for which minute-frequency data are available: Tether’s absolute

peg deviations, Bitcoin volatility and Ether volatility. We set a window of roughly 72 hours

before and after the disclosure. Specifically, the pre-treatment estimation period uses data

sampled at the minute frequency from March 7 to March 10, 2023 just prior to the disclosure.

The post-treatment sample period then spans through March 13th.

Results are in line with the predictions of the model. Figure 7 plots realized peg de-

viations (dark blue) against counterfactual peg deviations (red), before and after Circle’s

disclosure. Before the disclosure, the counterfactual series is indistinguishable from the ac-

tual series, both sitting at $1. USDC’s peg deviations increased markedly following Circle’s

disclosure, whereas the counterfactual series remained flat.

Table 2 reports t-statistics on average differences in absolute peg deviations over pre- and

post-event periods. Following the disclosure by Circle, average daily peg deviations grew to

$0.03 compared to a pre-event average of effectively zero and a counterfactual post-event

average of zero. The difference in averages in the post-treatment period between actual and

ticker codes MOVE, GVZ and EVZ.
40USDC had already slightly de-pegged some hours before, as the fact that they had a relationship with SVB

was public information, even if not widely known. However, the extent of the exposure was not known until
Circle’s disclosure. Through the lens of our model, this captures an environment in which market priors, y, were
likely weak, leading an increase in public information precision to aggravate investor flight and run risk.
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Figure 7: USDC loses peg around SVB crisis.
Notes: The figure plots actual absolute peg deviations of USDC (dark blue) and the counterfactual path (red) estimated

from Equations 6 and 7 using minute-frequency data on USDC absolute peg deviations, USDT absolute peg deviations,

BTC range volatility and ETH range volatility. The dashed vertical line represents the disclosure by Circle (issuer of

USDC) that it held $3.3 billion of its reserve at SVB.

counterfactual peg deviations is highly statistically significant.

Mean absolute peg
deviations

Pre event 03-07-2023 to
03-10-2023

Post event 03-11-2023 to
03-13-2023

Actual 0.000 0.030
Counterfactual 0.000 0.000

Difference 0.000 0.030∗∗∗

t-statistic 0.000 70.032
Observations 5520 4499

Table 2: Average effect (in $) on USDC peg deviations after Circle discloses deposits held with
Silicon Valley Bank, minute-by-minute before and after March 10, 2023. Significance at the
10%, 5%, and 1% level given by ‘*’, ‘**’ and ‘***’, respectively.

4.4 Tether’s reserve adequacy and attestations

Our second set of event studies examines the largest stablecoin, Tether. In this case, we

present two distinct pieces of evidence to support the implications of the model. First, we

look at peg deviations during a time, in the early life of Tether, when there was no public
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information and doubts mounted on its reserve adequacy. Second, we move forward in time

and zoom in on the only instance when two reserve attestation reports were released in two

consecutive months (early 2021), which also happened after a long spell (two and half years)

without any information on Tether’s reserves. Arguably, the information content of these

two consecutive releases was among the largest for all attestation reports.

Doubts about Tether’s reserve adequacy. We look at the period around Octo-

ber 2018, when Tether experienced temporary peg instability connected to worries over its

backing. This occurred in the aftermath of a June 2018 audit report that was completed

by a law firm, rather than a certified accounting firm.41 Concerns over whether Tether was

fully backed by US dollars (as claimed by the issuer, without any supporting evidence) con-

tinued to fester and worries also rose regarding Tether’s relationship with Bitfinex and the

possible co-mingling of customer funds. These concerns eventually led to a sharp de-pegging

on October 15, 2018, followed by another one in April 2019 when the NY Attorney General

announced its lawsuit against iFinex, the parent company of Tether and Bitfinex.42

In this event the reserve quality of the stablecoin was called into question, hence a priori

we expect to observe greater peg instability. We consider September 30, 2018 as our event

date as it stands days before Bitfinex publicly responded to rumors of insolvency, followed

by an October 11 announcement it was temporarily shutting down fiat deposits in the

face of payment processing complications, triggering severe concerns over Tether’s reserve

adequacy.4344 We interpret such increased worries over Tether’s backing during this period

as weakening priors about Tether’s reserves. The pre-event sample spans February 15, 2018

to September 30, 2018 and the post-event sample spans October 1, 2018 to June 30, 2019.

Tether’s market capitalization surpassed $3 billion before the event and by October 2018

41The law firm, Free, Sporkin and Sullivan, added a disclaimer that, “FSS is not an accounting firm and did
not perform the above review and confirmations using Generally Accepted Accounting Principles,” and, “The
above confirmation of bank and Tether balances should not be construed as the results of an audit and were not
conducted in accordance with Generally Accepted Auditing Standards.”

42During the case, Tether’s lawyers stated that as of April 30, just 74% of Tether was backed by US dollar
assets, contrary to repeated previous statements by the issuer. The case reached a settlement in 2021.

43See “A Response to Recent Online Rumors” published by Bitfinex on October 7, “Bitcoin Jumps after Credit
Scare; Fidelity Enters Crypto Sphere”, published by MarketWatch on October 15, 2018, and “Crypto Markets
Roiled as Traders Question Tether’s Dollar Peg”, published by Bloomberg on October 15, 2018. In February
2021, The New York State Attorney General reported in their investigation of Tether that the October 2018
shutdown caused Bitfinex to suffer a “massive and undisclosed loss of funds”.

44The choice of treatment date is not clear-cut in this exercise because of the ongoing scrutiny over Tether’s
reserve adequacy over this period. However, the results discussed below are robust to selecting alternative
treatment dates. For example, the results also obtain if the treatment date is chosen to be that of the first audit
report released in June 2018.
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Mean absolute peg
deviations

Pre event 02-15-2018 to
09-30-2018

Post event 10-01-2018 to
06-30-2019

Actual 0.011 0.009
Counterfactual 0.011 0.001

Difference 0.000 0.008∗∗∗

t-statistic 0.101 15.042
Observations 228 274

Table 3: Average effect (in $) on Tether peg deviations after rising concerns over reserve ade-
quacy, before and after September 30, 2018. Significance at the 10%, 5%, and 1% level given
by ‘*’, ‘**’ and ‘***’, respectively.

it had fallen by $1 billion, suggesting that these concerns were highly consequential for the

stablecoin (left-hand panel of Figure 8).

We employ a dynamic regression specification to estimate the synthetic counterfactual

path of Tether’s absolute peg deviations before and after the event date. Specifically, we

regress absolute peg deviations of Tether on its lagged values, range volatilities of BTC and

ETH, and the conventional financial market variables discussed above. Because Tether is

the largest stablecoin, we do not include variables based on other smaller stablecoins to

mitigate potential endogeneity issues.

The effects of the concerns regarding reserve quality are very clearly visible in terms

of (lack of) peg stability in the right-hand panel of Figure 8. This panel plots Tether’s

actual absolute peg deviations over the pre and post event periods in dark blue and its

corresponding counterfactual path in red (as in the left-hand panel, the vertical line marks

September 30, 2018, the beginning of rising concerns about Tether’s reserve adequacy).

Actual peg deviations spike in the wake of the event and remain considerably large thereafter,

whereas the counterfactual remains stable. We test these differences more formally in Table

3, which reports mean absolute peg deviations over the pre and post event samples along

with those of the counterfactual estimate. Tether’s realized peg deviations of $0.009 were

significantly larger in the post-event sample compared to the counterfactual mean deviation

of $0.001 (in other words, realized peg deviations were about 9 times, or 800% larger than

in the counterfactual).

