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Abstract

We propose a macroeconomic model with a nonlinear Phillips curve that has a 
at slope when
in
ationary pressures are subdued and steepens when in
ationary pressures are elevated. The
nonlinear Phillips curve in our model arises due to a quasi-kinked demand schedule for goods
produced by �rms. Our model can jointly account for the modest decline in in
ation during
the Great Recession and the surge in in
ation during the Post-COVID period. Because our
model implies a stronger transmission of shocks when in
ation is high, it generates conditional
heteroskedasticity in in
ation and in
ation risk. Hence, our model can generate more sizeable
in
ation surges due to cost-push and demand shocks than a standard linearized model. Finally,
our model implies that the central bank faces a more severe trade-o� between in
ation and
output stabilization when in
ation is high.
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1 Introduction

After more than two decades of low and stable in
ation in advanced economies, in
ation rose

sharply after the COVID-19 pandemic hit. In light of the substantial evidence of 
at slope of the

Phillips curve, the recent surge in in
ation has caught many macroeconomists o� guard. Hence, an

intense debate has unfolded about how to explain the increase in in
ation.1 Has the Phillips curve

steepened or are large exogenous demand and supply factors key to understand why in
ation has

risen so much? Our paper attempts to make a contribution to this debate.

Speci�cally, we propose a macroeconomic model which implies a nonlinear Phillips curve. The

Phillips curve in our model is 
at when in
ationary pressures are subdued and steepens as in
a-

tionary pressures rise. The key feature of our model underpinning this nonlinear relationship stems

from a quasi-kinked demand schedule for goods produced by �rms. The 
at part of the Phillips

curve was used by Harding, Lind�e and Trabandt (2022) to resolve the missing de
ation puzzle

during the Great Recession. In this paper, we argue that the same model is successful explaining

Post-COVID in
ation dynamics.

Our explanation rests on the steeper portion of the Phillips curve, which implies that all shocks

in the model transmit stronger to in
ation when in
ation is surging. For demand and technology

shocks, the relationship between the initial in
ation level and how strongly shocks propagate to

in
ation is precise and increases monotonically when we vary these shocks according to their es-

timated standard deviation. However, cost-push shocks propagate even stronger to in
ation than

demand and technology shocks when in
ation is high and rising above its steady state level. But

they also can also transmit less to in
ation than demand and technology shocks when in
ation is

receding (even if it is well above its steady state). Hence, cost-push shocks generate conditional

heteroskedasticity in in
ation and in
ation risk in our nonlinear model, consistent with the seminal

paper by Engle (1982) and the more recent work by L�opez-Salido and Loria (2020). Since these

shocks are key drivers of price in
ation in our estimated model and commonly believed to have

played an important role during the Post-COVID period, we argue that our model can account

better for in
ation dynamics during this period than a standard linearized macroeconomic model.

Regression analysis supports the view that cost-push-type shocks have a larger impact on in
ation

if in
ation is high to begin with (see e.g., Gelos and Ustyugova 2017; Forbes, Gagnon and Collins

2021a; Forbes, Gagnon and Collins 2021b; and Ball, Leigh and Mishra 2022).

1See e.g. Federal Reserve Chair J. Powell speech at the 2021 Jackson Hole conference as well as the debate between

L. Summers and P. Krugman that took place since early 2021. See also Gopinath (2022).
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We establish our main results using the nonlinear formulation of the benchmark Smets and

Wouters (2007, SW henceforth) model, which builds on the seminal model of Christiano, Eichen-

baum and Evans (2005). The SW model has been shown to have empiricial properties that are

on par with standard Bayesian vector autoregressions prior to the Great Recession, see. e.g. del

Negro et al. (2007). The only di�erence relative to the original SW estimated model is that we

follow Harding, Lind�e and Trabandt (2022) and use the nonlinear formulation of the SW model

allowing for a more prominent role for Kimball (1995) quasi-kinked demand in goods markets. The

more prominent role for quasi-kinked demand increases the marginal data density provided that

the average markup aligns with micro- and macroeconomic empirical evidence. Recent work by

Dupraz (2017) and Ilut et al. (2022) provides a microfounded theory of kinked demand.

An important policy implication from our analysis is that the central bank faces a more severe

trade-o� between in
ation and output stabilization when in
ation is high. This �nding is driven

by the fact that cost-push shocks propagate more strongly to in
ation than monetary policy shocks

when in
ation is surging above the central banks in
ation target. We use the nonlinear model to

�lter data up to 2022Q1 and then examine the propagation of positive cost-push and monetary

policy shocks given the �ltered state. Because in
ation is elevated at this state, the nonlinear

model implies a twice as large jump in in
ation compared to the standard linearized model in

response to the cost-push shock. The larger transmission to in
ation implies that the central bank

endogenously, through its policy rule, tightens the policy rate by twice as much. As a result of the

tighter policy stance and the elevated level of in
ation, the output gap falls nearly twice as much

in the nonlinear model compared to the linearized model. If the central bank chooses to fully o�set

the pass-through to in
ation, the required policy tightening triggers large output costs although

policy is more e�ective than in normal times in the nonlinear model.

Our results rest on two key model elements. First, we introduce real rigidities in price setting. To

do this, we follow Dotsey and King (2005) and Smets and Wouters (2007) and use the Kimball (1995)

aggregator instead of the standard Dixit and Stiglitz (1977) aggregator. The Kimball aggregator

introduces additional strategic complementarities in �rms price setting behavior, which lowers the

sensitivity of prices to marginal cost for a given degree of price-stickiness. As such, the Kimball

aggregator is commonly used in New Keynesian models, see e.g. Smets and Wouters (2007), as it

allows to simultaneously account for the macroeconomic evidence of a low Phillips curve slope and

the microeconomic evidence of frequent price changes.

Second, we argue that the standard procedure of linearizing all equilibrium equations around
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the steady state, except for the zero lower bound (ZLB) constraint on the nominal interest rate,

introduces large approximation errors when large shocks hit the economy as was the case during

the Great Recession and the Post-COVID period. Implicit in the linearization procedure is the

assumption that the linearized solution is accurate even when far away from the steady state.

Our analysis shows that the linearized solution is very inaccurate when far away from the steady

state. In particular, we show that cost-push shocks can propagate more than four times stronger

in the nonlinear model relative to the linearized model when in
ation is high. We show that

the nonlinearity implied by the Kimball aggregator is a key model feature that accounts for the

di�erences between the linearized and nonlinear model solutions. The Kimball aggregator implies

that the demand elasticity for intermediate goods is state-dependent, i.e. �rms’ demand elasticity is

an increasing function of their relative price and the demand curve is quasi-kinked. Due to the rising

demand elasticity, �rms’ marginal revenues are a concave function of their prices. Consequently,

the optimal price setting becomes asymmetric, since �rms equate marginal revenue to marginal

cost. If the latter rise or fall, the resulting optimal price setting becomes asymmetric in the sense

that �rms �nd it optimal to increase prices more than to decrease them. While the fully nonlinear

model takes the state-dependence of the quasi-kinked demand curve explicitly into account, a linear

approximation replaces this key nonlinearity by a linear function. When the economy is exposed

to large shocks, the state-dependence of the quasi-kinked demand curve becomes quantitatively

important and the linear approximation ceases to provide accurate results.

All told, our key contribution is to provide a structural general equilibrium model which can

jointly account for the small drop in in
ation during the Great Recession and the large surge in

in
ation during the Post-COVID period.

The remainder of the paper is organized as follows. Section 2 presents a stylized static model

of optimal price setting with kinked demand that conveys the key mechanism driving our results.

Section 3 presents the workhorse macroeconomic model with real rigidities in a dynamic stochastic

general equilibrium framework with nominal price and wage stickiness. Section 4 discusses our

results. Finally, section 5 provides concluding remarks.

2 Optimal Price Setting with Quasi-kinked Demand

In this section, we provide intuition about �rms’ optimal price setting behavior when the demand

curve is quasi-kinked. We consider a stylized static model to convey the intuition why �rms increase

their prices by more when marginal costs go up compared to the case when marginal costs fall.

3



Firms maximize pro�ts, π:

π = p ∗ y −mc ∗ y

subject to the following quasi-kinked demand curve:

y = a− pb,

where p denotes the price, y denotes the quantity, mc denotes marginal costs, and a, b > 0

are parameters of the demand function. The functional form of the demand function follows e.g.

Kimball (1995) as has been used by Harding, Lind�e and Trabandt (2022), among many others. The

elasticity of demand is given by:

ε ≡ −dy
dp

p

y
=

b
a
pb

− 1
,

which is increasing in the price, p.

Optimal price setting results in the following �rst order condition:

p

[
1 − 1

b

(
a

pb
− 1

)]
︸ ︷︷ ︸

marginal revenue

= mc

Note that marginal revenue is a concave function of the price which is due to the increasing

elasticity of demand. As an example, consider the following parameter values which are broadly in

line with the parameterization of the workhorse model in Section 3: a = 3, b = 100 and mc = 0.9.

