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Abstract

Both financial and non-financial firms routinely implement hedging
policies to mitigate their exposure to changes in asset prices.
However, while these policies may perform satisfactorily in the
limited sense of hedging the exposure under consideration, they
might increase the overall likelihood of financial distress due to the
liquidity risks that they create. This paper examines the case of
hedging price risk using derivative contracts that are marked to
market (such as futures contracts) and hence subject to margin
calls. It is shown that liquidity risk, stemming from the need to meet
margin calls on the futures position, can be a significant source of
risk and can even lead to financial distress even though the firm
remains “hedged”. Such risks should therefore be taken into account
in the formulation of an optimal hedging policy. This paper derives
the dynamic hedging strategy of a firm that uses futures contracts to
hedge a spot market exposure. The risk emanating from the margin
requirement on futures contracts is incorporated into the hedging
decision by restricting the borrowing capacity of the firm. It is shown
that this leads to a substantial reduction in the firm's optimal hedge,
especially if the hedging horizon is long. The results provide
theoretical support for the low level of hedging observed empirically.
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1. Introduction

Active hedging of exposure to changes in asset and commodity prices has been an area of
substantial academic research. Sophisticated policies have been recommended as tools for
risk management which, in principle, have become much easier to implement due to the large
variety of derivative contracts now available. However, these recommendations have not been
widely adopted in practice. One of the reasons cited is that while these policies may perform
satisfactorily in the limited sense of hedging the exposure under consideration, they often
increase the likelihood of financial distress of the firm in a broader sense. The Group of
Thirty Global Derivatives Study Group (1993) as well as the Committee on Payment and
Settlement Systems (1998) identify liquidity risk, stemming from the possibility of temporary
cash shortfalls that prevent a firm from making payment obligations, as one of the risks facing
users of derivatives and other financial contracts. Such risks should be taken into account in
the formulation of an optimal hedging policy. This paper derives the dynamic hedging strategy
of a firm that uses futures contracts to hedge a spot market exposure. The risk emanating
from the margin requirement on futures contracts is incorporated into the hedging decision by
restricting the borrowing capacity of the firm. I find that this leads to a substantial alteration
in the firm’s optimal hedging strategy, especially if the hedging horizon is long.

Futures contracts are one of the most widely used derivative instruments in financial asset
and commodity markets. Like a forward contract, a futures contract specifies the terms at
which the buyer and seller can exchange a commodity or asset on a future date. Unlike
forwards, however, futures contracts have highly uniform and well specified contract terms and
are exchange-traded, leading to their high trading volume and low transactions costs. Each
participant in the futures market is required to maintain a margin account with the clearing
house of the exchange. Futures price changes are credited (or debited) to this account on a
daily basis, an operation that is referred to as daily settlement or marking-to-market. The
margin is a performance bond that minimises the risk of default, due to potentially adverse
price moves, by either party involved in a contract. If the margin falls below a certain level,
the losing party must deposit additional margin to remain in the market. Thus, a firm that
assumes a futures position to lower the risk of its spot market exposure must make an appraisal
of its ability to meet unexpectedly large margin calls. Failure to do so can result in substantial

interim losses on the futures position and even lead to financial distress, as it did in the case



of Metallgesellschaft.

In late 1993 and early 1994, MG Corporation, the US subsidiary of Germany’s 14th largest
industrial firm, Metallgesellschaft AG, reported staggering losses amounting to over $1.3 billion
on its position in energy futures and swaps. The blame was pinned squarely on the firm’s large
position in energy derivatives, primarily oil futures, that it had undertaken to hedge long-term
commitments, extending up to 10 years, to sell oil and oil products to its clients at a fixed price.
By December 1993, the size of MG Corporation’s energy derivatives position was equivalent to
about 160 million barrels of oil. A sustained drop in the price of oil futures led to unexpectedly
large margin calls on the firm’s futures positions which it failed to meet due to lack of sufficient
liquidity. This, in spite of the fact that the two largest banks in Germany, Deutsche Bank
and Dresdner Bank, served on the supervisory board of Metallgesellschaft and together held
22% of the firm. Only a massive $1.9 billion rescue and restructuring operation coupled with a
premature liquidation of its hedging position kept Metallgesellschaft from going to bankruptcy.!

A number of papers have looked at hedging problems in which interim profits and losses on
the futures position are continuously marked-to-market in an interest-bearing margin account.
None of these, however, consider the case where borrowing to meet margin calls may be costly
or limited.? Given a predetermined cash position and fairly priced futures, Anderson and
Danthine (1981) show that the static hedge ratio, the optimal number of futures to be held per
unit of the spot asset, is given by the covariance of the futures price and the spot price scaled by
the variance of the futures price.® In a subsequent paper (Anderson and Danthine (1983)), the
result is extended to a multi-period setting with finite maturity of the cash position, obtaining
the optimal dynamic hedge as the discounted value of the static hedge, the discount factor
being the riskless interest rate and the discount period being the time remaining to maturity.

