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Abstract

We develop a novel methodology to measure the risk premium of higher-order cumulants (closely

related to the moments of a distribution) based on leveraged ETFs. We show that the risk pre-

mium on these ETFs reflects the difference between physical and risk-neutral cumulants, which

we call the cumulant risk premium (CRP). We show that the CRP is different from zero across

asset classes (equities, bonds, commodities, currencies, and volatility) and is large in times of

stress. We illustrate that highly leveraged strategies are extremely exposed to higher-order cu-

mulants. Our results have implications for hedge funds, factor models, momentum strategies,

and options.
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1. Introduction

Many episodes of market turbulence, including the March 2020 COVID-19 crisis, show that

asset returns are not normally distributed and that higher-order moments play an important

role in financial markets. How can we measure the risk premium of higher-order moments

across asset classes in a tractable way? The classic approach in the existing literature is to use

option portfolios (e.g., Bakshi et al. (2003), Schneider and Zechner (2020)). However, the prob-

lem with implementing this approach in practice is that options are often unavailable for all

strikes and are illiquid, especially for out-of-money (OTM) strikes and for less liquid assets than

equities. With average bid-ask spreads above 74%,1 it is hard to infer higher-order moments

from options because option prices are measured very imprecisely. In this paper, we develop a

novel methodology to quantify the risk premium of higher-order moments based on leveraged

ETFs, which are much more liquid than options with average bid-ask spreads of only 0.27%,

more than 274 times smaller than those of options. We implement our new methodology across

several asset classes: equities, bonds, commodities, currencies, and volatility (VIX).

Leveraged ETFs (which we also label “constant-beta assets”) are assets that maintain a con-

stant leverage β with respect to a given benchmark index: e.g, a double-leveraged ETF (β = 2)

on the S&P 500 index should deliver twice the performance of the index on a given day. In or-

der to maintain a constant β, these ETFs need to rebalance when the index moves (see Cheng

and Madhavan (2009) and Todorov (2019)).2 We show that this dynamic rebalancing by ETFs

exposes them to higher-order moments. Thus, by observing the returns on leveraged ETFs, we

can quantify the risk premium of higher-order moments on the index.

We use cumulants to measure the risk premium of higher-order moments in a tractable

way. Cumulants are convenient to summarise the main characteristics of a given distribution

function, but are more intuitive to work with compared to non-central moments. Cumulants

are also more convenient to use in the case of log-returns that appear over multiple periods in

1Based on the average across equity indexes, Treasuries, currencies, commodities, for the period 2006–2020

and across strikes, data from IVolatility.
2For example, if the index rises, a double-leveraged ETF makes money and becomes less leveraged if it does

not rebalance. To maintain the leverage constant, the ETF then needs to lever up and buy more of the index.
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our setting, and to model linear combinations of random variables. Cornish and Fisher (1938)

describe cumulants in a general setting, whereas Martin (2013) is one of the first researchers to

apply cumulants in finance. The first cumulant is the mean of the distribution; the second is

variance σ2; the third and fourth cumulants are skewness times σ3 and excess kurtosis times

σ4. Higher-order cumulants are more complicated polynomial functions of the moments. For

a lognormal distribution, there are only two cumulants, mean and variance, whereas for any

other distribution, there are also higher-order cumulants beyond variance.

In the first part of the paper, we show how to measure the exposure to cumulants from

constant-beta assets. We show that the risk premium on a constant-beta asset is the sum of

a linear term in the asset’s leverage β, and a non-linear one, which depends on higher-order

powers of β, weighted by differences in higher-order physical and risk-neutral cumulants of the

index. We call the sum of these differences the cumulant risk premium (CRP). In a log-normal

world, the second-order cumulant (variance) is the same in the physical and risk-neutral mea-

sures, whereas all cumulants of order three and above are zero. This makes the non-linear term

in the asset’s risk-premium zero and significantly simplifies the analysis because the risk of a

β-times leveraged strategy is just β times the risk of an unlevered strategy. In any other world,

however, the non-linear term in the asset’s risk-premium generally dominates the linear one

since the weight of higher-order cumulants (up to the β-th order) increases polynomially in the

leverage β. This makes leveraged strategies extremely exposed to higher-order cumulants and

makes their risk much larger than just β times the risk of an unlevered strategy.

What creates a cumulant risk premium? A simple example is the case of jumps: if investors

expect different intensity and size of jumps under the risk-neutral vs. the physical measure,

that risk is reflected in the CRP. In addition, jumps create a discontinuity risk, which also gives

rise to a CRP. Another example is if state variables have their own risk premiums like variance

in the Heston (1993) model: if investors expect different characteristics of variance (mean re-

version speed and average level) in the physical and risk-neutral worlds, that also creates a risk

premium, which is reflected in the CRP.

We show that, similar to options, constant-beta assets complete the market and can be

used to replicate any payoff. The intuition is that by knowing prices of constant-beta assets for
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all possible β-s, we essentially observe the whole distribution of the index. In particular, we

construct a payoff based on a simple “short-both” strategy of short-selling two assets with op-

posite β-s (e.g., -1 and 1). This strategy mimics liquidity provision of a market maker trading

against assets with constant β-s, and measures the risk premium of higher-order even cumu-

lants (variance, scaled kurtosis, etc.): the even-order CRP (CRPE). Our theory shows that the

returns on liquidity provision are positively exposed to higher-order risk-neutral cumulants,

which can be measured by VIX2 (see Martin (2015)): these results square well with the evidence

in Nagel (2012) that market-making profits in US stocks are proportional to VIX.

In the second part of the paper, we quantify the CRP by using leveraged ETFs. We find that

the average CRP is -7.4% annualized across assets, which shows that investors pay a premium

to hedge the risk of higher-order cumulants. The CRP is large at more than 100% of the un-

derlying index risk premium (IRP). In addition, we show non-parametrically that higher-order

cumulant risk premiums beyond that on variance are needed to explain the empirical patterns

in most assets. We find that the CRPE is also negative at -4.4% annualized across assets, which

shows that liquidity providers earn positive expected returns. The CRPE spikes beyond 20% in

many asset classes during the COVID-19 market stress in 2020. The premium is also significant

relative to the IRP across assets (in absolute terms): it is 139% of the IRP for oil, 51% for long-

term Treasuries, and 46% for the S&P 500 index. The returns on the short-both strategy that

extracts the CRPE, are highly positively correlated with VIX and have Sharpe ratios above one.

We show that the first principal component (PC) of the short-both strategy returns across

assets can be used as a simple index of global market stress. There are several advantages of

this metric relative to other commonly-used measures of market turbulence like VIX or various

spreads like the TED spread. First, in contrast to VIX and other single-asset-based indexes,

our measure is based on several asset classes and takes the perspective of a liquidity provider

who is exposed to higher-order cumulants globally. We show that our metric drives out VIX in

explaining returns of non-equity assets and is particularly important in assets with non-linear

payoffs like options and CDS. Second, our index is simple to calculate also in real time from

observed prices of leveraged ETFs. It does not involve more complex and less liquid option

portfolios like VIX or option-based skewness and kurtosis indexes. Third, we do not make any
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assumptions about the driving distribution of asset returns and “let the data speak”. Our index

can be applied as measure of global market stress in further research.

Implications. Our main results have implications for the risk of higher-order moments. A com-

mon misperception is that this risk declines as the number of higher-order terms increases, and

thus higher-order moments beyond kurtosis are rarely researched in finance. This mispercep-

tion is driven by the discounting of higher-order CRP terms with n!, which makes the contri-

bution of higher-order CRP terms extremely small for large n. Our paper emphasizes that this

argument is true for unleveraged strategies but is significantly flawed for leveraged strategies,

for which the contribution of higher-order CRP terms generally increases up to the β-th order.

For example, the loadings of a β = 10 strategy peak at the 10-th order CRP term with a loading

above 2700 on that term as illustrated in Fig. 1. Our paper shows that larger leverage increases

risk in a highly non-linear way. Thus, more leveraged strategies are more exposed to higher-

order cumulants, and even tiny changes in these cumulants are magnified. In addition, we find

that the contribution of even-order cumulants of order four and above is substantial for some

assets like emerging market stocks.

These results have implications for agents like hedge funds who often use large leverage to

exploit mispricings between similar assets. These agents often employ strategies that involve

assets with opposite sensitivities to a given factor: for example, convergence trades or relative

value strategies (e.g., spot-futures basis, see Aramonte et al. (2021)). Our results show that such

trades are risky because they are exposed to the CRPE.

Our paper shows an alternative way to quantify the risk of higher-order moments com-

pared to the existing literature, by using ETFs instead of widely used options. The advantage of

our approach is not only that ETFs are cheaper to trade than options and provide a more precise

estimate of the true value because of much smaller bid-ask spreads. Leveraged ETFs are also

much easier to replicate compared to options, since they only require trading in the underlying

by keeping delta constant, but do not require estimation of any other sensitivities. Moreover,

the exact replicating strategy is model-independent and known precisely. In contrast, options

are generally hard to replicate precisely since investors need to account for the volatility of the
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underlying (vega) and for other sensitivities (“Greeks”), in addition to delta. The calculation of

these sensitivities is model-dependent and often imprecise because it involves estimating the

future path of volatility, which is unknown.

Our main results have implications also for factor models and portfolio theory. Leveraged

ETFs provide a nice setting to test the implications of higher-order moments for single-factor

models because ETFs load on one factor only, which is perfectly observable (addressing Roll

(1997) critique), and their betas are known and constant over time (addressing Hansen and

Richard (1987) critique). Thus, the pricing relation between a leveraged ETF and its index is

equivalent to a standard single-factor model, where the factor is the index, and the asset is

the leveraged ETF. Our results show that the standard single-factor logic, which states that an

asset’s risk premium is linear in the risk premium of the factor, applies only if the factor returns

are lognormal as in a Black and Scholes (1973) world. Single-factor linear pricing fails in any

other setting with non-zero higher-order cumulants.3

Our findings show that multi-factor models could fit asset returns better than single-factor

models purely because the additional factors capture the contribution of higher-order cumu-

lants of the single factor. We show that some standard factors like momentum are positively

correlated with even-order cumulant differences, which is consistent with this logic. This result

has implications for a vast financial literature studying factor models to explain asset returns.

Instead of adding more linear factors, our theory suggests that researchers need also to account

for the higher-order cumulants of the single-factor (e.g., the market portfolio).

Our approach could also help explain the flatness of the securities market line (SML). Our

results show that high-beta assets, which conduct momentum trades, generally have negative

CRP, which makes their returns lower than what is predicted by the CAPM. In contrast, assets

with small betas should have higher returns if their CRP is positive, which makes the SML flat-

3These results explain why standard single-factor models like the Merton (1992) version of the CAPM work

well over any period of time and are not affected by higher-order cumulants. The crucial assumption of lognor-

mality significantly simplifies such models and eliminates the need to deal with the complex effects arising from

higher-order moments. However, empirical evidence shows that higher-order moments matter in practice and

that financial assets have returns far different from lognormality, which makes the standard single-factor logic

invalid.
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ter. The findings in this paper have implications also for momentum strategies. Our results

show that trend-chasing “momentum” strategies are exposed to higher-order cumulants, which

could explain why the returns on these strategies have sudden crashes and exhibit higher-order

moments.

Related literature. Our study is related to the literature on asset pricing with stochastic volatil-

ity and higher-order moments. Martin (2013) applies cumulants to extend the Epstein-Zin log-

normal consumption-based asset-pricing model and allows for general independent and iden-

tically distributed (i.i.d.) consumption growth. Backus et al. (2011) use cumulants to show that

options imply smaller probabilities of extreme outcomes than the estimates from macroeco-

nomic data. Our CRP is related to the entropy as defined in Backus et al. (2011): the CRP is the

difference between physical and risk-neutral entropy.4 Bakshi et al. (2003) propose a frame-

work to recover higher-order risk-neutral moments from option prices and to connect them to

physical moments. Han and Kyle (2017) develop a rational expectations equilibrium model to

show that even modest differences in higher-order beliefs may have large price effects. Sev-

eral papers analyse models that combine jumps with stochastic volatility (Pan (2002), Duffie

et al. (2000), Eraker (2004), Bakshi and Kapadia (2003)). Carr and Wu (2009) show that variance

risk premium is significant in US equities, whereas Dew-Becker and Giglio (2022) find that the

premium is close to zero after 2010. Bekaert et al. (2022) show that equity VRP is informative

about risk aversion. Bollerslev and Todorov (2011) and Bollerslev et al. (2015) illustrate that the

compensation for jump risk accounts for a large fraction of the VRP. We show that one can re-

cover the premium on higher-order moments using leveraged ETFs instead of options (which

are used by most papers in the literature to date).

Our paper also contributes to the literature on factor models. Many studies show that

single-factor models like the CAPM fail in practice (e.g., Stambaugh (1982), Fama and French

(1992), Lakonishok et al. (1994), Roll and Ross (1994), Fama and French (1995), Ang et al. (1997)).

Roll (1997) argues that the CAPM can never be tested properly since the market portfolio is

4Backus et al. (2011) define entropy as cT (1)−κ1,T , where cT is the cumulant-generating function, and κ1,T is

the first cumulant of the distribution.
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hard to estimate. Hansen and Richard (1987) and Jagannathan and Wang (1996) argue that

the CAPM would not hold unconditionally if betas are time-varying. Several studies have ex-

tended the standard single-factor CAPM equation to accommodate preference for skewness

(Kraus and Litzenberger (1976), Harvey and Siddique (2000)) and co-skewness (Schneider and

Zechner (2020)) in the pricing kernel. While CAPM is perhaps the most prominent example of

a one-factor model used in equities, single-factor models are also found to explain the returns

in other asset classes, such as currencies (Lustig et al. (2011)). The existing studies on factor

models, and the CAPM in particular, focus on modifying the pricing equation with more fac-

tors or question the exact empirical implementation of the CAPM. There is, however, a lack of

research on the return properties of assets that satisfy the idealized single-factor setting in the

sense that they have constant betas and are exposed to one factor only, in a world with non-zero

higher-order cumulants. In this paper, we fill this gap in the existing literature.

The research presented here is related to the macro-finance literature on rare disasters. Ri-

etz (1988), Barro (2006), Barro et al. (2013) and Longstaff and Piazzesi (2004) show that large de-

clines in aggregate consumption growth (macroeconomic disasters) can help explain the equity

risk premium. From a macro-finance perspective, our results show the implications for asset

returns in a setting where consumption growth is non-normally distributed. We contribute to

this literature by showing in a model-free way that processes with non-zero higher-order cu-

mulants like those with jumps, are needed to explain the empirical findings across most asset

classes studied.