Figure 1 shows the demand curve and the elasticity of demand in the top panels. The bottom

left panel shows marginal revenue as a function of the price for low, medium and high marginal

costs. Note that for a given percentage change in marginal costs, �rms increase their prices by

more than they cut their prices. This is because �rms intend to stabilize their markups. When

marginal costs are low, the markups are high and �rms have little incentive to cut their prices,

especially when demand is quasi-kinked; that is, �rms cannot crowd in a lot of extra demand by

cutting their prices. When marginal costs are high, markups are low and �rms have a large incen-

tive to increase their prices { even when this entails a substantial drop in demand. Note that the

concavity of marginal revenue (which results from the rising elasticity of demand as a function of

the price) is key for the asymmetric pricing behavior. Finally, the bottom right panel shows the

optimal price as a function of the marginal cost, showcasing a convex banana-type optimal pricing

schedule as a function of marginal cost. This nonlinear relationship between marginal costs and

optimal price setting is the key force that will generate our nonlinear Phillips curve in the dynamic

general equilibrium model that we consider in the next section.
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3 The Workhorse Macroeconomic Model

In this section we present the workhorse macroeconomic model that we argue is useful to under-

standing how nonlinearities in real rigidities in price and wage setting a�ect in
ation dynamics in a

quantitatively realistic model environment. Speci�cally, we use the workhorse Smets and Wouters

(2007) model of the US economy which is a multi-shock version of the seminal model of Christiano,

Eichenbaum and Evans (2005) with endogenous capital accumulation. We introduce real rigidities

in price and wage setting using the Kimball (1995) aggregator following Dotsey and King (2005)

and Levin, L�opez-Salido and Yun (2007).

In the following, we �rst give a brief overview of the model with a focus on the pricing block

of the model and how we compute the linearized and nonlinear solutions of the model. Appendix

A provides a detailed description of the model environment, as well as the resulting linearized and

nonlinear equations.
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3.1 Model Overview

The workhorse model of Smets and Wouters (2007) features monopolistic competition in the goods

and labor markets and nominal frictions in the form of sticky prices and wages. However, it allows

non-optimizing �rms (households) to index prices (wages) to a composite of steady-state and lagged

in
ation. Households can also save in physical capital, with a one-period time to build before new

investments turns into productive capital. The model also features several real rigidities in the form

of habit formation in consumption, investment adjustment costs, variable capital utilization, and

�xed costs in production. The model dynamics are driven by seven structural shocks. Monetary

policy shocks follow an AR(1) process and two additional ine�cient cost-push shocks in wage and

price setting follow an ARMA(1,1) process. Four e�cient shocks (total factor productivity, risk

premium, investment-speci�c technology, and government spending shocks) follow AR(1) processes.

The exact speci�cations of the nonlinear model and its linearized representation are described in

detail in Appendix A; here we present the linearized and nonlinear pricing equations that are central

for our paper.

The linearized Phillips curve in the SW model is given by

π̂t − ιpπ̂t−1 = β (Etπ̂t+1 − ιpπ̂t) + κm̂ct + ε̂p,t,

κ =
(1 − ξpβ)(1 − ξp)

ξp(1 + (ϕp − 1)ϵp)
(1)

where 1 − ξp is the probability of each �rm being able to reoptimize the price each period, ϵp is

the curvature of the SW aggregator function, ϕp is the steady state gross price markup, and the

cost-push, or markup, shock ε̂p,t has been rescaled with 1/κ to enter the Phillips curve with a unit

coe�cient. The corresponding nonlinear recursive pricing equations are given by

1 + ϕpϵp
1 + ϵp

p∗tγ
p
1,t = ϕpγ

p
2,t +

ϵp (ϕp − 1)

1 + ϵp
(p∗t )

ϕp(1+ϵp)
ϕp−1

+1
γp3,t, (2)

γp1,t = (δpt )
ϕp(1+ϵp)

ϕp−1 yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)− 1+ϕpϵp
ϕp−1

γp1,t+1, (3)

γp2,t = (δpt )
ϕp(1+ϵp)

ϕp−1 mctεp,tyt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)−ϕp(1+ϵp)
ϕp−1

γp2,t+1, (4)

γp3,t = yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)
γp3,t+1, (5)

where the di�erent endogenous variables are de�ned in the appendix. Importantly, you can see

from eq. (4) that the markup shock εp,t (which is assumed to have unit mean) in the nonlinear
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pricing system multiplies marginal costs mct. So in this sense, it represents an exogenous shock to

the desired markup. In the following, we refer to them as markup or cost-push shocks.

3.2 Calibration and Solution

The model is estimated on seven key macroeconomic quarterly US time series as observable vari-

ables: the log-di�erences of real per capita GDP, consumption and investment, the log-di�erences

of compensation per hour and the GDP de
ator, the log-deviations of hours worked per capita from

their average, as well as the federal funds rate. Further details about the data and the measurement

equations linking the model variables to their data counterparts are provided in the appendix.

SW use full information Bayesian techniques to estimate the model. Bayesian inference starts

from a prior distribution that describes the available information prior to observing the data used in

the estimation. The observed data is subsequently used to update the prior, via Bayes’ theorem, to

a posterior distribution of the model’s parameters, which can be summarized in the usual measures

of location (e.g. the mode or the mean) and spread (e.g. the standard deviation and probability

intervals).2 We adapt the parameters estimated by Smets and Wouters (2007) on pre-Global

Financial Crisis and COVID periods data, with the exception of the pricing parameters ϕp, ξp, and

ϵp. In particular, we re-estimate the linearized model for the 1965Q1−2007Q4 sample, imposing an

alternative prior ϕp ∼ N(1.2, 0.05) to obtain a lower gross markup than the 61 percent estimated

by SW. Harding, Lind�e and Trabandt (2022) show a large body of calibrated or estimated New

Keynesian DSGE models that suggest markups that are notably lower than 61 percent. Moreover,

we calibrate ξp = 0.667 in line with micro evidence (which is close to the SW posterior mode of

.65) and instead estimate the Kimball curvature parameter using the prior ϵp ∼ N(75, 25). This

results in a posterior mode where ϵp = 64.5 and ϕp = 1.34. In addition, κ in eq. (1) equals .008,

which is somewhat smaller than SW’s estimate of .026.3

To compute the linearized and nonlinear solutions, we use the Fair and Taylor (1983) solution

algorithm. This algorithm is also known as a two-point boundary value solution or time-stacking al-

gorithm. The Fair-Taylor solution algorithm imposes certainty equivalence on the nonlinear model,

just as the linearized model solution does by de�nition. In other words, the Fair-Taylor solution

algorithm allows us to trace out the implications of not linearizing the equilibrium equations, which

2 We refer the reader to Smets and Wouters (2003, 2007) for a more detailed description of the estimation
procedure.

3 Our lower value for κ partly re
ects the di�erent prior and partly the extended sample period (recalling that
SW’s sample ends in 2004:4). For our sample period ending in 2007:4, we obtain κ = .018 with the SW priors. Note
that the re-estimated model is associated with an improvement in the marginal likelihood compared to the original
SW parameterization by roughly 5 log points.

7



is exactly our objective. All of the relevant information for solving the nonlinear and linearized

models is captured by the current state of the economy, including the contemporaneous realization

of the exogenous shocks.

An alternative approach to solve the model would have been to compute solutions where uncer-

tainty about future shock realizations matters for the dynamics of the economy, for example, follow-

ing Aruoba, Cuba-Borda, and Frank Schorfheide (2018), Adam and Billi (2006, 2007), Fern�andez-

Villaverde et al. (2015), Gust, Herbst, L�opez-Salido and Smith (2017) and Nakata (2017). These

authors have shown that allowing for future shock uncertainty can have potentially important impli-

cations for equilibrium dynamics. Importantly, none of these authors have considered a model with

Kimball aggregation. Lind�e and Trabandt (2018) solve a simpli�ed version of our model with sticky

prices and Kimball aggregation under shock uncertainty using global methods, and show that the

e�ects of future shock uncertainty on the global solution of the nonlinear model are quantitatively

negligible lending support for using the Fair-Taylor solution method for our baseline results.4

As a practical matter, we feed the equilibrium equations of the nonlinear and linearized model

into Dynare. Dynare is a pre-processor and a collection of MATLAB routines which can solve

nonlinear and linearized dynamic models with forward looking variables. The details about the

implementation of the algorithm used can be found in Juillard (1996). We use the perfect fore-

sight/deterministic simulation algorithm implemented in Dynare using the ‘simul’ command.5 The

algorithm can also easily handle the ZLB constraint: one just writes the Taylor rule including the

max operator in the model equations, and the solution algorithm reliably calculates the model

solution in fractions of a second.