Duffie and Jackson (1990) analyse the optimal futures hedging problem in several continuous-

!See Culp and Miller (1995), Culp and Hank(1994), Mello and Parsons (1994), and Edwards and Canter

(1994) for a detailed discussion of the Metallgesellschaft case.
?The effects of borrowing constraints have been explored primarily in the context of the consumption-

investment problem. See Merton (1971), Lehoczky, et. al. (1983), Karatzas, et. al. (1986), Sethi, et. al.
(1992), and Vila and Zariphopoulou (1990). Grossman and Vila (1992) solve for optimal trading rules with a

non-negativity constraint on wealth and a leverage constraint on investment in the risky asset.
31f the futures are not fairly priced, the optimal futures position consists of an additional term, called the

speculative component of the hedge, which is proportional to the expected gain in the futures price. To focus

on the hedging aspect of the problem, I assume martingale futures throughout the analysis.



time settings, solving explicitly for the optimal hedge. Papers by Karp (1988) and Ho (1984),
among others, consider the problem where both price and output uncertainty are to be hedged.
In all of these papers, the prescribed hedging policies implicitly require that firms have the
ability to borrow arbitrarily large amounts to meet margin calls on their hedging positions.
Such a requirement, simply to maintain a hedging position, seems unreasonable when the very
purpose of hedging should be to avoid this in the first place.

In this paper I show that in the presence of borrowing constraints, firms hedge significantly
less than they would if they had unlimited borrowing capacity. The optimal hedge is increasing
in the level of the margin account and asymptotically approaches the unconstrained hedge. For
a given level of margin wealth, the hedge comes closer to the unconstrained value as the contract
advances towards maturity and the probability of the borrowing constraint becoming active
declines. These results provide theoretical support for the relatively low level of corporate and
agricultural hedging that has been documented in the literature. They also explain the high
open interest in short maturity futures contracts relative to long ones.

The paper is organised as follows. Section 2 provides a simple example in discrete time to
illustrate the role of the borrowing constraint on the margin account. The framework for the
continuous time model and its assumptions is established in Section 3. Section 4 discusses the
numerical procedure used to solve the partial differential equation obtained from the stochastic
control problem. Section 5 presents the results and discusses their relevance in explaining

various stylised facts about hedging behaviour and futures markets. Section 6 concludes the

paper.

2. An Example in Discrete Time

I begin with a simple example in a discrete-time setting with three dates to illustrate the role
that the borrowing constraint plays on the optimal dynamic hedging decision. The example also
shows how this constraint leads to a “concavification” of the derived utility function relative
to that of the unconstrained problem.

Consider a firm which owns one unit of an asset until date T', at which time it is sold at the
prevailing random spot price. This asset has no carrying cost or convenience yield, and pays
no dividends. The firm seeks to maximise its concave utility U(-) of date T wealth. Futures

contracts based on this asset and having maturity 7" are available. Since the firm is risk averse,



it takes a futures position to hedge the risk of variations in the spot price. The futures price on
date t is denoted by F;. The current date is T'— 2, at which time the futures price is Fr_o = 16.
The price on the next date either doubles with probability 1/3, or becomes half of the current
price with probability 2/3. The binomial tree of futures prices is shown in Figure 2.1. Note
that the futures price process has zero drift so that the only motive for assuming a futures
position is to hedge the spot price exposure.

The futures position can be revised on date T'— 1 after the realisation of the futures price
for that date. Let 6; denote the firm’s futures position on date ¢t. The firm maintains a margin
account, whose level on date t is X;, to which futures price changes are marked-to market.
Hence an amount equal to 0;(Fy+1 — F}) is credited (or debited) to the margin account on date
t + 1. The firm starts on date T — 2 with wealth X7_2(> 0) in the margin account but cannot
borrow on dates T'— 1 and T to fulfil margin account shortfalls. Hence it is required that Xp_
> 0 and X7 > 0. The margin account earns no interest, there are no transactions costs and
the futures contracts are infinitely divisible.

The final period wealth consists of the spot price on the asset and the margin wealth, Xr.
Since the futures contract has maturity 7', the futures price is equal to the spot price on date

T. Hence the final period wealth can be expressed as Fr + Xp. On date t, the firm solves:

rneaxEt[U(FT + X7)] (2.1)
t
subject to the borrowing constraints:

X >0, t<s<T (2.2)

where E; is the expectation operator conditional on the information on date t.

With no borrowing constraints on the margin account, the solution to this hedging problem
is quite simple: 0p_o = —1 and 071 = —1, ie the firm hedges the spot price exposure
completely. I will refer to this as a total hedge. This hedge eliminates all the spot price risk,
allowing the firm to achieve final period wealth equal to 16 + X1 _» with probability one for any
value of Xp_o. This is possible because in the absence of borrowing constraints, any shortfalls
in the level of the margin account on dates T'— 1 and T due to a rise in futures prices can be
replenished by borrowing freely.