The rest of the paper is organized as follows. Section 2 illustrates the basic concepts—

including constant-beta assets, cumulants, linear beta pricing—and introduces the CRP. Sec-

tion 3 presents the empirical results. Section 4 studies the economic implications of our main

results and discusses sources of the CRP. Section 5 concludes.

2. Constant-Beta Assets, Linear Beta Pricing, and Cumulants

This section lays out the fundamental concepts used in our paper: constant-beta assets,

linear beta pricing, and cumulants.
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2.1. Constant-beta assets

There are two ways to define a leveraged asset with respect to some underlying index Pt .

The first method, “static strategy”, is to invest fraction β of a portfolio in Pt and fraction 1−β in

the safe asset, and then do nothing as Pt changes. An example of such strategy is futures trading,

which involves a leveraged exposure to a given index by posting margin that is smaller than the

value of the asset. The drawback of the static strategy is that it becomes riskier when the index

moves against the investor since leverage rises. The static strategy also exposes investors to

bankruptcy risk: if Pt drops by more than 1/β (for β > 0), the strategy is bankrupt.5 The second

method, “dynamic rebalancing”, is to trade dynamically in order to keep the leverage constant

at β. This method reduces bankruptcy risk since it maintains a constant leverage irrespective of

index moves.6 An example of dynamic rebalancing in practice is the trading by leveraged ETFs.

We define assets implementing dynamic rebalancing as “constant-beta assets” since they aim

to keep constant β, and show that their returns can be used to measure the risk of higher-order

cumulants.

2.1.1. Constant-beta assets in discrete time with two periods

Let us first show the difference between static strategy and dynamic rebalancing in a dis-

crete two-period setting, which illustrates the arising exposure to multi-period returns and mo-

mentum/reversal of the index. The simple return on the index is (1+ r0→2) = (1+ r1)(1+ r2).

The difference between the return on the dynamic rebalancing and the static strategy is (as-

sume zero risk-free rate for simplicity):

∆ = (1+βr1)(1+βr2)−(1+β((1+ r1)(1+ r2)−1)) = (β2−β)r1r2. (1)

Eq. 1 shows that dynamic rebalancing withβ > 1 andβ < 0 outperforms the static strategy (∆ > 0)

in case of momentum (r1r2 > 0) but underperforms it in case of reversal (r2r2 < 0). Intuitively,

dynamic rebalancing strategies with β > 1 or β < 0 need to buy when the index goes up and sell

5For 0 ≤ β ≤ 1, the return on the portfolio never blows up as long as the index and the risk-free asset have

limited liability.
6See a simple example in Internet Appendix IA.1.
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when it goes down: they demand liquidity. If the index continues the trend from the previous

period, the strategies benefit. To the contrary, strategies with 0 < β < 1 underperform the static

strategy over two periods in case of momentum but outperform it in case of reversal. The in-

tuition is that these strategies buy when the index goes down and sell when the index goes up:

they provide liquidity and benefit from trend reversals.

2.1.2. Constant-beta assets with more than two periods

Extending the analysis to more than two periods makes the derivation of ∆ more tedious

since it involves different combinations of the product of returns from different periods weighted

by polynomials of the leverage β in the form βn −β. For example, with three periods, ∆ =

(β2−β)(r1r2+ r2r3+ r1r3)+(β3−β)r1r2r3.

A standard approach to simplify the problem is to solve for the multi-period return of

strategies in continuous time, Black–Scholes world. This makes the analysis easier since there

are no higher-order moments beyond variance, and the product of multi-period returns on the

index is zero since (dRt)n = 0, for all n > 2 if dRt follows a geometric Brownian motion (GBM)

as in a standard Black–Scholes world. We next derive the return on a constant-beta asset in this

standard setting.

Constant-beta assets invest wealth fraction β in the index Pt , and the rest (1−β) at the

constant risk-free rate r f . Their value is then easy to derive (see section IA.2 in the Internet

Appendix):

dPt(β)
Pt(β)

=β dPt

Pt
+(1−β)r f dt

⇐⇒PT (β) =P0(β)(
PT

P0
)βe((1−β)r f −1

2β(β−1)σ2)T .

(2)

Eq. 2 shows that the difference between the continuous log-return on a dynamic rebal-

ancing strategy log(PT (β)/P0(β)) and a static strategy β log(PT /P0) is given by the “slippage”

term −1
2β(β−1)σ2T (ignoring the risk-free rate term). The slippage term reflects the product of

multi-period returns and powers of β in continuous time, as explained above.

Eq. 2 also shows that strategies with β > 1 and β < 0 are negatively exposed to variance but

positively exposed to squared realized returns: ∂PT (β)
∂σ2 < 0 and ∂2PT (β)

∂r 2
0→T

> 0, where r0→T = PT
P0
−1.
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In options terminology, the strategies are long-gamma, short-vega (long realized variance but

short implied variance). This exposure illustrates that the strategies benefit from higher phys-

ical compared to risk-neutral even-order moments (variance in this continuous time setting)

over multiple periods. As explained in the discrete two-period case, strategies with β > 1 and

β < 0 are “momentum” strategies requiring buying when prices rise and selling when prices

fall. With multiple periods of infinitely small length, the negative exposure to “back-and-forth”,

reversal moves translates to negative vega, whereas the positive exposure to momentum trans-

lates to positive gamma.

The continuous-time, Black–Scholes setting is a significantly simplified framework to anal-

yse constant-beta assets because it ignores the impact of higher-order moments, and thus as-

sumes that observed prices of these assets reveal no information about such moments. As we

show in the empirical section, higher-order moments play an important role in practice, which

creates the need for a more realistic framework to analyse constant-beta assets. We next present

such a framework by applying the concept of cumulants.

2.1.3. General framework for constant-beta assets

Let RT denote the gross return on the index (with β = 1), and let R f ,T denote the gross

return on the risk-free asset (with β = 0). Since constant-beta assets rebalance continuously,

they achieve a payoff which is an exponential function of the gross unleveraged return. Let

PT (β) ∶= Rβ
T R1−β

f ,T ∶= er f ,T+β(rT−r f ,T ) denote this payoff over any period T and P0(β) ∶= G∗
T (β)

denote the cost of buying an asset which pays off PT (β).7 The returns on constant-beta assets

can be written in several equivalent ways:

RT (β) = erβ,T = PT (β)
P0(β)

= er f ,T+β(rT−r f ,T )

G∗
T (β)

, with rβ,T ∶= r f ,T +β(rT − r f ,T )− log G∗
T (β). (3)

7We use log-returns in line with most papers in the literature (e.g., Barro (2006), Martin (2013) among many

others). This allows writing the linear beta pricing equation for an arbitrary horizon T . Note also that the standard

extension of the CAPM over multiple periods is typically the Merton (1992) version of the model that uses log-

returns.

10



The function G∗
T (β) defines the prices of the derivative securities as a function of their lever-

age β. Since E∗[RT (β)/R f ,T ] = 1 for the risk-neutral distribution, we infer E∗[eβ(rT−r f ,T )] =

G∗
T (β). This means that the function G∗

T (β) is the moment-generating function (MGF) for

the risk-neutral distribution of the random excess log-return rT − r f ,T . Since the moment-

generating function of a random variable defines the random variable uniquely, the function

G∗
T (β) uniquely defines the risk-neutral distribution for the random log-return rT and there-

fore the random return RT . For this risk-neutral distribution to define arbitrage-free pricing, it

is also necessary that it be an equivalent martingale measure. It is a martingale measure since

E∗[e−r f ,T RT (β)] = 1 by construction. Intuitively, it is “equivalent” if the risk-neutral distribution

implied by G∗
T (β) agrees with the zero-probability events of the physical distribution, which

has moment-generating function defined by GT (β).

2.2. Linear Beta Pricing

Define “linear beta pricing” as E[RT (β)] = er f ,T+βπT , where πT is the risk premium on the

index RT . Linear beta pricing says that assets are priced by discounting the expected return at

a continuously compounded rate which is linear in the asset’s risk, as measured by its beta:

P0(β) = e−r f ,T−βπT E[PT (β)].

In other words, linear beta pricing states that a dynamic rebalancing strategy has the same β

with respect to the index as the β of a static strategy up to time T . Using P0(β) =G∗
T (β), we can

rewrite linear beta pricing in terms of MGFs as:

GT (β) = eβπT G∗
T (β). (4)

Our emphasis on log-returns and the above condition for linear beta pricing suggests that im-

portant intuition is associated with the log of the MGF GT (β).
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2.3. Cumulants

The cumulant-generating function (CGF) is defined as the logarithm of the MGF:

c(β) = logG(β) = logE[eβX ] . (5)

Recall that the n-th order moment of a random variable X is simply gn = E[X n]. Applying a

Taylor expansion of the moment-generating function (MGF), G(β) = E[eβX ] around zero, is a

convenient way to combine all of the moments of X into a single expression:

G(β) = E[eβX ] = 1+
∞
∑
n=1

gnβn

n!
.

Similarly to the MGF G(β), the CGF c(β) can also be expanded as a power series in terms of its

cumulants:

c(β) =
∞
∑
n=1

κnβn

n!
.

The n-th order cumulant κn is obtained by computing the n-th order derivative of the CGF c(β)

at zero: for example, we have κ1 = c ′(β)∣β=0 = E[X e0X ]
E[e0X ] = E[X ].

Cumulants are convenient to use for three reasons. First, higher-order cumulants are eas-

ier to work with compared to non-central moments. Second, since the log of the expected value

appears in the condition for linear beta pricing derived in Theorem 1 below, it is more conve-

nient to use the CGF than the MGF. Third, the CGF of the sum of i.i.d. random variables is the

sum of the individual CGFs. This feature of the CGF makes it convenient to model combinations

of random variables, e.g., Poisson jumps with a different distribution for the size of jumps.8 To

illustrate the CGF, we next derive it for some simple distributions.

Example 1: CGF for the normal distribution. For a normally distributed random variable X ∼

N (µ,σ2), it is straightforward to show that the cumulant-generating function is quadratic in β:

c(β) =βµ+ 1
2β

2σ2.

8In fact, this feature can also be used to prove the central limit theorem with cumulants.
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The expression shows that κ1 = c ′(β)∣β=0 is the mean µ, κ2 = c ′′(β)∣β=0 is the variance σ2, and

κn = 0 for all n > 2.9 The normal distribution is the only one with a finite number of non-zero

cumulants (e.g., Marcinkiewicz (1935)). The latter fact is yet another reason why the CGF is

more convenient to work with compared to the MGF, since a normal distribution with non-zero

mean has generally non-zero higher-order non-central moments of all orders, which show up

in the Taylor series expansion of the MGF.

Example 2: CGF for the Poisson distribution

Poisson random variable has a probability distribution defined by Prob[X = n] = e−λλn

n! ,

where λ is the arrival rate (and the mean and variance of the distribution). Then:

c(β) = log(e−λ
∞
∑
n=0

λneβn

n!
) = log(e−λeλeβ) =λ(eβ−1).

All cumulants are equal to λ: κn =λ for all n ≥ 1.

2.4. Risk premium through the lens of the CGF

The CGF provides a convenient way to compute risk premiums and to define linear beta

pricing for a general distribution. The risk premium on an asset with leverage β can be ex-

pressed as the difference between physical and risk neutral cumulants:

Risk Premium = cT (β)−c∗T (β) =
∞
∑
n=1

βn(κn,T −κ∗n,T )
n!

. (6)

This result is easy to obtain by taking logs in the definition of linear beta pricing in Eq. 4.

Linear beta pricing in terms of CGF. Linear beta pricing is valid if and only if this risk premium,

cT (β)−c∗T (β) =∑∞n=1
βn(κn,T−κ∗n,T )

n! , is equal to βπT for all β. Since πT = cT (1)−c∗T (1), linear beta

9For the third-order cumulant, we have κ3 = g3σ
3
= 0, since g3 = 0 for the normal distribution. The fourth-

order cumulant of the normal distribution is zero even though the corresponding central moment is not zero:

κ4 = (g4−3)σ4
= 0, since g4 = 3 for the normal distribution. In comparison, the power series expansion of the MGF

gives more complicated non-central moments g0 = g1 =µ, g2 =σ
2
+µ2, and higher-order non-central moments are

more complicated functions of the central moments (see, e.g., Ouimet (2021)).
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pricing holds if and only if

cT (β)−c∗T (β) =β(cT (1)−c∗T (1)). (7)

For example, linear beta pricing holds with lognormal returns, which is easy to illustrate in

a one-period setting (T = 1). The risk-neutral CGF c∗(.) and physical CGF c(.) are given by:

c(β) = logE[eβ(r−r f )] =β(π− 1
2σ

2)+ 1
2β

2σ2, c∗(β) = logE∗[eβ(r−r f )] =−1
2βσ

2+ 1
2β

2σ2.

Then, the risk premium on the asset is c(β)−c∗(β) =βπ and is linear in π for all β.

The theorem below shows that linear beta pricing is valid in a general setting with any dis-

tribution and over any period if and only if the difference between the physical and risk-neutral

cumulants of the leveraged asset is a linear function of leverage β. We define the Cumulant

Risk Premium (CRPT ),∑∞n=2
κn,T−κ∗n,T

n! , as the sum of all the terms in the risk premium except for

the term which is linear in β. This definition allows us to split the index risk premium πT into a

first-order risk premium (FORP), and the higher-order CRP:

πT = cT (1)−c∗T (1) = E(logRT )−E∗(logRT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

First-order risk premium (FORP)

+
∞
∑
n=2

κn,T −κ∗n,T

n!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cumulant risk premium (CRP)

.
(8)

The FORP captures the first-order component of the risk premium (mean), whereas the CRP

captures higher-order components. The first term of C RPT , given by 1
2(κ2,T −κ∗2,T ) =

1
2 (Var[logRT ]−Var∗ [logRT ]), is related to the familiar variance risk premium, V RPT = E[RVT ]−

E∗ [RVT ], where RVT is realized variance of the index. All terms with n > 2 capture the gap be-

tween higher-order moments of the distribution.

If C RPT (β) =∑∞n=2
(βn−β)(κn,T−κ∗n,T )

n! is non-zero for some asset, the asset’s risk premium is

non-linear in the index risk premium since it depends on higher-order CRP terms, and hence

linear beta pricing does not hold. We formalize this statement in the theorem below.