Tether’s peg around attestation release dates. The adequacy and quality of

Tether’s reserves have been historically clouded by mystery, in no small part because the

stablecoin operated outside the purview of regulators. One way the operating firm aimed
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Figure 8: Doubts about Tether’s reserve adequacy.
Notes: The left panel traces the market capitalization of Tether. The right panel plots actual absolute peg deviations of

Tether (dark blue) against the counterfactual path (red) estimated from Equations 6 and 7. The dashed vertical line is

September 30, 2018, the beginning of concerns over Tether’s reserve adequacy.

to gain credibility was through regular reserve attestations, or periodic audits. The earliest

available attestation report of Tether’s reserves is dated June 1, 2018 by firm Free, Sporkin,

and Sullivan LLP (see footnote 41 and preceding discussion). However, as the case study

just discussed shows, FSS made it publicly clear that they are not a certified accounting

firm.

Tether resumed the publication of attestation reports in early 2021, after two and half

years without any information. Specifically, there was a gap in audit releases between

October 2018 and February 2021. Tether’s peg remained relatively stable over this period,

which we interpret as relatively strong priors held by its holders despite the lack of reserve

transparency, likely due to buoyant market conditions in the latter part of the period. This

dry spell was broken when Moore (then Tether’s auditor) published attestations of Tether’s

reserves on February 28, 2021 and then again on March 30, 2021 – the only period when

Tether released audits in two consecutive months.45 We take advantage of this period to

examine whether Tether’s peg stability was impacted by the first audit release after several

years. We estimate the same synthetic control specification as in the preceding exercise,

although now the pre-treatment period is from October 30, 2020 to February 28, 2021 and

the post-treatment period covers March 1, 2021 through April 30, 2021.

45Tether continued to periodically publish reports thereafter, changing auditors multiple times over the early
years of reporting. As a result, questions over reserve adequacy persist, even to this day.
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Figure 9 and Table 4 present the results. The first and second vertical dashed lines in

Figure 9 respectively denote February 28 and March 31 attestation report releases. Coun-

terfactual peg deviations were larger than actual peg deviations following the February 28

release, and the difference between them grew even larger following the March 31 release.

Information disclosure about reserve quality following a long period without any such in-

formation contributed to reducing the run risk perceived by investors, as manifested in the

volatility of Tether’s peg. Table 4 reports the average reduction in peg deviations observed

in Figure 9 following the February 28, 2021 audit release. The difference between counter-

factual and actual series is statistically significant at the 1% level.

0.000

0.003

0.006

0.009

Feb 2021

A
bs

ol
ut

e 
pe

g 
de

vi
at

io
n 

($
)

Actual

Counterfactual

Figure 9: Tether absolute peg deviations before and after the February 28, 2021 audit release.
Notes: The figure plots the actual absolute peg deviations of Tether (dark blue) against the counterfactual path (red)

estimated from Equations 6 and 7. The first dashed vertical line is February 28, 2021, the date of the first audit release of

Tether’s reserves since 2018. The second dashed vertical line is March 30, 2021, the date of the subsequent audit release.

These were the only reports released in consecutive months.

4.5 Frax’s peg around the SVB crisis

The third case study goes back to events around the collapse of SVB, but focuses on the

behavior of Frax. Unlike USDC or Tether, Frax is a smaller crypto-collateralized stablecoin

that was originally designed to be partially backed by cryptocurrency collateral and partially
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Mean absolute peg
deviations

Pre event 10-30-2020 to
02-28-2021

Post event 03-01-2021 to
04-30-2021

Actual 0.002 0.002
Counterfactual 0.002 0.004

Difference 0.000 -0.002∗∗∗

t-statistic 0.000 -7.974
Observations 121 61

Table 4: Average effect (in $) on Tether peg deviations after Tether’s February 28, 2021 audit
attestation release. Significance at the 10%, 5%, and 1% level given by ‘*’, ‘**’ and ‘***’,
respectively.

algorithmic, with the collateral ratio varying over time based on demand for the stablecoin.

However, in February 2023 the Frax community voted to launch an update to the stablecoin

protocol with the goal of eliminating the algorithmic component and hence becoming a fully

crypto-collateralized stablecoin.

Frax makes for a particularly unique case study around the SVB event because it is a

stablecoin that is partially backed by USDC. Therefore the depegging of USDC around SVB

can be seen as an unanticipated collateral volatility shock for Frax, potentially impacting

its own peg stability. Moreover, Frax does not feature confounding mechanisms such as

those present for Dai, which is also backed by USDC and which also de-pegged around SVB

(Figure 1).46

To assess the impact of USDC collateral volatility on Frax peg stability, we follow a sim-

ilar approach as above. In particular, we fit the dynamic regression specification described

in equation (6), where Frax’s hourly absolute peg deviations are modeled as a function of

their own lag and the set of controls discussed above, for which hourly data are available:

Tether’s absolute peg deviations, Bitcoin volatility and Ether volatility. Like in the USDC

case studied above, the treatment is the disclosure by Circle of the amount of reserves held

at SVB. The pre-treatment estimation period uses data sampled at the hourly frequency

from March 8 to March 10, 2023, just prior to the disclosure. The post-treatment sample

period spans through March 13th.

Figure 10 shows actual peg deviations (dark blue) following USDC’s disclosure versus

46As shown in Figure 16, de-pegging was common to stablecoins backed by USDC, but not to those backed
by other (even otherwise more volatile) crypto collateral. Other crypto-collateralized stablecoins such as Dai also
hold USDC as collateral. But Dai also has a price stability mechanism (PSM) in effect with USDC, allowing for
1-for-1 convertibility. As a result, it is difficult to attribute Dai’s peg instability around SVB directly to collateral
volatility, as the presence of a PSM ties the price of USDC and Dai together.
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Mean absolute peg
deviations

Pre event 03-08-2023 to
03-10-2023

Post event 03-10-2023 to
03-13-2023

Actual 0.004 0.019
Counterfactual 0.010 0.004

Difference 0.000 0.010∗∗∗

t-statistic 0.000 4.916
Observations 71 60

Table 5: Average effect (in $) on Frax peg deviations after Circle discloses deposits held with
Silicon Valley Bank, hour-by-hour before and after March 10, 2023. Significance at the 10%,
5%, and 1% level given by ‘*’, ‘**’ and ‘***’, respectively.

counterfactual peg deviations (red). It is quite visible how Frax’s actual peg deviations rose

significantly following the disclosure, while counterfactual peg deviations did not rise by

nearly as much. Table 10 shows that Frax’s average absolute peg deviations grew signifi-

cantly following Circle’s disclosure. Moreover, the difference between actual and counter-

factual average absolute peg deviations is statistically significant at the 1% level.
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Figure 10: Frax loses peg around SVB crisis.
Notes: The figure plots the actual absolute peg deviations of Frax (dark blue) against the counterfactual path (red)

estimated from Equations 6 and 7 using hourly data on Frax absolute peg deviations, USDT absolute peg deviations, BTC

range volatility and ETH range volatility. The dashed vertical line represents the disclosure by Circle (issuer of USDC)

that it held $3.3 billion of its reserve at SVB.
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4.6 Reserve volatility and peg stability: TerraUSD and Luna

Lastly, we also test our model predictions using data on TerraUSD, the now defunct algo-

rithmic stablecoin. When the variance of the reserve asset returns is unknown, beliefs about

it change over time. In the context of the model, large reserve asset shocks are destabilizing

when the stablecoin lies within a “ripe for run” region but not outside this region, whereas

small shocks are not destabilizing.

Luna’s market capitalization was indeed volatile. The left panel in Figure 11 presents

evidence of this volatility, while highlighting market capitalization still generally remained

well above the value of Terra’s outstanding stablecoin liabilities, except for two periods:

May 2021 and May 2022 (when TerraUSD permanently de-pegged). During both periods

(denoted by grey vertical areas), the market capitalization of Luna approached that of

TerraUSD. We define this difference as Terra’s “equity value”.47 For example, the 2021

episode when Terra equity values quickly approached zero was caused by the bursting of

the cryptoasset bubble, with the price of Bitcoin falling 40% in a matter of days, bringing

Luna’s price down with it. The notion of Terra’s equity value is compelling because if Luna’s

market capitalization falls below that of TerraUSD, then there is insufficient Luna available

to be sold to cover all TerraUSD liabilities, and therefore Terra as a stablecoin issuer is more

likely to become insolvent in the eyes of TerraUSD holders (Liu et al., 2023).