However, in the presence of the borrowing constraints in equation (2.2), the firm might not

be able to assume a fully hedged position for low levels of margin account wealth. Failure to



maintain a positive balance in the margin account at any date will force the firm to liquidate
all its futures positions from that date onwards until the final period. I solve the problem by

dynamic programming where V; denotes the value function on date t:

Vi = I%?xEt[U(FT + X7)] (2.3)

On date T' — 1, departure from the total hedge is driven entirely by the constraint X, =
Xr 1+ 9T,1(FT — Fr_1) > 0 where Fr is the highest possible realisation of the futures price
on date T conditional on the current price Fp_1. At the node Fpr_; = 32 , the maximum
possible loss due to the (short) futures position is 32(= 64 — 32) per contract; hence if Xp_;
is less than 32, only a fraction equal to X7_1/32 of the contract can be purchased. A similar
argument applies to the node Fr_1 = 8 . Therefore the optimal hedge on date T'— 1 is given
by:

by — max(—1,—Xp 1/32) if Fp 1 =32 (2.4)
max(—1,—X7p_1/8) if Fr_1 =38

The hedging decision on date T' — 2 is a little more complex. Of course, there is the next
period constraint X 1 = Xp o + HT,Q(FT,l — FT_Q) > 0 which has to be satisfied. But
019 = max(—1,—Xp_5/16) is not the optimal hedge. Full or maximum possible hedging on
date T'— 2 might constrain the hedging choice on date T'— 1 in the event that the futures price
rises. Thus the firm has to make a trade-off between hedging fully on date T — 2 and taking
the risk of less flexibility in the date T — 1 hedging decision, or remaining only partly hedged
on date T'— 2 and having greater flexibility on date T'— 1. The optimal choice for 7_s, shown

by the solid line in Figure 2.2, is given by:

—X7_2/16 Xr_ 9 <16/3
Or—o=4q —1/4— X7 2/64 16/3 < Xp o <48 (2.5)
—1 X; > 48

For high Xp_o(> 48), the firm can hedge totally on both dates since the maximum possible
loss can be covered by the margin account ( 16 on date 7' — 1 and 32 on date 7" ). For low
X7 2(< 16/3), the constraint Xp 1 > 0 is binding. However, in the intermediate range, the

firm hedges less than it can without violating next period’s margin account constraint so that



it can put a “reasonable” hedge in place on date 2. The dotted lines in Figure 2.2 show the
two conditional hedges on date T' — 1 as a function of margin wealth on that date.

Figure 2.3 takes a closer look at the hedging decision in this intermediate range and its
implications for 871 under the two possible outcomes for Fr_;. Consider, as an illustration,
the hedging decision with X7_o = 40. The myopic choice would be to hedge completely on
date T'— 2. In that case, the hedge ratios along the row corresponding to Xr_o = 40 in Figure
2.3 would read (-1, -0.75, -1), denoting that the firm would be able to hedge only 75% of its
exposure if the futures price rises to 32. Another option is to ensure that the firm is fully
hedged on the final date, in which case the same row would read ( -0.5, -1, -1), so that the firm
hedges only partly on date T'— 2 but fully on date T'— 1. The optimal hedging decision, (-0.88,
-0.81, -1), is in between these two limiting cases in which the firm hedges only partly on date
T — 2 and anticipates being able to hedge only partly on date T'— 1 as well if the futures price
rises.

Finally, I look at the effect of the borrowing constraint on the value function (or the indirect
utility function) on date T'— 2. Suppose the utility function is given by U(Fr, Xr) = log(Fr +
Xr). The value function for the unconstrained problem is given by log(16 + X7_s) since the
firm can sell the asset on date T" at a price of 16 with probability one due to complete hedging
at each date. For the constrained case, the value function is defined in equation (2.3) with
the optimal values of the hedges obtained in equations (2.4) and (2.5). Both of these are
shown in Figure 2.4. The value function for the constrained problem is below that for the
unconstrained problem because the latter has a larger feasible set of hedging strategies. For
margin wealth above 48, the value functions are the same since the firm can hedge the spot
exposure completely as was seen in equation (2.5). More interestingly, the borrowing constraint
makes the firm more risk averse in that its indirect utility is more concave than its direct utility
for low levels of margin wealth. Surprisingly, the higher the induced risk aversion due to the
borrowing constraint, the less the firm hedges. This seemingly counter-intuitive result arises
because the constraint introduces the risk that the firm might deplete its margin wealth and

hence be unable to hedge its final period payoff.



3. The Model and its Assumptions

The intuition gained through the simple example can now be formalised. In this section, the
framework for the dynamic hedging problem is established in a continuous-time setting. The
unconstrained problem is solved analytically followed by a discussion of the implicit assumptions
that underlie an unconstrained hedging policy. Thereafter, a borrowing constraint is imposed to
derive the partial differential equation and the boundary conditions for the constrained hedging

problem.

3.1. Unconstrained Hedging

Consider a firm that is choosing a dynamic hedging strategy using futures contracts to maximise
the expected utility of its terminal wealth.
Assumption 1: The firm owns 7 units of a single asset until a future date T" at which time the
asset is sold on the spot market. There is no uncertainty about the quantity. The spot price
of this asset is S;, which follows a geometric Brownian motion with drift equal to the constant
riskless interest rate, 7(> 0):

dS;

—— =rdt + odZ, (3.1)
Sy

o is the constant standard deviation of relative changes in the spot price and dZ; is the increment
of a standard Wiener process.
Assumption 2: Futures contracts with maturity 7' are available. The price of the futures
contract, denoted by F;, is that price which makes the futures contract valueless. Thus it is
simply the price which, when discounted to the present, equals the value of the underlying
asset (see Ross (1997)), giving the futures price dynamics:

dF;

Assumption 3: A futures position is undertaken by buying or selling futures contracts in
accordance with the process ;. All futures price changes are credited (or debited) to a margin
account whose level is denoted by X; and which earns interest at the constant riskless interest
rate. Any shortfalls in the margin account can be replenished by borrowing without limit at

the same interest rate. Hence the level of the margin account evolves according to the dynamics



dX; = rXidt + 0:dFy (33)

There are no transactions costs and the futures contracts are infinitely divisible.

