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Abstract

We provide a framework for modelling risk and quantifying payment shortfalls in cleared markets
with multiple central counterparties (CCPs). Building on the stylised fact that clearing membership is
shared among CCPs, we show how this can transmit stress across markets through multiple CCPs. We
provide stylised examples to lay out how such stress transmission can take place, as well as empirical
evidence to illustrate that the mechanisms we study could be relevant in practice. Furthermore, we
show how stress mitigation mechanisms such as variation margin gains haircutting by one CCP can
have spillover effects on other CCPs. The framework can be used to enhance CCP stress-testing, which
currently relies on the “Cover 2” standard requiring CCPs to be able to withstand the default of their two
largest clearing members. We show that who these two clearing members are can be significantly affected
by higher-order effects arising from interconnectedness through shared clearing membership. Looking
at the full network of CCPs and shared clearing members is therefore important from a financial stability
perspective.
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1 Introduction

Central clearing has become a key feature of global derivatives markets in the aftermath of the Global
Financial Crisis. The mandates to centrally clear derivatives have significantly altered the shape of financial
networks – in centrally cleared markets a central counterparty (CCP) sits at the centre, becoming the buyer
to every seller and the seller to every buyer. Much of the academic and policy effort in understanding and
managing risks in centrally cleared markets has been on the CCPs themselves and their ability to withstand
a severe shock.1 In theory, there are efficiency gains arising from having a single CCP (Duffie & Zhu,
2011). In practice, however, derivatives clearing is characterised not by a single CCP, but by a small set of
CCPs. Importantly, linking these CCPs is a limited number of large banks representing the joint clearing
membership that together account for the lion’s share of clearing volumes.2

In this paper, we analyse the role of joint clearing membership at multiple CCPs for stress transmission
and financial stability. Joint clearing membership affects the structure of interconnections in financial net-
works, connecting CCPs via their shared clearing members and connecting the latter via CCPs. As such,
it can affect risk transmission (see e.g. Faruqui et al. (2018) for a discussion of the economic mechanisms
characterising the nexus between CCPs and clearing members). In this context, the default management
mechanism of CCPs plays a central role.3 This is usually described in terms of the “default waterfall”,
which specifies the order of loss absorption for the resources available to CCPs (see e.g., Duffie (2014)).

We show how joint clearing membership can affect several layers of the default waterfall. The exact
structure of a waterfall varies between CCPs, but as outlined in Gregory (2014), it can be split into losses
paid by defaulters and by survivors. In particular, initial losses are paid for by the defaulting clearing
members (in the form of initial margins and their default fund contributions) and higher losses are paid
for by the CCP (skin-in-the-game) and surviving clearing members (via their default fund contributions
and potentially additional contributions). We show that joint clearing membership affects both parts of the
default waterfall, i.e., how the defaulters pay and how the survivors pay, giving rise to different contagion
channels.

We consider two contagion channels associated with the default waterfall. The first is the fire-sale
channel of initial margins. Initial margins, typically in the form of collateral, serve as the first line of defense
in the waterfall to cover losses associated with individual positions cleared via CCPs. A simultaneous
default at more than one CCP by a joint clearing member can lead to losses larger than those covered by
initial margins at all the CCPs where the member clears – a situation which is only worsened if collateral is
illiquid.4 The second channel we consider is associated with one of the last layers of the default waterfall:

1See Menkveld & Vuillemey (2021) for a recent literature survey. A large part of the literature on central clearing focuses
on counterparty credit risk and netting efficiency. Duffie & Zhu (2011) show that clearing different products in separate CCPs
decreases netting efficiency and increases counterparty credit exposure, compared to clearing all products in one CCP. Despite the
theoretical advantages, central clearing today is done by a group of CCPs and not just a single CCP. Cont & Kokholm (2014)
consider a generalisation of the Duffie & Zhu (2011) framework and show that some of the conclusions depend on distributional
assumptions on exposures. Garratt & Zimmerman (2015) generalise this framework further by considering more general network
structures (e.g., scale free networks).

2(BCBS-CPMI-FSB-IOSCO, 2018) show that, empirically, central clearing is characterised by a strong concentration around
clearing members. These tend to be the largest global dealer banks that have long dominated derivatives trading. The central role
of these banks implies that they tend to be connected to more than one CCP, as they facilitate trading across both markets and
jurisdictions.

3While CCP defaults are very rare events, they are not without historical precedent (Faruqui et al., 2018; Bignon & Vuillemey,
2020). Furthermore, recent empirical evidence based on European repo market data suggests the potential failure of a CCP is
perceived as a real possibility by market participants and is priced into repo rates (Boissel et al., 2017).

4Glasserman et al. (2015), who refer to this mechanism as “hidden illiquidity”, show that convex margin requirements incentivise
clearing members to split their positions among several CCPs. They analyse existence and characteristics of equilibria of margin
schedules, such that CCPs collect sufficient margins in the presence of optimising clearing members. However, they do not model
the contagion mechanism itself that arises from illiquid collateral, which is what we study here. Throughout the paper we use the
short-hand of ”illiquid margins” to refer to the illiquidity of the collateral with which margins are met.
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variation margin gains haircutting (VMGH).5 If a stressed CCP uses VMGH, then all clearing members that
owe variation margin to this CCP are required to make full payments, but the CCP itself only pays out a
fraction of the variation margin it owes. We show that one CCP’s VMGH can transmit losses to another CCP
via their joint clearing members. In the extreme, a clearing member could cause the default of an unrelated
CCP if the CCP where it clears employs VMGH.

Finally, we show how illiquid collateral and VMGH interact, potentially leading to even larger losses,
notably when the CCP-bank nexus consists of cycles (i.e. when CCPs are connected to each other via joint
clearing members).6

To illustrate these channels we build a network model where clearing members are connected to multiple
CCPs through derivatives market obligations. The trigger for contagion is an exogenous change in market
conditions giving rise to variation margins between clearing members and CCPs. As variation margins come
due, counterparties attempt to meet them. If they cannot, then they are put on ”technical default” and ini-
tial margins and default fund contributions will be used. But if the collateral underpinning initial margins
is illiquid (Ghamami et al., 2022), the realised equilibrium price will likely be smaller than originally an-
ticipated – further fuelling shock transmission. If payment obligations cannot be met, clearing members
effectively default, whereas CCPs can rely on VMHG, which in turn may curtail effective payments to other
clearing members and further contribute to contagion. Along the way, at each stage stress can be transmit-
ted across CCPs and clearing members due to the shared membership across CCPs. The model builds on
the literature on systemic risk in financial networks and is particularly related to approaches that consider
CCPs or the presence of collateral. Concretely, we build on Ghamami et al. (2022), who derive a modelling
framework for clearing payments in collateralised networks (without a central counterparty) based on the
seminal contribution by Eisenberg & Noe (2001). We adapt this framework to markets with multiple central
counterparties, allow for a more detailed default mechanism of CCPs, and include frictions such as default
costs (in the spirit of Rogers & Veraart (2013)) and the possibility of variation margin gains haircutting by
CCPs.7

The modelling framework we present works for general network structures and does not make any
assumptions on the magnitudes of different layers of the default waterfall. A growing literature considers
design aspects of central clearing. For example, Amini et al. (2015) study the problem of designing central
clearing such that it reduces sytemic risk and is consistent with the preferences of those using it. Biais et al.
(2016) study the optimal design for central clearing and margin calls to increase resilience in derivatives
markets. Lopez et al. (2017) propose a methodology for estimating margin requirements that accounts for
interdependencies of market participants. Wang et al. (2022) propose a normative analysis on the design
of collateral requirements for central clearing. They consider both initial margins and default funds in their
analysis. Huang (2019) consider the incentive problem of thin skin-in-the-game of CCPs. In contrast to these
approaches, we take the design as given and analyse the outcome for a given design. There is considerable
flexibility, however, in the specific design that can be considered in our analysis.

We use three stylised examples to illustrate how contagion through joint clearing membership and mul-
tiple CCPs operates in the model. The first and most simple has a clearing member jointly clearing in two
CCPs and two additional clearing members clearing only at each of the two CCPs. The default of the joint

5We over details of the default waterfall below. ISDA (2013) advocates the use of Variation Margin Gains Haircutting for
failing CCPs: “For Default Losses, this paper advocates Variation Margin Gains Haircutting (”VMGH”) as a robust recovery and
continuity mechanism which will operate as part of the default waterfall following the exhaustion of all other layers of the default
waterfall”.

6Throughout, the default of a clearing member (given by an inability to meet payments due on derivatives) is invariably at the
root of a CCP’s default.

7Our work also relates to Paddrik et al. (2020) and Paddrik & Young (2021), who model payment shortfalls in centrally cleared
markets with a single CCP. In contrast, we consider markets with multiple CCPs, model in more detail the CCP default waterfall and
include additional frictions such as default costs and different magnitudes of variation margin gains haircutting into the modelling
framework.
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clearing member can cause large losses to both CCPs, in the extreme potentially leading to their default if
the collateral posted by the defaulting member is illiquid.8 The second example has a similar structure, but
the default is of a clearing member that only clears at one CCP. This example helps to illustrate the possi-
bility that the default of a clearing member can adversely affect a CCP in which the member does not clear.
The third example involves a cycle where two clearing members jointly clear at two CCPs, and it helps to
illustrate how the interaction of illiquid collateral and VMGH can help propagate distress and default in the
network. Our analysis extends earlier work on the nexus between CCPs and clearing members (as analysed
for example in Faruqui et al. (2018)) by providing a quantitative model to measure the magnitude of losses
arising from the feedback loops between these agents.