Theorem 1. Linear beta pricing is valid with any distribution and over any period T if and only
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if the CRP is identically zero for all β:

C RPT (β) =
∞
∑
n=2

(βn −β)(κn,T −κ∗n,T )
n!

= 0 for all β. (9)

Linear beta pricing therefore requires that all higher-order cumulants in the physical and risk

neutral distributions be identical: κn,T =κ∗n,T for all n ≥ 2.

Proof. As we showed before, linear beta pricing can be stated in terms of CGFs as

cT (β)−c∗T (β) =β(cT (1)−c∗T (1)) .

Using the definition of the CGF, we can rewrite the equation in terms of cumulant differences:

∞
∑
n=1

βn(κn,T −κ∗n,T )
n!

=β
∞
∑
n=1

κn,T −κ∗n,T

n!

⇐⇒
∞
∑
n=2

(βn −β)(κn,T −κ∗n,T )
n!

= 0.

(10)

Intuition for Theorem 1: The theorem proves that for linear beta pricing to be valid, the

shape of the physical and risk-neutral distributions (as characterized by higher-order cumu-

lants) should be the same for any leveraged asset. As we saw above, this condition is satisfied

for the Black-Scholes model since with a lognormal return, there is only one higher-order cu-

mulant (variance), which is the same under the physical and risk-neutral measures as agents

cannot disagree about variance. Cumulants above the second are all zero as we showed above,

and hence the βn−β terms do not make the polynomial in Theorem 1 non-linear in β. This fact

makes the assumption of lognormal distribution convenient for using linear beta pricing mod-

els like the CAPM. In practice, this assumption is empirically unrealistic; we show in section 3

that financial assets’ returns exhibit occasional jumps or other deviations from lognormality,

which makes the classic CAPM equation invalid.

Corollary 1. Returns on constant-beta assets measure the risk premium of higher-order cumu-
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lants, C RPT (β).

The corollary is easy to see from Eq. 10, which shows that we can rewrite the risk premium

on the asset as a sum of a linear component and a non-linear C RPT (β):

cT (β)−c∗T (β) =β(cT (1)−c∗T (1))+C RPT (β). (11)

Thus, we can measure C RPT (β) by subtracting β times the risk premium on the index (the

return on the static strategy) from that of a constant-beta asset with a leverage of β (the return

on dynamic rebalancing).

Linear beta pricing in Eq. 6 shows that assets with larger absolute β-s are exposed to a

larger number of higher-order cumulants. For example, an asset with β = 3 has a loading above

one on CRP terms up to the sixth order since 3n

n! > 1 for n ≤ 6. Thus, even a small difference in

physical and risk-neutral cumulants is magnified. Assets with 0 < β < 1 are less dependent on

higher-order cumulants since their loadings converge to zero much quicker.

Eq. 6 also illustrates that assets with β > 0 are long physical and short risk-neutral cumu-

lants: they are long the CRP. Assets with β < 0, which are typically considered a hedge against

market downturns (if the index is the market), are long even-order physical cumulants but short

even-order risk-neutral cumulants: they are long the even-order CRP (CRPE), which we anal-

yse later in section 2.7. In contrast to assets with β > 0, securities with β < 0 are short the odd-

order CRP (CRPO): short odd-order physical cumulants but long odd-order risk-neutral cumu-

lants.

Next, we briefly illustrate how to check the condition of Theorem 1 and derive the C RPT (β)

in several standard settings: Black–Scholes, stochastic volatility, and jumps.

2.5. CRP in different settings

2.5.1. Black–Scholes

Under the standard Black–Scholes assumptions, the market return follows GBM with phys-

ical meanµ and constant volatilityσ. Then, by applying the diffusion invariance property thatσ

must be the same in the risk-neutral and the physical distributions for there to be no arbitrage,
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we obtain

κ2,T =κ∗2,T =σ2T ; κn,T =κ∗n,T = 0 for all n > 2. (12)

Hence, C RPT (β) = 0 for all β and linear beta pricing holds as per Theorem 1. The same holds

also when σT is a deterministic function of time (not simply constant).

2.5.2. Stochastic volatility

To account for non-normality of asset returns, one strand of the literature relaxes the as-

sumption of constant volatility and models volatility as a stochastic process. We illustrate this

using the standard stochastic volatility model of Heston (1993). Under the physical measure,

the log-market price process logPt and its variance vt follow

dlogPt = (µ− 1
2 vt) dt +

√
vt dB 1

t , dvt =λ(v̄ − vt) dt +σ
√

vt dB 2
t ,

whereλ is the mean-reversion speed, v̄ is the long-term mean of volatility,σ is now the volatility

of volatility, and B 1
t , B 2

t are correlated Brownian motions dB 1
t dB 2

t = ρ dt . Under the risk-neutral

measure, the corresponding equations are

dlogPt = (r f − 1
2 vt) dt +

√
vt dB 1∗

t , dvt =λ∗(v̄∗− vt) dt +σ
√

vt dB 2∗
t .

In the Heston model, the CGFs are

cT (β) =µβT +a(β,T )+b(β,T )vt , c∗T (β) = r f βT +a∗(β,T )+b∗(β,T )vt , (13)

where a(β,T ), b(β,T ), a∗(β,T ), and b∗(β,T ) are complicated functions of the model param-

eters. Closed-form derivation are in section IA.4.

For an unlevered asset (β = 1), we obtain a(1,T ) = a∗(1,T ) = b(1,T ) = b∗(1,T ) = 0 and thus

cT (1)− c∗T (1) = (µ− r f )T . In other words, even in this stochastic volatility setting, the index

risk premium πT , given by (µ− r f )T , does not depend on variance (as in the continuous-time

CAPM).

For an asset with arbitrary leverage (β ≠ 1), linear beta pricing breaks down. Since generally
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λ ≠λ∗ and v̄ ≠ v̄∗, we have that

C RPT (β) = a(β,T )−a∗(β,T )+(b(β,T )−b∗(β,T ))vt ≠ 0.

This implies that the risk premium cT (β)− c∗T (β) = β(µ− r f )T +C RPT (β) is different from

β(cT (1)− c∗T (1)). Fig. 2 shows that cT (β)− c∗T (β) is not linear in β for typical values of the

model parameters. Hence, the condition of Theorem 1 is not satisfied and linear beta pricing

does not work since CRPT (β) ≠ 0.10

Expanding the premium for a general leveraged asset shows that assets with 0 < β < 1 load

negatively on the VRP E[vT ]−E∗ [vT ], whereas those with β < 0 or β > 1 load positively on the

premium. In addition, the loadings on higher-order cumulant premiums explode for assets

with large β < 0 or β > 1, whereas the loadings for assets with 0 <β < 1 converge to zero for larger

n. The loadings are zero and hence there is no CRPT (β) for the unlevered risky asset (β = 1) and

the risk-free asset (β = 0). The premium on a leveraged asset is

cT (β)−c∗T (β) =β[µ− r f ]T + 1
2β(β−1)(E[vT ]−E∗ [vT ])+

∞
∑
n=3

(βn −β)(κn,T −κ∗n,T )
n!

.11 (14)

Empirically, the VRP is typically negative (see, e.g., Carr and Wu (2009)) since investors

hedge against variance risk and inflate E∗[vT ] relative to E[vT ]. The fact that the VRP is nega-

tive means that if higher-order cumulant risk premiums (i.e., the last term in Eq. 14) are negli-

gible, assets with 0 <β < 1 have larger returns than in a world with no VRP (e.g., a Black-Scholes

setting), whereas those with β < 0 or β > 1 have smaller returns. We return to this point when

discussing the flatness of the securities market line later in section 4.

10The higher-order cumulants of the leveraged asset can be found by evaluating the n-th order derivatives

a(n)(β,T )∣β=0 and b(n)(β,T )∣β=0, which shows that leveraged assets load on the variance risk premium and on

higher-order cumulants. Note that for some values of the parameters, the Heston (1993) model is not well defined

and the CGF does not exist.
11Note that κ2,T = E[vT ] in this case since the logreturn on the index follows a diffusion.
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2.5.3. Jumps

Another way of modelling non-normal returns is to assume that the index follows a non-

smooth jump process. A typical example of such a setting with non-zero higher-order cumu-

lants assumes the log-return on the index is the sum of a normally distributed component and

Poisson jumps with a normal distribution. Each period, J normally distributed jumps with

mean −b and variance s2 arrive, where J ∼ Poisson(λ). This setting is commonly used in op-

tion pricing (e.g., Merton (1976)) and macro-finance (e.g., Martin (2013), Backus et al. (2011)),

and it is a particular case of the rare disaster setup in Barro (2006). The CGF of the log-return

on the asset over T periods in this case is (see section IA.5 in the Internet Appendix)

cT (β) = (µ− 1
2σ

2)βT + 1
2σ

2β2T +λT (e−bβ+1
2 s2β2

−1) (15)

and

cT (1)−c∗T (1) = (µ− r f )T +T (λ(e−b+s2/2−1)−λ∗(e−b∗+s2/2−1))

κ1,T −κ∗1,T = (µ− r f +λ∗b∗−λb)T

κn,T −κ∗n,T = (−1)n (λbn −λ∗(b∗)n)T for all n ≥ 2,

(16)

where λ∗ and b∗ are the mean arrival rate and the size of the jump under the risk-neutral

measure, respectively. C RPT (1) is T (λ(e−b+s2/2−1+b)−λ∗(e−b∗+s2/2−1+b∗)). In the gen-

eral case when λ∗ ≠ λ and b ≠ b∗ (agents disagree on the intensity and the size of jumps under

the physical and risk-neutral worlds), C RPT (1) is different from zero. This distinguishes the

jump model from the Heston model since even the premium of the index depends on higher-

order cumulants, in contrast to the Heston model. Eq. 9 is not satisfied if λ∗ ≠ λ, b ≠ b∗, and

C RPT (β) ≠ 0 for all β-s because

∞
∑
n=2

(β−βn)((−1)n (λbn −λ∗(b∗)n)T )
n!

≠ 0 (17)

and hence, linear beta pricing does not hold with jumps. Fig. 2 illustrates this point graphically

by showing that the premium of a leveraged asset is non-linear in the premium of the index.

To summarise, there are at least two reasons why higher-order cumulants matter and lin-
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ear beta pricing fails in a non-lognormal world. First, if higher-order cumulant differences are

different from zero, any leveraged asset would load non-linearly on those differences as in the

case of the Heston model. Simple linear model would then fail to capture these effects. In a

Black-Scholes world, this non-linearity does not arise since those differences are zero for cu-

mulants above the first. Second, in a setting with jumps, the discontinuity prevents investors

from trading continuously and hedging perfectly constant-beta assets. Investors then require

an additional premium to bear the discontinuity risk, which is reflected in the CRP. In practice,

the CRP might reflect also the inability of market makers to hedge non-linear CRP terms similar

to Garleanu et al. (2009).

2.6. Constant-beta assets complete the market

Since the CGF of a random variable defines its probability distribution uniquely, constant-

beta assets with all β-s pin down the risk-neutral density perfectly because by definition, the

CGF is c∗T (β) = logE∗[PT (β)
P0(β) ]. Thus, by knowing prices of constant-beta assets for all β-s, we es-

sentially observe the whole distribution of the index and can thus replicate statically any payoff

that is a function of PT . Another way to see this is that one can approximate the Dirac delta

function δ(x) with a combination of exponential functions given by assets with different lever-

ages β since δ(x) = 1
2π ∫

∞
−∞ e iβxdβ. In other words, instead of approximating the Dirac delta

with a static portfolio of options (butterflies) as in Breeden and Litzenberger (1978), one can

approximate it with a static portfolio of constant-beta assets. The argument also implies that

the assumed returns processes for constant-beta assets are internally consistent in that they are

arbitrage-free.

What has changed compared to the option-based approach of completing markets? The

constant-beta-assets methodology to complete markets substitutes the problem of showing

that delta-hedging works for arbitrary contingent claims, with the problem of showing that

delta-hedging works for assets with constant β-s. Thus, any security can be hedged with a fixed

portfolio of these assets. This approach is more intuitive since the idea of rebalancing a hedge

to achieve constant risk exposure (β =leverage) is natural. Furthermore, the approach does not

involve any boundary conditions which might make delta-hedging strategies unstable near the
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boundary and present a problem for the option-based approach to complete markets. In sec-

tion IA.6 of the Internet Appendix, we show that constant-beta assets can also be used to derive

an alternative proof of the Black–Scholes model.

2.7. Extracting the even-order CRP

In practice, leveraged ETFs do not exist for all possible leverages but one can use the exist-

ing leverages to construct some important payoffs, e.g, one that gives the CRPE. Let us denote

that payoff by:

CRPET (β) =
∞
∑

n ≥ 2, even
βn

κn,T −κ∗n,T

n!
. (18)

Studying the contribution of even cumulants by extracting the C RPET (β) is worth for at least

two reasons. First, the negative of this payoff proxies what market-makers earn by providing

liquidity and trading against constant-beta assets over multiple periods. Second, one can con-

struct a bet on implied vs. realized even-order cumulants to harvest the CRPE. This bet is sim-

ilar to the traditionally studied trade of implied vs. realized variance (e.g., Bakshi et al. (2003))

to earn the VRP, but the CRPE is a bet on all even-order cumulants as opposed to the second-

order cumulant only (variance). To illustrate these effects, we consider a simple trade: short-sell

equal amounts of two constant-beta assets with opposite β ≥ 1 (e.g., -1 and 1). Such a “short-

both” strategy approximates liquidity provision or trading against assets with constant β-s.

Since the two assets have exactly the opposite β-s, then selling both of them cancels the

exposure to odd-order cumulants and the strategy returns are proportional to the negative of

the CRPE.12 Assume that the cash amount from the short position is invested at the risk-free

rate for simplicity. The returns on the short-both strategy are then:

rSB,T (β) =2r f ,T −(r f ,T +
∞
∑
n=1

βn(κn,T −κ∗n,T )
n!

)−(r f ,T +
∞
∑
n=1

(−β)n(κn,T −κ∗n,T )
n!