Assumption 4: The objective of the firm is to choose the number of futures contracts 8; so as
to maximise the expected utility of terminal wealth, which is composed of the spot portfolio,
wS7, and the margin account wealth, Xp. But since the futures contract matures at time T
as well, the terminal wealth may also be written as X7 4+ nFp. The firm has a utility function
that exhibits constant relative risk aversion equal to 1 — 7. Hence at any time ¢(< T') the firm

solves

i 0<y<1 (3.4)

where E; denotes the expectation operator conditional on the information at time ¢.
Assumptions 1-4 lay out what can be called the unconstrained hedging problem since there
are no constraints on the margin account. Let V(x, f,t) denote the value function for this

problem where x = X; and f = F;. Then

(X7 + wFr)7
Vix, f,1) = max By | ————
(z, f,1) nax il S

Proposition 1. In the absence of any borrowing constraints, the optimal number of futures

] (3.5)

contracts to be held is

0y = —mexp(—r(T —1t)) (3.6)

The value function for the unconstrained problem is given by:

(e (T=t) L f)7

V(xafat): ~

(3.7)

Proof: See Appendix.

This is simply the continuous-time version of the solution derived by Anderson and Danthine
(1983). If the interest rate on the margin account were zero, it is easy to see that a perfect
hedge could be obtained by short-selling 7 (or buying —) futures contracts. With a non-zero
interest rate, the optimal hedge is just the present value of this quantity, thus obtaining the

discount factor exp(—r(T —t)). This solution for 8; will be referred to as a total hedge since it



provides a complete hedge for the spot price exposure. It may be noted that the total hedge
does not depend on the level of the margin account. This is because any shortfalls in the
margin account can be met by borrowing at the same riskless rate that the margin account
earns when it has a positive balance. Moreover, it implicitly assumes that the firm can borrow
without limit to fulfil margin calls.

What is the likelihood that a firm following a total hedging strategy might need to borrow
at some time before the maturity of its spot position to fulfil margin calls? Figure 3.1 presents
simulation results for some typical values. The results are shown for different levels of the
margin account as a fraction of the total exposure at the current futures price. The interest
rate on the margin account is 5% and the probabilities are calculated for two different values
of volatility of the futures contract: 15% and 20% per annum. These results may also be
interpreted as the probability that a firm following a total hedging strategy will be unhedged
on the date of maturity of its spot position, given that it has no recourse to borrowing to fulfil
margin calls. The initial margin on futures contracts typically varies between 1% and 10% of
the size of the total exposure depending upon the volatility of the underlying asset. Suppose
the initial margin requirement is 5%. With 15% volatility in futures prices, a firm which can
only put up its initial margin would be unhedged with 88% probability a year hence when its
spot position matures. Even a firm that faces a total exposure of $1 million and has $0.5 million
available to fulfil margin account obligations will be forced to borrow with a 28% probability
before maturity in a year’s time to keep its hedge intact. The probabilities are even higher if
the volatility is 20% per annum. Starting with as much wealth in the margin account as the
total exposure still leaves a probability of 11% of having to borrow additional amounts to meet
margin obligations before maturity a year later.

One way to meet margin account obligations is to generate sufficient liquidity within the
firm. However, this is expensive because funds have to be allocated from elsewhere in the
firm, thus incurring the opportunity cost of forgone lucrative projects*. Turning to external
sources seems more likely but this can be difficult as well. This is because a creditor might
not understand what the firm is doing. Also, external observers can fail to distinguish between
a hedging position and a speculative one. It might be argued that cash losses on the futures

position are matched by an increase in the value of the spot contract, so the firm is essentially

*See Froot et al (1993).



facing only a short-run liquidity crunch. Consequently the firm should be able to convince
its creditors to extend the necessary support. But the panic set off by a string of losses on
the futures position can often cause lenders to revoke liquidity support provisions at a time
when they are most needed.” Thus external borrowing, even when available, is expensive and
limited. Relying on large and frequent doses of additional credit either from within or outside
the firm seems unrealistic. Moreover, it does seem unreasonable to ask a firm to have to make
recurrent, expensive forays into credit markets simply to keep its hedging position intact when

the whole objective behind hedging is to avoid this in the first place.

3.2. Constrained Hedging

The constrained dynamic hedging program incorporates the risk of unexpectedly large margin
calls in a simplified manner by imposing the following constraint:

Assumption 5: The firm starts at a given level of the margin account Xy and is required to
maintain a balance in the margin account above a predetermined level K (> 0) till maturity
with no recourse to additional borrowing. Hence, the maximisation in (3.4) is subject to the

constraint

X;>Kforallt <T (3.8)

This assumption is not as restrictive as it might seem. It is clear that no firm would be willing
to borrow infinite amounts simply to keep a hedging position in place. The extent to which the
firm can borrow can be thought of as incorporated in the initial level of the margin account,
Xo. It is given that Xg > K.