Beyond these stylised examples, we provide empirical evidence of CCP-clearing member interconnect-
edness by analysing public data on interest rate and credit default swaps (IRS and CDS respectively). Indeed,
as described in BCBS-CPMI-FSB-IOSCO (2018), several banks are clearing members at multiple CCPs.
This is in line with results by Demange & Piquard (2021), who provide empirical evidence of competition
between CCPs in Europe.9

We use the data to provide case studies that show how the different contagion channels can play out in
the IRS and CDS markets. We calibrate our model based on data on clearing membership, notional amounts
cleared (for both members and CCPs), default funds, skin-in-the-game and aggregate initial margins, as
well as estimates of the network of payments obligations and liquidity buffers. We use this to quantify
the shortfall in payments when accounting for higher order effects and the different contagion channels
discussed above. We find that these contagion channels can cause the default of CCPs and we quantify
the magnitude of the losses. Our analysis helps to illustrate that the mechanisms captured by the model
could be of relevance when calibrated to real-world data. That said, our exercises are meant as illustrative
of the mechanisms we model, rather than a real-world stress test – in other words, we cannot quantify the
likelihood of any scenario leading to an actual CCP default.

Our results carry important implications from a policy perspective, in particular regarding CCP stress-
testing.10 At the heart of current practice is the Cover-2 standard, which, generally speaking, seeks to
identify the two groups of clearing members that would lead to the largest shortfall of prefunded resources
for a given CCP or alternatively across all CCPs.11 Paddrik & Young (2021) argue that the Cover-2 standard
can underestimate the vulnerability of the system because it does not consider network effects. They provide
empirical evidence for such network effects in a single-CCP market, allowing for variation margin gains
haircutting. By considering only one CCP, however, their analysis abstracts from the effects of joint clearing
members in loss transmission between several CCPs – what we analyse here. For the specific simulations
we conduct – which are only meant as illustrative – the total loss can increase by a factor of around four
when considering network effects with multiple CCPs, shared clearing members and the contagion channels
discussed above.

We argue that who the top two clearing members are (that cause the highest losses) will significantly
depend on the contagion mechanisms included in the modelling framework. In particular, we show that the
ranking of institutions according to first order losses can differ notably from that obtained when considering

8In both the model and the simulations that follow, a CCP can default if it is not able to meet its payment obligations to clearing
members (after recourse to available elements from the default waterfall).

9There is also theoretical work modelling competition between CCPs. Huang (2019) studies incentives of for-profit CCPs with
limited liabilities, analysing the trade-off between maximising fee income and counterparty credit risk. A CCP that requires higher
collateral from its clearing members (which reduces the probability of a CCP’s default), will attract fewer clearing members. A key
result is that if there are no capital requirements for CCPs, a profit-maximising CCP will hold no capital and will only ask for small
collateral requirements from its clearing members. If, however, a CCP is user-owned, i.e., owned by its clearing members, then it
has incentives to hold more capital.

10See CPMI-IOSCO (2018) for a general framework of supervisory stress testing of CCPs. For details on current market practice
for stress testing CCPs in the European Union, we refer to ESMA (2020).

11See Section 5 for details on the two different types of applications of the Cover-2 standard.
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higher order losses that account for shared clearing membership.12 From a financial stability perspective it
is thus important to take into account the network of joint clearing membership across multiple CCPs.

The main contributions of our paper are three-fold. First, we develop a framework to quantify pay-
ment shortfalls in centrally cleared markets with multiple CCPs and identify different roles of joint clearing
members for loss transmission. Furthermore, we show how stress mitigation mechanisms such as variation
margin gains haircutting by one CCP can have spill-over effects to other CCPs. Second, we complement
existing empirical evidence of CCP interconnectedness via their joint clearing members by analysing data
from the interest rate and credit default swaps markets. Third, we discuss policy implications for stress
testing central counterparties focusing in particular on the Cover-2 standard. We show that who the two
top clearing members are varies significantly depending on whether one accounts for contagion effects via
joint clearing membership and defaults at multiple CCPs. Our analysis therefore can serve as a tool to select
stress scenarios in markets with multiple central counterparties.

The rest of the paper is structured follows. Section 2 presents the modelling framework and its various
variants. Section 3 provides simple stylised examples to illustrate how contagion unfolds in the model.
Section 4 presents evidence of CCP interconnectedness through joint clearing membership in interest rate
and credit default swap markets, and applies our contagion model to these data. Section 5 discusses policy
implications for CCP stress-testing. Finally, Section 6 concludes.

2 Modelling contagion in markets with multiple CCPs

We develop a model for a clearing equilibrium in derivatives markets when variation margins become due.
Our model is a generalised version of the model proposed by Ghamami et al. (2022), which itself builds
on the clearing framework developed by Eisenberg & Noe (2001). We adapt this to markets with multiple
central counterparties and introduce additional frictions to account for risk-mitigation tools available to
CCPs, in particular variation margin gains haircutting.

Ghamami et al. (2022) propose a clearing mechanism for collateralised markets that proceeds in two
rounds. The first round determines who defaults, as well as the initial payments made between counterpar-
ties. In the second round, collateral (initial margin) that was not used is returned to the nodes that originally
set it aside and is used to make additional payments if those made in the first round fell short of obligations.
We will generalise the first round of clearing to allow for market frictions (such as exogenous default costs)
or different magnitudes of variation margin gains haircutting by CCPs, and will then use the second round
of clearing as proposed in Ghamami et al. (2022).13

We consider a financial market consisting of nM ∈ N clearing members, with indices in M = {1, . . . , nM}
and nC ∈ N central counterparties with indices in C = {nM +1, . . . , nM +nC}. We write N = M∪C and
set N = nM +nC . We assume that every clearing member clears their trades with at least one of the CCPs.
Clearing members can have trading relationships with more than one CCP and indeed this can be observed
in practice, as we will discuss in detail in Section 4.

We assume that clearing members and CCPs are connected through a network of obligations arising
from derivative positions. For example, these could represent a network of obligations arising from CDS
written on a specific reference entity. Then, if the reference entity defaults, payments become due from
the protection seller to the protection buyer in the CDS contract. But even if no default occurs, changes
to market conditions can trigger payment obligations between the counterparties in the form of variation

12Cont (2017) highlights the importance of addressing liquidity risk in stress tests of CCPs rather than focusing only on counter-
party credit risk and insolvency risk. Indeed, more recent stress tests, e.g., ESMA (2020) explicitly consider liquidity risk in their
stress test. Our analysis focuses on liquidity stress testing as well.

13As our setting is similar to that in Ghamami et al. (2022), we try to use the same notation whenever possible, with adjustments
to allow for the existence of CCPs.
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margin payments. In the following, we focus on networks of variation margin payment obligations, as e.g.
in Paddrik et al. (2020) who consider such a setting in a market with one CCP.14

2.1 First round of clearing and assessment of defaults

We assume that due to changes in market conditions, variation margins become due. We denote by p̄R1 ∈
[0,∞)N×N the variation margin obligations matrix, with element p̄R1

ij , where i, j ∈ N , capturing the vari-
ation margin (VM) payment obligation from i to j. Since variation margins are usually bilaterally netted,
we assume that for all i, j ∈ N with i ̸= j at most one of pij and pji is strictly positive and pii = 0 for all
i ∈ N . Furthermore,

p̄R1
i =

N∑

j=1

p̄R1
ij

denotes the total variation payment obligation of firm i ∈ N .
There are a number of resources available to the nodes in the system to meet payment obligations. For

one, as part of the contractual arrangement that gives rise to potential payment obligations, counterparties
post initial margin (IM). As in Ghamami et al. (2022), we denote by mki ≥ 0 the amount of IM posted by k
to i, where k, i ∈ N , k ̸= i and mii = 0 for all i ∈ N . An important difference between CCPs and clearing
members is that the latter are required to provide initial margins to the CCP at which they clear, whereas
CCPs do not provide initial margins to their clearing members (Ghamami et al., 2022, Appendix B). Hence,
in our setting with multiple CCPs, we have mki = 0 for all k ∈ C and for all i ∈ N . Furthermore, clearing
members also have liquidity buffers to deal with fluctuations in payment obligations and receipts (e.g. cash).
We assume that bM ∈ [0,∞)nM is the vector capturing such liquidity buffers, i.e., each clearing member
i ∈ {1, . . . , nM} has a liquidity buffer bM

i ≥ 0.
In contrast to Ghamami et al. (2022), our model contains CCPs and we account for the special structure

of their liquidity buffers. As discussed above, a key feature of CCPs’ risk-management is the so-called
default waterfall, which sets out the hierarchy and sequence of resources that CCPs can draw from to meet
payment obligations arising from the default of one or more clearing members.