4 Results

In this section, we report our main results for the linearized and nonlinear solution of the model

outlined in the previous section. We begin in Section 4.1 by considering the e�ects of positive cost-

push shocks in long simulations of the model as function of the output gap when the business cycle

is driven by demand shocks. Next, we proceed in Section 4.2 to characterize how the transmission of

markup shocks vary with the initial in
ation level for all the shocks in the estimated SW model. In

4 The introduction of wage stickiness and Kimball aggregation in the labor market in the present paper (in addition
to price stickiness and Kimball aggregation in the goods market as in Lind�e and Trabandt, 2018) should temper the
e�ect of shock uncertainty in the nonlinear model even further. To the extent that allowing for shock uncertainty
notably a�ects the linearized solution, the di�erences between the linearized and nonlinear solutions we report in this
paper are conservative: they would be even larger if we had allowed for shock uncertainty.

5 The solution algorithm implemented in Dynare’s simul command is the method developed in Fair and Taylor
(1983).
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Section 4.3 we compare the transmission of cost-push and monetary policy shocks in the linearized

and nonlinear model in 2022Q1 by �ltering the data with the inversion �lter on the 7 observable

time series 1965Q1-2022Q1 used by Smets and Wouters (2007) when estimating the model. This

allows us to characterize monetary policy trade-o�s at the current juncture. Finally, in Section 4.4

we study the role of nonlinearities on forecast distributions.

4.1 The Phillips Curve

To understand the di�erences in the dynamics implied by the linearized and nonlinear solutions,

we undertake stochastic simulations of the model for monetary policy shocks (εr,t) only. We size

the standard deviation of monetary policy shocks (σr) to imply variations in the model-consistent

output gap between roughly minus 15 and plus 15 percent in the linearized solution. This implies

that the size of the monetary policy shocks we consider are notably larger than estimated in the

model. Nevertheless we adopt this assumption to demonstrate with a straightforward demand

shock the scope of nonlinearities in the model with kinked demand when the economy is far-o� the

steady state. We solve and simulate the linearized and nonlinear model solutions for a long sample

of 10, 000 periods contingent on exactly the same sequence of shocks {εr,t}10,000t=1 , disregarding any

binding constraints on policy rates in the linearized model.
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Figure 2: Linearized and Nonlinear Phillips Curve with Cost-Push Shocks
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The blue circles in Figure 2 are the simulated in
ation and output gap observations in the

linearized model, with the output gap on the x-axis (inverted scale) and in
ation on the y-axis. The

red crosses shows the corresponding observations for the nonlinear model solution. The black dotted

horizontal and vertical lines indicate the deterministic steady states for in
ation and the output

gap, respectively. The �gure shows a noticeable di�erence between the linearized and nonlinear

model for the relationship between in
ation and the output gap. As expected, the linearized model

implies a constant downward-sloped Phillips curve whereas the nonlinear solution is associated with

a \banana-shaped" Phillips curve, as in the seminal paper by Phillips (1958). This re
ects that the

Kimball aggregator implies that �rms are reluctant to change prices much when relative demand

is low. On the other hand, in periods when relative demand is high, �rms are more willing to

change their prices. As a result, the nonlinear model produces episodes with more elevated price

in
ation than the linearized solution in which households and �rms are equally sensitive to changes

in desired price-markups in recessions and booms.

The blue and red solid lines show how the Phillips curves for the linearized and nonlinear
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solutions shift for positive same-sized markup shocks. These lines are generated by selecting all

economic states with an output gap close to −15,−10,−5, ...15. For all those selected states, we

simulate the contemporaneous e�ects when adding same-sized one σp positive markup shocks to

the state and then averaging the resulting in
ation levels in the blue and red dots. This shows

how the Phillips curve shifts outward in the linearized and nonlinear model solutions for positive

cost-push shocks.

As expected, the transmission of a given-sized markup shock in the linearized model is inde-

pendent of the output gap level, and the Phillips curve simply shifts outward in parallel. In the

nonlinear model, the picture is very di�erent. The nonlinear model implies that a markup shock

shifts out in
ation very little when in
ation is subdued. When in
ation is high, on the other

hand, the same-sized markup shock shifts the Phillips curve outward substantially more than in

the linearized model. In other words, the transmission of markup shocks are state-dependent and

depends importantly on the economic state, lending support for in
ation scares in booms (see e.g.

Goodfriend, 1993).

4.2 Propagation of Cost-Push Shocks

So far, we have established that cost-push shocks propagate notably stronger in a boom than in

a slump, provided that demand shocks are the source of business cycle 
uctuations. But what

about the case when cost-push shocks rather than demand shocks are the key drivers of in
ation

dynamics? After all, the estimated linearized Smets and Wouters model implies that wage and

price markup shocks account for the bulk of in
ation volatility. Hence, we now use the estimated

model to discuss how the propagation of price cost-push shocks di�ers for alternative sources of

business cycle 
uctuations in the estimated Smets and Wouters model. The analysis will show

that price cost-push shocks do not propagate more strongly in the nonlinear model only when the

economy is experiencing an economic boom with strong demand conditions. Rather, a more reli-

able condition for strong propagation of price cost-push shocks is that in
ation is high to begin with.
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Figure 3: State-Dependent Effects of Cost-Push Shocks on Inflation
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To do this analysis, we begin by simulating the linearized and nonlinear solutions for all seven

shocks, with only one shock active at a time in the estimated SW model, using the estimated

standard deviations for each shock, for T = 10, 000 periods. This will provide us with simulated

paths of all endogenous variables in the nonlinear
{
ynonlint

}T
t=1

and linearized
{
ylint
}T
t=1

models.
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Next, we go backwards in time and for each state t = 1, ..., 10, 000 add one σp positive price cost-

push shock and compute its impact on in
ation and the output gap. Figures 3 and 4 report the

results of this exercise for in
ation and output, respectively. Each panel in the �gure shows the

results when in
ation dynamics are driven by each of the seven shocks, whereas the lower right

panel shows results when we assume all shocks are active. The x-axis shows the initial in
ation level

when the price cost-push shock hits, and the y-axis shows the impact this shock has on one-year

average in
ation.

The upper left panel in Figure 3 shows the e�ects of a positive price cost-push shock on one-year-

ahead in
ation when stationary technology shocks are the sole driver of 
uctuations in in
ation

(apart from the cost-push shocks we add at each point in time). The vertical dashed line shows

the deterministic steady state in
ation level, while the solid horizontal line shows the impact of the

cost-push shocks on one-year-ahead in
ation in the linearized model, which is independent on the

initial in
ation level and the same for all seven shocks. However, in the nonlinear model solution,

the impact of a same-size cost-push shock is an upward sloping function of the initial in
ation

level. The intuition for the larger in
ation response in the nonlinear model is provided in Section

2, Figure 1, where we discuss the heightened sensitivity of �rms’ optimal prices in response to

increases in marginal costs. The next four panels in Figure 3, for the risk premium, �scal spending,

investment-speci�c technology, and monetary shocks feature the same upward sloping line, with

dy/dx showing the slope of the regression of the in
ation impulse on the initial in
ation level in

the nonlinear model. The slope is essentially the same for all shocks. The only di�erence is that

the shocks induce unequal 
uctuations in the initial in
ation levels. The panels for the wage- and

price-markup shocks show that these two shocks are most critical for in
ation 
uctuations in the

model as they generate notably more variation in the initial in
ation levels. For price-markup

shocks, we notice that while the regression line has a similar slope as for the other shocks, there

is now considerably larger variation in the transmission of the additional price cost-push shocks.

For instance, with an initial in
ation rate of 8 percent, the one-year-ahead in
ation impulse of the

same-sized positive price cost-push shock can be roughly 0.5 or above 2 percent.
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Figure 4: State-Dependent Effects of Cost-Push Shocks on the Output Gap
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The bottom right panel shows the results when simulating all shocks at the same time, which

naturally gives rise to even greater variation in the initial in
ation levels compared to when sim-

ulating each of the seven shocks separately. With all shocks combined, the dispersion increases
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even further, and for a 10-percent initial in
ation level the impact of a positive price-markup shock

on one-year-ahead in
ation can vary from about 0 to over 3 percent. These results imply that the

conditional volatility of in
ation is increasing in the in
ation level. Hence, there is higher in
ation

risk when in
ation is high, whereas in
ation risk is constant in the linearized model solution.