Stochastic dynamic programming is used to solve the constrained problem. The state of
the system at any time ¢(< T') is completely denoted by the vector (z, f,t) where z = X; and
f = F; at time t. Let J(x, f,t) be the value function for the following problem:

v
J(z, ft) = maXEt[M
{0+} Y

®Indeed, in the case of Metallgesellschaft, the initial reports were that the firm’s subsidiary had been “betting”

] (3.9

on the futures market. Culp and Hanke (1994) report: “... four major European banks called in their outstanding
loans to MGRM [the oil trading affiliate of Metallgesellschaft] when its problems became public in December
1993. Those loans, which the banks had previously rolled-over each month, denied MGRM much needed cash

to finance its variation margin payments and exacerbated its liquidity problems.”
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subject to the constraint in equation (3.8) and the futures price process specified in equation
(3.2). The dynamics for X; is slightly modified to reflect that only balances exceeding K earn

the interest at rate r:

dX; = T(Xt — K)dt + 0:dF} (310)

The Hamilton-Jacobi-Bellman equation for this stochastic control problem is given by:

oJ o?F?

e :I?%X[T(X—K)Jx-}- 5 {0°Jxx +20JxF + Jpr}] (3.11)
where the subscripts denote partial derivatives. The necessary first-order condition of optimal-
ity is:

o= _Jxr (3.12)
Ixx

which is also sufficient if J(-) is concave in (x, f).® Substituting this into equation (3.11) yields
the partial differential equation:
0J o?F?  J%

0= +r(X —K)Jx +

Proposition 2. If the margin account falls to K at any time before maturity, the firm is

forced to liquidate its futures position and remains unhedged till maturity, ie
If X; =K, then 6 =0 for s <t <T.

Proof: From the dynamics specified in equation (3.10), once the margin account hits the level
K, it earns no interest. Any non-zero futures position at this time can violate the constraint
X: > K with positive probability. Hence it is necessary for the firm to liquidate its futures
position at time s. Since this makes K an absorbing state for the X-process, 6; remains at zero
till maturity. [

The result in Proposition 2 provides one of the two boundary conditions for equation (3.13).
Since the firm remains unhedged till maturity once the margin account falls to K,

(K + 7TFT)7

J(K, f,t) = By ] (3.14)

%Once a candidate numerical solution has been found, it can be verified that this condition is indeed satisfied.
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The second boundary condition is simply the value function at maturity which is equal to
the utility function at 7.

(x+7f)Y

Iz, f,T: K) = (3.15)

4. Solution of the Partial Differential Equation

The non-linear partial differential equation (PDE) in equation (3.13) is generally hard to solve.
To the best of my knowledge, an analytical solution to this equation does not exist. I therefore
use a numerical procedure based on the simultaneous Method of Lines. This section lays out
certain salient features of the solution procedure.

A large number of problems in economics and finance do not have analytic solutions. For
even simple problems in asset pricing, the PDE derived from the Hamilton-Jacobi-Bellman
equation needs to be solved using numerical methods (for example, the American put option
with dividends). Much progress has been made in solving them faster and to a greater degree of
accuracy. In a large number of these asset pricing models, a linear pricing argument is invoked
to preclude arbitrage, resulting in a PDE which is linear as well. In contrast, the optimal
hedging problem is a stochastic control problem and the PDE obtained in equation (3.13) is
non-linear due to the non-linearity of the optimal control 6; in equation (3.12). Such PDEs
would arise naturally in the derivation of optimal hedging or trading strategies (for example,
portfolio insurance strategies). A second source of complexity for the problem is the imposition
of the borrowing constraint on the margin account, which induces path dependencies on one
of the two state variables.” Finally, while the numerical solution of the PDE will provide
the value function, the main object of interest is the optimal control, which is only known
as a function of the derivatives of the value function. In this model, the control (equation
(3.12)) of the constrained hedging problem involves the ratio of two second-order derivatives
of the value function. Obtaining a solution to the PDE that is smooth enough, so that the
numerical derivatives obtained by the finite differencing of the value function are meaningful,
is particularly challenging.

Three remaining boundary conditions for the PDE in equation (3.13) corresponding to

f =0, f =00 and x = oo are easily specified. The first uses the property that f = 0 is an

"A model with transactions costs is another example where path dependencies are present. Lo (1996) solves a

PDE with dependencies to derive the optimal control of execution cost of buy or sell orders over a finite horizon.
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absorbing state for the futures price process. The latter two use the analytic solution for the
unconstrained problem obtained in equation (3.7).