As the variance of the reserve asset is unknown, we assume that beliefs over it are formed

using observable data on changes in reserve asset prices. As a result, TerraUSD holders’

best guess of the variance of the reserve asset Luna is likely a function of Luna’s price

return history, and this estimate can change over time with the arrival of new information.

Validating the assumption that variance is not known and non-constant, the right-panel of

Figure 11 shows strong evidence of time-varying variance for Luna. Specifically, we use a

GARCH(1,1) estimate of the conditional standard deviation of daily returns (i.e. volatility)

of Luna through May 9, 2022, right before the permanent de-peg when volatility exploded

to over 400%, resulting in a time-series plot that is quite literally off the chart. The non-

constant conditional volatility of Luna generates fat tails in the unconditional distribution

of the reserve asset returns, consistent with the statistical properties of Luna’s price returns.

Our model also implies that stablecoins are in a “ripe for run” region they are susceptible

to large shocks toppling them. Here the concept of Terra equity defined above is useful, as

47Concretely, we define it as follows: Terra Equity = Luna Market Cap - TerraUSD Market Cap.
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Figure 11: TerraUSD market capitalization, Luna market capitalization and volatility.
Notes: The left-panel plots the market capitalization of TerraUSD (light blue, thick) and Luna (dark blue, thin), including

the period of the terminal depegging event. We define the difference between Luna and TerraUSD market capitalization

as Terra equity. The right-hand plots the daily return volatility of Luna, estimated under a GARCH(1,1) specification

through May 9, 2022 (pre de-pegging event). By May 11 Luna estimated daily volatility reached 50% and exceeded 400%

by May 14 (not shown for better visibility). The shaded regions indicate May 15-25, 2021 and May 5-15, 2022, respectively.
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Figure 12: Terra equity, volatility and peg deviations.
Notes: The left panel plots Terra equity (defined as market capitalization of Luna minus that of TerraUSD) versus absolute

peg deviations of TerraUSD. The right panel plots the daily return volatility of Luna estimated under a GARCH(1,1)

specification versus absolute peg deviations of TerraUSD. Daily data from January 1, 2021 to May 9, 2022.

it can be seen as a measure that determines vulnerability to a run. In other words, the

run region is more likely to be approached as Terra’s equity value approaches zero. Indeed,

as Terra’s equity value falls, absolute deviations of TerraUSD’s dollar peg increases and

are largest when Terra’s equity value approaches zero (left panel of Figure 12). Without
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explicitly taking a stance on defining a “ripe for run” threshold, it is possible to simplify

to a continuous setting where one can think of Terra’s run risk, quantified using absolute

peg deviations, as decreasing in Terra’s equity value. Luna volatility, in turn, is positively

associated with TerraUSD’s absolute peg deviations, as shown in the right panel of Figure

12. In other words, when the range of possible Luna reserve asset returns increases, so

do absolute peg deviations of TerraUSD. We interpret large (small) values of Luna return

volatility as realizations of large (small) reserve asset shocks.

Taking these stylized facts together help motivate a simple regression analysis to test

model implications. We test the following two predictions: (i) reserve asset shocks are

positively correlated with TerraUSD peg deviations, i.e. large shocks are more destabilizing

than small shocks; and (ii) the effect of reserve asset shocks on TerraUSD peg stability

are stronger within the “ripe for run” region, i.e. when Terra’s equity value is smaller. A

parsimonious regression model to test these predictions can be set up as follows:

dt = α+ ϕdt−1 + β1volt−1 + β2[volt−1 × equityt−1] + et, (8)

where variables on the right-hand side are lagged to help reduce the risk of endogeneity

arising from simultaneity between TerraUSD and Luna. TerraUSD’s absolute peg deviations

are given by dt, Luna’s GARCH(1,1) conditional volatility is given by volt and Terra’s equity

value is given by equityt. Daily data from January 1, 2021 to May 9, 2022 are used, so our

estimates exclude the final de-peg event of May 2022.48

The interpretation of coefficients is as follows. A positive estimate of β1 suggests that

TerraUSD’s peg deviations are larger when reserve asset volatility is higher (larger shocks). A

negative estimate of β2 in turn indicates that for any given level of Luna volatility, its impact

on TerraUSD’s peg stability is weaker when Terra’s equity value is larger. Our specification

is motivated by the interpolated surface plot shown in Figure 13 which uses local linear

smoothing to fit a surface relating Terra’s equity and Luna’s volatility to TerraUSD’s peg

deviations. Empirically, it can be seen that even prior to the permanent de-peg that occurred

in May 2022, peg deviations were largest when both Luna’s volatility was high and Terra’s

equity value was low.

Regression results support the two predictions (Table 6). Indeed as suggested by Figures

48Results are not sensitive to the choice of using logged or non-logged volatility, nor the choice to include or
exclude a lagged dependent variable.
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Figure 13: Terra equity, Luna volatility and TerraUSD absolute peg deviations.
Notes: Terra equity is defined as the market capitalization of Luna minus the market capitalization of TerraUSD. Luna

volatility corresponds to the daily conditional return volatility estimated from a GARCH(1,1) model. The surface is

interpolated via a locally estimated scatter plot smoothing regression with degree of 1 and span of 0.95.

12 and 13, as reserve asset volatility rises, so do absolute peg deviations. However, the impact

of higher reserve asset volatility on peg deviations depends significantly on the equity value

of Terra. When equity is low (i.e. when approaching the “ripe for run” region), the same

level of Luna volatility has a substantially larger impact on TerraUSD’s peg stability.

Covariate Estimate SE

Intercept 0.0013 (0.0007)
dt−1 0.4978∗∗∗ (0.0403)
volt−1 0.0186∗ (0.0067)

volt−1 × equityt−1 -0.0011∗∗∗ (0.0003)

Table 6: Regression estimates from Equation 8 where the dependent variable is dt, TerraUSD
absolute peg deviations. Significance at the 10%, 5%, and 1% level given by ‘*’, ‘**’ and ‘***’,
respectively. Standard errors adjusted for heteroskedasticity and autocorrelation. Estimates
and standard errors (SE) on volt−1 and [volt−1 × equityt−1] are multiplied by 100. The sample
runs from from January 1, 2021 to May 9, 2022, and includes 492 observations.

To put results in perspective, let us consider a scenario where Luna daily volatility rises
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to from 5% to 15%. Under an equity value of $15 billion, TerraUSD’s peg deviations would

increase from $0.00013 to $0.0004.49 However, under an equity value of just $1 billion,

TerraUSD peg deviations would rise from $0.0009 to $0.0026, a 29-fold increase. On May

12, 2022, TerraUSD broke its peg and fell from $1 to roughly $0.78 and Terra’s equity value

was wiped out. By May 14, TerraUSD crashed to roughly $0.12 and Luna volatility rose

sharply, exceeding 400%. Our simple linear model estimated on data before the final de-

peg qualitatively captures the peg stability risk of Terra that eventually became realized,

although unsurprisingly non-linearities would likely need to be considered to quantitatively

match the nature of Terra’s final de-pegging event.

5 Conclusion

Stablecoins were designed to provide a stable unit of account within the crypto ecosystem.

Yet despite the various strategies used to defend their promise of par convertibility to the

sovereign unit of account, that promise was broken on multiple occasions, irrespective of the

type of reserves held. Besides the notorious failure of the algorithmic stablecoin TerraUSD,

the March 2023 banking crisis simultaneously highlighted the key role of reserve transparency

and volatility.