)

=−2
∞
∑

n ≥ 2, even
βn

κn,T −κ∗n,T

n!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C RPET

=−2C RPET (β).
(19)

12With simple returns, the strategy also cancels the effect of dividends in case of equity ETFs that are used in

the empirical section.
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The strategy earns twice the negative of the C RPET (β): it benefits from even-order risk-

neutral cumulants, but is negatively exposed to even-order physical cumulants. This is intu-

itive, since the strategy mimics market-making trade providing liquidity to momentum-like as-

sets, which are long physical and short risk-neutral cumulants. Fig. IA.1 illustrates the intuition

using a simple binomial tree example. If the realized path of the index has low even-order phys-

ical cumulants (variance in this example), then the strategy earns positive return, which is illus-

trated by the green cells. The fact that the returns of a liquidity provision are long even-order

risk-neutral cumulants and short physical ones echoes the result of Nagel (2012), who shows

that market-making profits in US stocks are proportional to VIX. This result is consistent with

our theory since VIX2 is a measure of risk-neutral entropy (sum of higher-order risk-neutral

cumulants) of the S&P 500 index as Martin (2015) shows.

The short-both strategy provides insights about the risk premium of higher-order moments

earned by option strategies like selling a strangle (sell OTM put and a call). Since OTM put op-

tions have β < 0, they share similar exposure to cumulants with inverse leveraged ETFs. Anal-

ogously, call options have β > 1 and share similarities with leveraged ETFs with β > 1. The

short-both strategy could then be compared to selling a strangle and rebalancing dynamically

to maintain the overall β of the position zero (similar to delta-neutral strategies). The short-

both trade then shows that strategies like strangle earn the risk premium of even-order cumu-

lants. Next, we apply our approach in practice and quantify the C RPT (β) and C RPET (β) by

studying assets with constant β-s.

3. Empirical evidence

We now quantify the CRP in practice. We use data on leveraged ETFs that track indexes in

the main asset classes: US equity (S&P 500, Nasdaq, Russell 2000, basic materials, consumer

services, financials, industrials, real estate and utilities), emerging market equity, mid-term (7-

10 years) and long-term (more than 20 years) US Treasuries, US high yield corporate bonds,

commodities (gold, silver, oil and natural gas), currencies (Euro and Japanese Yen), and volatil-

ity (VIX). Prices of these ETFs and their benchmarks are from Bloomberg at a daily frequency

and span the period from the first leveraged ETF introduction date in a given asset class (ear-
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liest is June 2006 for the S&P 500 Index-Table IA.1) until April 2021 (or the latest available date

before that).

3.1. The role of higher-order cumulants across assets

First, we identify potential episodes of higher-order cumulants by simply calculating the

difference between simple returns and log-returns on the benchmark. This difference reflects

realised higher-order moments (and as a result, realised higher-order cumulants) as can be seen

from the Taylor approximation of the simple return rsimple around zero: log(1+rsimple)−rsimple =

−∑∞n=2
r n

simple(−1)n

n . The red lines in Fig. 3 show the result for several assets. The plots illustrate

that the difference is volatile over time, and is particularly large in times of extreme price move-

ments, e.g., during the 2008 financial crisis, the COVID-19 crisis in March 2020 and in some

idiosyncratic crises like for oil in April 2020. A large part of the contribution of higher-order

cumulants is due to the second cumulant (variance), but the role of cumulants of order three

and above is also significant in times of market stress as illustrated by the red lines in Fig. 4. The

role of higher-order cumulants for leveraged assets is particularly evident from the difference

between simple returns and log-returns for ETFs with ∣β∣ > 1. The blue lines in Fig. 3 and Fig. 4

show that the contribution of higher-order cumulants is magnified for those assets since the

CRP terms are multiplied by βn .

We next study whether the Black–Scholes model or any other model with no higher-order

cumulants above variance can explain the empirical findings. To do so, we first plot the differ-

ence between the return on the dynamic rebalancing strategy of the ETF and the return on a

static leveraged strategy less the risk-free rate: rT −βrM,T −(1−β)r f ,T . This difference is closely

related to the C RPT (β) from Eq. 11, but estimated at the daily frequency. Fig. 5 illustrates that

the difference jumps in the episodes of larger cumulants seen in Fig. 3. At times when even-

order physical cumulants are smaller than risk-neutral cumulants and the C RPET (β) is nega-

tive, both long and inverse ETFs lose wealth.13 Prominent examples are the 2008 crisis and the

13With simple returns, the difference is sometimes positive for long ETFs if the C RPT (β) is negative (Fig. IA.2).

In contrast, the difference is often negative for inverse ETFs (β < 0) since they are negatively exposed to the CRPO.

Part of the differences in Fig. IA.2 can also be due to fund management fees, other expenses, and the fact that
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COVID-19 crisis in equities when both the red and the blue lines are below zero.

Visually, the plots in Fig. 5 show that the difference between the dynamic rebalancing strat-

egy and the static strategy could be explained both by a model with no higher-order CRP terms

beyond variance (“only-VRP model”), and by a model with a compensation for higher-order cu-

mulant risk like the Heston (1993) model or a setting with jumps. We construct a simple test to

see if any model without higher-order cumulants above the second can explain the empirical

patterns. This test covers any time-varying volatility model that has only VRP but no higher-

order CRP terms. The test is to use ETFs with opposite β-s to check a simple necessary con-

dition that must be satisfied if an only-VRP model fits the empirical patterns. If the model is a

good fit, then for two ETFs with oppositeβ-s (e.g., 2 and -2), the ratio of C RPT (β) =V RPT (β) to

C RPT (−β) =V RPT (−β) should be β−1
β+1 (see Eq. 9 and Eq. 14 for n = 2). Note that this condition

does not depend on the form of the VRP as the VRP cancels out.

We find that this condition is not satisfied for all assets except high yield bonds, the Euro,

and the Japanese Yen. This observation squares well with the fact that these assets have very low

realised higher-order moments beyond variance as seen from Fig. 4 (the pictures for high yield

bonds and the Euro are not reported for brevity). These results are consistent with Kremens and

Martin (2019), who find that the convexity gap observed for Euro and Japanese Yen shows no

higher-order cumulants beyond variance for these currencies (however, other currencies like

the Swiss Franc have pronounced convexity gaps in their sample). The results for the majority

of assets except currencies and high-yield bonds in our paper illustrate that only-VRP model is

unable to describe the empirical facts across all assets and that higher-order CRP terms beyond

the second have significant impact.

3.2. Quantifying C RPT (β)

Next, we estimate the C RPT (β) by running regressions of ETF returns on their benchmark

returns after controlling for the risk-free rate. The intercept in such a regression captures the

C RPT (β) as seen from Eq. 11 and should be zero if linear beta pricing holds. Table 1 shows that

leveraged ETFs do not pay the multiple of the benchmark’s dividend in practice. For example, the quarterly “zig-

zag” pattern in equity ETFs is consistent with the effect of dividends.
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the C RPT (β) is different from zero across most assets and leverages.14 The average C RPT (β)

is -7.4% annualized across assets and β-s with significant C RPT (β) estimates. The size of the

premium is generally larger in absolute value for assets with β < 0 and is of the order negative

10-13% annualized for many equity indices like small-cap stocks, financials and utilities. The

C RPT (β) is the largest for oil ETFs, reaching a level of -54% annualized (significant at the 10%

level). The C RPT (β) is significant share of the IRP in each asset: it is 104% of the IRP, on average

(in absolute value among the significant estimates), and sometimes reaches levels above 200%

of the IRP as shown in Table IA.2. The plots of the C RPT (β) in Fig. 6 illustrate that the premium

is significantly different from zero for most periods across equities, bonds, commodities, and

volatility.

The empirical evidence shows that linear beta pricing fails in practice due to non-zero

C RPT (β). Neither the Black and Scholes (1973) model nor any other model with only VRP but

no higher-order CRP terms, can explain the patterns in most asset classes. These facts show that

processes with non-zero higher-order CRP terms beyond variance like those with stochastic

volatility (e.g., the Heston (1993) model) or jumps, are needed to account for the data findings

across asset classes.

3.3. Quantifying C RPET (β)

In section 2.4 we showed that selling two ETFs with opposite leverages earns twice the

C RPET (β): the strategy benefits from even-order risk-neutral cumulants, but is negatively ex-

posed to even-order physical cumulants. We now construct this short-both strategy to measure

the C RPET (β).

14In practice, the fact that C RPT (β) ≠ 0 means that ETFs have tracking error. Our theory explains that this

tracking error is due to the risk of higher-order cumulants since ETFs are exposed to non-linearities. ETFs are

incentivized to keep their tracking error low since the compensation of ETF managers and the performance eval-

uation of the fund are typically linked to that error. Therefore, it is unlikely that ETFs deliberately manipulate their

tracking error. Note that some of the commodity and equity ETFs follow slightly different indexes and are not

directly comparable across betas: e.g., β = 2 and β = 3 natural gas ETFs.
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3.3.1. C RPET (β) across assets

Fig. 7 illustrates the performance of the short-both strategy for several assets. The figure

shows that the strategy returns jump up in times of market stress, when even-order risk-neutral

cumulants are larger than physical ones as illustrated by the COVID-19 shock, and some id-

iosyncratic shocks as for oil in April 2020. The returns on the strategy are significant and posi-

tive for each year in the sample for most equity indices, Treasuries, volatility, and commodities

like oil and natural gas. Table 2 shows that the average return on the strategy is 8.9% annual-

ized across assets and β-s, and the average C RPET (β) is -4.4%. Implementing the strategy with

β > 1 delivers more negative C RPET (β) as shown in the table. Assets with β = 3 are a good il-

lustration: for example, financials have an annualized C RPET (β) of -6.9%, whereas some com-

modities like oil and natural gas have C RPET (β) of -11.9% and -12.6%, respectively. The fact

that the C RPET (β) is negative means that market-makers earn a premium for trading against

assets with opposite β-s.

To make use of the higher frequency of our data and identify episodes of higher even-order

cumulants on a daily basis, we also construct the short-both strategy using daily log-returns.

The plots in Fig. 8 illustrate such episodes and can be used as a simple tool to identify stress pe-

riods in a given asset, even in real time. The daily returns will be useful also for the construction

of our global stress index based on cumulants in section 3.3.2 below.

For practical implementation of the strategy, one can construct the strategy also with daily

simple returns. The last six columns in Table 2 show that the daily returns are positive on aver-

age, but volatile and positively-skewed, since the mean is larger than the median. The strategy

earns Sharpe ratios above one in many markets: e.g., 2.42 for high yield bonds, 1.56 for Finan-

cials, 1.49 for Russell 2000, and 1.31 for natural gas.15

Since the short-both strategy returns are a bet on higher risk-neutral vs. physical cumu-

lants, the returns should increase when risk-neutral cumulants rise and decrease when physical

15We use close-to-close returns as opposed to open-to-close (intra-day) returns. The Sharpe ratios with intra-

day returns are even larger. The intra-day strategy is also more profitable after accounting for transaction costs

since the trader does not have to pay ETF borrowing fees. Since leveraged ETFs are highly liquid, bid-ask spreads

are usually extremely low for most assets.
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cumulants increase. Generally, measures of risk-neutral cumulants across asset classes are not

easily available and to proxy for risk-neutral cumulants, we use VIX2. As explained before, VIX2

is a measure of risk-neutral cumulants above the second for the S&P 500 index. Since variance

and illiquidity in other markets than the S&P 500 generally increase at times when VIX spikes

(Bao et al. (2011)), the premium for liquidity provision and the C RPET (β) in other markets

could also increase (in absolute terms) when VIX is higher. Table 3 shows that the returns on

the strategy are positively-exposed to VIX2 across several assets, in line with this intuition. The

returns on the strategy are also generally weakly negatively exposed to realised higher-order

moments as proxied by rsimple−log(1+rsimple), where rsimple is the simple return on the index.16

3.3.2. C RPET (β) measures global market stress

The short-both strategy returns across assets can be used as a gauge of global market stress

since they increase when even-order risk-neutral cumulants are above physical ones, and when

the premium for providing liquidity rises across equities, bonds, commodities, currencies and

volatility. To illustrate this fact, we do a principal component (PC) analysis of the daily short-

both strategy returns across all assets to quantify the impact of higher cumulants across assets

at a high frequency. The variance-covariance matrix of returns does not have a particularly

strong factor structure: the first PC explains about 19% of the variation in returns, the first

six PCs explain about 52%, and 16 PCs are needed to explain 90% of that variation. This re-

sult shows that there are common components to the C RPET (β) across assets, but the role of

asset-specific factors is also significant. The first PC captures mostly the variation in C RPET (β)

of equities, commodities and Treasuries, whereas higher-order PCs capture better the residual

variation in high yield corporate bonds, currencies and volatility.

Fig. 9 shows that the first PC spikes in periods of market stress and is highly correlated with

VIX with a correlation of 70%. The average return on the strategy across assets is also highly

correlated with VIX with a correlation of 66%. These facts show that times when risk-neutral

cumulants are above physical ones across assets, as captured by the returns on the short-both

16VIX2 and rsimple− log(1+rsimple) capture all higher-order cumulants/moments of the index as opposed to all

even cumulants/moments, which would be the relevant factors for the short-both strategy returns.
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strategy, are positively related to periods of market stress when VIX is higher.

The first PC (and higher-order PCs) and the average return on the short-both strategy across

assets can be used as a simple index of global market stress. There are several advantages of

these metrics relative to other commonly used measures of market turbulence like VIX or vari-

ous spreads like the TED spread. First, our measures are based on several asset classes and take

the prospective of a liquidity provider who is exposed to higher-order cumulants globally. As

we show in section 3.3.3 below, our metric drives out VIX in explaining returns of non-equity

assets and is particularly important in assets with non-linear payoffs like options and CDS. Sec-

ond, our measures are simple to calculate also in real time from observed prices of leveraged

ETFs. The measures are easy to compute also for individual markets and can be used to capture

market stress in particular asset class at a high frequency (Fig. 8). Third, we do not make any

assumptions about the driving distribution of asset returns and “let the data speak”.

3.3.3. Relation to standard risk factors and cross-sectional asset-pricing

Table 3 shows that some standard risk factors like momentum are significantly correlated

with the short-both strategy returns. This fact illustrates that these factors might span some of

the variation in higher-order cumulants as captured by the C RPET (β). In turn, this fact could

also help explain why the standard linear CAPM logic does not capture the full variation in asset

returns.