We explicitly model two pre-funded resources that form part of the default waterfall of a CCP (in addi-
tion to the initial margins), namely the default fund and the skin-in-the-game. The default fund refers to the
contribution of clearing members to the financial resources of the CCP, whereas the skin-in-the-game refers
to the (usually very thin) CCP’s equity.15 This part of our model is a slight generalisation of the model by
Paddrik et al. (2020), who – in addition to modelling contagion in a single-CCP setting – consider only the
default fund as a liquidity buffer. We denote by δ ∈ [0,∞)nC the vector of CCPs’ default funds, i.e., δj is
the default fund of CCP j. In particular,

δ⊤ = 1⊤nM
δ̃,

where 1nM is the nM -dimensional unit vector and δ̃ ∈ [0,∞)nM×nC is the matrix with element δ̃ij repre-
senting the default fund contribution of member i to CCP j.

We denote by σ ∈ [0,∞)nC the skin-in-the-game vector, i.e., σj is the skin-in-the-game of CCP j. We
then define a vector b ∈ [0,∞)N as follows:

bi =

{
bM
i , if i ∈ M,

δi + σi, if i ∈ C.
14It would be possible to explicitly model how the original obligations network can be mapped into a network of variation margin

payments as in Veraart (2022), but for the purpose of our analysis this is not strictly necessary.
15Huang & Takats (2020) provide empirical evidence that higher skin-in-the-game – even though very limited in size – is asso-

ciated with more prudent risk management of CCPs (e.g., fewer margin breaches).
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Hence, b represents additional resources that are in principle available to cover payment shortfalls that are
not covered by initial margins.

Figure 1 depicts the stylised CCP waterfall considered in our model. The pre-funded layers of the
default waterfall are included in a solid frame, whereas the last layer (indicated by a dashed frame) represents
unfunded resources (we discuss the unfunded layer in more detail when we define the first round of clearing).
As mentioned in Faruqui et al. (2018), the skin-in-the game of the CCP “can come before, along with, and/or
after the default fund contributions of non-defaulting members, depending on the CCP’s specific rules”. In
our analysis, the order in which the skin-in-the-game is used relative to the default fund contributions of the
surviving members does not matter.

Initial margin of defaulting member: mij

DF contribution of defaulting member: δ̃ij

CCP capital (“skin-in-the-game”): σj

DF contributions of surviving members at CCP:
∑nM

k=1,k 6=i δ̃kj

Assessment/unfunded DF contributions
and/or Variation margin gains haircutting

1

Figure 1: A stylised default waterfall of CCP j in a situation where only clearing member i defaults. The
first four layers (included in a solid frame), are the prefunded resources of CCP j. The remaining layer (in
a dashed frame), indicates unfunded resources of CCP j.

In practice, if a clearing member defaults, its portfolio will be sold by the CCP in an auction (CPMI-
IOSCO, 2020). The design of auction mechanisms and their implications have been studied in e.g., Huang
& Zhu (2021); Ferrara et al. (2020). Huang & Zhu (2021) show that juniorisation of the guarantee fund
contributions of those clearing members that submit bad bids in the auction increases the auction price. In
our model, any possible difference in seniority of the guarantee fund contributions of the surviving members
will not affect the contagion mechanism, since we assume that each CCP i will use its full resources bi (in
addition to the initial margins that correspond to defaulted positions) before it transmits any losses to clearing
members directly. We will therefore not consider aspects of mechanism design in our contagion model.

First round price - payment - equilibrium. We are now interested in determining a price-payment-
equilibrium in the first clearing round (R1), i.e., we aim to determine an N × N -matrix p⋆,R1, where each
component p⋆,R1

ij represents the variation margin payments made from i to j. In addition, some collateral
will need to be liquidated if defaults occur, potentially affecting its market price. Accordingly, we also
aim to determine the price π⋆,R1 of the collateral in equilibrium. To do so, we consider an inverse demand
function modelled along the lines of Cifuentes et al. (2005) which returns the price of the collateral as a
function of the amount of collateral sold.

The price-payment-equilibrium can be characterised by a suitable fixed-point. Considering a function
ΦR1 : [0, 1]× [0, p̄R1] → [0, 1]× [0, p̄R1], the goal is to obtain a fixed point of this function, i.e., we want to
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find (π⋆,R1, p⋆,R1) such that

(π⋆,R1, p⋆,R1) = ΦR1(π⋆,R1, p⋆,R1).

Here, ΦR1 is defined as follows:

ΦR1
1 (π, p) = exp(−α∆(π, p)),

ΦR1
2,(ij)(π, p) =

{
min

{
p̄R1
ij , πmij + aR1

ij (π)
(
γ
(1)
i bi + γ

(2)
i

∑N
k=1 pki

)}
, if i ∈ D(p),

p̄R1
ij , if i ∈ N \ D(p),

(1)

where

D(p) = {i ∈ N | Ai(p) < p̄R1
i },

specifies the nodes in default in a system with payments p ∈ [0, p̄R1], i.e., these are the nodes that have fewer
assets than payment obligations, where

Ai(p) = bi +
N∑

k=1

pki

denotes the available assets of node i ∈ N .
The matrix aR1(π) ∈ [0, 1]N×N specifies the repayment proportions and is given by

aR1
ij (π) =

{
max{0,p̄R1

ij −πmij}∑N
k=1 max{0,p̄R1

ik−πmik}
, if

∑N
k=1max{0, p̄R1

ik − πmik} > 0,

0 otherwise,

for all i, j ∈ N , where aR1
ij (π) specifies the relative payment obligations due from i to j while accounting

for initial margins. In other words, aR1
ij (π) describes the relative payment obligations from i to j that are not

covered by collateral (i.e., initial margins) when the price of the collateral per share is π.
The parameter α ≥ 0 is used to model the price impact of (fire) sales of collateral.16 If α = 0, then there

is no price impact and ΦR1
1 (π, p) = 1 for all p ∈ [0, p̄R1]. If α > 0 and ∆(π, p) > 0, then ΦR1

1 (π, p) < 1 for
all p ∈ [0, p̄R1], hence capturing the decline in the price of collateral when the share ∆(π, p) of collateral is
sold. In particular, ∆(π, p) is given by

∆(π, p) =

N∑

i=1

N∑

j=1

∆ij(π, p),

where the total share of collateral seized and sold by node j after the default of node i is given by

∆ij(π, p) =





min

{
mij ,

p̄R1
ij

π

}
, if i ∈ D(p),

0, if i ∈ N \ D(p),

16For a discussion and further results related to the choice of the parameter α for the exponential inverse demand function we refer
to Amini et al. (2016). In particular, they show that the function modelling the cash proceeds from liquidation ∆ 7→ ∆exp(−α∆)
is increasing in [0,∆total] if and only if α ≤ 1

∆total
. Here, ∆total > 0 denotes the maximum collateral available for sale, i.e.,

∆total =
∑N

i=1

∑N
j=1 mij .
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if π > 0, and when π = 0 it is given by

∆ij(π, p) =

{
mij , if i ∈ D(p) and p̄R1

ij > 0,

0, otherwise.

Hence, only collateral of nodes that default (i.e., which are in D(p)) can in principle be sold. The amount of
collateral sold is capped by the collateral available for a given position mij and by the payment obligations
due relative to the price of the collateral.

The parameters γ(1)i , γ
(2)
i ∈ [0, 1], i ∈ N are used to model further market frictions such as exogenous

default costs or the severity of variation margin gains hair cutting. Mathematically, they are similar to
the model by Rogers & Veraart (2013). The special case γ

(1)
1 = . . . , γ1N = 1 and γ

(2)
1 = . . . , γ2N = 1

corresponds to the model proposed by Ghamami et al. (2022). When γ
(1)
i < 1 or γ(2)i < 1, we can capture

the effect that, in case of default, not all assets are available or used to pay counterparties.
The parameters γ(1)i , γ

(2)
i , i ∈ N only play a role if there are defaulting nodes. Every node i that defaults

(i.e., is in D(p)), uses the proportion γ
(1)
i of its liquidity buffer bi and the proportion γ

(2)
i of the payments it

received (
∑N

k=1 pki) to make payments to other nodes. How much an individual node j receives from i is
determined both by the proportion aR1

ij (π), which is used to distribute the cash available to j, and the initial
margin evaluated at the market price πmij .

If a node i ∈ D(p) is a CCP17, then, formula (1) simplifies to

ΦR1
2,(ij)(π, p) = min

{
p̄R1
ij ,

p̄R1
ij

p̄R1
i

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)}
,

since CCPs do not post initial margin to their clearing members. In particular, the payments of CCP i to its
clearing members do not directly depend on the price of the collateral π.

For each CCP i we will assume that γ(1)i = 1, which means that the full pre-funded resources from the
default waterfall bi are used to make payments to its clearing members.