In this paper, we analyze the various ways in which information (in the form of public

broadcasts and learning from past observations) shapes the risk of coordination failure by

stablecoin holders through their beliefs about peg stability. Using global games to model the

strategic interactions among stablecoin holders and issuers, we argue that the characteristics

of the reserves held determine the type of game being played. We show that the effect of

public disclosure and large shocks on run risk is ambiguous. Greater transparency can

lead to greater run risk when market expectations are pessimistic; conversely, transparency

strengthens a stablecoin peg when priors are strong. We also predict inertia in aggregate

behavior by stablecoin holders. Individuals pay close attention to past events, and small

public shocks to fundamentals induce a reversion to historical outcomes, while large negative

(positive) shocks trigger wide-spread runs (recoveries). Our assessment of the effect of recent

publicized changes to collateral holdings by prominent stablecoin issuers on stablecoin price

stability provides strong support to the model’s predictions.

49TerraUSD absolute peg deviations, dt, have a standard deviation of $0.0052 from January 1, 2021 to May
9, 2022.
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Our work has implications for policy. The model and empirical findings indicate that

stablecoins are subject to run risk and can (and do) de-peg, failing on their promise of

par convertibility. These stability risks are connected to reserve adequacy, and perceptions

thereof – inadequate or illiquid for some, non-existent for others such as algorithmic coins.

As a result, our work speaks to ongoing debates on whether stablecoins should hold loss

absorbing resources to buffer against these risks. Banks and money market funds also issue

dollar-like liabilities, but unlike them, stablecoin issuers do not have access to public liquidity

backstops – likely for good reason (Aldasoro et al., 2023). The demise of SVB demonstrates

how even stablecoin issuers with ex-ante fully liquid reserves are not really risk-free (as they

are exposed to credit and liquidity risk) and are subject to the type of financial stability risks

that are ultimately borne by the public in the absence of loss absorbing resources. To be sure,

such loss absorbing resources will not in and of themselves solve stablecoin run risk, but will

likely mitigate losses for users, especially in the absence of explicit backstops. Finally, our

work highlights that reserve asset transparency and quality play distinct roles in shaping peg

stability and the probability of issuer failure, pointing to an important distinction between

reserve disclosure and quality requirement that can inform policy design.

Our paper points to interesting avenues for future work. For example, future research

could consider the interplay between conflicting public messages about the quality of sta-

blecoin issuer collateral, and how public information interacts with shocks to idiosyncratic

noise that, together, shape run risk. The first issue pertains to instances where, for example,

public audits reveal information that contradicts disclosures by the issuer. The second issue

involves the impact of informational sources such as social media on the idiosyncratic beliefs

of market participants. Such work may be facilitated by the continuous development of

stablecoins with an increasingly diverse range of reserves and collateral policies. Our model

could also be usefully extended into a bank setting to understand whether, and to what

extent, banks are well placed to issue stablecoins.
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A Derivations and proofs

A.1 Proof of Proposition 1

First, we establish that the game is supermodular with each Bayes-Nash equilibrium in

strategies that are monotone in type. The joint density, p(η, zi) = g(η)ϕ( zi−η
σx

), is log

supermodular by the concavity of log ϕ. This establishes that η and zi are affiliated, so

posterior beliefs over θ are increasing in shock component zi in the sense of first-order

stochastic dominance.

By affiliation of zi and η, SC holders’ posterior beliefs over θ are also monotonically

decreasing in signal xi by their proportionality to the shock components. Conditional on

observing xi, the posterior belief over the event that θ is less than or equal to some critical

point, θx = y + ηc, is given by

P[θ ≤ θc|xi] = G(ηc|zi) =
∫ ηc

−∞ g(η)ϕ(zi − η)dη∫∞
−∞ g(zi − σxs)ϕ(s)ds

. (9)

The payoff differential between running on the issuer and maintaining a holding is given

by

f(z) =

∫ ηc

−∞

(
1− τ

y + E[η|z]

)
g(η|z)dη +

∫ ∞

ηc

(1− 2τ − π(y + η))g(η|z)dη , (10)

where we have used the equilibrium condition that at signal xc, the expected withdrawal

mass is equal to the expected value of reserve assets, i.e., R(xc − y) = E[θ|x = xc] =

y + E[η|zc] = θc. The expected value of reserve assets given signal x, is

E[θ|x] = y +

∫
ηg(η)ϕ

(
x−y−η

σx

)
dη∫

g(s)ϕ
(

x−y−η
σx

)
ds

. (11)

A sufficient condition for equation (10) to have a unique solution at f(z) = 0 is if ∂f
∂z ≥ 0

which establishes supermodularity of the payoff function. This is satisfied whenever:

τ < τ̂ ≡ τ :

∫ ηc

−∞

∂g

∂z

(
1− τ

y + E[η|z]

)
− g(η|z)

(
1− τ

(E(·))2
∂E(·))
∂z

)
dη

+

∫ ∞

ηc

∂g

∂z
(1− 2τ − π(y + η))dη = 0 .

(12)

Next we show consistency of higher-order beliefs. We work backwards, first analyzing
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the behavior of the issuer for any mass of early withdrawals before solving the equilibrium

strategies of SC holders.

For a given mass of redemption requests, A, the issuer is able to process withdrawals by

selling down reserve assets at a unit value θ per stablecoin. Whenever A > θ, the issuer

is rendered insolvent. Therefore, conditional on A = θc, where θc is some critical level at

which withdrawal requests are just equal to the value of reserve assets, it is in every SC

holder’s best interest to demand conversion in the hope of reclaiming funds before the issuer

becomes insolvent (i.e., to run on the stablecoin).

Given some critical reserve asset value θc = y+ηc, let P be the set of all signals associated

with a non-negative expected payoff from demanding conversion, so that

P ≡

{
x

∣∣∣∣∣
∫ θc

−∞

(
1− τ

E[θ|x]

)
g(θ|x)dθ +

∫ ∞

θc

(1− 2τ − π(θ))dG(θc|x) > 0

}
. (13)

We say that demanding conversion is p−dominant for SC holder i whenever xi ∈ P, and

maintaining a holding is p−dominant whenever xi ∈ P ′ (the complement of P). Since the

left-hand side of the expression in (13) is strictly decreasing in x, by the intermediate value

theorem, for any θc, there is a corresponding indifference condition characterized by a unique

signal x such that the expected payoff differential is exactly zero.

To derive the critical threshold, θc, SC holders must also appeal to higher order reasoning

to justify the decision to withdraw their holdings. Let Q be the set of all signals associated

with rank beliefs that exceed the expected value of reserve assets, so that

Q ≡

{
x

∣∣∣∣∣R(xj − y) > y + E[η|xj − y] ∀xj ≤ x

}
. (14)

Whenever xi ∈ Q, SC holder i believes that at least q = y + E[η|x − y] others will with-

draw early, where E[η|xj − y] is another SC holder’s expected common shock component

conditional on observing xj .

This mass will be sufficient to render the issuer insolvent and, crucially, anyone with

a more pessimistic signal has a belief at least as strong as i’s that the issuer will become

insolvent. This is because the rank belief function provides i’s expected mass of withdrawals

conditional on i’s signal being the switching point xc. Denoting the complement of Q by Q′,

SC holder i believes that too few others will withdraw to cause the issuer to fail whenever

xi ∈ Q′.
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Together, conditions x ∈ P and x ∈ Q are necessary and sufficient to make withdrawing

uniquely rationalizable at signal x.50 Owing to supermodularity of the game among SC

holders, there exists a greatest and least Nash equilibrium that bound all rationalizable

strategies (Van Zandt and Vives, 2007). The least equilibrium switching point, ˆ̂x, is the

unique solution to

ˆ̂x = sup
x
{x ∈ P ∩Q}. (15)

The greatest equilibrium switching point, x̂, is the unique solution to

x̂ = inf
x
{x ∈ P ′ ∩Q′}. (16)

Since x and θ are stochastically affiliated, we have ˆ̂x ≤ x̂, and a sufficient condition for a

unique equilibrium, x∗, at which the greatest and least Bayes-Nash equilibria converge, is

σx < σ̂x(ν), where

σ̂x(ν) ≡ σx :
∂E[η|z;σx, ν]

∂z

∣∣∣
z=0

− ∂R(z;σx, ν)

∂z

∣∣∣
z=0

= 0 , (17)

since, for any σx and ν, ∂E[η|z;σx,ν]
∂z is minimized at z = 0, while ∂R(z;σx,ν)

∂z is maximized at

z = 0, and by the intermediate value theorem which ensures at least one solution. In what

follows, we set σx ≥ σ̂x(ν) to ensure multiple equilibria.