We next test if higher-order cumulants are priced factors across asset classes. Table 4 shows

the results from cross-sectional asset-pricing regressions using the average returns on the short-

both strategy across all assets, and the market, as the two factors.17 The table shows that the

price of risk associated with the short-both strategy returns is positive and statistically signifi-

cant for bonds, and particularly for options and CDS. The inclusion of the short-both strategy

return makes insignificant the return on VIX (proxied by the largest long VIX ETF since VIX is

not directly tradable) in all asset classes except US stocks. This is perhaps not surprising since

VIX measures risk-neutral entropy of the S&P 500 equity index, whereas our strategy is based on

17One limitation of the analysis is that the data is monthly instead of daily, and includes only a subsample from

June 2006 to December 2012.
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more asset classes beyond equities. The fact that the short-both strategy is particularly impor-

tant in assets with highly non-linear payoffs like options and CDS shows that these asset classes

are more exposed to higher-order cumulant risk.

3.3.4. Comparison to IRP and VRP

It is useful to compare the magnitude of the C RPE(β) to that of the I RP . Column 5 of

Table 2 shows that the C RPE(β) is significant relative to the I RP (in absolute values): it is 46%

of the I RP for the S&P 500 index (with β = 3), 47% for VIX, 51% for long-term Treasuries (with

β = 3), and 139% for oil.

Another interesting benchmark for comparison is the VRP. Carr and Wu (2009), Bakshi and

Kapadia (2003), Heston and Li (2020) and Heston and Todorov (2023) show that the VRP is neg-

ative whereas Bollerslev and Todorov (2011) show that compensation for jump risk accounts

for a large fraction of this premium. Our results show that the C RPE(β) is also negative across

markets, on average, and that higher-order terms have a non-negligible contribution, particu-

larly during crisis times. The magnitude of the C RPE(β) is generally smaller than the VRP, since

our measure is different as the C RPE(β) depends on cumulants above variance, some of which

could have positive risk premium. In addition, our empirical tests rely on assets with leverage

between -3 and 3, whereas options involved in the calculation of the VRP have typically larger

(absolute) leverages. With a higher leverage, the C RPE(β) is also higher as seen from Table 2.

The Sharpe ratios of the short-both strategy to extract the C RPE(β) are above one in some asset

classes, similar to Sharpe ratios of VRP strategies (Heston and Todorov (2023)).

3.3.5. Cumulants of order four and above

Since moments above the fourth (kurtosis) are rarely researched in finance, an interesting

question is whether the risk premium on these moments is small in practice. To answer this

question, we use the short-both strategy with β = 2 and β = 3 to isolate cumulants of order four

and above. By buying two ETFs with β = −2, β = 2 and selling 22/32 = 4/9 of two ETFs with
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β = 3, β =−3, we cancel the second-order CRP term:

r4 and above,T =4
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The return r4 and above,T provides a lower bound on CRPE terms of order four and above for

an asset with β = 3 since the cumulants of such asset are multiplied by 3n > 4
9 3n −2n (n ≥ 4).18

We calculate r4 and above,T and find that the contribution of fourth-order CRPE terms and above

accounts for 27% of the CRP for the S&P 500 index and even more for long-term Treasuries

(58%) and emerging market stocks (93%). This analysis shows that CRPE terms of order four

and above represent a large part of the CRP in some asset classes.

4. Economic implications and possible extensions

4.1. Implications

The main results in this paper have implications for leverage, hedge funds, and momentum

strategies. In addition, our findings have implications for factor models, portfolio theory, option

pricing, and for policy makers.

4.1.1. Implications for leverage, hedge funds, momentum

Our results have implications for the risk of higher-order cumulants. A common misper-

ception is that this risk declines as the number of higher-order terms grows, and thus higher-

order moments (typically, beyond kurtosis) are rarely researched in finance. This mispercep-

tion is driven by the discounting of higher-order cumulant differences with n! (see Eq. 6), which

makes the contribution of higher-order CRP terms extremely small for larger n. Our theory

emphasizes that this result is true for unleveraged strategies (and even more pronounced for

18It is also possible to calculate a lower bound on the contribution of higher-order terms of order 6 and above

by combining two r4 and above,T strategies: one with β = 1,2 and another with β = 2,3.
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strategies with 0 < β < 1), but is not true for leveraged strategies, for which the contribution of

higher-order cumulants generally increases up to the β-th order cumulant (β > 0). For exam-

ple, the loadings of strategy with a leverage of β = 10 are increasing up to the 10th order CRP

term as illustrated in the left panel of Fig. 1. In contrast, the loadings of an unleveraged strat-

egy quickly die out as illustrated in the right panel. Thus, more leveraged strategies are more

exposed to higher-order CRP terms, and cumulants of order four and above matter for such

strategies, consistent with our findings in section 3.3.5.

These results have implications for agents like hedge funds who use leverage to exploit

mispricings between similar assets. These agents often use strategies that involve assets with

opposite sensitivities to a given factor: for example, convergence trades or relative value strate-

gies (e.g., spot-futures basis, see Aramonte et al. (2021)). Our results show that such trades are

risky because they are exposed to the CRPE, even in the case of no limits to arbitrage or noise

trader risk (e.g., Shleifer and Vishny (1997)). For example, Eq. 19 shows that a leverage of two

has loadings of 2(= 22/2!), 0.67 and 0.09 on the second, fourth, and sixth order CRP terms, re-

spectively. In contrast, a leverage of ten, which is often used by hedge funds in such trades (e.g.,

Federal Reserve System (2020) show that the mean leverage of hedge funds is often above 8),

has loadings of 50, 417, and 1389 on these CRP terms. The loadings on higher-order terms are

even larger and are above one up to the 24th CRP term, which illustrates that even tiny changes

in cumulant differences are magnified due to the explosive contribution of 10n-weighted CRP

terms. This reflects the enormous exposure of such levered trades to higher-order cumulants.

Our findings have implications also for momentum strategies. We show that trend-chasing

“momentum” strategies are exposed to the VRP and higher-order cumulants, which could ex-

plain why the returns on these strategies have sudden crashes and exhibit higher-order mo-

ments.

4.1.2. Implications for factor models and portfolio theory

Our main results have implications for factor models and portfolio theory. Our empirical

setting based on leveraged ETFs provides a useful laboratory to test single-factor models be-

cause it overcomes the three standard critiques for single-factor models like the CAPM. First,
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our assets have constant betas that do not vary over time (Hansen and Richard (1987) critique).

Second, the assets are exposed to a single factor by construction – their benchmark index. Third,

the factor is perfectly observable (Roll (1997) critique).

Our results show that multi-factor models could fit asset returns better than single-factor

models purely because the additional factors capture the contribution of higher-order cumu-

lants of the single factor. The fact that some standard factors like momentum are positively

correlated with even-order cumulant differences (see Table 3), is consistent with this logic. This

result has implications for a vast financial literature studying factor models to explain asset re-

turns. Our theory suggests that instead of adding more linear factors, researchers also need

to account for the higher-order cumulants of the single-factor (e.g., the market portfolio). In

addition, a proper test of single-factor models should first compare the difference between

cumulant-generating functions in the physical and risk-neutral worlds before testing linear

beta pricing.

The results in this paper have important consequences also for standard portfolio theory.

We show that many classic single-factor results hold only in a lognormal world. For example, the

standard CAPM logic that asset returns are linear in market returns, holds only in a lognormal

world. Another classic portfolio theory result states that by combining two assets with opposite

betas, one can construct a risk-free return. Our analysis shows that this is no longer true in a

general setting with non-zero higher-order cumulants: such a portfolio would be exposed to

the CRPE and would not be risk-free.

4.1.3. The flatness of the securities market line (SML)

Our approach could help explain the flatness of the securities market line (SML). Eq. 11

shows that an asset with C RP(β) < 0 has lower return than the one predicted by the CAPM,

whereas an asset with C RP(β) > 0 has a larger return. If C RP(β) > 0 (C RP(β) < 0) for assets

that have low (high) CAPM betas, this fact could explain why the SML is flatter than predicted

by the standard CAPM formula. As shown before, assets with β > 1 conduct momentum trades

and would have lower returns than predicted by the CAPM if market makers charge a premium

for providing liquidity. Eq. 14 shows that such assets load positively on the VRP and if market-
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makers charge a premium for being short the VRP, that would make the estimated beta of these

assets lower than predicted by the CAPM. There is some evidence in Table 1 that is consis-

tent with this conjecture as several assets with β = 3 have C RP(β) < 0, but these results are

inconclusive since we do not observe ETFs with 0 < β < 1, and since some ETFs with β = 2 have

C RP(β) > 0. We leave the test of the SML’s flatness through the lens of the CRP for future re-

search.

4.1.4. Implications for option pricing

Our results show that out-of-the-money (OTM) put options are more expensive than what

linear beta pricing would predict. Since these options have ∆ < 0 and thus, leverage β < 0, they

are similar to momentum assets, and would load positively on the VRP in a stochastic volatility

setting, for example. As the VRP is negative in practice, the returns on OTM put options would

be more negative (equivalently, the options will be more expensive) than predicted by linear

beta pricing as in a standard CAPM model, especially for OTM puts with more negative β-s.

4.1.5. Implications for policy makers and investors

Our results have implications also for policy makers and practitioners. The first PC of the

short-both strategy can be a useful gauge for policy intervention since the indicator increases

when the CRPE rises, which could be a proxy for times when capital constraints are binding

as we explain in section 4.2. One benefit of the CRP-inspired approach is that it is based on

several asset classes and incorporates information on the difference of all higher-order even

cumulants, in contrast to indicators for policy intervention based on variance only.

4.2. Sources of the C RP(β)

Which factors can create a CRP? Trading restrictions or other forms of market incomplete-

ness are likely to give rise to higher-order cumulants since market makers cannot perfectly

hedge those and would require an additional premium, which would be reflected in the CRP.

For example, limited trading hours create discontinuities in trading and could lead to higher-

order cumulants being relevant since the return distribution is no longer continuous. In ad-

dition, risk limits like value-at-risk constraints, de-leveraging (e.g., Adrian and Shin (2010)), or
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crowded trades could create price spirals at times of large price movements and cause extreme

values of the return distribution.

Limits to arbitrage and costly capital could also give rise to the CRP. Kyle and Xiong (2001)

and Xiong (2001) show that convergence traders’ wealth effect can amplify price changes and

volatility, and prove contagious. Convergence trades to extract the CRP risk being liquidated

prematurely if limits to arbitrage make raising capital costly and force traders to close out these

trades before prices converge. Such liquidation amplifies further price drops and raises the CRP

by increasing higher-order cumulants of the return distribution. The risk of future price spirals

could then prevent traders from arbitraging away the CRP. When limits to arbitrage are binding,

the CRP should become larger. The fact that the CRP increases in times of market stress is

consistent with this explanation.

The CRP can also arise due to trading patterns of momentum traders. For example, the

daily rebalancing of ETFs to keep constant leverage β can amplify price movements and in-

crease cumulants if this rebalancing is large part of the market. An important point is that the

rebalancing of strategies with β > 1 and β < 0 is in the same direction, which means that ETFs

can amplify price changes even if the size of long ETFs is equal to that of inverse ETFs. Todorov

(2019) shows that this rebalancing is significant share of the market in VIX and commodity mar-

kets, and can lead to sharp price changes and larger cumulants, as in February 2018 for VIX and

April 2020 for oil.

Another explanation for the existence of the CRP is that the “natural” distribution of the

index return could be one with a complicated form of non-zero higher-order cumulants: for

example, it is reasonable to assume that volatility (VIX) has a positively-skewed and highly non-

normal distribution with jumps. Whatever the reason for cumulants, risk-averse market makers

would require a compensation for providing liquidity and bearing the cumulant risk.

4.3. Robustness: incorporating ETF fees

In the main empirical analysis, we used observed market prices of ETFs to construct the

short-both strategy as these prices would be used by a trader who implements the strategy in

practice. To address the concern that the C RPE(β) is purely driven by ETF fees, we also repeat
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the analysis using before-fees returns in Table IA.3. The table shows that the C RPE(β) is slightly

smaller but the Sharpe ratios of the strategy are still above one for some assets like high yield

bonds and financials. This analysis shows that the C RPE(β) is not mechanically driven by ETF

fees. We also repeat Table 1 with fees in Table IA.4 in the Internet Appendix. The results show

that the C RP(β) is still significantly different from zero.

5. Conclusion

We develop a novel methodology to measure the risk premium of higher-order cumulants

based on leveraged ETFs, which are much more liquid than standardly used options. We im-

plement our new methodology and measure the cumulant risk premium across several asset

classes: equities, bonds, commodities, currencies, and volatility (VIX). We show that the cu-

mulant risk premium is negative and is more than 100% of the index risk premium, on aver-

age. These empirical findings cannot be explained by the Black–Scholes model or by any model

without compensation for higher-order cumulant risk, but might be explained by a model with

jumps or stochastic volatility.

We develop a simple strategy of shorting ETFs with opposite betas to measure the even-

order CRP across asset classes. This strategy mimics liquidity provision and can be used to

construct a bet on risk-neutral vs. physical even-order cumulants (variance, scaled kurtosis,

etc.). The strategy earns Sharpe ratios above one.

Our findings have important implications for leverage, hedge funds, factor models, mo-

mentum strategies and option pricing. We show that standard portfolio theory results do not

hold in a general setting with non-zero higher-order cumulants and that highly leveraged strate-

gies employ momentum trades. These findings have implications for asset managers and hedge

funds who use large leverage to exploit mispricings between similar assets. Strategies involving

high leverage are extremely exposed to higher-order cumulants and even tiny changes in these

cumulants can be magnified enormously. Our cumulant-based index can be used as a simple,

real-time gauge of market stress across asset classes.
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Tables and Figures

Table 1
Estimating C RPT (β). The table shows the annualized C RPT (β) in %, estimated as α from regression rETF,T (β) =

α+βrbmk,T + (1−β)r f ,T + εT for several markets and leverages, where rETF,T (β) is the return on an ETF with
leverage β, rbmk,T is the return on the ETF benchmark, and β is the ETF leverage. We estimate rT = logE[RT ]

by first calculating E[RT ] as the average daily return, and then running monthly regressions of logE[RETF,T (β)] on
logE[Rbmk,T ]. Here and in the subsequent analysis r f ,T is the 1-month Treasury rate and standard errors (shown
in brackets) are computed using the Newey and West (1987) estimator with lag selection based on the Bartlett ker-
nel (e.g., Andrews (1991)). The bold coefficients are statistically different from zero at the 5% level. The sample is
from the first leveraged ETF inception date in a given market to April 2021 (February 2018 for VIX, June 2020 for
gold and gas since some long and inverse ETFs were delisted on those dates).