The domain for x in the original problem is [K, oo]. Setting K = 0, the infinite domain for
x is mapped to [1,0] using the mapping y = — exp(—A1x). Since the objective is to explore the
hedging strategy for low levels of margin account wealth, the region of greatest interest is close
to the boundary x = 0 (ie y = —1 ). Therefore the N grid points are equally spaced in the
interval [—1,0] so that the exponential transform causes the step size in the z-domain to be
progressively smaller as the boundary is approached. This is particularly useful because it is
in this region that the borrowing constraint induces the most curvature on the value function.
A similar transformation is performed for the other state variable f so that z = —exp(—Az2f)
and the M grid points are equally spaced in [—1,0]. The third state variable, ¢ , enters the
value function only in the form (7' — ¢), which is the remaining time to maturity of the spot
position (and the futures contract). Let 7 denote the time to maturity. The transformed PDE,

now having the state vector (y, z,t), is

(clog(=2))* y(2Jy:)"
2 Yy + Jy

where J(-) is defined over the finite domain [—1, 0] x [—1,0] x [0, T] and the boundary conditions

+ 220, + 2] (4.1)

Jr =rylog(—y)Jy +

are recast in terms of the new state vector. For a given value of 7, let any point in the (y, 2)
plane be denoted by (ys,z;) and let Gi;(7) = J(yi,2;,7). Replacing the partial derivatives
with respect to y and z on the right hand side of equation (4.1) by their symmetric finite
difference representations, the following reduced form equation in 7 is obtained for each of the
(N —2) x (M — 2) points in the (y, z) plane

dGi;(T)

— = ®(y, 21, Gin(7); kY ) i=2, ,N-1;j=2,..,M-1 (4.2)

This is a non-linear ordinary differential equation (ODE) in 7 with the boundary condition

(—mlog(—z;)/ A2 — log(—yi)/A1)”
Y
The values of Gj;(-) along the edges of the (y, z) plane are already provided (also as functions

Gij(0) = i=2,.,N-1;j=2,.,M—1  (43)

of 7) by the boundary conditions corresponding to y € {—1,0} and z € {—1,0}. Setting 7 =1
avoids a singularity at the point (0,0), which corresponds to (z = 00, s = 00), by ensuring that

the limit in G s is approached at the same velocity from both the y and z directions.
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Thus I now have a system of (IV —2) x (M —2) simultaneous ODEs (and as many boundary
conditions) in 7 which can be solved using the wide variety of ODE solvers available. Two points
require special attention in this final step. First, the symmetric finite difference approximation
of the derivatives makes the ODE in equation (4.2) at (4,7) only a function of the G at that
point and the eight surrounding points. This results in the Jacobian, for the system of ODEs,
having a tri-diagonal banded structure of width three. This sparsity of the Jacobian is exploited
to speed up the computations dramatically. Secondly, while equation (4.2) is an ODE, it is still
non-linear. Most ODE solvers use linearly implicit formulas ie the computation of the value
of solution at the next step requires the solution of a system of linear equations. However,
the non-linearity of the ODE causes the coefficient of dG;;/dr to depend on 7 in the linear
solution scheme, making the system implicitly “stiff”.® In view of this stiffness in the problem,
an ODE solver provided by Shampine and Reichelt (1995) is used that can successfully tackle

such situations.’

5. Results and Applications

The parameter values used for the main solution are as follows:

Number of spot market contracts owned by the firm, 7 =1

Hedging horizon, T' = 52 weeks ( 1 year)

Volatility of the futures prices = 15% per annum

Lower bound on margin wealth, K =0

Coefficient of relative risk aversion, 1 —y =1/2

Riskless interest rate, r = 5% per annum

Since the firm has a long position in the spot market (7 = 1), the optimal hedge is a short
position in the futures contract. However, for ease of exposition in the discussion that follows,
0; refers to the magnitude of the futures position only. Further, all the results are reported as
a function of X;/mF}, the ratio of the current level of the margin account to the value of the
total exposure at the current futures price. Due to the scaling properties of power utility and

geometric Brownian motion, the optimal control is only a function of this ratio.

8The general form of a stiff problem is M(t)dy/dt = f(t,y) .
9The essential feature of stiff solvers is that they avoid local extrapolation. Even one-step interpolation can be

unsatisfactory if the problem is very stiff. The ODE solver used here makes a second-order local approximation

for the interpolant. The solver may be found at the URL: http:\\www.mathworks.com
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Figure 5.1 shows the optimal futures position as a function of the time to maturity in weeks
and the ratio of margin wealth to total exposure. It is obvious that at (or an instant before)
maturity, the optimal hedge ratio is one for all levels of the margin account since the firm can
afford to hedge completely. Before maturity, no hedging is possible if the margin wealth is zero
irrespective of the time that remains to maturity. This is in accordance with Proposition 2. As
the margin wealth increases, the optimal hedge ratio approaches the total hedge (corresponding
to the unconstrained problem) asymptotically. This is because a firm which is endowed with
a very high (infinite) level of margin wealth faces (in the limit) negligible risk that the margin
account will dwindle down to zero before maturity due to large margin calls. Hence it can

adopt the hedging policy obtained for the unconstrained problem.

5.1. Margin Wealth

The solution is more interesting for intermediate levels of the margin wealth. Figure 5.2 shows
the relation between the hedge ratio and the margin wealth-exposure ratio for three differ-
ent hedging horizons. This corresponds to three different sections, parallel to the margin
account/exposure axis, of the surface in Figure 5.1 for the three maturities. It is seen that
departure from the total hedge is significant even when the margin level is substantial in com-
parison to the size of the futures position. Thus if a firm holds a million dollars’ worth of futures
contracts to hedge a spot position that would mature one year hence, and has half a million
dollars to fulfil margin account obligations, it would hedge only 61% of its exposure. This is
well below the unconstrained hedging level of 95% (Proposition 1) if it could borrow unlimited
amounts at an interest rate of 5% per annum to fulfil any margin calls.!’ The intuition is
that the firm faces a choice between either hedging less than the total exposure and bearing a
fraction of the spot price risk at this time, or hedging out all of the spot price risk at this time
but taking on the risk that it might be forced to liquidate its hedge at some time within the
next year. The latter could force the firm to bear the risk of spot exposure in its totality at
maturity. Even with a margin account level as large as the exposure, the hedge ratio is only
0.82.