If all prefunded resources are not enough to meet its payment obligations, then we think of CCP i as
being in default (i.e., i ∈ D(p)). What this implies is that not all due payments are made in full. In this case
we distinguish two sub-cases, which we refer to as variants of variation margin gains haircutting (VMGH).
The severity of the VMGH is modelled by the parameter γ(2)i . If γ(2)i = 1, then node i pays out the full
amount of variation margins received from its clearing members to clearing members to which payments
are due, but this is still not enough to meet payment obligations – we refer to this situation as one of soft
VMGH. If γ(2)i < 1, however, then node i does not pay out the full amount of variation margins received
to clearing members to which payments are due – a situation we refer to as severe VMHG.18 In practice,

VMGH is done pro rata (Gregory, 2014) and this is captured by the proportion
p̄R1
ij∑N

k=1 p̄
R1
ik

.

For each clearing member i, we will also consider different choices of γ(1)i , γ
(2)
i . In particular, γ(1)i =

γ
(2)
i = 1 would correspond to a soft default and γ

(1)
i = γ

(2)
i = 0 would correspond to a hard default of the

clearing member as in Paddrik & Young (2021). We will allow for intermediate cases, i.e., γ(1)i , γ
(2)
i ∈ (0, 1)

as well.
The introduction of the parameters γ(1)i , γ

(2)
i ∈ [0, 1], i ∈ N has implications for the fire sale of collateral

as well. If some of these parameters are strictly smaller than one, this can increase the losses spreading
through the system. If those losses cause additional defaults of clearing members, then more collateral will

17Since i ∈ D(p), we have that
∑N

k=1 p̄
R1
ik > 0.

18Strictly speaking, this second variant is closer to VMGH as commonly discussed.
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be liquidated, causing a stronger price decline of the collateral which itself can feed back to further losses
and defaults. Therefore these two channels interact and can amplify the contagion effects.

Using Tarksi’s fixed point theorem, we show in Appendix B that the set of fixed points of the function
ΦR1 is a non-empty complete lattice. Throughout this paper we will always consider the greatest fixed point
of ΦR1 and denote this by (π⋆,R1, p⋆,R1).

Definition 2.1 (Defaults). We will refer to all nodes in the set

D(p⋆,R1) = {i ∈ N | Ai(p
⋆,R1) < p̄R1

i } = {i ∈ N | bi +
N∑

k=1

p⋆,R1
ki < p̄R1

i }

as nodes in default. We refer to all nodes in the set F = D(p̄R1) = {i ∈ N | bi +
∑N

k=1 p̄
R1
ki < p̄R1

i } as
fundamental defaults. We refer to all nodes in the set D(p⋆,R1) \ F as contagious defaults.

Hence, all nodes that cannot satisfy their payment obligations even if all other nodes satisfy theirs are
referred to as fundamental defaults. We show in Corollary B.3 in the Appendix that F ⊆ D(p⋆,R1).

Remark 2.2 (No fundamental defaults among CCPs ). CCPs have matched books, i.e., for each i ∈ C it
holds that

∑N
k=1 p̄

R1
ki = p̄R1

i , which means that the total variation margins that i ∈ C is due to pay (p̄R1
i )

coincide with the variation margin payments that the clearing members are due to pay to CCP i (namely,∑N
k=1 p̄

R1
ki ). This implies (together with bi ≥ 0 for all i ∈ C), that the set of fundamental defaults F cannot

contain CCPs, i.e., F ∩ C = ∅.

Second round price - payment - equilibrium. Next, we consider the same mechanism for a second
round of clearing (R2), as proposed in Ghamami et al. (2022). The main idea of the second round of
clearing is that collateral not used in the first round is freed and becomes available to make still-outstanding
payments. This can be modelled by considering a second fixed point problem. Payments outstanding at
the start of the second round are given by p̄R2 = p̄R1 − p⋆,R1 ∈ [0, p̄R1]. We define a function ΦR2 :
[0, π⋆,R1] × [0, p̄R2] → [0, π⋆,R1] × [0, p̄R2], and our aim is to determine a fixed point of this function, i.e.,
we want to find (π⋆,R2, p⋆,R2) such that

(π⋆,R2, p⋆,R2) = ΦR2(π⋆,R2, p⋆,R2),

where ΦR2(π, p) is defined in Appendix A.
The existence of a greatest fixed point of ΦR2 for the second round of clearing follows directly from

(Ghamami et al., 2022, Proposition 3.1), in addition to the arguments provided in the Appendix for the
modified first round of clearing.

Remark 2.3 (Seniority of payments). The definitions of ΦR1 and ΦR2 reflect the fact that all payment
obligations have the same seniority. It is possible to change this assumption to allow e.g. for situations
in which clearing members pay CCPs according to a pecking order rather than based on a proportionality
assumption. In Appendix D we discuss this modification in detail. While this change in clearing method
will lead to different price-payment-equilibria, we show that the key insights developed in this paper remain
the same under both types of clearing mechanisms.

3 Joint clearing members and loss transmission

With the fundamentals of the model behind us, we now provide stylised examples that illustrate different
types of loss transmissions arising from multiple CCPs with joint clearing members. To do this, we compute

10



the clearing payments and clearing price of the collateral in both rounds and consider the pair-specific
payment shortfalls Sij , where i, j ∈ N , after the two rounds of clearing, given by

Sij = max{0, p̄R1
ij − p⋆,R1

ij − p⋆,R2
ij }, i, j ∈ N ,

and the total payment shortfall S, which measures the amount of unfulfilled payment obligations after the
two clearing rounds (using the initial margins where applicable), defined as

S =

N∑

i=1

N∑

j=1

Sij .

3.1 Example #1: Default of a joint clearing member

First, we consider the situation where a joint clearing member defaults simultaneously at two CCPs. We
show that this can result in both CCPs suffering severe losses and could potentially even cause their default
if the collateral posted by the defaulting clearing member is illiquid.

We consider a system consisting of nC = 2 CCPs and nM = 3 clearing members. Figure 2 provides
an illustration of the network of payment obligations. The weights along the edges represent the payment
obligation due from i to j in the first round, i.e., p̄R1

ij , and the numbers in parentheses represent the corre-
sponding initial margins (mij). For simplicity, we assume that the liquidity buffers are zero, but the example
can be easily generalised to include positive liquidity buffers, default funds and skin-in-the-game.

2 (0) 2 (0)

2 (2)2 (2)

M2 CCP1

M1

CCP2 M3

1

Figure 2: Example #1 – Default of a joint clearing member affecting several CCPs.

There is one joint clearing member (M1) that clears at both CCPs. The other two clearing members only
clear at one CCP each (M2 at CCP1 and M3 at CCP2). We label the clearing members Mi with index i for
i ∈ {1, 2, 3}, CCP1 with index 4 and CCP2 with index 5 in the matrices and vectors below.

Formally,

p̄R1 =




0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
0 2 0 0 0
0 0 2 0 0




, m =




0 0 0 2 2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, b = (0, 0, 0, 0, 0)⊤.

The joint clearing member M1 is the only node in fundamental default, i.e., F = {1} = {M1}.
We assume that γ(1)i , γ

(2)
i ∈ [0, 1] for all i ∈ N . We consider various cases,
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1. First, we consider the case of fully liquid collateral that can be liquidated at no discount, i.e., α = 0.

In this scenario, the price of the collateral cannot change, i.e., π⋆,R1 = π⋆,R2 = 1. Furthermore, we
obtain that p⋆,R1 = p̄R1 and p⋆,R2 = 0, implying that all payments are made in full (the total shortfall
is S = 0). Here, D(p⋆,R1) = F = {1}. Hence, even though clearing member M1 is in fundamental
default, CCP1 still receives 2 from M1 by seizing the initial margin m14 = 2 and the same situation
arises for CCP2, which seizes m15 = 2. Therefore, both CCP1 and CCP2 are able to satisfy their
payment obligations of 2 to M2 and M3, respectively, in full.

Note that in this example the values of γ(1)i and γ
(2)
i do not matter, since the joint clearing member

M1 does not pay the CCPs directly (these payment would be affected by the parameters γ(1)i , γ
(2)
i ) as

it does not have any resources to use. The CCPs seize the initial margins instead, and therefore the
clearing payments p⋆,R1 = p̄R1 correspond to the full payment obligations in Round 1 and there is
nothing left to be paid in Round 2, i.e., p⋆,R2 = 0.

2. Second, we assume that the collateral is illiquid by setting α = 0.25 > 0.

The total shares of collateral sold in the first round are ∆ = 4, and in the second round Γ = 0, see
Appendix A for details on the second round of clearing and the formal definition of Γ. Furthermore,
the clearing price of the collateral in both rounds is given by π⋆,R1 = π⋆,R2 = exp(−4α) ≈ 0.3679.
It does not decrease from the first to the second round, since no collateral is sold in the second round
in this case. The clearing payments in the first round are given by

p⋆,R1 =




0 0 0 2π⋆,R1 2π⋆,R1

0 0 0 0 0
0 0 0 0 0

0 γ
(2)
4 2π⋆,R1 0 0 0

0 0 γ
(2)
5 2π⋆,R1 0 0




and the clearing payments in the second round are given by the zero matrix, i.e., p⋆,R2 = 0.