Annualized C RPT (β) in %
Leverage=β -3 -2 -1 2 3

S&P 500 -9.10 -6.76 -3.94 1.37 1.41
(0.63) (1.02) (0.88) (0.40) (0.97)

Nasdaq -5.55 -0.03
(0.46) (0.57)

Russell 2000 -10.38 -0.54
(0.83) (1.29)

Financials -12.86 -2.06
(1.26) (1.47)

Consumer services -6.68 0.04
(2.28) (0.9)

Basic materials -8.86 -0.87
(2.67) (0.95)

Technology -2.34 -5.84
(1.71) (1.61)

Utilities -13.38 2.59
(2.96) (0.93)

Industrials -8.45 0.33
(3.11) (0.95)

Real Estate 1.09 -13.10 -5.12 2.76 -14.62
(2.04) (1.36) (0.40) (1.25) (3.85)

Emerging Markets -5.86 -8.43 -7.17 3.33 -3.43
(3.46) (2.3) (1.65) (2.21) (3.27)

VIX -37.14 -31.26
(12.97) (6.87)

Treasuries 7-10 yr -2.81 -1.32 -1.93 -1.89 -4.38
(0.66) (0.28) (0.3) (0.38) (2.08)

Treasuries more 20 yr -2.39 -2.17 -1.63 -1.82 -4.13
(0.96) (0.63) (0.32) (0.68) (1.08)

High Yield -2.54 -1.33
(0.65) (2.52)

Gold -3.99 -3.80 -0.96 -0.45
(1.58) (0.81) (0.84) (1.40)

Silver -8.90 -10.71 -3.91 -3.86
(2.04) (4.96) (4.83) (2.02)

Nat gas -12.79 -6.93 -3.76 -9.96
(3.25) (1.7) (1.63) (3.0)

Oil 30.03 6.43 -24.09 -54.09
(28.3) (6.85) (10.83) (29.22)

Euro/US Dollar -1.09 -0.89
(0.81) (0.69)

Yen/US Dollar -0.69 -0.99
(0.33) (0.81)
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Table 2
Returns on the short-both strategy and the index risk premium (IRP). The second column shows the average annualized return on the short-both
strategy rSB,T (β) = −(logE[RETF,T (β)]+ logE[RETF,T (−β)]), where logE[RETF,T (β)] is the return on an ETF with leverage β. E[RETF,T (β)] is the
average daily return in a given month as in Table 1. Column 3 shows the average annualized C RPET (β) (= − 1

2 rSB,T (β)). Column 4 shows the average

annualized index risk premium (I RPT = logE[RET F,T (1)]− logE[R f ,T ]). Column 5 shows the ratio of the C RPET (β) to the I RPT . The last six columns
show summary statistics of the short-both (SB) strategy with daily simple returns. Columns 2 – 5 are in %, 6 – 10 in basis points. The sample is from the
first inverse ETF inception date in a given market to April 2021 (February 2018 for VIX, June 2020 for gold and gas since some long and inverse ETFs
were delisted on those dates).

Asset β
Mean SB
annual

Mean C RPET (β)
annual

Mean IRP
annual

C RPET (β)/I RPT
Mean SB

daily
S.d. SB

daily
Median SB

daily
Min SB

daily
Max SB

daily
Sharpe
annual

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

S&P 500 1 2.20 -1.10 7.11 -0.15 0.88 27.98 0.00 -370.46 1384.66 0.29
S&P 500 3 6.55 -3.28 7.11 -0.46 2.55 32.47 0.60 -476.84 1157.92 1.16
Nasdaq 3 4.68 -2.34 10.23 -0.23 1.44 17.11 0.27 -227.33 242.19 1.13
Russell 2000 3 9.65 -4.83 10.60 -0.46 3.58 36.65 1.32 -436.64 1133.65 1.49
Financials 3 13.80 -6.90 9.70 -0.71 4.71 46.42 1.42 -339.22 1166.94 1.56
Consumer services 2 5.25 -2.63 9.10 -0.29 1.91 152.07 0.00 -2147.13 2724.9 0.17
Basic materials 2 8.53 -4.26 8.80 -0.48 3.04 88.27 0.26 -518.3 3918.69 0.49
Technology 3 7.55 -3.78 16.37 -0.23 3.06 41.24 0.74 -347.57 1435.52 1.11
Utilities 2 9.60 -4.80 3.83 -1.25 3.74 111.27 0.00 -587.54 3967.19 0.49
Industrials 2 6.80 -3.40 7.90 -0.43 2.51 129.74 0.00 -844.05 4541.52 0.27
Real Estate 3 9.40 -4.70 9.94 -0.47 3.68 71.05 1.49 -1441.85 2921.62 0.78
Emerging Markets 1 3.65 -1.83 7.08 -0.26 1.38 34.01 0.00 -649.28 1044.11 0.54
Emerging Markets 3 8.78 -4.39 7.08 -0.62 3.26 45.41 0.74 -481.70 1450.78 1.08
VIX 1 33.05 -16.53 -35.26 0.47 8.17 231.65 0.95 -1991.37 9582.18 0.55
Treasuries 7-10 yr 1 2.25 -1.13 3.75 -0.30 0.88 21.39 0.00 -177.77 191.40 0.49
Treasuries 7-10 yr 3 6.45 -3.23 3.75 -0.86 2.73 83.65 1.30 -1619.78 1358.75 0.49
Treasuries more 20 yr 1 3.50 -1.75 5.68 -0.31 1.35 17.10 0.23 -476.69 421.95 1.07
Treasuries more 20 yr 3 5.80 -2.90 5.68 -0.51 2.71 43.18 0.88 -224 2074.34 0.93
High Yield 1 7.15 -3.58 5.28 -0.68 2.86 17.28 0.80 -96.95 107.24 2.42
Gold 2 4.18 -2.09 4.83 -0.43 1.47 18.90 0.57 -132.3 207.44 1.08
Silver 3 12.05 -6.03 -4.45 1.35 5.85 215.61 0.79 -3016.03 4154.14 0.25
Nat gas 3 25.20 -12.60 -15.57 0.81 7.80 91.15 3.02 -1379.3 1251.68 1.31
Oil 3 23.88 -11.94 8.60 -1.39 7.48 361.02 0.00 -5995.73 6830.22 0.32
Euro/US Dollar 2 1.38 -0.69 -0.80 0.86 0.43 32.97 0.00 -280.27 286.97 0.11
Yen/US Dollar 2 0.83 -0.41 0.52 -0.79 0.49 43.12 0.00 -339.89 289.44 0.11
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Table 3
Regressions of the short-both strategy (simple returns) rSB on VIX2, rsimple−log(1+rsimple) (a measure of physical higher-order moments of the index),
the Fama-French 5 factors and momentum. Sample: daily, from the first date of an introduction of an inverse ETF to April 2021 (February 2018 for VIX,
June 2020 for gold and gas since some long and inverse ETFs were delisted on those dates). VIX2 is scaled by 100 for comparison. *,**, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.

Dependent variable: rSB

S&P 500 Nasdaq Russell 2000 Financials Consumer services Basic materials Technology Utilities Industrials Real estate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VIX2 0.56∗∗ 0.40∗∗∗ 1.30∗∗ 1.19∗∗∗ −0.02 1.30∗∗ 0.88∗ 0.51 0.40 6.13∗∗

(0.23) (0.12) (0.63) (0.43) (0.88) (0.64) (0.52) (0.56) (0.83) (2.53)
rM − log(1+ rM) −1.18 −1.13∗∗∗ −0.55 1.48∗∗ 2.06 −0.80 0.47 1.69 0.84 −6.77∗∗∗

(0.72) (0.41) (1.12) (0.74) (2.79) (0.62) (0.38) (1.21) (1.34) (1.39)
RMkt −R f −0.01 0.02∗∗ 0.03 0.02 0.17∗∗∗ 0.01 −0.03 −0.02 0.08∗∗ −0.15

(0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.03) (0.10)
SMB 0.01 −0.01 −0.03 −0.04 −0.01 −0.05 −0.02 −0.01 0.01 0.11

(0.01) (0.01) (0.02) (0.02) (0.04) (0.04) (0.01) (0.03) (0.04) (0.09)
HML 0.02 0.03 0.02 0.05 0.03 0.01 0.01 0.03 −0.02 0.09

(0.02) (0.02) (0.02) (0.04) (0.06) (0.03) (0.02) (0.03) (0.04) (0.11)
RMW −0.01 0.02∗ −0.01 0.002 0.18∗∗ 0.04 −0.07∗∗ 0.04 0.19∗∗ −0.07

(0.01) (0.01) (0.03) (0.02) (0.08) (0.05) (0.03) (0.04) (0.07) (0.06)
CMA −0.02 −0.03 0.01 −0.12∗∗ −0.06 −0.04 −0.03 −0.11 0.004 −0.31

(0.02) (0.02) (0.03) (0.06) (0.12) (0.07) (0.04) (0.07) (0.09) (0.26)
Momentum 0.01∗∗ 0.01∗ −0.01 −0.02 0.06∗ 0.01 −0.01 0.01 0.04 0.05

(0.00) (0.01) (0.01) (0.01) (0.03) (0.02) (0.01) (0.02) (0.03) (0.05)
Observations 3,654 2,743 3,055 3,054 3,500 3,500 3,026 3,500 3,500 1,093
R2 0.02 0.07 0.06 0.13 0.02 0.01 0.04 0.01 0.01 0.20

Emerging markets VIX Treasuries 7-10 yr High yield Gold Silver Nat gas Oil Euro/US Dollar Yen/US Dollar

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VIX2 0.34∗∗ 0.04 0.06 0.15 0.20∗∗∗ 0.26 −0.09 4.87∗∗∗ −0.003 0.02
(0.17) (0.93) (0.08) (0.11) (0.08) (0.28) (0.43) (1.63) (0.05) (0.07)

rM − log(1+ rM) −1.72∗∗ −0.18 −7.51 −1.19 0.41 1.64 0.17 0.91∗∗ 2.05 −0.82
(0.67) (0.17) (5.05) (2.26) (0.27) (1.11) (1.38) (0.40) (2.38) (1.59)

RMkt −R f −0.01 −0.09 −0.003 0.003 0.01 0.02 −0.001 −0.02 0.01 0.01∗

(0.01) (0.07) (0.01) (0.003) (0.005) (0.02) (0.02) (0.11) (0.01) (0.01)
SMB 0.05 0.03 −0.01 0.01∗ −0.004 −0.05∗ 0.03 −0.45∗ 0.01 −0.004

(0.04) (0.02) (0.01) (0.01) (0.01) (0.03) (0.03) (0.25) (0.01) (0.01)
HML −0.02 0.21 −0.02∗ −0.01 0.01 −0.01 0.02 −0.56∗ 0.01 −0.02

(0.01) (0.18) (0.01) (0.01) (0.01) (0.02) (0.03) (0.29) (0.01) (0.01)
RMW 0.03 −0.22 −0.01 0.004 −0.004 0.01 0.04 0.69 0.001 0.01

(0.02) (0.26) (0.01) (0.01) (0.01) (0.03) (0.06) (0.61) (0.02) (0.02)
CMA −0.02 −0.22 0.03 0.01 −0.02 −0.02 −0.03 1.82 0.01 −0.02

(0.03) (0.21) (0.02) (0.01) (0.02) (0.03) (0.06) (1.35) (0.02) (0.03)
Momentum 0.01∗ 0.03 −0.01 −0.004 0.002 −0.01 −0.01 −0.25∗ −0.002 −0.01

(0.01) (0.03) (0.01) (0.01) (0.01) (0.02) (0.02) (0.14) (0.01) (0.01)
Observations 3,310 1,792 2,455 2,464 3,036 2,186 2,109 1,006 3,041 3,041
R2 0.02 0.01 0.01 0.004 0.01 0.04 0.002 0.08 0.004 0.002
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Table 4
Cross-sectional asset pricing. The table reports risk price estimates for the equal-weighted average return on the
short-both strategy, the excess return on the market, and the return on VIX ETF. Risk prices are the mean slopes
of period-by-period cross-sectional regressions of portfolio excess returns on risk exposures (betas), reported in
percentage terms. Betas are estimated in a first-stage time-series regression. The portfolios of assets are from Asaf
Manela’s website and are based on He et al. (2017). Stocks are 25 portfolios sorted by size and book-to-market, US
bonds are 10 maturity-sorted US government bond portfolios with maturities from six months to five years and
10 corporate bond portfolios sorted on yield spreads from Nozawa (2017). Sov. bonds are the six portfolios from
Borri and Verdelhan (2012). Options are S&P 500 index options sorted on moneyness and maturity. CDS are 20
portfolios sorted by spreads. FX are 6 currency portfolios sorted on interest rate differential (Lettau et al. (2014))
and 6 currency portfolios sorted on momentum (Menkhoff et al. (2012)). Shanken (1992) standard errors are in
parentheses. Monthly frequency, from June 2006 to December 2012.