These results are for an annual volatility of 15% in futures prices. The departure from

107t should be noted that for the case where the futures price is not perfectly correlated with the spot price,

even the unconstrained hedge is below exp(—r(T — t)) and the constrained hedge will be accordingly lower.
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unconstrained hedging is even more if the volatility is 20%. Figure 5.3 shows the optimal
hedge for three different values of futures price volatility. A volatility of 20% per annum makes
the hedge almost half the exposure if the time to maturity is one year and the margin wealth
is half the total exposure.

In a recent paper that provides empirical evidence on the determinants of corporate hedging
policy, Mian (1996) finds that the only feature that distinguishes hedging firms from non-
hedging firms is firm size. All the other factors that are usually put forth as determinants
of hedging like costs of financial distress, contracting costs, capital market imperfections and
taxes, seem to have no influence on a firm’s decision to hedge or not to hedge. The results
obtained above suggest an explanation for these findings. I have shown that the amount of
liquid cash required to keep a hedging position is substantial relative to the size of the exposure.
Firm size may be seen as a proxy for the extent to which a firm has access to sufficient liquidity
to fulfil margin account obligations. Large firms can generate additional cash either internally
or approach external capital markets with relatively greater ease and on better terms than
small firms.

A similar argument explains the limited participation of farmers in agricultural futures
markets. Surveys show that only about 2 to 13% of farmers hedge the exposure of their
agricultural produce. Most farmers take on considerable debt at the beginning of the cropping
season. Thus their ability to raise additional liquidity to fulfil potentially large margin calls

from a futures hedging position is severely restricted.

5.2. Time to Maturity

Figure 5.4 shows the optimal hedge ratio as a function of the time to maturity of the spot
position for different levels of the margin wealth-exposure ratio. The line marked ‘oo’ corre-
sponds to the unconstrained hedge as discussed in Proposition 1. For any given level of the
margin wealth per unit exposure, the hedge ratio approaches the total hedge as the firm comes
closer to maturity. This is because as the horizon shortens, the probability of running out of
the margin wealth declines as well. Thus the spot price exposure can be hedged to a greater
extent. Farther away from maturity, the optimal hedge declines sharply, especially if the level
of margin wealth relative to the exposure is small. These results seem to suggest an explana-

tion for the high open interest in short maturity futures compared to longer maturity futures
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contracts, a phenomenon prevalent across almost all financial and commodity futures markets.

6. Conclusion

I have shown that the risk emanating from unexpectedly large margin calls due to a hedging
position in futures contracts is substantial. Hence I have considered a firm that is constrained
in its ability to borrow for the purpose of fulfilling margin account obligations. It is found
that the constrained optimal hedge is substantially lower than the unconstrained hedge. The
optimal hedge approaches the unconstrained hedge as the contract advances towards maturity
and the probability of the constraint becoming active in the future declines. These results
provide theoretical support for the relatively low level of corporate and agricultural hedging
that has been documented in the literature. They also suggest an explanation for the much
higher open interest in short maturity futures contracts relative to longer maturity contracts.
The model developed here could also be used to assess the incidence and effectiveness of the
use of margin requirements to control the volume of trade in futures markets.

Though marking-to-market is an institutional feature of only exchange-traded derivative
contracts, the use of collateral to mitigate counterparty and credit concerns is increasing in
other transactions as well. This increased use of collateral has allowed the OTC market to
expand beyond just market participants with high credit ratings. The International Swaps and
Derivatives Association (1999) estimates that the total value of collateral in circulation across
the privately negotiated derivatives industry in 1998 to be around $175 to $200 billion. The
revaluation and remargining of collateralised positions along with the ability to raise collateral
at short notice can be a significant source of liquidity pressure for counterparties in OTC
transactions, as has been pointed out by the Committee on Global Financial System (2001).

Periodic marking-to market is an essential tool of risk management for users of all types of
derivative contracts, exchange-traded or not. Indeed, a survey by the Group of Thirty (1994)
showed that 99% of dealers and 91% of end-users of derivative contracts mark their derivative
positions to market, most of them on a daily basis. However, mere marking-to-market does
not lower the risk of large margin calls. The overall objective of risk management is fulfilled
only if the users of these contracts can modify their derivative positions in response to this
(internal or external) daily settlement procedure. To the extent that such positions have been

assumed with a hedging objective, the methodology of this paper can be extended to other
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hedging instruments as well.

The main motivation behind hedging is a reduction in the volatility of future cash flows.
However, this paper has shown that pursuit of the limited objective of hedging the spot exposure
can often lead to more volatile cash flows. The hedging problem must be recast to include cash
flows that result from the hedging position as well. Thus a hedger must optimise not only over
the extent to which an exposure should be hedged but also over the choice of available hedging
instruments, incorporating the inherent risks that their use entails. This paper has taken a first
step in this direction by incorporating the daily settlement feature into the hedging decision.