This implies that the total shortfall is S = 2(2 − 2π⋆,R1) + (2 − 2γ
(2)
4 π⋆,R1) + (2 − 2γ

(2)
5 π⋆,R1). In

particular, the total shortfall depends on γ
(2)
i , i ∈ {4, 5}. For example, for γ(2)4 = γ

(2)
5 = 1, S ≈ 5.057

and for γ(2)4 = γ
(2)
5 = 0.5, S ≈ 5.793.

Furthermore, for all choices of γ
(2)
4 , γ

(2)
5 , both CCPs suffer a contagious default and D(p⋆,R1) =

{1, 4, 5}. Hence, even though the liabilities of the joint clearing member were fully collateralised at
both CCPs, the fact that this collateral was illiquid still caused the (contagious default) of both CCPs,
which causes knock-on losses to clearing members that only clear at one CCP.

The scenario from this stylised example has been considered by Glasserman et al. (2015) before, but
not in the context of a model involving different contagion channels. They show that convex initial margin
schedules provide incentives for clearing members to split their positions across multiple CCPs. This gives
rise to what they refer to as hidden illiquidity – i.e., the CCPs involved are not aware that the positions of
some of their joint clearing members are in fact undercollateralised.

We demonstrate how this effect can be captured by the different contagion mechanisms in our model.
In our example, CCP1 does not know that M1 has the same position at CCP1 and CCP2 and therefore for
CCP1 it may appear that the position of M1 is sufficiently collateralised. For illiquid collateral, however, we
find that both CCPs can default and if these two CCPs use more severe variation margin gains haircutting
(achieved by setting γ

(2)
4 = γ

(2)
5 = 0.5 as in our last example) then other clearing members can suffer

substantial additional losses.
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3.2 Example #2: Default of clearing member at only one CCP

Next, we show that even if there is no fundamental default among the joint clearing members, they can still
act as a transmission channel of losses from one CCP to another. To illustrate this effect, we consider a
situation where there is only one fundamental default in a clearing member that only clears at one CCP.

As before, we consider an example consisting of nC = 2 CCPs and nM = 3 clearing members. Figure
3 provides an illustration of the network of payment obligations. The notation is the same as in Figure 2.

2 (0) 2 (2)

2 (0)2 (2)

M2 CCP1

M1

CCP2 M3

1

Figure 3: Example #2 – Loss transmission due to joint clearing members network.

Formally,

p̄R1 =




0 0 0 2 0
0 0 0 0 0
0 0 0 0 2
0 2 0 0 0
2 0 0 0 0




, m =




0 0 0 2 0
0 0 0 0 0
0 0 0 0 2
0 0 0 0 0
0 0 0 0 0




, b = (0, 0, 0, 0, 0)⊤.

Here, F = {3} = {M3}, hence the clearing member (labeled M3 in Figure 3) is the only fundamental
default. As in the first example, we consider two alternative cases by varying the liquidity of the collateral.

1. First, we assume that the collateral is liquid, i.e., α = 0. As above, this means that the price of the
collateral cannot change (i.e., π⋆,R1 = π⋆,R2 = 1), p⋆,R1 = p̄R1 and p⋆,R2 = 0 and hence all payments
are made in full (the total shortfall is S = 0). The default set is D(p⋆,R1) = F = {3} = {M3}: there
is only the original fundamental default and no contagious defaults.

Hence, even though clearing member M3 is in fundamental default, CCP2 still receives 2 from M3
by seizing the initial margin m35 = 2. Therefore, CCP2 is able to satisfy its payment obligations of
2 to M1 in full. As in the previous example, the value of γ(2)3 does not matter, since CCP2 seizes
the collateral and there are no other payments from M3 to CCP2 (which would be affected by the
parameter γ(2)3 ). Also note that, since b3 = 0, the value of γ(1)3 does not matter either.

2. Second, we assume that the collateral is illiquid by setting α > 0. We choose α = 0.01 and find that
both defaults and shortfall depend on γ

(2)
1 , γ

(2)
4 , γ

(2)
5 . In particular, we find that both CCP2 and M1

suffer a contagious default for all choices of γ(1)i , γ
(2)
i , i ∈ N , but whether CCP1 suffers a contagious

default or not depends on the particular values of γ(2)1 , γ
(2)
4 , γ

(2)
5 .

For all γ(1)i , γ
(2)
i ∈ [0, 1], the total shares of collateral sold are ∆ = 4, Γ = 0, resulting in prices for
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the collateral of π⋆,R1 = π⋆,R2 = exp(−4α) ≈ 0.9608. Furthermore,

p⋆,R1
14 = min{2, 2π⋆,R1(1 + γ

(2)
1 γ

(2)
5 )},

p⋆,R1
35 = 2π⋆,R1,

p⋆,R1
42 = min{2, γ(2)4 p⋆,R1

14 } = min{2, γ(2)4 min{2, 2π⋆,R1(1 + γ
(2)
1 γ

(2)
5 )}},

p⋆,R1
51 = γ

(2)
5 2π⋆,R1,

and p⋆,R1
ij = 0 for the remaining index pairs (i, j) and p⋆,R2 = 0. The shortfall is given by

S = (2−min{2, 2π⋆,R1(1 + γ
(2)
1 γ

(2)
5 )}) + (2− 2π⋆,R1)

+ (2−min{2, γ(2)4 min{2, 2π⋆,R1(1 + γ
(2)
1 γ

(2)
5 )}}) + (2− γ

(2)
5 2π⋆,R1),

i.e., it depends on γ
(2)
1 , γ

(2)
4 , γ

(2)
5 . For example, for γ

(2)
1 = γ

(2)
4 = γ

(2)
5 = 1, S ≈ 0.1568 and

D(p⋆,R1) = {1, 3, 5} = {M1,M3,CCP2}.

If CCP2 does very severe variation margin gains hair cutting, achieved by e.g., setting γ
(1)
5 = 0 (and

γ
(2)
1 = γ

(2)
4 = 1), then S ≈ 2.2353 and D(p⋆,R1) = {1, 3, 4, 5} = {M1,M3,CCP1,CCP2}. Hence,

there is the additional default of CCP1.

If both CCPs do severe variation margin gains haircutting, by for example setting γ
(2)
4 = γ

(2)
5 = 0

and γ
(1)
3 = 1, then the total shortfall increases even further to S ≈ 4.1568, but the default set remains

the same as in the situation in which only CCP2 does severe variation margin gains haircutting, i.e.,
D(p⋆,R1) = {1, 3, 4, 5} = {M1,M3,CCP1,CCP2}.

This example serves to illustrate that the default of an institution (M3) can trigger the default of a CCP
(CCP1) at which it is not a clearing member. In particular, here the variation margin gains haircutting
of CCP2 is one of the causes of the default of CCP1. So while variation margin gains haircutting
can serve as a defense mechanism for CCP2 on a stand-alone basis, it can have contagion effects and
ultimately lead to the default of another CCP.

3.3 Example #3: Circular loss transmission via joint clearing members and multiple CCPs

Finally, we consider a situation in which the existence of multiple joint clearing members creates a circle of
loss transmission between them and CCPs, which can cause the default of both types of institutions.

In this example, we still consider a system with nC = 2 CCPs, but now have nM = 6 clearing members.
Figure 4 provides an illustration of the network of payment obligations. The notation is the same as in
Figure 2. In contrast to the previous examples, we now consider two joint clearing members that clear at
both CCPs which leads to a circular structure of payment obligations.

Formally,
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2 (0)

3 (3) 3 (0) 4 (4) 4 (0)

2 (2)2 (0)2 (2)

M3

M4

CCP1

M2

M1

CCP2

M5

M6

1

Figure 4: Example #3 – Cycle of loss transmission due to joint clearing members network.

p̄R1 =




0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 3 2 0 0 0 0 0
2 0 0 0 0 0 0 4




, m =




0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, b = (0, 0, 0, 0, 0, 0, 0, 0)⊤.

(2)

There are three fundamental defaults, F = {2, 4, 5} = {M2,M4,M5}. The node M4 is only a clearing
member of CCP1, the node M5 is only a clearing member of CCP2 and the node M2 is a joint clearing
member of both CCPs, but only has payment obligations to CCP2. As before, we consider alternative cases:

1. First, we consider the case of liquid collateral, i.e., α = 0, implying that the clearing price of collateral
is fixed at π⋆,R1 = π⋆,R2 = 1. We now distinguish between two sub-cases: fully versus not fully
collateralised obligations from clearing members to CCPs.

(a) Fully collateralised obligations from clearing members to CCPs correspond to the initial margins
given by m in (2). In this case, we have p⋆,R1 = p̄R1 and p⋆,R2 = 0, implying that all payments
are made in full and the total shortfall is zero. Collateral sold amounts to ∆ = 9 in the first
round and Γ = 0 in the second round. There are thus no contagious defaults (D(p⋆,R1) = F).
As in previous examples, the values of γ(1)i , γ

(2)
i do not matter in this case.

(b) If we reduce initial margins by considering 0.99m rather than m in (2), the situation changes.
Fundamental defaults remain the same, but the overall default set is larger. In particular, D(p⋆,R1) =
{M1,M2,M4,M5,CCP1,CCP2}, i.e., both CCPs and the additional joint clearing member M1
default as well (even for γ(1)i = γ

(2)
i = 1 for all i ∈ N ).