Figure 4 repeats the experiment but, instead, reports the e�ects on the output gap.6 As was

the case for in
ation, we see that a same-sized markup shock has a more adverse impact on the out-

put gap when the initial in
ation level is high, partly because larger transmission of price markup

shocks on in
ation (which e�ectively works as a tax by lowering the real wage) but also partly

because the elevated transmission precipitates a more vigorous endogenous response of the federal

funds rate in our model. The Taylor rule implies that the central bank faced with this adverse

trade-o� shock endogenously raises the policy rate more when initial in
ation is high because it

puts more weight on the increased in
ationary pressure despite the fact that the adverse supply

shock causes a larger deterioration in economic activity when initial in
ation is high.
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Figure 5: Understanding Inflation Risk:
Pass-through of Cost-Push Shocks in Inflation Surge and Descend Episodes
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The results shown in Figures 3 and 4 raise the important question about what accounts for the

increased in
ation risk in the model. Why is the transmission of a positive price cost-push shock

so di�erent when the initial in
ation level is elevated? To shed light on this issue, Figure 5 reports

6 Notice that price cost-push shocks do not a�ect potential output in the SW model, so the response of the output
gap coincides with the response of output.
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the e�ects of identical price cost-push shocks in in
ation surges and when in
ation is descending

for in
ation (left panel) and the output gap (right panel). The black line shows the distribution for

all shocks in Figure 3, while the red- and blue-dash dotted lines show the e�ects when in
ation is

increasing and decreasing, respectively. We separate the impulses in Figure 3 by simply looking at

the one-period change in in
ation (from t−1 to t) before a markup shock hits in period t, and then

we separate the responses to a markup shock across the two states: when the change in in
ation is

positive (in
ation is surging) and when it is negative (in
ation is descending).. We then compute

the distribution of the responses in each state. The left panel in Figure 5 shows in
ation risk is

substantially higher when in
ation is increasing before the shock hits. The right panel shows that

output is at greater risk when in
ation is on the rise, explaining the trumpet-like shape for the

output gap responses shown in Figure 4.

4.3 Monetary Policy Trade-offs During the Post-COVID Period

We now turn to make an assessment of the transmission of price cost-push shocks during the Post-

COVID period and trade-o�s for monetary policy to stabilize them. To do so, we �lter the shocks

in the linearized and nonlinear solutions with the inversion �lter described in Fair and Taylor (1983)

for the period 1965Q1 to 2022Q1 using US data. Since we have the same number of observables

as shocks, the inversion �lter provides us with a unique sequence of �ltered innovations
{
εt|t
}T
t=1

that maximizes the likelihood for a given parameterization of the linearized and nonlinear model.7

Given the �ltered state in 2022Q1, we study the transmission of price-cost and monetary policy

shocks in this quarter. We believe this period is particularly interesting to examine in order to

spot di�erences between the nonlinear and linearized solutions as in
ation by the end of 2021 had

surged well above the steady state and the Feds’ in
ation target. Results would be similar if we

started in the second half of 2021 or later.

Conditional on period t information, let Xt|t denote all variables in the model, except for the

innovations to the shock processes εt|t. The solution of the model is a nonlinear function f such

that

Xt|t = f(Xt−1|t−1, εt|t), (6)

and let yt be a vector of observables and S a selection matrix that matches the observed variables

to their model counterparts. Then, in each period t we obtain the �ltered structural innovations

7 A potential drawback of using the inversion �lter is that it does not allow to compute the two-sided innovation
(i.e. εt|T ), and hence relies on the one-sided �ltered shocks εt|t in the analysis. That said, in the linearized solution,
the one- and two-sided shocks (the latter being based on a standard Kalman �lter) are very similar, suggesting that
using the one-sided shocks has a limited impact on the �ndings.
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εt|t, given the data yt and state of the model Xt−1|t−1, as the solution to the nonlinear system

yt = Sf(Xt−1|t−1, εt|t). (7)

We initialize the �lter by running the Kalman smoother on the linearized solution and using the

implied Kalman smoothed estimates as initial values for the endogenous variables in the nonlinear

�lter. However, the nonlinear model contains some additional endogenous state variables (i.e. price

and wage dispersion terms), and we initialize these endogenous variables together with the shock

innovations εt|t so that the nonlinear model matches the observed variables in yt.
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Figure 6: IRFs to a 1  Cost-Push Shock in Linearized and Nonlinear Model in 2022Q1
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Importantly, we impose the ELB for the federal funds rate when �ltering the shocks in the

nonlinear model. In the linearized model, we do not impose an e�ective lower bound through

a nonlinear policy rule, so the linearized solution will only prevent the current policy rate from

falling below the e�ective lower bound (ELB) through unanticipated policy innovations. Since

the quarterly average for the periods 2009Q1-2014Q2 and 2020Q2-2022Q1 is not exactly zero and
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uctuates a couple of basis points, we adjust the federal funds rate to exactly 10 (annualized) basis

points for those quarters. Accordingly, the monetary policy rule in the model is constrained by

an ELB of 10 (annualized) basis points. One important caveat of using this �ltering approach is

that, since monetary policy shocks become inconsequential in the model when the ELB is binding,

it is not possible to �lter these shocks during the ELB period. Following Guerrieri and Iacoviello

(2017) we assume these shocks to be zero when the ELB is binding, except when the model-implied

interest rate is predicted to be above the ELB and a monetary policy shock is necessary to obtain

an exact match between the observed data and the model counterparts.

Given the �ltered states in 2022Q1 in the linearized and nonlinear models, we then add a one σp

price cost-push and σr monetary policy shocks to the linearized and nonlinear models, respectively.

Figure 6 shows the resulting impulse response functions for the price markup shocks in the lin-

earized and nonlinear model solutions as of 2022Q1. Of course, the results in the linearized model

are invariant to the �ltered state and the average of the �rst four quarters in the �gure equals 0.55

(black horizontal line in Figure 2). For the nonlinear model, we see that the shock’s e�ect is more

than twice as large over the �rst year on in
ation and the output gap, despite a twofold increase

in the policy rate relative to the linearized model.
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Figure 7: IRFs to a 1  Monetary Shock in Linearized and Nonlinear Model in 2022Q1
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In Figure 7, we show the corresponding e�ects of a monetary policy shock. The �gure shows

that a monetary policy shock has the same e�ect on output gap and output growth, but the impact

on in
ation is about twice as high initially relative to the linearized model. Even so, the model

implies a rather unfavorable monetary policy in
ation-output gap trade-o�. To reduce in
ation by

0.1 percentage points the policy maker needs to accept a decline of more than 1% in the output gap

over one year. Figure 6 implies this trade-o� is further exacerbated in the nonlinear model in the

current situation of high in
ation risk, as it takes even tighter monetary policy than shown in the

�gure to maintain a pass-through of price cost-push shocks to in
ation at normal levels according

to our estimated model.
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Figure 8: Trade-offs for Interest Rate Policy:
Tightening and Output Cost to Provide Full Inflation Stabilization
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To demonstrate the more unfavorable monetary policy trade-o� when in
ation is elevated,

Figure 8 reports the required policy tightening, in addition to that prescribed by the endogenous

reaction according to the estimated rule, during the �rst year, to fully stabilize any impulses to

one-year-ahead in
ation from price cost-push shocks as a function of the initial in
ation level. For

the linearized model, the tightening needed is invariant to the initial in
ation level and is a little

more than two percent, on average, to stabilize in
ation during the �rst year following a price-

markup shock. This magnitude can be derived by combining the impulses in the linearized model

for in
ation and the policy rate in Figures 6 and 7 (i.e., how big a policy rate movement is required,

according to Figure 7, to remove the 0.55 average increase in in
ation shown in Figure 6 in the

linearized model). The output cost of such an in
ation-nutter policy is fairly large, a little above

6 percent in the linearized model. The blue line with crosses plots the corresponding interest rate

tightening and output cost in the nonlinear model. As in Figure 2, we compute this trade-o� curve

as averages for states clustered around certain initial in
ation levels. As is evident from the model,

the nonlinear formulation of the model implies increasing adverse trade-o�s to stabilize in
ation,

even though the nonlinear model implies that monetary policy has a stronger e�ect on in
ation

when in
ation is high. This adverse trade-o� is driven by the fact that even though both monetary

policy and price-markup shocks become equally more potent as functions of the initial in
ation

rate on average, the price markup shocks have much larger absolute e�ects and, hence, increasingly
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more policy tightening is needed to keep in
ation in check as the initial in
ation level increases.

4.4 Conditional Forecast Distributions

As a �nal exercise, we study the impact of the nonlinear solution on the conditional forecast

distributions. To do this, we follow the �ltering procedure outlined in Section 4.3, and obtain

�ltered states for T = {2020Q4, 2021Q2, 2021Q4, 2022Q1}. Given the �ltered state in T (based on

data up to period T ), we then construct conditional forecast distributions for periods T+1, ..., T+h

by computing 1,000 dynamic forecasts in which economic shocks hit as surprises during the forecast

horizon. We report results for both the nonlinear and linearized solutions in Figure 9, but in order

to tease out the impact of the nonlinearities in the solution and to consider an identical initial

state, we base the projections on the �ltered state in the linear model.8 An additional technical

di�erence is that the nonlinear model imposes the ELB on the policy rate, whereas the linearized

model allows the policy rate to become negative.9

As can be seen from Figure 9, the median forecast in the linearized and nonlinear models di�ers

very little in 2020Q4. This is because in
ation is close to the steady state at the initial state in

this quarter. Even so, the lower uncertainty bands di�er notably as in
ation can generally become

persistently negative in the linearized model, although not for the 5th percentile given this initial

state. The nonlinear model, on the other hand, implies that shocks have less impact on in
ation

when in
ation becomes lower and hence there is a noticeable reduction in the de
ation probability

in this variant of the model. At this point, both models underpredict the subsequent uptick in

in
ation, but in this regard it should be noted that the model forecasts are contingent on a quick

and sharp normalization of the policy rate. Had we instead imposed a constant interest rate path

(in line with the data), the gap between predicted and actual in
ation outcomes would have been

narrowed.