For each equilibrium switching point, x̂ and ˆ̂x, there is a corresponding critical dollar

value of reserve assets, θ̂ and
ˆ̂
θ respectively, given by the unique solution to

θ = Φ

(
x− θ

σx

)
. (18)

The issuer always becomes insolvent when θ <
ˆ̂
θ, always survives when θ ≥ θ̂, and faces an

indeterminate outcome whenever
ˆ̂
θ ≤ θ < θ̂.

Comparative statics

For a given critical value of fundamentals, θc, the continuity of the payoff function guarantees

that there is a unique p−dominance threshold x∗, at which a stablecoin holder is indifferent

between demanding conversion and maintaining a holding when E[θ∗|x∗] others are expected

50Analogously, x ∈ P ′ and x ∈ Q′ is necessary and sufficient to make maintaining a holding uniquely ratio-
nalizable at x.
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to withdraw. Fix model parameters such that xQ > x∗ > xQ, where xQ is the lowest, and

xQ is the greatest of the solutions to

R(z) = y + E[η|xj ]. (19)

In this case, it is beliefs about aggregate behavior rather than individual payoff parameters

that are crucial in determining the probability of issuer insolvency.51 As such, using the

implicit function theorem, changes in market expectations about reserve quality, y, produce

the following effects on switching strategies:

∂x̂(z)

∂y
=

1

R′(z)− E′[η|x]
< 0

∂ ˆ̂x(z)

∂y
=

1

R′(z)− E′[η|x]
< 0,

(20)

where we have used the definition for switching point x̂ from (16). The sign of (20) is

negative since R′(z) < 0 and E′(·) > 0 at both x̂ and ˆ̂x.52 By affiliation of x and θ in (18),

the fundamental thresholds are also decreasing in y.

Note that the solutions to (19) are independent of the transaction cost τ . Therefore, as

long as xQ > x∗ > xQ holds, increases in transaction costs do not affect switching strategies

defined by x̂ and ˆ̂x, and so the fundamental thresholds θ̂ and
ˆ̂
θ are also invariant to small

increases in transaction costs.

However, since the condition xQ > x∗ > xQ is sensitive to τ , and with the well-known

result that both x∗ and θ∗ are decreasing in τ , it follows that a sufficiently large increase in

transaction costs could lead to a case where x∗ < xQ < xQ. When this happens, we have

∂ ˆ̂x/∂τ < 0 and, hence, ∂
ˆ̂
θ/∂τ < 0. When the condition xQ > x∗ > xQ no longer holds, the

lower switching strategy, ˆ̂x is defined by the p−dominance threshold x∗, rather than xQ. In

this case, by condition (13), an increase in τ has the following effect on the lower threshold:

∂ ˆ̂x

∂τ
=

− [G(θc|x)− 2]
∂G(θc|x)

∂x (1− τ)−
∫∞
θc

g′(·)[π(θ)− (1− 2τ)]dθ
< 0, (21)

51The condition xQ > x∗ > xQ is not necessary for our results. The effect of changes in y on switching point
x∗ is well established in the literature (Prati and Sbracia, 2002, 2010). We focus on this characterization for the
independence of the equilibria on marginal changes in transaction costs, as derived below.

52To see this consider: ∂R(z)
∂z

=
ϕ∗g(z)·Φϕ∗ ∂g

∂z
(z)−Φϕ∗g(z)·ϕ∗ ∂g

∂z
(z)

(ϕ∗g(z))2 , where we use ϕ ∗ g to represent convolution

of ϕ and g. First, ˆ̂z ≤ z(R) < 0 as per the proof of Proposition 4 by Morris and Yildiz (2019), where R is the
minimum rank belief, given distributions g and ϕ. Further, by the definition of R and the uniform limit rank
beliefs property, ∂R(z)/∂z ≤ 0 for all z ≤ z(R). By symmetry, the same properties hold at ẑ.
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where G(θc|x) is decreasing in x by stochastic affiliation of θc and x, and g′(·) ≥ 0 at the

lower threshold since ˆ̂x ≤ ˆ̂
θ.

Therefore, while the common prior has the same dampening effect on the flightiness of

SC holders as in unique-equilibrium global games, transaction costs are only effective at

staving off a run when they are raised by a sufficiently large degree, or when the switching

point is defined by individual payoff parameters, rather than aggregate beliefs (i.e., when

x∗ ≤ xQ < xQ).

A.2 Proof of Corollary 1

Equilibrium shifts to majority redemption if and only if withdrawing early is uniquely ra-

tionalizable for the median SC holder. Since signals are symmetric around the mean, this

type is xit = θt. Using the results in Proposition 1, maintaining a holding is uniquely ra-

tionalizable for this type whenever θt ≥ ˆ̂xt(yt) given a new issuance or that there was not

a run in the previous period. Otherwise, maintaining a holding continues to be uniquely

rationalizable provided θt ≥ x̂t(yt).

A.3 Proof of Proposition 2

From the proof of Proposition 1 and Corollary 1, we have that
ˆ̂
θt is defined implicitly by

ˆ̂
θt = Φ

(
ˆ̂xt − ˆ̂

θt
σx

)
, (22)

and that θ̂t is defined implicitly by

θ̂t = Φ

(
x̂t − θ̂t
σx

)
, (23)

given thresholds ˆ̂xt and x̂t respectively. Equations (22) and (23) show that
ˆ̂
θt (θ̂t) is increas-

ing in ˆ̂xt (x̂t).

By the implicit function theorem, it suffices to examine the effect of an increase in

transparency on the equilibrium condition.53 The partial derivative of (19) with respect to

53This is because R′(z) < 0 and E′(·) > 0 at both ˆ̂xt and x̂t, and so the partial derivative of the equilibrium
condition (19) with respect to x is negative.
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νt is given by:

∂R(zt)

∂νt
− ∂E[ηt|xjt]

∂νt
. (24)

The term ∂R(zt)/∂νt causes a ‘widening’ of the rank belief function as follows:

∂R

∂νt
=

Φϕ ∗ ∂g
∂νt

(zt)ϕ ∗ g(zt)− Φϕ ∗ g(zt)ϕ ∗ ∂g
∂νt

(zt)

[ϕ ∗ g(zt)]2
. (25)

By symmetry of G(ηt; νt) around 0, and since an increase in νt causes a reduction in the

density of the tails of the distribution, the expression in (25) is negative at ˆ̂xt and is positive

at x̂t.

The effect on the second term in (24) is given by:

∂E[ηt|xjt]

∂νt
=

1

(ϕ ∗ g(zt))2

{∫
g(s)ϕ(zt − s)ds ·

∫
ηt

∂g

∂νt
(ηt)ϕ(zt − ηt)dηt

−
∫

ηtg(ηt)ϕ(zt − ηt)dηt ·
∫

∂g

∂νt
(s)ϕ(zt − s)ds

}
.