The total shortfall depends on the parameters γ(1)i , γ
(2)
i . For example, for γ1i = γ

(2)
i = 1 for all

i ∈ N , the total shortfall is S = 0.1, whereas for γ(2)7 = γ
(2)
8 = 0.5 (and γ

(1)
i = 1 for all i ∈ N

and γ
(2)
i = 1 for all i ∈ M) the shortfall increases to S = 5.575. In this example the collateral

sold is ∆ = 11 · 0.99 = 10.89 in the first round and Γ = 0 in the second round.

2. Second, we assume that collateral is illiquid by setting α > 0. We further assume that initial margins
are given by m in (2), i.e., payment obligations of clearing members to the CCPs are fully collater-
alised. We then consider two sub-cases, based on differences in liquidity buffers.
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(a) First, we consider a liquidity buffer of 0 for all nodes, i.e., b as given in (2). For all γ(1)i , γ
(2)
i ∈

[0, 1], i ∈ N , the total shares of collateral sold in the two rounds are respectively ∆ = 11 and
Γ = 0, resulting in collateral prices given by π⋆,R1 = π⋆,R2 = exp(−11α). It is possible to
check that choosing α = − log(0.99)

∆ ≈ 0.00091 as price impact yields the same outcome as in

1b) above. In other words, for γ(1)i = γ
(2)
i = 1 for all i ∈ N , the shortfall is S = 0.1, whereas

for γ(2)7 = γ
(2)
8 = 0.5 (and γ

(1)
i = 1 for all i ∈ N and γ

(2)
i = 1 for all i ∈ M) the shortfall

increases to S = 5.575 and again D(p⋆,R1) = {M1,M2,M4,M5,CCP1,CCP2}.

(b) Second, we increase the liquidity buffers of two nodes. We take the buffer from b2 = 0 to b2 = 1
for joint clearing member M2 , which removes this node from the fundamental default set. In
addition, we increase the liquidity buffer of clearing member M4 from b4 = 0 to b4 = 3, which
guarantees that this node cannot default since p̄R1

4 = 3 = b4. Hence, as M4 is no longer a
fundamental default, we have F = {M5}.

With α = 0.1 and γ
(1)
i = γ

(2)
i = 1 for all i ∈ N , the fundamental default of M5 causes the con-

tagious default of CCP2 and the joint clearing member M1, i.e, D(p⋆,R1) = {M1,M5,CCP2},
and the shortfall amounts to S ≈ 1.3187. Still, CCP1 does not default.
If we change γ

(2)
8 = 1 to γ

(2)
8 = 0.25, i.e., assume that CCP2 uses more severe variation

margin gains haircutting, and keep all other parameters the same, we find that D(p⋆,R1) =
{M1,M2,M5,CCP1,CCP2} and the shortfall increases to S ≈ 7.2629. Hence, the more severe
variation margin gains haircutting by CCP2 triggers the additional default of CCP1 and the joint
clearing member M2.

Hence, this is an example that shows that insufficient collateral, either because it was not posted in the
first place (situation 1b)) or because it is illiquid (situation 2a)), can cause contagion and defaults of CCPs.
Example 2b) shows how the default of a clearing member (M5) at one CCP (CCP2) can ultimately trigger
the default of another CCP (CCP1) of which M5 is not a clearing member, conditional on the first affected
CCP (CCP2) using variation margin gains haircutting. This then triggers the default of M2, in turn leading
to further losses at CCP2 due to the circular structure arising from joint clearing membership.

3.4 Joint clearing members and trapped liquidity

So far we have assumed that when variation margins become due, both clearing members and CCPs make
these payments at the same time. In practice, however, this might not be the case. As described in (ESRB,
2020, p. 51), “CCPs typically only pay out variation margin gains to counterparties the next morning [...].
In times of high market volatility, this practice results in liquidity being trapped in CCPs and could create or
amplify liquidity stress in the financial system”. In the following we will illustrate consequences of trapped
liquidity in situations with joint clearing members, revisiting the previous three examples.

In Example 3.1 (default of a joint clearing member, M1), the effects of trapped liquidity in the two CCPs
would imply that clearing members M2 and M3 would not receive any payments at time 1, since both CCPs
withhold their payments. But since the clearing members M2 and M3 do not have any payment obligations
at time 1, there are no further contagion effects.

In Example 3.2, where we have one joint clearing member M1 that is due to receive payments from
CCP2 and is due to make payments to CCP1, the payment delays of CCP2 can have consequences for
CCP1. Suppose we equip clearing member M3 with a liquidity buffer of 2. Then, if all variation margin
gains are passed through all CCPs simultaneously, then there are no defaults. If only clearing members
make payments, however, then clearing member M1 only has its liquidity buffer (which we assume to be
0) as recourse to make the required variation margin payments of 2 to CCP1 and hence cannot make this
payment at this point in time. Hence, a joint clearing member with a matched book can became a source
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of liquidity stress to a CCP (here CCP2) due to another CCP (here CCP1) not passing through its variation
margin gains.

This mechanism (i.e., joint clearing members becoming a liquidity stress to a CCP), can occur repeatedly
if we have a circular structure as in Example 3.3.

4 Interconnectedness in centrally cleared markets – Empirical evidence

The presence of central counterparties affects financial interconnections in various ways. The most obvious,
and the one that has attracted most attention, is the reconfiguration of the financial network to a star-shaped
form – whereby the CCP stands in the middle as a large node centralising all traffic. While useful as a focal
point to think about how CCPs affect the nature of counterparty and liquidity risks, this is still a stylised
representation. In practice, the CCP ecosystem gives rise to layers of internconnections. As discussed above,
CCP membership consists of a reduced group of large financial institutions that simultaneously clears in
multiple CCPs. Quite often, these same institutions will provide additional services to CCPs giving rise
to further interconnections, such as liquidity provision, credit lines and custodianship (BCBS-CPMI-FSB-
IOSCO (2018)). In what follows, we focus on the interconnections arising from joint clearing membership
in derivative markets, using publically available data for interest rate swaps and credit default swaps.

Figure 5 presents a time series of notional amounts cleared by different CCPs in both markets, confirm-
ing the well-documented fact that IRS are a considerably larger portion of derivatives markets – especially
in the cleared space. A couple of observations are in order. For one, while concentrated, both markets fea-
ture a few CCPs, i.e. the network is not exactly star-shaped, although admittedly there is some geographic
specialisation. In addition, some CCPs clear in both markets (LCH, JSCC), whereas others do so only in one
of the two markets (e.g., CME and Eurex clear only IRS, and e.g. ICE Clear Credit and ICE Clear Europe
clear only CDS).

4.1 The bipartite network of clearing members and CCPs

Next, we analyse interconnections between CCPs through shared clearing membership.19 Figure 6 presents
the bipartite network of clearing members (left)20 and CCPs (right). An edge between a clearing member
and a CCP indicates that the member clears at this particular CCP. As is evident, there is a strong overlap
between the clearing members at multiple CCPs.

We investigate this overlap by considering one-mode projections of the bipartite network. One-mode
projections are a way to condense information in bipartite networks.21 While the original bipartite network
consists of two types of nodes (clearing members and CCPs), a one-mode projection projects this bipartite
network onto a network that consists only of one of the two groups. Edges appear between the nodes in the
new network if there is a relationship between those two nodes in the dimension that is no longer directly
visible. So an edge in the network of clearing members means that they are joint clearing members in at
least one CCP. An edge in the network of CCPs means that they share at least one clearing member. We
describe these one-mode projections in more detail next.

First, we consider a one-mode projection that will create a network whose nodes are all the clearing
members. The edges in the new network are undirected and weighted, where the weights represent the
number of CCPs at which both clearing members clear. Formally, this is computed as follows. The original
bipartite network consists of clearing members and CCPs. We consider the incidence matrix B for nC

19We consider data from end-2019, with reported notional amounts in million USD.
20We focus on clearing members that are large global systemic banks.
21For background on one-mode projections see Newman (2010).
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Figure 5: Notional amounts of derivatives cleared by market. (Note that the y-axes are on different scales due to
the large volume of the IRS market.) Source: Clarus FT.

groups (the CCPs) and nM participants (the clearing members) which is given by B ∈ {0, 1}nC×nM , where

Bij =

{
1, if institution j is a clearing member of CCP i,
0, otherwise.

Then, for i, j ∈ {1, . . . , nM} and k ∈ {1, . . . , nC} it holds that BkiBkj = 1 if and only if both institutions
i and j clear at CCP k. Therefore, the total number of CCPs where both i and j are clearing members is
given by

Pmembers
ij =

nC∑

k=1

BkiBkj =

nC∑

k=1

B⊤
ikBkj .

In particular, Pmembers = B⊤B ∈ {0, 1, . . . , nC}nM×nM and its diagonal element

Pmembers
ii =

nC∑

k=1

BkiBki =

nC∑

k=1

Bki

represents the total number of CCPs where i ∈ {1, . . . , nM} is a clearing member.
Figure 7(a) presents the network of the first one-mode projection. Most clearing members have at least

two interconnections. Figure 7(b) in turn presents a heatmap of Pmembers: roughly half of all institutions are
clearing members of all six CCPs (red area).