Moving onto the later quarters, we see that as the initial in
ation level rises, the di�erences

between the nonlinear and linearized models increase. In particular, the nonlinear model implies

notably higher near-term in
ation risk and hence a notably higher median in
ation forecast, es-

pecially in the second-half of 2021 and the beginning of 2022. The higher near-term in
ation risk

also translates into higher median policy rate projections, as well as an elevated risk of a notably

8 Alternatively, we could have based the initial state on the nonlinear model, but this would have required setting
all nonlinear state variables in period T in the linearized model to nil when doing the forecasts. Of course, we could
also have conditioned the forecasts on the �ltered state in each of the models, but doing so would not allow us parse
out the role of the nonlinearities per se, because the initial state would di�er.

9 However, as indicated by the uncertainty bands for the linearized model in Figure 9, the probability of a binding
ELB is low. Hence, this alternate assumption plays a minor role for any di�erences between the conditional forecast
distributions for the linearized and nonlinear models.
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tighter policy rate stance in the nonlinear model. As a result, nonlinear model implies somewhat

more downside risk to output growth in the conditional distributions as in Adrian et al. (2019).
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Figure 9: Conditional Forecast Distributions Given Filtered State in Linearized Model
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Finally, an overall impression from Figure 9 is that in
ation risk in the nonlinear model is

mostly a near-term phenomenon. After two years, most of the di�erences between the nonlinear

and linearized conditional distributions have dissipated. Two key reasons for this �nding is the

ARMA(1,1) feature of the price- and wage cost-push shocks and the modest role for intrinsic per-

sistence in the estimated wage and price setting curves in the SW model. Both these features of the

estimated model imply that the price-wage cost-push shocks have transient e�ects on the economy.

Alternative assumptions about these parameters could give rise to more persistent di�erences in

conditional forecast distributions.
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5 Conclusions

We propose a macroeconomic model with a nonlinear Phillips curve that is 
at when in
ationary

pressure is subdued and steep when in
ationary pressure is elevated. The nonlinear Phillips curve

in our model arises due to a quasi-kinked demand schedule for goods produced by �rms. Our model

can jointly account for the modest decline in in
ation during the Great Recession and the surge

in in
ation during the Post-COVID period. Because our model implies a stronger transmission of

shocks when in
ation is high, it generates conditional heteroskedasticity in in
ation and in
ation

risk. Hence, our model can generate more sizeable in
ation surges due to cost-push and demand

shocks than a standard linearized model. Finally, our model implies that the central bank faces a

more severe trade-o� between in
ation and output stabilization when in
ation is high.

We leave several important issues for future work. For instance, it would be of interest to study

the role of nonlinearities to understand the great in
ation of the 1970s and explore the implications

for optimal monetary policy of kinked demand. Moreover, it would be important to extend the

model to allow for endogeneity between in
ation drivers and policy responses. We retained the

conventional assumption that all variation in price and wage cost-push shocks is exogenous with

respect to policy conduct, but it would be of interest in future work to consider an environment

where monetary policy can in
uence the drivers of in
ation (i.e. a strong tightening can lower

energy prices). Finally, our analysis imposed the conventional rational expectations assumption,

and it would be interesting to explore how non-rational expectations or a de-anchoring of in
ation

expectations as proposed by Beaudry et al. (2022) may a�ect in
ation dynamics under quasi-kinked

demand.
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Appendix A The Smets and Wouters (2007) Model

This appendix contains the linearized and nonlinear equilibrium model equations of Smets and

Wouters (2007). We describe the �rms and households’ problem in the model and state the market

clearing conditions.A.1

A.1 Firms and Price Setting

Final Goods Production The single �nal output good Yt is produced using a continuum of di�eren-

tiated intermediate goods Yt(f). Following Kimball (1995), the technology for transforming these

intermediate goods into the �nal output good is∫ 1

0
GY

(
Yt (f)

Yt

)
df = 1. (A.1)

Following Dotsey and King (2005) and Levin, L�opez-Salido and Yun (2007), we assume that GY (.)

is given by a strictly concave and increasing function; its particular parameterization follows SW:

GY

(
Yt(f)
Yt

)
=

(
ϕp

1−(ϕp−1)ϵp

[(
ϕp+(1−ϕp)ϵp

ϕp

)
Yt(f)
Yt

+
(ϕp−1)ϵp

ϕp

] 1−(ϕp−1)ϵp
ϕp−(ϕp−1)ϵp +

[
1 − ϕp

1−(ϕp−1)ϵp

])
, (A.2)

where ϕp ≥ 1 denotes the gross markup of the intermediate �rms. The parameter ϵp governs the

degree of curvature of the intermediate �rm’s demand curve. When ϵp = 0, the demand curve

exhibits constant elasticity as with the standard Dixit-Stiglitz aggregator. When ϵp is positive|as

in SW|this introduces more strategic complementarity in price setting, which causes intermediate

�rms to adjust prices less to a given change in marginal cost.

Firms that produce the �nal output good Yt are perfectly competitive in both the product and

the factor markets and take as given the price Pt (f) of each intermediate good Yt(f). They sell

units of the �nal output good at a price Pt; hence they solve the following problem:

max
{Yt,Yt(f)}

PtYt −
∫ 1

0
Pt (f)Yt (f) df, (A.3)

subject to the constraint (A.1).

Intermediate Goods Production A continuum of intermediate goods Yt(f) for f ∈ [0, 1] is pro-

duced by monopolistically competitive �rms, which utilize capital services Kt (f) and a labor index

Lt (f) (de�ned below) to produce their respective output good. The form of the production function

is Cobb-Douglas:

Yt (f) = εatKt(f)α
[
γtLt(f)

]1−α − γt�, (A.4)

A.1 For a description of the model that derives the log-linearized equations, we refer the reader to the appendix of the
Smets and Wouters paper, which is available online at http://www.aeaweb.org/aer/data/june07/20041254 app.pdf.
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where γt represents the labor-augmenting deterministic growth rate in the economy, � denotes the

�xed cost (which is related to the gross markup ϕp so that pro�ts are zero in the steady-state), and

εat is total factor productivity, which follows the process

ln εat = (1 − ρa) ln εa + ρa ln εat−1 + ηat , η
a
t ∼ N (0, σa) . (A.5)

Firms face perfectly competitive factor markets for renting capital at price RKt and hiring labor

at a price given by the aggregate wage index Wt (de�ned below). As �rms can costlessly adjust

either factor of production, the standard static �rst-order conditions for cost minimization imply

that all �rms have identical marginal costs per unit of output.

The prices of the intermediate goods are determined by Calvo (1983)-Yun (1996)-style staggered

nominal contracts. The probability 1− ξp that any �rm, f , receives a signal to reoptimize its price,

Pt(f), is assumed to be independent of the time that it last reset its price. If a �rm is not allowed

to optimize its price, it adjusts its price by a weighted combination of the lagged and steady-state

rate of in
ation, that is, Pt(f) = (1 + πt−1)
ιp (1 + π)1−ιp Pt−1(f), where 0 ≤ ιp ≤ 1 and πt−1

denote net in
ation in period t − 1, and π is the steady-state net in
ation rate. A positive value

of ιp introduces structural inertia into the in
ation process. All told, this leads to the following

optimization problem for the intermediate �rms

max
P̃t(f)

Et

∞∑
j=0

(βξp)
j �t+jPt

�tPt+j

[
~Pt (f)

(
�j

s=1 (1 + πt+s−1)
ιp (1 + π)1−ιp

)
−MCt+j

]
Yt+j (f) , (A.6)

where ~Pt (f) is the newly set price. Notice that with our assumptions, all �rms that reoptimize

their prices actually set the same price.