(26)

Define ˆ̂zt = ˆ̂xt − yt and ẑt = x̂t − yt. By affiliation of ηt and zt, and since ˆ̂zt < 0 < ẑt,

∂E(·)/∂νt > 0 at ˆ̂zt, while ∂E(·)/∂νt < 0 at ẑt. Together, the signs in (25) and (26) make

the expression in (24) negative at ˆ̂zt and positive at ẑt. We thus have that ˆ̂xt is decreasing

in νt and x̂t is increasing in νt. By equations (22) and (23),
ˆ̂
θt is decreasing in νt and θ̂t is

increasing in νt.

A.4 Proof of Corollary 2

In the proof of Proposition 1, we define the restriction on idiosyncratic noise, σ̂2
x, that

determines multiplicity of equilibria. By its definition in equation (17), the threshold is

sensitive to changes in degrees of freedom, ν, that parameterize the t-distribution G(η).

Taking the partial derivative of σ̂x with respect to ν using the implicit function theorem,

we have

∂σ̂x

∂ν
=

−1[
∂2E[η|z]
∂z∂σx

∣∣∣
z=0

− ∂2R(z)
∂z∂σx

∣∣∣
z=0

] (∂2E[η|z]
∂z∂ν

∣∣∣∣∣
z=0

− ∂2R(z)

∂z∂ν

∣∣∣∣∣
z=0

)
> 0 . (27)

The term in square brackets is negative and the term in round brackets is positive by virtue

of the fact that the marginal change in the conditional expectation function given a change
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in z decreases (increases) as σx (ν) increases, while the marginal change in the rank belief

function given a change in z increases as σx (ν) increases.

Define ν̂ as the degree of freedom such that σ̂x(ν̂) = σx. Then whenever ν > ν̂, σx < σ̂x

and so ˆ̂x and x̂ converge at x∗. At this – and every – point, R(z) is approximately 1/2,

ensuring that there is approximate common knowledge of approximately uniform rank beliefs

(Morris et al., 2016), which, by the proof of Proposition 1, makes the condition x∗ a unique

switching point with corresponding reserve asset value, θ∗, that causes an issuer to fail.

In the game where a unique equilibrium is obtained, the effects of increases in precision

of common shocks (α ≡ 1
σθ
) and private shocks (β ≡ 1

σx
), are then determined by the well

known results of Metz (2003). We can write the SC holder indifference condition at the

critical level of fundamentals, θ∗, as follows

x∗ =
α+ β

β
θ∗ − α

β
y −

√
α+ β

β
Φ−1 (ρ(θ∗)) . (28)

The effect of a marginal increase in the precision of public information, α, on switching point

x∗ is given by

∂x∗

∂α
=

θ∗

β
− y

β
− 1

2β
√
α+ β

ϕ−1(ρ(θ∗)). (29)

The sign of (29) is ambiguous. In particular, the equilibrium switching point, which in-

dicates the propensity of SC holders to demand conversion for a given level of fundamentals,

is increasing in the precision of public information if

θ∗ > y +
1

2
√
α+ β

Φ−1(ρ(θ∗)). (30)

Using the aggregate equilibrium condition,

θ∗ = Φ
(√

β(x∗ − θ∗)
)
,

and by the implicit function theorem, the effect of a change in x∗ on θ∗ is given by

∂θ∗

∂x∗ =
−1

1 +
√
βϕ(·)

(−ϕ(·)) > 0, (31)

since ϕ(·) is weakly positive for all reals. This means that if the propensity of SC holders to

demand conversion increases in response to an increase in the precision of public information,
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then so too does the overall probability of a run since P[θ ≤ θ∗] is increasing in θ∗.

A.5 Proof of Proposition 3

We consider an environment characterized by no run having taken place in the prior period

under hysteresis equilibrium by setting t = 0 or At−1 < 1
2 . This implies that the equilibrium

played by SC holders and the issuer has switching points (
ˆ̂
θ, ˆ̂x). Equation (4) is weakly

positive since ϕ(·) is weakly positive over all reals, and since
ˆ̂
θt ≤ yt.

To see that
ˆ̂
θt ≤ yt, consider first that if the prior, yt = θt−1, lies in the unit interval,

then at the start of the period, the issuer is “ripe for a run”. The lowest value that yt can

take without rendering the game dominance solvable is miny{y : y ≥ y}, where y is defined

as the lowest y for which there exists a shock z < 0 such that R(z) ≤ y + E[η|z].54 By

definition of threshold
ˆ̂
θ in the proof of Proposition 1, we thus have that

ˆ̂
θt ≤ yt and so

∂
ˆ̂
θ

∂σθ
≥ 0.

B Run dynamics in a two-layered market structure

The impact of reserve volatility and transparency on run risk is robust to the inclusion

of a two-layered market structure. In this section, we introduce a secondary market that

determines the stablecoin’s price on an exchange, and contrast equilibrium strategies with

those where there are direct redemption rights with the issuer. For the sake of brevity

and simplicity, we focus on a special case of our model where ν > ν̂ so that we have a

unique equilibrium, but our results extend to the general setting with fat tails and multiple

equilibria.

As in the main text, suppose there is a continuum of SC holders, i ∈ [0, 1]. A share

λ ∈ [0, 1] are arbitrageurs who can redeem coins directly with the issuer at a promised price

of $1. The remaining (1 − λ) SC holders are secondary market participants who can only

buy and sell coins on an exchange at price p(λ, θ) = p ∈ R+. While coins are bought and

sold freely on the secondary market, the issuer is bound to service redemption requests only

from the λ arbitrageurs. As before, the issuer draws on reserve assets that have a combined

54Analogously, y is the smallest prior that supports R(z) ≥ y + E[η|z] for some z > 0.
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dollar value θ per coin issued. Therefore, the issuer fails if and only if

θ < λA(θ) = λ

∫
i

aidi . (32)

The game extends over three stages. First, Nature selects θ ∈ R. Second, both arbi-

trageurs and secondary market participants observe private signals about the value of reserve

assets. Secondary market participants determine whether to sell their coin (bj = 1) for an

immediate payoff or hold (bj = 0) for future flow payoffs, based on beliefs about the issuer’s

liquidity. Third, arbitrageurs observe prices and sell on the secondary market (ai = 0) or

redeem directly with the issuer on the primary market (ai = 1).55 The issuer processes

redemption requests in the primary market, and state-contingent payoffs accrue.

Arbitrageurs are large in the primary market but small in the secondary market, so

they take the mapping from fundamentals to prices as given when making their decisions.56

Prices in the secondary market are determined by the joint selling pressure from secondary

market participants and arbitrageurs. Prices (expressed in terms of the currency to which

the stablecoin is pegged) take the following form at the time arbitrageurs make redemption

decisions

p(λ, θ) ≡ 1− (1− λ)B(θ) = p , (33)

where B(θ) =
∫
bjdj is the mass of sell-offs from secondary market participants without

redemption rights.57 State-dependent payoffs to arbitrageurs are summarized in Table 7.

To ensure that redemption of coins with the issuer is not strictly dominated, we make the

following additional assumption:

Assumption 1 (transaction costs). τ < 1
2 .

In the event the issuer is solvent, the benefit to arbitrageur i from redeeming directly

with the issuer is increasing in the difference between the $1 pledged by the issuer and

55Like Ma et al. (2023), we assume that arbitrageurs face high inventory costs from holding coins, and therefore
the option to hold is strictly dominated in all states of the world.

56In particular, issuers mint a given number of coins which we normalize to one, and sell these to λ primary-
market investors who have redemption rights with the issuer. Over time, some of these investors sell their coins in
to the secondary market, generating more concentration in the primary market (i.e., lowering λ) and increasing
the size of the secondary market (i.e., increasing 1− λ). This is how each agent in our model is endowed with a
stablecoin at the beginning of the first stage.

57In general, prices can serve as public signals that can re-introduce multiplicity into global games (Angeletos
and Werning, 2006). We abstract from this by taking the limit of vanishing private noise and fixing arbitrageurs’
signals to be sufficiently precise relative to secondary market investors, so that prices do not reveal the value of
fundamentals. In practice, this suggests that there are enough noise traders that the signal-noise ratio of the
secondary market is relatively low.