Further exploration of these issues constitutes an interesting area for future research.
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Appendix
The value function for the unconstrained hedging problem is:

(Xt + mEFy)Y

J(Xy, Fyt) =
(Xe, Fy, t) S

and the optimal number of futures to be held at time ¢ is
0y = —mexp(—r(T — 1))

Proof: Since I already have a candidate solution, I can directly use the verification theorem
of dynamic programming. It can be checked by direct substitution that the proposed solution
satisfies the partial differential equation in equation (3.13) and the boundary condition

(XT + 7TFT)7

J( X7, Fr,T) = 5

Hence it is the solution to the unconstrained problem. [J
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Figure 2.1
The futures price process
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The binomial tree shows the futures price process. The price on date T-2 is 16. The price on each successive date either doubles with probability 1/3 or becomes half the
current price with probability 2/3. The process has zero drift and the riskless rate is zero.
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Figure 2.2
Optimal hedging positions
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The graph shows the optimal futures position to hedge one unit of the spot asset to be received on date T as a function of the margin wealth on date T-2. The solid black line
is the hedge on date T-2 and the grey lines show the hedge on date T-1 conditional on the realisation of the futures price.




Figure 2.3

Conditional hedging positions

Margin wealth on date Hedge ratio on date Hedge ratio on date t-1 ( 811 )
t-2(X12) t-2 (612)
if Frp =32 if Fr, =8
5 -0.31 0.00 -0.94
10 -0.41 -0.11 -1.00
15 -0.48 -0.23 -1.00
20 -0.56 -0.34 -1.00
25 -0.64 -0.46 -1.00
30 -0.72 -0.58 -1.00
35 -0.80 -0.70 -1.00
40 -0.88 -0.81 -1.00
45 -0.95 -0.93 -1.00
50 -1.00 -1.00 -1.00

This table shows the optimal futures position to hedge one unit of the spot asset to be received on date T as a function of the margin wealth on date T-2. The second column
has the hedge ratios on date T-2 and the third and fourth columns show the hedge on date T-1 conditional on the realisation of the futures price.
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Figure 2.4
Constraint-induced concavification of the value function
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The graph shows the value function for the unconstrained (grey line) and the constrained (solid black line) hedging problems as a function of the wealth on date T-2. The
borrowing constraint causes a "concavification" of the value function, ie the firm behaves in a more risk averse manner due to the constraint. The utility function is given by
U(w) = log(w).




Figure 3.1
Probability of hitting the borrowing constraint before maturity

Volatility Margin wealth / Exposure Probability [ X; <0] before maturity (per cent)
(per annum) (X/0OF) 7= 13 weeks 7= 26 weeks =52 weeks
0.05 76 84 88
0.10 59 71 79
15% 0.25 23 39 53
0.50 3 12 28
1.00 0 0 6
0.05 78 85 89
0.10 63 73 81
20% 0.25 29 46 60
0.50 6 18 34
1.00 2 2 11

This table shows the probability that total hedging of the spot position will result in a depletion of the margin wealth before maturity. The margin wealth is expressed as a
fraction of the current value of the futures position. t is the time remaining to maturity. The riskless rate is 5% per annum. Probabilities estimated from 5,000 simulations.
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Figure 5.1
Optimal hedge ratios
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1 - 13
2 39
3 52
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This graph shows the optimal hedge for a firm that holds one unit of the spot asset. The optimal hedge is shown as a function of the margin wealth-exposure (X/zF) ratio for
maturities extending up to one year. These values are calculated by solving the Bellman equation for the constrained problem numerically. Annual futures price volatility is 15%,
the riskless rate is 5%, and the firm maximises CRRA utility of final period wealth with relative risk aversion of 0.5.
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Figure 5.2
Effect of margin wealth
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The graph shows how the the optimal hedge changes with the margin wealth-exposure (X/pF) ratio for three different times to maturity. The values are calculated for 15%
annual volatility in futures prices and a riskless rate of 5% pa. The utility function is CRRA with relative risk aversion of 0.5.
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Figure 5.3

Effect of futures price volatility

Margin Wealth/ Exposure Volatility Hedge Ratio ( 4 )
(X[ aF) (per annum) 7= 13 weeks 7= 26 weeks =52 weeks

10 % 0.93 0.80 0.69

1/2 15 % 0.89 0.72 0.61

20 % 0.84 0.67 0.53

10 % 0.99 0.95 0.89

1 15 % 0.98 0.92 0.83

20 % 0.98 0.88 0.79

This table shows the optimal hedge ratio for different volatilities as a function of the margin wealth-exposure (X/zF) ratio and time to maturity of the spot position. The results

are for CRRA utility with relative risk aversion of 0.5. The riskless rate is 5% per annum.
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Figure 5.4
Effect of maturity
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The graph shows how the optimal hedge changes with the time remaining to maturity of the spot position that is being hedged, for different values of the margin wealth-
exposure (X/zF) ratio. The values are calculated for 15% annual volatility in futures prices and a riskless rate of 5% per annum. The utility function is CRRA with relative risk
aversion of 0.5.
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