It would be ideal if the markup in (A.2) could be made stochastic and the model could be

written in a recursive form. However, such an expression is not available and we, instead, directly

introduce a shock, εpt , in the �rst-order condition to the problem in (A.6). And following SW, we

assume the shock is given by an exogenous ARMA(1,1) process:

ln εpt = (1 − ρp) ln εp + ρp ln εpt−1 + ηpt − µpη
p
t−1, η

p
t ∼ N (0, σp) . (A.7)

When this shock is introduced in the non-linear model, we put a scaling factor on it so that it

enters a log-linearized representation of the model exactly the same way as the price-markup shock

does in the SW model.
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A.2 Households and Wage Setting

We assume a continuum of monopolistically competitive households (indexed on the unit inter-

val), each of which supplies a di�erentiated labor service to the production sector; that is, goods-

producing �rms regard each household’s labor services, Lt (h), h ∈ [0, 1], as imperfect substitutes

for the labor services of other households. It is convenient to assume that a representative labor

aggregator combines households’ labor hours in the same proportions as �rms would choose. Thus,

the aggregator’s demand for each household’s labor is equal to the sum of the �rms’ labor demand.

The aggregated labor index Lt has the following Kimball (1995) form:

Lt =

∫ 1

0
GL

(
Lt (h)

Lt

)
dh = 1, (A.8)

where the function GL (.) has the same functional form as (A.2) but is characterized by the cor-

responding parameters ϵw (governing convexity of labor demand by the aggregator) and ϕw (gross

wage markup). The aggregator minimizes the cost of producing a given amount of the aggregate

labor index, Lt, taking each household’s wage rate, Wt (h), as given, and then sells units of the

labor index to the intermediate goods sector at unit cost Wt, which can naturally be interpreted

as the aggregate wage rate.

The utility function of a typical member of household h is

Et

∞∑
j=0

βj
[

1

1 − σc
(Ct+j (h) − κCt+j−1)

]1−σc

exp

(
σc − 1

1 + σl
Lt+j (h)1+σl

)
, (A.9)

where the discount factor β satis�es 0 < β < 1. The period utility function depends on household

h’s current consumption, Ct (h), as well as the lagged aggregate per capita consumption, to allow

for external habit persistence through the parameter 0 ≤ κ ≤ 1. The period utility function also

depends inversely on hours worked, Lt (h) .

Household h’s budget constraint in period t states that its expenditure on goods and its net

purchases of �nancial assets must equal its disposable income:

PtCt (h) + PtIt (h) +
Bt+1 (h)

εbtRt
+

∫
s
ξt,t+1BD,t+1(h) −BD,t(h) (A.10)

= Bt (h) +Wt (h)Lt (h) +Rk
tZt (h)Kp

t (h) − a (Zt (h))Kp
t (h) + �t (h) − Tt(h).

Thus, the household purchases part of the �nal output good (at price Pt), which it chooses either

to consume Ct (h) or to invest It (h) in physical capital. Following Christiano, Eichenbaum, and

Evans (2005), investment augments the household’s (end-of-period) physical capital stock, Kp
t+1(h),
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according to

Kp
t+1 (h) = (1 − δ)Kp

t (h) + εit

[
1 − S

(
It (h)

It−1 (h)

)]
It(h). (A.11)

The extent to which investment by each household h turns into physical capital is assumed to

depend on an exogenous shock, εit, and how rapidly the household changes its rate of investment

according to the function S
(

It(h)
It−1(h)

)
, which we specify as

S(xt) = φ
2 (xt − γ)2 . (A.12)

Notice that this function satis�es S (γ) = 0, S′ (γ) = 0 and S′′ (γ) = φ. The stationary

investment-speci�c shock εit follows

ln εit = ρi ln εit−1 + ηit, η
i
t ∼ N (0, σi) . (A.13)

In addition to accumulating physical capital, households may augment their �nancial assets through

increasing their government nominal bond holdings, (Bt+1), from which they earn an interest rate

of Rt. The return on these bonds is also subject to a risk shock, εbt , which follows

ln εbt = ρb ln εbt−1 + ηbt , η
b
t ∼ N (0, σb) . (A.14)

Agents can engage in frictionless trading of a complete set of contingent claims to diversify away

idiosyncratic risk. The term
∫
s ξt,t+1BD,t+1(h) − BD,t(h) represents net purchases of these state-

contingent domestic bonds, with ξt,t+1 denoting the state-dependent price, and BD,t+1 (h) the

quantity of such claims purchased at time t.

On the income side, each member of household h earns after-tax labor income of Wt (h)Lt (h)

and after-tax capital rental income of Rk
tZt (h)Kp

t (h) and pays a utilization cost of the physical

capital equal to a (Zt (h))Kp
t (h), where Zt (h) is the capital utilization rate, so that the capital

services provided by household h, Kt (h), equal Zt (h)Kp
t (h). The capital utilization adjustment

function, a (Zt (h)), is assumed to be given by

a (Zt (h)) =
rk

~z1
[exp (~z1 (Zt (h) − 1)) − 1] , (A.15)

where rk is the steady-state net real interest rate ( �RK
t / �Pt). Notice that the adjustment function

satis�es a(1) = 0, a′(1) = rk, and a′′(1) ≡ rk~z1. Following SW, we want to write a′′(1) = z1 =

ψ/ (1 − ψ) > 0, where ψ ∈ [0, 1) and a higher value of ψ implies a higher cost of changing the

utilization rate. Our parameterization of the adjustment cost function then implies that we need to

set ~z1 ≡ z1/r
k. Finally, each member also receives an aliquot share amount to �t (h) of the pro�ts

of all �rms and pays a lump-sum tax of Tt (h) (regarded as taxes net of any transfers).
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In every period t, each member of household h maximizes the utility function (A.9) with respect

to its consumption, investment, (end-of-period) physical capital stock, capital utilization rate, bond

holdings, and holdings of contingent claims, subject to its labor demand function, budget constraint

(A.10), and transition equation for capital (A.11).

Households also set nominal wages in Calvo (1983)-style staggered contracts that are generally

similar to the price contracts described previously. Thus, the probability that a household receives a

signal to reoptimize its wage contract in a given period is denoted by 1−ξw. In addition, SW specify

the following dynamic indexation scheme for the adjustment of the wages of those households that

do not receive a signal to reoptimize: Wt(h) = γ (1 + πt−1)
ιw (1 + π)1−ιw Wt−1(h). All told, this

leads to the following optimization problem for the households:

max
W̃t(h)

Et

∞∑
j=0

(βξw)j
�t+jPt

�tPt+j

[
~Wt (h)

(
�j

s=1γ (1 + πt+s−1)
ιw (1 + π)1−ιw

)
−Wt+j

]
Lt+j (h) , (A.16)

where ~Wt (h) is the newly set wage. Notice that with our assumptions all households that reoptimize

their wages will actually set the same wage.

Following the same approach as with the intermediate-goods �rms, we introduce a shock, εwt ,

in the resulting �rst-order condition. This shock, following SW, is assumed to be given by an

exogenous ARMA(1,1) process:

ln εwt = (1 − ρw) ln εw + ρw ln εwt−1 + ηwt − µwη
w
t−1, η

w
t ∼ N (0, σw) . (A.17)

As discussed previously, we use a scaling factor for this shock so that it enters into the log-linearized

representation of the model in exactly the same way as the wage-markup shock in SW.

A.3 Monetary Policy

The monetary authority follows a Taylor rule in adjusting the interest rate in response to changes

in in
ation and the output gap. An important di�erence with respect to the standard SW model

is that we consider a nonlinear policy rule to explicitly take the ZLB into account:

Rt = max

1 + �b, RρR
t−1

�R(1−ρR)
(πt

�π

)(rπ)(1−ρR)
(

yt

ypott

)(ry)(1−ρR)(
yt/y

pot
t

yt−1/y
pot
t−1

)r∆y

εr,t

 , (A.18)

where �b > 0 is a constant re
ecting the level of the e�ective lower bound (ELB). Since the federal

funds rate never reached exactly zero but oscillated around 10 (annualized) basis points throughout

the ELB period, we set �b equal to 10 (annualized) basis points. ypott is the output prevailing in
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the 
exible price and wage economy in absence of the ine�cient monetary policy, and price- and

wage-markup shocks.

A.4 Market Clearing Conditions

Government purchases, Gt, are exogenous, and the process for government spending relative to

trend output, that is, gt = Gt/
(
γtY

)
, is given by the following exogenous AR(1) process:

ln gt = (1 − ρg) ln g + ρg
(
ln gt−1 − ρga ln εat−1

)
+ εgt , ε

g
t ∼ N (0, σg) . (A.19)

Government purchases have no e�ect on the marginal utility of private consumption, nor do they

serve as an input into goods production. Moreover, the government is assumed to balance its budget

through lump-sum taxes (which are irrelevant, since Ricardian equivalence holds in the model).

Total output of the �nal goods sector is used as follows:

Yt = Ct + It +Gt + a (Zt) �Kt, (A.20)

where a (Zt) �Kt is the capital utilization adjustment cost.

Finally, one can derive an aggregate production constraint, which depends on aggregate tech-

nology, capital, labor, and �xed costs, as well as the price and wage dispersion terms.A.2

Table A.1: Parameter values in Smets and Wouters (2007).