57



Issuer solvent Issuer insolvent

ai = 1 1− 2τ 1− 2τ
ai = 0 p− τ 0

Table 7: Arbitrageur payoffs. Action ai = 1 denotes demanding conversion; action ai = 0
denotes selling in the secondary market.

the price of the stablecoin traded on the secondary market (both net of transaction costs,

2τ > 0).58 When the issuer is solvent, arbitrageurs prefer to sell into the secondary market

whenever their arbitrage profits are sufficiently low relative to the transactions costs from

redeeming. By contrast, when the issuer is insolvent, arbitrageurs derive a strictly higher

benefit from redeeming over selling their coins whenever Assumption 1 is satisfied.

Secondary market participants derive the same benefits, π(θ) from holding and on-

lending stablecoins as in the main text. This payoff is conditional on the stablecoin main-

taining a store of value until the end of the game, which happens only in the state where

the issuer survives. Alternatively, stablecoins can be sold on the secondary market at price

p(λ, θ), which incurs transaction cost τ . Payoffs to secondary market participants are sum-

marised in Table 8.

Issuer solvent Issuer insolvent

bi = 1 p(λ, θ)− τ p(λ, θ)− τ
bi = 0 π(θ) 0

Table 8: Non-arbitrageur stablecoin holder payoffs. Action bi = 1 denotes selling on the sec-
ondary market; action bi = 0 denotes maintaining a holding.

Since equation (33) shows that prices are decreasing in selling pressure, this implies

strategic substitutability among secondary market participants in states where the issuer

is solvent and the market functions as intended. In the event the issuer remains solvent,

secondary market participants prefer to hold their stablecoins whenever the yield from on-

lending exceeds the market price they would receive from selling the coin, net of transaction

cost τ . But in the event large-scale redemptions cause the issuer to fail, secondary market

participants prefer to sell their coins whenever p(λ, θ) > τ .

We focus on low volatility reserves, where θ ∼ N (y, 1
α ), but our analysis extends to the

58In practice, fees incurred on a secondary market differ substantially from those incurred in redemption on
a primary market (Lyons and Viswanath-Natraj, 2023). For notational simplicity, we assume that fees in the
primary market are simply double those in the secondary market. Our results would still go through under a
different fee structure, τ̃ , provided that fees are not exorbitant, τ < τ̃ < 1.
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general setting with θ = y + η , η ∼ t(ν). The signal structure of the market can now be

decomposed among secondary market investors and arbitrageurs. Let each secondary market

investor observe signal xj ∼ N (θ, 1
β2
) where β2 is the precision of secondary market signals.

Arbitrageurs receive independently and identically distributed signals xi ∼ N (θ, 1
β1
), where

β1 denotes the precision of arbitrageur signals.

A Bayesian Nash Equilibrium for the two-layered market comprises a fundamental thresh-

old, θ̃∗, switching signal for arbitrageurs, x∗
1, and switching signal for secondary-market

investors, x∗
2, such that:

1. In the final stage, the redemption decision, x∗
1, by arbitrageurs is optimal;

2. In the second stage, purchasing decision, x∗
2, by secondary market investors is optimal;

3. In the first stage, given thresholds x∗
1, x

∗
2 and price p(λ, θ̃∗), the draw of θ by Nature

causes the issuer to fail whenever θ < θ̃∗.

Proposition 4. In the limit of vanishing private noise, there is a unique switching point,

x∗
1, for arbitrageurs such that each arbitrageur redeems if and only if xi ≤ x∗

1 and sells

into the secondary market otherwise. There is also a unique secondary-market switching

point, x∗
2, such that each non-redeeming investor sells her coin if and only if xj ≤ x∗

2 and

holds otherwise. There is a unique fundamental threshold such that the issuer fails whenever

θ ≤ θ̃∗.

Proof. We start by deriving the failure condition for the issuer. Since only arbitrageurs can

redeem with the issuer, given a switching point x∗
1, the issuer fails whenever the realized

mass of redemptions is sufficiently large, θ < θ̃∗, where

θ̃∗ = λΦ
(√

β1(x
∗
1 − θ̃∗

)
. (34)

We next turn to the equilibrium strategy of arbitrageurs. Arbitrageur i prefers to redeem

if and only if

1− 2τ >

∫ ∞

θ̃∗
[p(λ, θ)− τ ]f(θ|xi)dθ . (35)

Using equation (33) and substituting in the realized mass of selling secondary market in-

vestors (which we derive below), the indifference condition characterized by type x∗
1 is given

by

1− 2τ =

∫ ∞

θ̃∗
[1− (1− λ)Φ(

√
β2(x

∗
2(θ)− θ))− τ ]f(θ|x∗

1)dθ . (36)
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We focus on vanishing private noise β1, β2 → ∞, and β1/β2 = c where c is a constant.59

Under the resulting Laplacian beliefs (Morris and Shin, 2003), the left-hand side of condition

(36) is constant, while the right-hand side is monotone decreasing in arbitrageur signal xi,

by affiliation of θ and xi, so that condition (36) defines, implicitly, a unique switching point

x∗
1.

Turning to non-redeeming secondary-market investors, the indifference condition that

uniquely determines switching point x∗
2 is given by:

∫ ∞

−∞
[p(λ, θ)− τ ]f(θ|x∗

2)dθ =

∫ ∞

θ̃∗
π(θ)f(θ|x∗

2)dθ

1− (1− λ)R22(x
∗
2)− τ =

∫ ∞

θ̃∗
π(θ)f(θ|x∗

2)dθ ,

(37)

where

R22(x) = Φ

(
α
√
β2√

(α+ β2)(α+ 2β2)
(x− y)

)
, (38)

is the rank belief of investor j in the population of secondary market investors. As β2 → ∞,

R22 → 1
2 for all x, and so the left-hand side of (37) simplifies to 1

2 (1 + λ) − τ , while the

right-hand side is strictly decreasing in x, leading to a unique indifference condition at x∗
2.

Proposition 4 provides two insights. First, it illustrates that the self-fulfilling beliefs

leading to a run extend to a two-layered market. To the extent that beliefs in the issuer’s

survival can be sustained, the strategic substitutability induced by the price mechanism

ensures a well-functioning market in which upwards price pressure from arbitrage stabilizes

the peg. However, when fundamentals fall below a critical threshold, θ̃∗, there is strate-

gic complementarity in the secondary market. The risk-dominant action – sell – becomes

uniquely rationalizable for secondary market investors. This, in turn, increases the profit

opportunity for arbitrageurs, leading to a sufficiently large mass of redemptions to cause the

issuer to fail.

Second, it allows us to explore how the existence of a secondary market affects run risk.

In particular, we can analyze whether the secondary market makes a run more or less likely.

To do this, we consider how the probability of failure, as measured by P[θ ≤ θ∗], is affected

59A study focusing on differential information that arbitrageurs and secondary market participants hold is

beyond the scope of this paper. In such a case, a unique equilibrium may still be obtained provided β1, β2 > α2

2π
,

where π refers to the mathematical constant. Future work could explore whether the markets are differentially
informed and how this might shape run risk.
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by the size of the secondary market, (1−λ), relative to those with redemption rights, λ, for

a given supply of coins in circulation.

Proposition 5. Let β1, β2 → ∞ and β1/β2 = c. The presence of a secondary market

makes arbitrageurs more aggressive. Switching point x∗
1 is decreasing in λ, the proportion of

arbitrageurs relative to secondary market participants. The presence of a secondary market

also increases the probability of failure, ∂θ̃∗

∂λ < 0.