Asset Stocks US bonds Sov. bonds. Options CDS FX
(1) (2) (3) (4) (5) (6)

Short-both -0.44 1.29∗∗∗ 3.20∗∗ 1.40∗∗∗ 1.38∗∗∗ 0.51
(0.43) (0.24) (1.59) (0.27) (0.20) (0.81)

Market -0.33 1.33∗ 2.69 -0.64 0.46 1.93∗∗∗

(0.61) (0.81) (0.93) (0.73) (0.82) (0.52)
VIX -2.13∗ -0.94 0.50 -0.49 -3.16 0.33

(1.05) (1.14) (0.30) (0.90) (1.96) (0.20)
Intercept 0.94∗ 0.18∗∗∗ -1.38 -1.13∗∗∗ -0.07∗∗ -0.15

(0.50) (0.05) (0.50) (0.36) (0.03) (0.23)

Number of portfolios 25 20 6 18 20 12
R2 0.08 0.66 0.88 0.99 0.88 0.55
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Fig. 1. Loadings of leveraged strategies on higher-order cumulant risk premium (CRP) terms. The graphs show
βn

/n!, which are the loadings on higher-order cumulant differences from Eq. 6. The left panel shows these loadings
for a leveraged strategy with β = 10, the right for an unleveraged one with β = 1.
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Fig. 2. Cumulant risk premium in the Heston model and with jumps. The left panel shows the cumulant-generating
functions in the physical (c(β)) and risk-neutral (c∗(β)) worlds for the Heston model, the right for the compound
Poisson process (CPP). The parameters for the Heston model are: µ = 0.05, r f = 0.02, λ = 2, λ∗ = 1, v̄ = 0.01, v̄ =

0.04, ρ = −0.7, σ = 0.1, T = 1. The parameters for the CPP are: µ = 0.05, r f = 0.02, λ = 0.1, λ∗ = 0.2, b = −0.05, b∗ =
−0.2, T = 1.
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Fig. 3. Realised higher-order moments (second and above) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks
(β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas
(β = 3), Oil (β = 2) and Gold (β = 3). The graphs show cumulative 1-month annualized differences between rsimple

and log(1+ rsimple) for the benchmark index (in red) and the ETF with the particular β (in blue).
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Fig. 4. Realised higher-order moments (third and above) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks
(β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3),
Oil (β = 2) and Gold (β = 3). The graphs show cumulative 1-month annualized differences between log(1+ rsimple)

and rsimple−
1
2 r 2

simple for the benchmark index (in red) and the ETF with the particular β (in blue).
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Fig. 5. Difference between the ETF return and the return implied from linear beta pricing for S&P 500 (β = 3),
Nasdaq (β = 3), Small cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US
Dollar (β = 2), Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). The graphs show 1-month cumulative differences
between the return on the ETF and the sum of the return on the leveraged benchmark and the risk-free rate: rET F −

(βr +(1−β)r f ). Blue lines are long ETFs (β > 0), red lines are inverse ETFs (β < 0).
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Fig. 6. C RPT (β) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks (β = 3), Emerging market stocks (β = 3),
Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). The figure
shows the 12-months rolling annualized C RPT (β) in %, together with 95% confidence intervals. The C RPT (β) is
estimated as α from regression rETF,T (β) =α+βrbmk,T +(1−β)r f ,T + εT for several markets and leverages, where
rETF,T (β) is the return on an ETF with leverage β and rbmk,T is the return on the ETF benchmark. We estimate
rT = logE[RT ] by first calculating E[RT ] as the average daily return, and then running monthly regressions of
logE[RETF,T (β)] on logE[Rbmk,T ].
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Fig. 7. Returns on the short-both strategy with log-expected-returns (log of the average daily return in a given
month) for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries
20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). Plots are 12-months
rolling annualized returns, together with 95% confidence intervals.
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Fig. 8. Returns on the short-both strategy with daily log-returns for S&P 500 (β = 3), Nasdaq (β = 3), Small cap
stocks (β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas
(β = 3), Oil (β = 2) and Gold (β = 3). Plots are 1-month cumulative returns.
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Fig. 9. First principal component and average return of the short-both strategy. The figure shows the first PC
of the variance-covariance matrix of short-both strategy returns, VIX (left y-axis), and the average return of the
strategy across assets (right y-axis). The plots of the PC1 and the average return are 1-month rolling sums and the
maximum values are 308 and 35, respectively (the plots are truncated for better visibility). The assets we use are:
S&P 500, Nasdaq, Russell 2000, Financial stocks, Consumer services, Basic materials, Technology, Utilities, Real
estate, Emerging market stocks, VIX, Treasuries 7-10 yr, Treasuries more than 20yr, High yield corporate bonds,
Japanese Yen/US Dollar, Euro/US Dollar, Natural gas, Oil, Silver and Gold.
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6. Internet Appendix

IA.1. Example of dynamic rebalancing

Suppose an investor with $100 starts with a β = 2, and therefore borrows $100 at the risk-

free rate to invest $200 in the index. Assume that the index return is -10% in the next period:

in that case, the portfolio of the investor consists of $180 in the index and -$100 at the risk free

rate for a β = 180
180−100 = 2.25 > 2. A static strategy then becomes riskier because the leverage

increased: if the index keeps dropping in future periods, the leverage increases further and the

investor risks being bankrupt. In contrast, a constant-beta strategy maintains the same β by

rebalancing as the index moves. In this example, the strategy requires the investor to sell $20 of

his index exposure in the next period and to use the cash to repay part of the debt so that β is

maintained constant: β = 160
80 = 2.

IA.2. Derivations of constant-beta strategies in a GBM setting

The value of a constant-beta strategy that invests fraction β in the index M and the rest in the

risk-free rate evolves as:

dPt

Pt
=β dPt ,M

Pt ,M
+(1−β)r f dt

dlogPt = (βµ− 1
2β

2σ2+(1−β)r f ) dt +βσ dBt

⇐⇒ PT =P0e(βµ−1
2β

2σ2+(1−β)r f )T+βσBT

⇐⇒ PT =P0(
PM,T

PM,0
)βe((1−β)r f −1

2β(β−1)σ2)T

(21)

The last line is obtained from the previous one by adding and subtracting 1
2βσ

2T in the power

of e.

RT =Rβ
M,T e(1−β)r f ,T−1

2β(β−1)σ2
T

logRT =β logRM,T +(1−β) logR f ,T − 1
2β(β−1)σ2

T .
(22)

Note that the CAPM holds in this case with log-returns: taking expectations in the last line of

Eq. 21 yields E[RT ] = eβµT+(1−β)r f T , or logE[RT ] =β logE[RM,T ]+(1−β)r f T .
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IA.3. CGF of compound Poisson process with normal-sized jumps

Let X =∑J
j=1 Y j , where J ∼ Poisson(λ) and Y j are i.i.d. normal conditional on the number of

jumps j : Y j / j ∼N (µ,σ2). Using the independence of Y j given j , we can write the MGF GX (β)

as a function of GY j (β) =GY1(β) :

GX (β) =
∞
∑
n=0

e−λ
λn(GY1(β))n

n!
= e−λeλGY1(β) = eλ(GY1(β)−1).

Then, the CGF is

cX (β) =λ(GY1(β)−1). (23)

Using the normality of Y1, we can then write

cX (β) =λ(ecY1(β)−1) =λ(eµβ+σ
2β2/2−1).

IA.4. CRP in a setting with stochastic volatility: the Heston model

Let us derive the CRP in a setting with stochastic volatility (e.g., Heston (1993)). The log-

index price process xt = logPt ,M follows:

dxt = (µ− 1
2 vt) dt +

√
vt dB 1

t

dvt =λ(v̄ − vt) dt +σ
√

vt dB 2
t

(24)

under the physical measure, where vt is the volatility of the log-index price, λ is the mean-

reversion speed, v̄ is the long-term mean of volatility, σ is now the volatility of volatility, and

B 1
t , B 2

t are correlated Brownian motions dB 1
t dB 2

t = ρ dt .

By applying the Feynman-Kac theorem to the characteristic function ψ(β) = E[eiβxT ], we

get a partial differential equation (PDE) for the MGF G(β, xt , vt , t ,T ) =ψ(−iβ) = E[eβxT ]:19

Gt +(µ− 1
2 vt)Gx +λ(v̄ − vt)Gv + 1

2 vtGxx + 1
2σ

2vtGv v +ρσvtGxv = 0 (25)

19It is easier to work with MGF than the CGF since MGF is a simpler function of the characteristic function,

whereas CGF involves the log, and the derivations are more algebraically complex. It is easier to solve using the

MGF and then apply the log to the solution to obtain the CGF.
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with a boundary condition GT = eβxT .

We guess the solution is exponentially affine of the form:

G = eβxt+µβ(T−t)+a(β,t ,T )+b(β,t ,T )vt . (26)

Substituting this form in Eq. 25, simplifying and regrouping with respect to the state vari-

able vt , we obtain (we write b instead of b(β, t ,T ), bt for ∂b
∂t , and similarly for a for ease of

notation):

−µβ+at +bt vt +(µ− 1
2 vt)β+λ(v̄ − vt)b+ 1

2 vtβ
2+ 1

2σ
2vt b2+ρσvtβb = 0,

vt(bt − 1
2β−λb+ 1

2β
2+ 1

2σ
2b2+ρσβb)+at +λv̄b = 0

(27)

By matching the powers of vt on the LHS and the RHS, we obtain two ODEs:

at =−λv̄b,

bt = 1
2β−

1
2β

2+(λ−ρσβ)b− 1
2σ

2b2.
(28)

The second ODE is a general Ricccati equation, which can be solved in a standard way using the

boundary condition for the particular solution. By substituting the solution in the first ODE,

one then obtains a(β, t ,T ). The final solutions are:

a(β, t ,T ) =−λv̄φ

σ2
(φ−(λ−ρσβ))(T − t)+2log

φ+(λ−ρσβ)+(φ−(λ−ρσβ))e−φ(T−t)

2φ

b(β, t ,T ) = (β2−β) 1−e−φ(T−t)

φ+(λ−ρσβ)+(φ−(λ−ρσβ))e−φ(T−t) ,

(29)

where

φ =
√

(λ−ρσβ)2+σ2(β−β2). (30)

They satisfy the boundary condition at t = T . Then, the CGF of the log-return (hence skipping
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xt as a parameter and subtracting logextβ from the MGF of the log-index price) is:

c(β, vt , t ,T ) = logG(β, xt , vt , t ,T )− logextβ

=µβ(T − t)+a(β, t ,T )+b(β, t ,T )vt .
(31)

Now, let us we evaluate these expressions for β = 1 since we need the CGF at β = 1.

Since b(1, t ,T ) = 0,φ(β = 1) = λ−ρσ, and a(1, t ,T ) = −λv̄φ
σ2 0+2log 2φ

2φ = 0, a(1) = b(1) = 0.

Take t = 0. Then we get

cT (1)−c∗T (1) = (µ− r f )T. (32)

This result suggests that the IRP in the Heston model does not depend on variance. In other

words, even if volatility is stochastic, the IRP captures just the difference between the physical

drift (µ) and the risk-neutral one r f . The difference in risk-neutral and physical parameters of

the Heston model is irrelevant for the IRP since for β = 1, b(1, t ,T ) = b∗(1, t ,T ) = 0 and the mul-

tiplier of the stochastic volatility vt in c(1, vt , t ,T ) is zero. However, the IRP for a general lever-

aged asset is different from zero since these assets load on the variance risk premium through

their leveraged exposure.

IA.5. CGF in the setting with lognormal and Poisson component

Let X be a sum of a normal component and an independent Poisson jump: X = Z +∑J
j=1 Y j ,

where Z ∼N (µ− 1
2σ

2,σ2), J ∼ Poisson(λ) and Y j are i.i.d. normal conditional on the number of

jumps j : Y j / j ∼N (−b, s2). Both J and Y j are independent from Z , and hence (subscript in the

CGF denotes the respective random variable):

cX (β) = cZ (β)+c∑J
j=1 Y j

(β) = (µβ− 1
2σ

2β)+ 1
2σ

2β2+c∑J
j=1 Y j

(β).

Eq. 23 shows that the last term is λ(GY1(β)−1). Using the normality of Y1, we can then write

c∑J
j=1 Y j

(β) =λ(e−bβ+s2β2/2−1).

IA.6. Alternative proof of the Black–Scholes model using constant-beta assets

In this section, we provide an alternative and quick proof of the Black–Scholes model using

nothing more than the MGF of a normal distribution. This proof is different from the one in
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Black and Scholes (1973). The main idea is that we substitute the problem of showing delta-

hedging arbitrary contingent claims with the problem of delta-hedging assets with constant

β-s.

Assume a standard Black–Scholes economy and let Bt denote a standardized Brownian

motion with BT ∼ N (0,T ). The index price Pt ,M follows GBM with constant volatility σ and

expected return r f +πσ, with the risk-free rate being constant. This implies that:

PT,M =P0,M e(r f +πσ−1
2σ

2)T+σBT (33)

with E[PT,M
P0,M

] = e(r f +πσ)T .

Now suppose that constant-beta assets exist with every possible constant leverage β. Each

of these assets has returns locally perfectly correlated with the index and has constant volatility

βσ. Let Pt denote the price of the constant-beta asset. We have then:

PT =P0e(r f +βπσ−1
2β

2σ2)T+βσBT , (34)

implying E[PT
P0

] = e(r f +βπσ)T . The alternative derivation of the Black–Scholes model depends

on the validity of Eq. 34. To see this, recall that the risk-neutral distribution satisfies:

e−r f T E∗[e(r f +βπσ−1
2β

2σ2)T+βσBT ] = 1. (35)

The left-hand side is the expected discounted payoff of an investment of one dollar calculated

with the risk-neutral distribution and the right-hand side is the present value of the dollar in-

vested. This implies:

E∗[eβσ(BT+πT )] = e
1
2β

2σ2T . (36)

The left-hand side is the definition of the MGF GT (β) of the random variableσB∗
T =σ(BT +

πT ) under the risk-neutral distribution for the “risk-neutral” Brownian motion, which satisfies

B∗
T ∼N (0,T ). The right side is the moment generating function for a normal distribution with

mean zero and variance σ2T .
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Since the MGF of a random variable defines its probability distribution uniquely and since

σB∗
T ∼N (0,σ2T ), the risk-neutral distribution of B∗

T is N (0,T ). As BT = B∗
T −πT , the present

value is calculated by discounting cash flows at the risk-free rate under the assumption that BT

has a risk-neutral mean of −πT , not a physical mean of zero. This defines precisely the way in

which risk-neutral distributions arise in the Black–Scholes model.

Since constant-beta assets pin down the risk-neutral density perfectly, the above argument

shows that they make markets effectively complete and span the set of investment opportuni-

ties. The intuition is that one can approximate the Dirac delta function δ(x) with a combination

of exponential functions given by assets with different leverages β since δ(x) = 1
2π ∫

∞
−∞ e i kxdk.

In other words, instead of approximating the Dirac delta with a static portfolio of options (but-

terflies) as in Breeden and Litzenberger (1978), one can approximate it with a static portfolio

of constant-beta assets. The argument also implies that the assumed returns processes for

constant-beta assets are internally consistent in that they are arbitrage-free. In particular, if

HT (PT,M) is the payoff of a contingent claim on the index PT,M , then the price H0 is:

H0 =e−r f T E∗ [HT (P0,M er f T+σ(BT+πT )−1
2σ

2T )] = E∗ [HT (P0,M eσB∗T−
1
2σ

2T )]

This is consistent with the intuition that the risk-neutral probability is equivalent to changing

the risk premium π to zero. For the case of a European call option HT (PT,M) =max[PT,M −K ,0],

we obtain:

H0 = E∗ [max[P0,M eσB∗T−
1
2σ

2T −K ,0]] , (37)

where B∗
T ∼N (0,T ). This equation is equivalent to the Black and Scholes (1973) formula.

What has changed? This methodology for deriving the Black and Scholes (1973) formula

substitutes the problem of showing that delta-hedging arbitrary contingent claims works with

the problem of showing that delta-hedging works for assets with constant β-s. The intuition

is that such assets, with all possible β-s, are enough to complete the market. Thus, any se-

curity can be hedged with a fixed portfolio of these assets. This approach is more intuitive

since the idea of rebalancing a hedge to achieve constant risk exposure (β =leverage) is natu-

ral. Furthermore, the approach does not involve any boundary conditions which might make
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delta-hedging strategies unstable near the boundary.