A.2 We refer the interested reader to Adjemian, Paries and Moyen (2008) for further details.
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Panel A: Calibrated

Parameter Description Value Parameter Description Value

δ Depreciation rate 0.025 ϵp Kimball Elast. GM 10
ϕw Gross wage markup 1.50 ϵw Kimball Elast. LM 10
gy Gov’t G/Y ss-ratio 0.18

Panel B: Estimated

Parameter Description Value Parameter Description Value

φ Investment adj. cost 5.48 ϕp Gross price markup 1.61
σc Inv. subs. elast. of cons. 1.39 γ Steady-state gross growth 1.0043

κ Degree of ext. habit 0.71 l Steady-state hours worked 0.25
ξw Calvo prob. wages 0.73 π Steady-state net in
. rate 0.0081
σl Labor supply elas. 1.92 β Discount factor 0.9984
ξp Calvo prob. prices 0.65 ρR Taylor rule, int. rate smooth. 0.81
ιw Ind. for non-opt. wages 0.59 r∆y Taylor rule, coef. � out. gap 0.22
ιp Ind. for non-opt. prices 0.22 ry Taylor rule, coef. out. gap 0.08
α Capital production share 0.19 rπ Taylor rule, coef. in
ation 2.03
ψ Capital utilization cost 0.54

Panel C: Shock Processes

Shock Persistence MA(1) Std. of Innovation (%)

Neutral technology ρa 0.95 - σa 0.45
Risk premium ρb 0.18 - σb 0.24
Gov’t spending ρg 0.97 ρga 0.52 σg 0.52

Inv. speci�c tech. ρi 0.71 σi 0.45
Price markup ρp 0.90 µp 0.74 σp 0.14
Wage markup ρw 0.97 µw 0.88 σw 0.24

Monetary policy ρr 0.2 - σr 0.24

A.5 Model Parameterization

When solving the model, we consider two alternative parameterizations. First, we adopt the pa-

rameter estimates (posterior mode) in Table A.1 of SW. Second, we re-estimate the SW model

setting a lower mean and standard deviation for the steady-state price-markup (ϕp) prior and a

higher value for the curvature of the intermediate �rm’s demand curve (ϵp). Speci�cally, we con-

sider a prior ϕp ∼ N(1.2, 0.05), compared to the SW prior of ϕp ∼ N(1.25, 0.125), and we estimate

ϵp = 64.5 instead of it being set to 10 as in SW. In both cases we use the same values as SW for

the calibrated parameters. Table A.1. provides the values of SW’s baseline estimation and Table

A.2. provides the parameter values with prior ϕp ∼ N(1.2, 0.05) and ϵp = 64.5.

Table A.2: Parameter Values with prior ϕp ∼ N(1.2, 0.05) and estimated ϵp.

32



Panel A: Calibrated

Parameter Description Value Parameter Description Value

δ Depreciation rate 0.025 ξp Calvo prob. prices 0.67
ϕw Gross wage markup 1.50 ϵw Kimball Elast. LM 10
gy Gov’t G/Y ss-ratio 0.18

Panel B: Estimated

Parameter Description Value Parameter Description Value

φ Investment adj. cost 5.58 ϕp Gross price markup 1.34
σc Inv. subs. elast. of cons. 1.41 γ Steady-state gross growth 1.0044

κ Degree of ext. habit 0.68 l Steady-state hours worked −
ξw Calvo prob. wages 0.80 π Steady-state net in
. rate 0.0087
σl Labor supply elas. 2.20 β Discount factor 0.9987
ϵp Kimball elast. GM 64.5 ρR Taylor rule, int. rate smooth. 0.82
ιw Ind. for non-opt. wages 0.56 r∆y Taylor rule, coef. � out. gap 0.25
ιp Ind. for non-opt. prices 0.24 ry Taylor rule, coef. out. gap 0.097
α Capital production share 0.18 rπ Taylor rule, coef. in
ation 1.93
ψ Capital utilization cost 0.49

Panel C: Shock Processes

Shock Persistence MA(1) Std. of Innovation (%)

Neutral technology ρa 0.95 - σa 0.48
Risk premium ρb 0.22 - σb 0.23
Gov’t spending ρg 0.97 ρga 0.53 σg 0.47

Inv. speci�c tech. ρi 0.70 σi 0.40
Price markup ρp 0.83 µp 0.69 σp 0.13
Wage markup ρw 0.97 µw 0.93 σw 0.28

Monetary policy ρr 0.11 - σr 0.23

Note that we adapt and rescale the processes of the price- and wage-markup shocks so that

when our model is log-linearized it exactly matches the original SW model.

A.6 Summary of Nonlinear Model Equations

We detrend the variables with a deterministic trend, γ, and the nominal variables are replaced by

their real counterparts. For instance, we use the following de�nitions:
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kt =
Kt

γt
;wt =

Wt

Ptγt
;w∗

t =
W ∗

t

Ptγt

rkt =
Rk

t

Pt
;mct =

MCt

Pt
; p∗t =

P ∗
t

Pt
; δwt =

�w
t

Ptγt
, δpt =

�p
t

Pt

ξt ≡ �tγ
σct

γp1,t =
�p
1,t

γt
, γp2,t =

�p
2,t

γt
, γp3,t =

�p
3t

γt
,

γw1,t =
�w
1,t

(γt)
ϕw(1+ϵw)

ϕw−1

, γw2,t =
�w
2,t

(γt)
1+

ϕw(1+ϵw)
ϕw−1

,

Also, we de�ne gt ≡ Gt/Yt and re-de�ne the �xed cost � ≡ (ϕp − 1) y, where y is the steady-

state level of output.

Market clearing

ct + it + gty + a (Ut)
kht−1

γ
= yt (A.1)

yt
ϵp + spt
1 + ϵp

=
(
εat (kst )

α L1−α
t − (ϕp − 1) y

)
(A.2)

kst =
1

γ
Utk

h
t−1 (A.3)

kht =
1 − δ

γ
kht−1 + εit

[
1 − S

(
itγ

it−1

)]
it (A.4)

spt = (1 − ξp)

(
p∗t
δpt

)−ϕp(1+ϵp)
ϕp−1

+ ξp

(
π1−ιpπ

ιp
t−1

πt

δpt−1

δpt

)−ϕp(1+ϵp)
ϕp−1

spt−1 (A.5)

swt = (1 − ξw)

(
w∗
t

δwt

)−ϕw(1+ϵw)
ϕw−1

+ ξw

(
π1−ιwπιwt−1

πt

δwt−1

δwt

)−ϕw(1+ϵw)
ϕw−1

swt−1 (A.6)

1 = (1 − ξp)

(
p∗t
δpt

)− 1+ϕpϵp
ϕp−1

+ ξp

(
π1−ιpπ

ιp
t−1

πt

δpt−1

δpt

)− 1+ϕpϵp
ϕp−1

(A.7)

1 = (1 − ξw)

(
w∗
t

δwt

)− 1+ϕwϵw
ϕw−1

+ ξw

(
π1−ιwπιwt−1

πt

δwt−1

δwt

)− 1+ϕwϵw
ϕw−1

(A.8)

(1 + ϵw)wt =
(

1 + ϵws
wl
t

)
δwt (A.9)

(1 + ϵp) =
(

1 + ϵps
pl
t

)
δpt (A.10)

splt = (1 − ξp)

(
p∗t
δt

)
+ ξp

(
π1−ιpπ

ιp
t−1

πt

δpt−1

δpt

)
splt−1 (A.11)

swl
t = (1 − ξw)

(
w∗
t

δwt

)
+ ξw

(
π1−ιwπιwt−1

πt

δwt−1

δwt

)
swl
t−1 (A.12)
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Firms

kst
Lt

=
α

1 − α

wt

rkt
(A.13)

mct =

(
α

1 − α

wt

rkt

)−α wt

(1 − α) εat
(A.14)

Households

ξt ≡ �tγ
σct = εdt

(
ct −

κ
γ
ct−1

)−σc

exp

(
(σc − 1)

(
Lh
t

)1+σl

1 + σl

)
; Lh

t ≡ Lt
ϵw + swt
1 + ϵw

(A.15)

1 = Qtε
i
t

[
1 − S

(
itγ

it−1

)
− S′

(
itγ

it−1

)
itγ

it−1

]
+ βγ−σEt

ξt+1

ξt
Qt+1ε

i
t+1S

′
(
it+1γ

it

)(
it+1γ

it

)2

(A.16)

R−1
t = εbtβγ

−σEt
ξt+1

ξt
�−1

t+1 (A.17)

Qt = βγ−σEt
ξt+1

ξt

[
(1 − δ)Qt+1 +

(
rkt+1Ut+1 − a (Ut+1)

)]
(A.18)

rkt ≡ Rk
t

Pt
= a′ (Ut) (A.19)

Wage Setting

1 + ϕwϵw
1 + ϵw

w∗
t γ

w
1,t = ϕwγ

w
2,t +

ϵw (ϕw − 1)