Proof. Let

h(x, λ) ≡ 1− 2τ −
∫ ∞

θ̃∗

[
1

2
(1 + λ)− τ

]
dF (θ|x∗

1) = 0

define the equilibrium switching point x∗
1. By the implicit function theorem, the effect of an

increase in λ on switching point x∗
1 is given by

∂x∗
1

∂λ
=

−1

∂h/∂x∗
1

(
∂h

∂λ

)
< 0 . (39)

The denominator is negative, as F (θ̃∗|x) is decreasing in x and ∂h/∂λ < 0.

Next, consider the effect on the probability of failure. Let

g(θ, λ) ≡ θ̃∗ − λΦ
(√

β1(x
∗
1(λ)− θ̃∗)

)
= 0

define the equilibrium fundamental threshold θ̃∗. An increase in λ has the following effect

on θ̃∗:

∂θ̃∗

∂λ
=

−1

∂g/∂θ̃∗

(
∂g

∂λ
+

∂g

∂x∗
1

∂x∗
1

∂λ

)
. (40)

The denominator of the factor, ∂g/∂θ̃∗, is positive and so θ̃∗ is decreasing in λ whenever

the expression inside brackets is positive. This is the case if and only if

1

1 + λ− 2τ
>

Φ
(√

β1(x
∗
1 − θ̃∗)

)
λ
√
β1ϕ

(√
β1(x∗

1 − θ̃∗)
) , (41)

which holds in the limit β1 → ∞ and by Assumption 1. Therefore ∂θ̃∗

∂λ < 0.

The direct effect, ∂g
∂λ < 0, increases θ̃∗, and hence the probability of failure, due to

increased liabilities on the balance sheet of the issuer (i.e., a larger number of investors
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with redemption rights). So the presence of a secondary market attenuates the risk of

failure by introducing non-redeeming SC holders that dilute the market. The indirect effect,

∂g
∂x∗

1

∂x∗
1

∂λ > 0, reduces θ̃∗ and the probability of failure. So the larger the secondary market, the

higher the risk of failure, because arbitrageurs become more aggressive due to the arbitrage

opportunity arising from selling pressure on the secondary market. On balance, the indirect

effect dominates in the limit of vanishing private noise, making the probability of failure

increasing in the size of the secondary market.

Proposition 4 shows that the secondary market introduces an additional profit incentive

for arbitrageurs to demand redemption with the issuer beyond the panic effect arising from

beliefs that the issuer will fail. The effect on arbitrageurs is not reliant on the limit of

vanishing private noise.60 In general, as long as the posterior that the issuer cannot honor

redemptions is sufficiently large, a secondary market does not alleviate the risk of self-

fulfilling runs on stablecoin issuers.

C Additional material

C.1 Reserve assets as a portfolio-weighted convolution

In the context of our model, stablecoins are backed by a vector of reserve assets that have a

combined dollar value captured by θ. Stablecoin holders perceive θ to be a random variable

drawn from the portfolio-weighted convolution of all component reserve asset distributions,

with realizations of θ equal to the portfolio-weighted realized values of individual reserve

assets used in the reserve portfolio, θ = ω1θ1 + ω2θ2 + . . . + ωnθn, where ωj denotes the

share of the portfolio allocated to asset j.

60Away from the limit, a necessary condition for uniqueness of x∗
2 is[

π′(θ)

π(θ)
− ∂p(λ, θ)/∂θ

p(λ, θ)

]
π(θ)

π′(θ)
p(λ, θ) > τ ,

i.e., the returns to secondary market participants from a change in fundamentals feature a sufficiently large semi-
elasticity at each level of θ relative to the price elasticity of the coin at θ.The condition is derived by formulating
the indifference condition as follows,

F (θ̃∗|x∗
2) = 1− p(λ; θ̃∗)− τ

π(θ̃∗)
,

and restricting the right-hand side to be increasing in θ̃∗, ensuring a unique switching point x∗
2. In other words,

returns from on-lending stablecoins are relatively more volatile than the price variation in the secondary market,
which is, in general, consistent with empirical evidence. Formally, the condition ensures supermodularity of the
payoff differential between selling and holding for secondary market investors. However, the overall effect on the
probability of failure would then depend on the size of β1 relative to β2.
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To fix ideas, think of a portfolio with three reserve assets. In this case, the joint proba-

bility density function (PDF) f(θ) is given by

f(θ) = (f1 ∗ (f2 ∗ f3))(θ) ,

where f1(·), f2(·) and f3(·) are the PDFs of collateral assets θ1, θ2 and θ3 respectively. Figure

14 illustrates this example for a given calibration of individual PDFs and equal portfolio

weights. We define the convolution f1 ∗ (f2 ∗ f3) of f1, f2, and f3 as follows:

f(θ) = (f1 ∗ (f2 ∗ f3))(θ)

=

∫
T
f1(ω1θ1)

[∫
T
f2(ω2θ2)f3(ω3[θ − ω1θ1 − ω2θ2])dθ2

]
dθ1 .

The PDF f(θ) thus summarizes the portfolio of reserve assets. The model can easily be

used to assess the effect of increasing the weight of any asset in the reserve portfolio. For

example, Tether’s transition away from commercial paper and towards short-term safe assets

is an example of an increase of low-risk assets in the portfolio. The effects are presented in

a result discussed in the paper: greater weighting on low-risk assets decreases run risk.

-5 5 10

0.1

0.2

0.3

Figure 14: Probability density function of the value of reserve assets (θ) as a convolution of
the distribution of assets in the portfolio (θ1, θ2, θ3). In this example, θ1 ∼ N (1, 2.5); θ2 ∼
N (0.9, 1); θ3 ∼ N (0.8, 1.5), with equal portfolio weights for each asset.
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C.2 Additional graphs

Figure 15 takes a closer look at March 2023 depegging event by zooming in the early stages.

This helps to more clearly highlight the sequencing, with USDC moving first and Dai moving

later. The co-movement USDC between Dai and USDC may also partly reflect the price

stability mechanism set up by Dai that enables par exchange between the two stablecoins.

However, the price stability mechanism is unlikely to be the sole driver of the co-movement

between the two stablecoins in the wake of turmoil at SVB, as Figure 16 shows that other

stablecoins backed by USDC but without such mechanisms in place also depegged, whereas

stablecoins backed by other cryptoassets remained stable during this period.

Figure 15: Stablecoin pegs around the run on Silicon Valley Bank under the microscope.
Notes: Based on minute-by-minute data. The vertical dashed line denotes the disclosure by Circle that $3.3 billion of its

cash reserve was held at SVB. Source: Cryptocompare.com.
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Figure 16: Stablecoin pegs around the run on SVB: USDC-backed versus crypto-backed.
Notes: Based on hourly data. USDC-backed is a simple average of the value of Dai, Frax and Origin Dollar (OUSD).

Crypto-backed is a simple average of the value of CeloUSD, Liquity (LUSD), Tron’s USDD and sUSD. The first vertical

dashed line denotes the disclosure by Circle that $3.3 billion of its cash reserve was held at SVB; the second vertical line

denotes the announcement of a backstop by the U.S. government. Source: Cryptocompare.com.
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Figure 17: Cryptoasset prices.
Notes: Daily time series of cryptoasset prices from January 1, 2018 to December 31, 2021. Dai series does not begin until

May 9, 2018. Source: Cryptocompare.com.
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Figure 18: Stablecoin prices around the run on SVB: USDC and FRAX.
Notes: Based on minute-frequency data for USDC (left-panel) and hourly-frequency data for FRAX (right-panel). The

vertical dashed line denotes the disclosure by Circle that $3.3 billion of its cash reserve was held at SVB. Source: Crypto-

compare.com.
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Figure 19: USDT price deviations from $1.
Notes: Based on daily data. Tether price deviations from $1 are computed using a 60-day centered moving average with

shaded regions covering ±2 standard deviations. Vertical dashed lines are days with Tether reserves attestation releases.

Source: Cryptocompare.com.
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