The second one-mode projection creates a network that consists only of CCPs. Its edges are again
undirected and weighted, with weights representing the number of shared clearing members. Formally, the
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Figure 6: Bipartite network of clearing members and CCPs.

total number of institutions that are clearing members at both CCPs i and j is given by

PCCPs
ij =

nM∑

k=1

BikBjk =

nM∑

k=1

BikB
⊤
kj .

In particular, PCCPs = BB⊤ ∈ {0, 1, . . . , nM}nC×nC and its diagonal element

PCCPs
ii =

nM∑

k=1

Bik

represents the total number of clearing members that CCP i ∈ {1, . . . , nC} has.
Figure 8(b) presents a heatmap of PCCPs. There exists exactly one CCP, namely LCH, which has all 23

institutions considered here as its clearing members.
For both one-mode projections Pmembers and PCCPs, if we consider the corresponding networks (shown

in Figures 7(a) and 8(a)), then we obtain a complete network in both cases. This implies that losses from
one CCP can in principle spill over to all other CCPs and losses of clearing members can in principle spill
over to all other clearing members, if the corresponding liquidity buffers/initial margins/default funds/etc.
are not large enough to stop the loss transmission.

4.2 Case studies

We now provide two case studies (for IRS and CDS respectively) that bring together model and data to
illustrate contagion via joint clearing members. Our data, available from public disclosures and sourced
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(b) Levelplot of Pmembers; each cell shows the total number
of CCPs at which both institutions i and j clear.

Figure 7: Graphical illustrations of Pmembers, i.e., the one mode projection of the bipartite network of clear-
ing members and CCPs on clearing members. The resulting network consists of 23 nodes representing the
clearing members.
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from Clarus FT, contain information on the CCPs (total notional cleared, default funds δi, skin-in-the-game
σi, aggregate initial margins

∑nM
j=1mji for all i ∈ C) and the clearing members (total notional cleared).

Furthermore, for each CCP we observe its clearing members.
There are, however, two key model quantities that we do not observe in the data. The first is the network

of payment obligations (p̄R1) and the second is the liquidity buffer of clearing members bM .22 Accordingly,
we reconstruct the matrix p̄R1 from available information. Appendix C provides details on the network
reconstruction approach, as well as on how we choose the liquidity buffers of clearing members.

4.2.1 Contagion in the IRS market

We start with the IRS market. Figure 9(a) presents the reconstructed payment obligations arising from
observed IRS positions. The network consists of four CCPs and 23 clearing members, with nodes in either
group only linked with nodes of the other group – hence any directed weighted edge has a CCP on one
end and a clearing member on the other. We choose clearing members’ liquidity buffers such that there are
two fundamental defaults among them. These are Credit Suisse Group AG and Deutsche Bank AG, both
clearing members at all CCPs.23 In what follows, we study the effects of these two fundamental defaults.

We start by assuming that the collateral is liquid, i.e., α = 0. Within this setting, we work with three
alternative scenarios and report the results in Figure 9. First, we assume that γ(1)i = γ

(2)
i = 1 for all i ∈ N .

This means that there are no additional frictions in the model. After computing the greatest fixed point,
in addition to the two clearing members (see above), two CCPs (LCH Swap Clear and JSCC) also default.
Hence, even without additional frictions that could amplify contagion, two CCPs suffer a contagious de-
fault. Figure 9(b) presents a heatmap of the matrix of shortfalls (Sij)i,j∈N under this hypothetical scenario.
Four rows (corresponding to the four defaulting institutions) are not white and hence indicate the payment
shortfall between the defaulting institutions and their creditors.

Second, we add frictions to the default process by setting γ
(1)
i = γ

(2)
i = 0 for all i ∈ M. This means,

that in case of default, clearing members do not make any payments to CCPs beyond their initial margins.
For the CCPs, we continue to assume that γ(1)i = γ

(2)
i = 1 for all i ∈ C, i.e., there are no additional frictions

when CCPs default. Figure 9(b) shows the shortfalls for this scenario: they generally increase and there is
one additional contagious default of a CCP (Eurex).

Third, we assume for clearing members that γ(1)i = γ
(2)
i = 0 for all i ∈ M and for CCPs that γ(1)i = 1

and γ
(2)
i = 0.8 for all i ∈ C, i.e. CCPs use more severe variation margin gains haircutting (γ(2)i = 0.8 < 1)

in case of default, but still use their pre-funded resources of the default waterfall in full (γ(1)i = 1). In this
case, we find that three clearing members (JP Morgan Chase in addition to the two other members defaulting
in the previous case) and four CCPs (CME in addition to LCH Swap Clear, JSCC and Eurex) default. Hence,
there are two additional contagious defaults compared to the situation without more severe variation margin
gains haircutting. Figure 9(d) shows a heatmap of the matrix of shortfalls. These increased compared to
the situation without VMGH, and there are two more rows (corresponding to JP Morgan Chase and CME)
where shortfalls occur.

When relaxing the liquidity assumption on the collateral, we find that the total shortfall increases, but
there are no additional contagious defaults. We consider the case α = 1000 in the following, which essen-
tially reduces the price of collateral from 1 to 0 (i.e., illiquid collateral). In particular, we find that in the first
scenario, i.e., without default frictions, the total shortfall with liquid collateral is given by S = 2, 345, 279
(million USD) and this increases to S = 2, 409, 927 (million USD) for illiquid collateral. In the second

22Note that it is in principle possible to collect or estimate this information, though this requires access to proprietary data (see
e.g. Paddrik et al. (2020)).

23To be sure, this represents an illustrative exercise: we are not suggesting that these institutions are the most likely to default
across CCPs in the real world.
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Figure 9: Case study IRS: Reconstructed network of payment obligations (top) and shortfall of actual pay-
ments made under different scenarios (bottom). Shortfall (in million USD) without frictions (left), i.e.,
γ
(1)
i = γ

(2)
i = 1∀i ∈ N , with frictions for defaults of clearing members (middle), i.e., γ(1)i = γ

(2)
i = 0 for

all i ∈ M and γ
(1)
i = γ

(2)
i = 1.0 for all i ∈ C, and with frictions for defaults of clearing members and CCPs

(right), i.e., γ(1)i = γ
(2)
i = 0 for all i ∈ M and γ

(1)
i = 1, γ

(2)
i = 0.8 for all i ∈ C. All figures of shortfalls

are for the case of liquid collateral (α = 0).
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scenario with frictions for defaults of clearing members, the total shortfall corresponding to liquid collateral
is given by S = 6, 281, 260 (million USD) and increases to S = 6, 346, 000 (million USD) for illiquid col-
lateral. Similarly, in the third scenario with frictions for both defaults of clearing members and defaults of
CCPs, the shortfall with liquid collateral is S = 9, 632, 085 (million USD) and increases to S = 9, 748, 324
(million USD) for illiquid collateral.

Overall we find that default frictions of clearing members or CCPs (or both), increase the total shortfall
considerably more than assuming that collateral is illiquid.

4.2.2 Contagion in the CDS market

Next, we explore the model in the context of data on the CDS market. Figure 10(a) illustrates the recon-
structed payment obligations given observable CDS positions. There are four CCPs (only two of which also
clear IRS) and 23 clearing members trading in the CDS market in our data set. The clearing members are
exactly the same as in the IRS case.

For this case study we chose clearing members’ liquidity buffers such that there is only one fundamental
default – Barclays, a clearing member shared by all CCPs. As before, we initially assume that there are
no frictions, i.e., no bankruptcy costs and no severe form of variation margin gains haircutting, i.e., γ(1)i =

γ
(2)
i = 1 for all i ∈ N . Figure 10(b) presents the corresponding shortfalls for the case of liquid collateral

(α = 0). In this scenario, even though there is a fundamental default (by assumption), there are no shortfalls
in payments (even for Barclays), i.e., S = 0. This means that the initial margins that were posted by the
defaulting member were sufficient to cover all payments due (together with the liquidity buffer and the
payments received from other CCPs). Hence, the initial fundamental default does not lead to any contagion
effects.

The situation changes, however, when we assume that the collateral is no longer liquid. Figure 10(c)
shows the corresponding shortfalls in this case (where we set α = 10). Now Barclays has payment shortfalls
to all four CCPs, with the largest being towards ICE Clear Credit, which nonetheless is able to withstand
the shock. LCH Swap Clear, however, defaults as a consequence of the payment shortfall. Therefore, the
illiquidity of the collateral causes one contagious default at a CCP and a total shortfall of S = 1, 580 (million
USD).

Finally, when considering additional frictions we find additional contagious defaults among CCPs (both
with and without illiquid collateral). For example, when setting γ

(1)
i = γ

(2)
i = 0.75 for all i ∈ M (and

γ(1) = γ
(2)
i = 1 for all i ∈ C), then one member (Barclays) and three CCPs default (LCH Swap Clear,

ICE Clear Europe, ICE Clear Credit) and the total shortfall is S = 10, 971 (million USD) for α = 0 and it
increases to S = 19, 432 (million USD) for α = 10.