IA.7. CRP with power utility

The compensation for higher-order cumulant risk measured by the CRP can be computed

in standard economic models, for example in a setting with power utility (over the log-index

return instead of consumption growth). With a risk-aversion parameter γ, the risk-neutral

cumulant generating function can be expressed as a function of the physical one: c∗(β) =

c(β−γ)− c(−γ) (see, e.g., Backus et al. (2011) for the derivation). Then, we can write the CRP

as:

C RPT = cT (1)+cT (−γ)−cT (1−γ)−(E[logRT ]− r f ,T ) . (38)

In the particular case when γ = 1 (log-utility), CRP is:

C RPT = cT (1)+cT (−1)−(E[logRT ]− r f ,T ) = 2
∞
∑

n=2,even

κn,T

n!
−(E[logRT ]− r f ,T ) , (39)

which is closely related to the returns on the short-both strategy forβ = 1 that give 2∑∞n=2,even
κ∗n,T−κn,T

n! .

IA.8. Measuring the CRPO

We can also construct a bet on implied vs. realized odd-order cumulants by buying an ETF

and selling its opposite ETF. This strategy extracts the βn-weighted CRPO plus the log risk pre-

mium FORP (E[logRT ]−E∗ [logRT ] = κ1,T −κ∗1,T ), since the exposure to even-order cumulants

cancels out. The returns on this “short-one” strategy are:

rSO,T = 2
∞
∑

n ≥ 1, odd

βn(κn,T −κ∗n,T )
n!

. (40)

Let us denote C RPOT (β) = 1
2 rSO,T . Table IA.5 shows the summary statistics for the returns

on the short-one strategy and the estimate of the C RPOT (β). The results show that C RPOT (β)

is negative for natural gas, oil, currencies and high yield bonds, just like the C RPET (β). How-

ever, in contrast to the C RPET (β), C RPOT (β) is positive for the S&P 500, most equity sectors,
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VIX, and emerging market equities. These facts show that the βn-weighted mixture of cumu-

lants can be positive or negative for assets with different loadings on the same index: higher-

order cumulants matter not only through the CRP of the index but also through the sign of β.
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IA.9. Additional tables and figures

Table IA.1
Starting dates of the ETFs used in the short-both strategy. The table shows the first date when a long and inverse
ETF with leverage of β and −β, respectively become available in a given asset.

Asset β Starting date

S&P 500 1 22/06/2006
S&P 500 3 06/11/2008
Nasdaq 3 12/02/2010
Russell 2000 3 06/11/2008
Financials 3 07/11/2008
Consumer services 2 02/02/2007
Basic materials 2 02/02/2007
Technology 3 18/12/2008
Utilities 2 02/02/2007
Industrials 2 02/02/2007
Real estate 3 17/07/2009
Emerging markets 1 02/11/2007
Emerging markets 3 18/12/2008
VIX 1 05/01/2011
Treasuries 7-10 yr 1 05/04/2011
Treasuries 7-10 yr 3 17/04/2009
Treasuries 20 yr+ 1 21/08/2009
Treasuries 20 yr+ 3 17/04/2009
High yield 1 23/03/2011
Gold 2 04/12/2008
Silver 3 01/01/2009
Nat gas 3 08/02/2012
Oil 3 06/01/2017
Euro/US Dollar 2 26/11/2008
Yen/US Dollar 2 26/11/2008
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Table IA.2
C RPT (β) as a share of the index risk premium (I RPT ). C RPT (β) is estimated as α from the regression rETF,T (β) =

α+βrbmk,T + (1−β)r f ,T + εT for several markets and leverages, where rETF,T (β) is the return on an ETF with
leverage β, rbmk,T is the return on the ETF benchmark, and β is the ETF leverage. We estimate rT = logE[RT ]

by first calculating E[RT ] as the average daily return, and then running monthly regressions of logE[RETF,T (β)] on
logE[Rbmk,T ]. The numbers in the table are the ratios of the C RPT (β) to the I RPT .

C RPT (β)
I RPT

Leverage=β -3 -2 -1 2 3

S&P 500 -1.28 -0.95 -0.55 0.19 0.20
Nasdaq -0.54 -0.00
Russell 2000 -0.98 -0.05
Financials -1.33 -0.21
Consumer services -0.73 -0.00
Basic materials -1.01 -0.10
Technology -0.14 -0.36
Utilities -3.49 0.68
Industrials -1.07 0.04
Real Estate 0.11 -1.32 0.28 -1.47
Emerging Markets -0.83 -1.19 1-.01 0.47 -0.48
VIX 1.05 0.89
Treasuries 7-10 yr -0.75 -0.51 -0.35 -0.50 -1.17
Treasuries more 20 yr -0.42 -0.38 -0.29 -0.32 -0.73
High Yield -0.48 -0.25
Gold -0.83 -0.79 -0.20 -0.09
Silver 2.00 2.41 0.88 0.87
Nat gas 0.82 0.45 0.24 0.64
Oil 3.49 0.75 -2.80 -6.29
Euro/US Dollar 1.36 1.11
Yen/US Dollar -1.33 -1.90

63



Table IA.3
Short-both strategy with fees. The table shows the short-both strategy using before-fees returns. Columns 2–4 use
log-returns, 5–7 simple returns. Columns 2 and 5 are in basis points, whereas columns 3, 4, and 6 in %.

β
Mean log

daily
Mean log

annual
Mean CRPE

annual
Mean simple

daily
Mean simple

annual
Sharpe

ratio
(1) (2) (3) (4) (5) (6) (7)

S&P 500 1 2.09 5.23 -2.61 0.49 1.23 0.06
S&P 500 3 14.03 35.08 -17.54 1.35 3.43 0.73
Nasdaq 3 13.92 34.80 -17.40 0.66 1.66 0.41
Russell 2000 3 23.17 57.93 -28.96 2.35 6.05 1.12
Financials 3 30.46 76.15 -38.08 3.88 10.18 1.27
Consumer services 2 7.33 18.33 -9.16 1.15 2.92 0.09
Basic materials 2 14.5 36.25 -18.13 2.28 5.86 0.36
Technology 3 17.05 42.63 -21.31 1.77 4.52 0.77
Utilities 2 9.14 22.85 -11.43 2.99 7.76 0.38
Industrials 2 10.03 25.08 -12.54 1.75 4.47 0.18
Real Estate 3 19.07 47.68 -23.84 2.63 6.80 0.55
Emerging Markets 1 4.4 11.00 -5.50 0.74 1.87 0.24
Emerging Markets 3 21.9 54.75 -27.38 1.85 4.73 0.71
VIX 1 32.08 80.20 -40.10 7.2 19.71 0.49
Treasuries 7-10 yr 1 0.59 1.48 -0.74 0.44 1.11 0.16
Treasuries 7-10 yr 3 3.16 7.90 -3.95 1.58 4.03 0.27
Treasuries more 20 yr 1 1.71 4.28 -2.14 0.91 2.30 0.66
Treasuries more 20 yr 3 8.8 22.00 -11.00 1.2 3.05 0.71
High Yield 1 2.59 6.48 -3.24 2.29 5.89 1.87
Gold 2 4.76 11.90 -5.95 0.55 1.38 0.31
Silver 3 31.13 77.83 -38.91 4.53 11.99 0.25
Nat gas 3 60.85 152.13 -76.06 6.42 17.40 1.07
Oil 3 45.3 113.25 -56.63 6.16 16.64 0.26
Euro/US Dollar 2 1.01 2.53 -1.26 -0.35 -0.87 -0.27
Yen 2 1.14 2.85 -1.43 -0.3 -0.75 -0.18
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Table IA.4
C RPT (β) with fees. The table shows the annualized C RPT (β) in %, estimated asα from the regression rETF,T (β) =

α+βrbmk,T+(1−β)r f ,T+εT for several markets and leverages, where rETF,T (β) is the return on an ETF with leverage
β, rbmk,T is the return on the ETF benchmark, and β is the ETF leverage. We estimate rT = logE[RT ] by first cal-
culating E[RT ] as the average daily return (before fees), and then running monthly regressions of logE[RETF,T (β)]

on logE[Rbmk,T ]. All estimates are significantly different from zero at the 5% level except those in italics. Standard
errors are computed using the Newey and West (1987) estimator with lag selection based on the Bartlett kernel
(e.g., Andrews (1991)). Daily frequency, from the first leveraged ETF inception date in a given market to April 2021
(February 2018 for VIX, June 2020 for gold and gas since some long and inverse ETFs were delisted).

Annualized C RPT (β) in %
Leverage=β -3 -2 -1 2 3

S&P 500 -8.05 -5.88 -3.08 2.24 2.38
Nasdaq -4.59 0.88
Russell 2000 -9.32 0.53
Financials -11.82 -1.11
Consumer services -5.77 0.96
Basic materials -7.95 0.04
Technology -1.28 -4.87
Utilities -12.47 3.50
Industrials -7.53 1.25
Real Estate 2.08 -12.18 -4.20 3.67 -13.67
Emerging Markets -4.80 -7.51 -6.26 4.24 -2.20
VIX -35.84 -29.67
Treasuries 7-10 yr -1.78 -1.02 -0.41 -1.75 -3.33
Treasuries more 20 yr -1.42 -1.93 -0.72 -0.91 -3.11
High Yield -1.63 -0.41
Gold -2.69 -2.53 -0.05 0.85
Silver -7.32 -9.38 -3.00 -2.28
Nat gas -11.21 -5.64 -2.51 -8.38
Oil 31.81 7.34 -23.18 -52.70
Euro/US Dollar -0.18 0.05
Yen/US Dollar 0.27 -0.08
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Table IA.5
Returns of the short-one strategy with log-returns. The table shows summary statistics for the short-one strategy
rSO,T . The last column is the average rSO,T /2 = C RPOT (β) minus column 7 FORPT (= κ1,T −κ

∗

1,T calculated as

E[logRT ]−E[logR f ,T ]). The numbers in the table are in basis points. Daily frequency, from the first leveraged ETF
inception date in a given market to April 2021 (February 2018 for VIX, June 2020 for gold and gas since some long
and inverse ETFs were delisted).

Asset β Mean S.d. Median Min Max FORPT Mean C RPOT (β)−FORPT

(1) (2) (3) (4) (5) (6) (7) (8)

S&P 500 1 8.52 251.13 9.08 -2248.35 2500.37 2.56 1.70
S&P 500 3 33.95 712.51 32.22 -7049.16 5613.44 4.19 12.79
Nasdaq 3 47.11 727.52 54.87 -7058.27 5723.65 6.82 16.74
Russell 2000 3 36.89 913.52 41.10 -8109.58 5337.28 4.23 14.22
Financials 3 37.54 1033.85 27.55 -9078.44 9461.06 3.55 15.22
Consumer services 2 20.86 472.89 18.57 -3915.47 3973.73 3.64 6.79
Basic materials 2 16.4 693.48 22.31 -5101.35 5223.2 1.54 6.66
Technology 3 48.27 781.52 49.79 -7308.02 6901.42 7.26 16.88
Utilities 2 14.90 482.89 18.78 -3972.98 5569.37 1.18 6.27
Industrials 2 19.44 559.89 20.47 -4653.39 5461.23 2.68 7.04
Real estate 3 34.28 809.29 40.53 -9316.34 5945.92 1.10 16.04
Emerging markets 1 5.08 381.36 6.26 -3625.65 4638.08 -0.17 2.71
Emerging markets 3 23.62 896.3 27.74 -7249.14 5545.77 3.38 8.43
VIX 1 -24.08 992.36 -85.77 -2645.25 25674.21 -28.36 16.32
Treasuries 7-10 yr 1 2.53 73.45 1.39 -441.35 424.8 1.47 -0.21
Treasuries 7-10 yr 3 7.68 237.88 2.46 -1573.4 1554.27 1.38 2.46
Treasuries more 20 yr 1 4.53 177.89 4.77 -1300.79 1510.68 2.46 -0.20
Treasuries more 20 yr 3 13.27 550.82 21.77 -3812.67 4162.12 2.20 4.44
High yield 1 2.76 108.9 2.33 -1191.9 1382.29 1.95 -0.57
Gold 2 10.65 409.87 4.60 -3536.27 2404.64 2.04 3.29
Silver 3 -0.41 1010.5 0.00 -7891.06 4843.32 -2.11 1.91
Nat gas 3 -38.83 1475.96 -13.93 -13273.22 12788.54 -10.09 -9.33
Oil 3 -40.14 1206.98 0.00 -16344.26 8073.39 -8.17 -11.90
Euro/US Dollar 2 -1.64 231.11 0.00 -1283.22 1532.62 -0.40 -0.42
Yen/US Dollar 2 -2.34 235.53 0.00 -1362.25 1589.58 -0.47 -0.70
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Fig. IA.1. Trading against assets with oppositeβ-s: extracting the C RPET (β). The figure shows the profit dynamics
of liquidity provision to assets with opposite β-s using a binomial tree example. The figure illustrates the dynamics
of the index and the corresponding profits for a market-maker who sells short a pair of assets with opposite β-s
(β = 2 and β =−2). For each period, the parameters of the tree are u = 1.05 (gross return in the up-state) and ud = 1,
where d is gross return in the down-state. Red areas indicate nodes where the market-maker loses money, and
green ones show where she makes profit. More color-intense nodes indicate larger losses or profits.
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Fig. IA.2. Under-performance of the ETF with simple returns for S&P 500 (β = 3), Nasdaq (β = 3), Small cap stocks
(β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2), Natural gas
(β = 3), Oil (β = 2) and Gold (β = 3). The graphs show 30-day cumulative differences between the return on the ETF
and the sum of the return on the leveraged benchmark and the risk-free rate: rET F − (βr + (1−β)r f ). Blue lines
are long ETFs (β > 0), red lines are inverse ETFs (β < 0).
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Fig. IA.3. The returns on the short-both strategy with daily simple returns for S&P 500 (β = 3), Nasdaq (β = 3),
Small cap stocks (β = 3), Emerging market stocks (β = 3), Treasuries 20yr+ (β = 3), Japanese Yen/US Dollar (β = 2),
Natural gas (β = 3), Oil (β = 2) and Gold (β = 3). Plots are 30-day cumulative returns (not annualized).
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