1 + ϵw
(w∗

t )
ϕw(1+ϵw)

ϕw−1
+1
γw3,t (A.20)

γw1,t = (δwt )
ϕw(1+ϵw)

ϕw−1 Lt +
(
βγ1−σ

)
ξwEt

ξt+1

ξt

(
π1−ιwπιwt
πt+1

)− 1+ϕwϵw
ϕw−1

γw1,t+1 (A.21)

γw2,t = (δwt )
ϕw(1+ϵw)

ϕw−1 wh
t ε

w
t Lt +

(
βγ1−σ

)
ξwEt

ξt+1

ξt

(
π1−ιwπιwt
πt+1

)−ϕw(1+ϵw)
ϕw−1

γw2,t+1 (A.22)

γw3,t = Lt +
(
βγ1−σ

)
ξwEt

ξt+1

ξt

(
π1−ιwπιwt
πt+1

)
γw3,t+1 (A.23)

Price Setting

1 + ϕpϵp
1 + ϵp

p∗tγ
p
1,t = ϕpγ

p
2,t +

ϵp (ϕp − 1)

1 + ϵp
(p∗t )

ϕp(1+ϵp)
ϕp−1

+1
γp3,t, (A.24)

γp1,t = (δpt )
ϕp(1+ϵp)

ϕp−1 yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)− 1+ϕpϵp
ϕp−1

γp1,t+1, (A.25)

γp2,t = (δpt )
ϕp(1+ϵp)

ϕp−1 mctεp,tyt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)−ϕp(1+ϵp)
ϕp−1

γp2,t+1, (A.26)

γp3,t = yt +
(
βγ1−σ

)
ξpEt

ξt+1

ξt

(
π1−ιpπ

ιp
t

πt+1

)
γp3,t+1, (A.27)

Monetary Policy

Rt = max

1 + �b, RρR
t−1

�R(1−ρR)
(πt
π

)rπ(1−ρR)
(

yt

ypott

)ry(1−ρR)(
yt/y

pot
t

yt−1/y
pot
t−1

)r∆y

εr,t

 (A.28)
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Together, this constitutes an equation system with 28 equations and the following 28 endogenous

variables: ct, yt, Lt, it, k
s
t , k

h
t , Ut, p

∗
t , w

∗
t , πt, s

p
t , s

w
t , δpt , δwt , splt , swl

t , rkt , wt, mct, ξt, Rt, Qt, γ
p
1,t,

γp2,t, γ
p
3,t, γ

w
1,t, γ

w
2,t, γ

w
3,t.

The 
exible price and wage allocations are obtained by setting ξp = ξw = 0 which de�nes ypott .

Only four shocks a�ect the 
ex price-wage allocations; εat , ε
b
t , ε

i
t, and gt.

A.7 Summary of Linearized Model Equations

In this section, we summarize the log-linear equations of the SW model. The complete model also

includes the seven exogenous shocks εat , ε
b
t , ε

i
t, ε

p
t , ε

w
t , ε

r
t , and gt, but their processes are not stated

here as they were presented earlier. Consistent with the notation of the log-linearized endogenous

variables x̂t = dxt/x, the exogenous shocks are denoted with a ‘hat’, i.e., ε̂t = ln εt.

First, we have the consumption Euler equation:

ĉt = 1
(1+κ/γ)Etĉt+1 + κ/γ

(1+κ/γ) ĉt−1− 1−κ/γ
σc(1+κ/γ)(R̂t−Etπ̂t+1+ε̂bt) −

(σc−1)(wh
∗L/c∗)

σc(1+κ/γ) (EtL̂t+1−L̂t), (A.29)

where κ is the external habit parameter, σc is the reciprocal of the intertemporal substitution

elasticity, and wh
∗L/c∗ is the steady-state nominal labor earnings to consumption ratio.

Next, we have the investment Euler equation:

ît = 1
(1+βγ)

(̂
it−1 + βγEt̂it+1 + 1

γ2φ
Q̂k

t

)
+ ε̂qt , (A.30)

where �β = βγ−σc , φ is the investment adjustment cost, and the investment-speci�c technology shock

ε̂qt has been rescaled so that it enters linearly with a unit coe�cient. Additionally i1 = 1/(1 + β)

and i2 = i1/ψ, where β is the discount factor and ψ is the elasticity of the capital adjustment cost

function.

The price of capital is determined by

Q̂k
t = −( ~̂Rt − Etπ̂t+1 + ε̂bt) + q1Etr

k
t+1 + (1 − q1)EtQ

k
t+1, (A.31)

where q1 ≡ rk∗/(r
k
∗ + (1 − δ)), in which rk∗ is the steady-state rental rate to capital and δ is the

depreciation rate.

Fourth, we have the optimal condition for the capital utilization rate ût:

ût = (1 − ψ)/ψr̂kt , (A.32)

where ψ is the elasticity of the capital utilization cost function and the capital services used in

production (k̂t) is de�ned as

k̂t = ût + �̂kt−1, (A.33)
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where �̂kt−1 is the physical capital stock, which evolves according to the following capital accumu-

lation equation:

�̂kt = κ1 �̂kt−1 + (1 − κ1)̂it + κ2ε̂
q
t (A.34)

with κ1 = 1 − (i∗/k∗) and κ2 = (i∗/k∗)γ
2φ(1 + �βγ).

The following optimal capital/labor input condition also holds:

k̂t = ŵt − r̂kt + L̂t, (A.35)

where ŵt is the real wage.

The log-linearized production function is given by

ŷt = ϕp ( αk̂t + (1 − α)L̂t + ε̂at ), (A.36)

in which ϕp is the �xed cost of production corresponding to the gross price markup in the steady-

state, and ε̂at is the exogenous TFP process.

Aggregate demand must equal aggregate supply:

ŷt =
c∗
y∗
ĉt +

i∗
y∗
ît + gt +

rk∗k∗
y∗

ût, (A.37)

where gt represents the exogenous demand component.

Next, we have the following log-linearized price setting equation with dynamic indexation ιp:

π̂t − ιpπ̂t−1 = π1 (Etπ̂t+1 − ιpπ̂t) − π2µ̂
p
t + ε̂pt , (A.38)

where π1 = β, π2 = (1− ξpβ)(1− ξp)/[ξp(1+(ϕp−1)ϵp)], 1− ξp is the probability of each �rm being

able to reoptimize the price each period, ϵp is the curvature of the aggregator function (eq. (A.1)),

and the markup shock ε̂pt has been rescaled to enter with a unit coe�cient. The price markup, µ̂pt ,

equals the inverse of the real marginal cost, µ̂pt = − m̂ct, which in turn is given by

m̂ct = (1 − α) ŵreal
t + α r̂kt − ε̂at . (A.39)

We also have the following wage-setting equation, allowing for dynamic indexation of wages for

non-optimizing households:

(1 + βγ)ŵreal
t − ŵreal

t−1 − βγEtŵ
real
t+1 = (A.40)

(1−ξwβγ)(1−ξw)
[ξw(1+(ϕw−1)ϵw)]

(
1

1−κ/γ ĉt −
κ/γ

1−κ/γ ĉt−1 + σlL̂t − ŵt

)
− (1 + βγιw)π̂t + ιwπ̂t−1 + βγEtπ̂t+1 + ε̂wt ,
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where ϕw is the gross wage markup, 1 − ξp is the probability of each household being able to

reoptimize its wage each period, ϵw is the curvature of the aggregator function (eq, A.8), and σl

determines the elasticity of labor supply, given σc (see equation (A.9)). The exogenous wage-markup

shock ε̂wt has been rescaled to enter linearly with a unit coe�cient.

Finally, we have the following monetary policy rule:

R̂t = ρRR̂t−1 + (1 − ρR) (rππ̂t + ryŷ
gap
t ) + r∆y�ŷgapt + ε̂rt , (A.41)

where ŷgapt = ŷt − ŷpott , or in other words, the di�erence between the actual output and the output

prevailing in the 
exible price and wage economy in absence of the ine�cient price- and wage-

markup shocks. We solve for ŷpott by setting ξp = ξw = 0 (or arbitrarily close to nil) and removing

ε̂wt and ε̂pt from the system of equations given by (A.29) − (A.41). When linearizing the model, we

do not take the ZLB into account and the policy rate equals the shadow rate implied by the Taylor

rule in equation (A.41) at all times.

A.8 Observer Equations and Data

We have the following observer equations in the nonlinear model:

πobst = 100 lnπt

�wobs
t = 100 lnwt/wt−1 + γ

Robs
t = 100 (Rt − 1)

�yobst = 100 ln yt/yt−1 + γ

�cobst = 100 ln ct/ct−1 + γ

�iobst = 100 ln it/it−1 + γ

lobst = 100 ln lt/l

We use the same data as Smets and Wouters (2007), except that we update their dataset

through 2014Q2.
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