5 Policy implications for CCP stress-testing

Our model and findings have implications for CCP stress-testing. CCPs run regular in-house stress tests
to ensure they have adequate resources to withstand a variety of stress scenarios. In addition, authorities
conduct system-wide stress tests that apply to several CCPs simultaneously.

The most notable feature of CCP stress-testing is the Cover-2 standard, used in practice both for single
CCP and system stress-testing (ESMA, 2020). The European Securities and Markets Authority (ESMA)
coordinates EU-wide stress-testing of CCPs and has used the Cover-2 standard. In particular, ESMA distin-
guishes between two different types: the “Cover-2 groups per CCP” and “EU-wide Cover-2 groups”. Under
the first type, the top 2 clearing members for each CCP are assumed to default only for that individual CCP
and not for others. Under the second type, the top 2 clearing members chosen to be in default are identified
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(b) Shortfall with liquid collateral (α = 0)
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(c) Shortfall with illiquid collateral (α = 10)

Figure 10: Case study Credit Default Swaps: Comparison of the shortfall with liquid (left) and illiquid
(right) collateral without severe variation margin gains haircutting or bankruptcy costs (γ(1)i = γ

(2)
i = 1 for

all i ∈ N ).
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based on exposures across all CCPs, and are assumed to default at all CCPs (see (ESMA, 2020, p. 20/21)
for details).

Importantly, stress tests do not consider second round effects arising from joint clearing membership
(ESMA, 2020). We illustrate how accounting for such higher order effects can affect stress-testing results.
Two key insights emerge: higher order effects increase losses, and, when coupled with frictions such as
default costs or severe variation margin gains haircutting, they can affect the choice of which the top 2
clearing members are that cause the largest losses.

Figure 11 presents the total shortfall in a stress-testing exercise based on the IRS data, considering
all possible clearing member pairs being shocked. The x-axis represents the different clearing member
pairs shocked and the y-axis represents the shortfalls (in million USD). Since there are nM = 23 clearing
members in our data, there are

(
nM
2

)
= 253 ways to select two clearing members to be shocked.24

We consider first the shortfall computed based only on first order effects (black line), which we use to
sort the pairs as benchmark. We then compute the corresponding shortfalls in equilibrium (i.e., accounting
for higher order effects) and additionally consider fire sales of collateral (i.e., α > 0), default frictions (i.e.,
γ
(1)
i < 1 and/or γ(2)i for some i) and combinations of them.

Figure 11 shows that accounting for higher order effects indeed results in higher shortfalls, as evident
when contrasting the black and red lines in Figure 11. More interesting, however, is the fact that the red line
is no longer monotonically decreasing. If we account for additional frictions (γ(1)i < 1 and or γ(2)i < 1 for
some i ∈ N ) then this non-monotonicity becomes even more evident (e.g., blue and purple lines in Figure
11). This implies that a pair that leads to high first order losses need not rank equally high when considering
higher order effects (with or without frictions). The very large spike in Figure 11 indicates that there is
one pair of clearing members that has very small losses when only considering first order effects, but very
high losses when accounting for higher order effects. Figure 11 also shows that – in this example at least
– illiquid collateral increases the shortfall, but the effect of frictions caused by choosing γ

(1)
i and/or γ(2)i

strictly smaller than 1 is generally more severe.
Default frictions are particularly powerful in affecting the pair-specific shortfalls. When considering

default frictions of clearing members by setting γ
(1)
i = γ(2) = 0 for all i ∈ M (blue line in Figure 11),

shortfalls increase significantly, and the ordering of pairs leading to highest losses changes. When frictions
are only associated with CCPs (purple line in Figure 11), i.e., γ(1)i = 1 and γ(2) = 0 for all i ∈ C (and
γ
(1)
i = γ(2) = 1 for all i ∈ M), then shortfalls increase even more and similarly the ordering of pairs

leading to largest losses again varies considerably. In particular, the pair leading to the largest shortfalls is
not the same as the pair that leads to the largest first order shortfalls. When combining these two frictions
for liquid collateral (black dotted line) or for illiquid collateral (green dotted line) shortfalls increase even
further.

We next look at shortfalls for two particular pairs of clearing members. On the one side, the pair linked
to the largest loss when looking at first order effects; on the other, the pair linked to the largest losses when
accounting for higher order effects with illiquid collateral, and default frictions of clearing members and
CCPs. We consider the parameters corresponding to Figure 11. In this example, there is no fundamental
default before any pair is shocked. Under this scenario, the first pair (first order effects only) is Deutsche
Bank and Barclays, whereas the second pair is Deutsche Bank and the Royal Bank of Scotland.

Figure 12 presents the results, with the first two panels focusing on the first pair and the last two panels
focusing on the second pair. Figure 12(a) shows the first order shortfall when Deutsche Bank and Barclays
have their liquidity buffers set to 0, and Figure 12(b) shows the corresponding higher order shortfall that
accounts for illiquid collateral, hard defaults of clearing members and severe variation margin gain hair-

24In our example 18 clearing members have positive payment obligations. Hence, there are at most
(
18
2

)
= 153 combinations

of 2 clearing members that can lead to shortfalls when their buffers are wiped out. That is why we observe 0 shortfalls beyond the
153rd pair in Figure 11.
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Figure 11: First order and higher order shortfalls when different pairs of clearing members are shocked for
different parameter choices in ΦR1. All numbers in million USD.
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cutting, i.e., α = 1000 > 0, γ(1)i = γ(2) = 0 for all i ∈ M, and γ
(1)
i = 1, γ(2) = 0 for all i ∈ C. In

this example, accounting for these higher order effects increases the total shortfall from 3,284,789 (million
USD) to 13,327,776 (million USD), i.e., the shortfall is more than four times larger.

For the second pair, the picture that emerges is similar. Figure 12(c) shows the first order shortfall
when Deutsche Bank and the Royal Bank of Scotland have their liquidity buffers set to 0, and Figure 12(d)
shows the corresponding higher order shortfall that accounts for the same frictions as before. In this exam-
ple, accounting for these higher order effects increases the total shortfall from 2,968,599 (million USD) to
13,585,060 (million USD), i.e., the shortfall is more than 4.5 times larger. In particular, four CCPs default
under this scenario.

Taken together, these results illustrate that the combination of higher order effects and frictions interacts
and affects the ordering of pairs causing the largest losses. By considering only first order effects one
would select the pair consisting of Deutsche Bank and Barclays, with an associated shortfall of 3,284,789
(million USD) (Figure 12(a)). The largest possible shortfall, however, would be achieved by a different pair
(Deutsche Bank and the Royal Bank of Scotland) when accounting for higher order effects and frictions,
resulting in a total shortfall of 13,585,060 (million USD) (Figure 12(d)). This highlights the importance
of considering higher order effects, as well as potential market-related frictions, when performing CCP
stress-testing exercises.
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(a) First order shortfall for stress to Deutsche Bank and
Barclays; total first order shortfall is 3,284,789 million
USD.
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(b) Higher order shortfall (with illiquid collateral and de-
fault frictions of both clearing members and CCPs) for
stress to Deutsche Bank and Barclays; total shortfall is
13,327,776 million USD.
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(c) First order shortfall for stress to Deutsche Bank and
the Royal Bank of Scotland; total first order shortfall is
2,968,599 million USD.
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(d) Higher order shortfall (with illiquid collateral and de-
fault frictions of both clearing members and CCPs) for
stress to Deutsche Bank and the Royal Bank of Scotland;
total shortfall is 13,585,060 million USD.

Figure 12: First order (left) and higher order (right) shortfall when two different pairs of clearing members
have their liquidity buffer set to 0. In the first row, Deutsche Bank and Barclays are selected to have 0
liquidity buffer, in the second row Deutsche Bank and the Royal Bank of Scotland are selected. The liquidity
buffers are chosen such that there is no fundamental default prior to the stress-testing exercise.

6 Conclusion

This paper underscores the important role that joint clearing members can have in loss transmission between
several CCPs, especially in a context where realistic frictions potentially affecting contagion are present. As
such, it serves to highlight the need to incorporate these features into current CCP stress testing practice.
Furthermore, it also highlights the importance of stress testing CCPs simultaneously and not just in isolation.

As our case studies illustrate, in the presence of joint clearing members it is even theoretically possible
that a clearing member triggers the default of a CCP at which it does not clear. This can happen indirectly
via fire sales of collateral, or directly via variation margin gains haircutting of the CCP at which it clears,
or a combination of both mechanisms. Admittedly, situations like this would be rare, but nevertheless they
illustrate the importance of accounting for second and higher order interconnections between CCPs in their
risk management.
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It is important to bear in mind that our model is stylised and results are illustrative of the mechanisms
we aim to highlight. Throughout we analyse how the effects of a clearing members’ default play out me-
chanically through CCP’s rulebooks, by incorporating key elements of the latter on an enhanced version
of standard network contagion model. When interpreting results, it should be clear that we are not able to
quantify the likelihood of any scenario leading to an actual CCP default.

That said and despite the stylised nature of the model, we are able to illustrate important issues regarding
contagion in markets with multiple CCPs and joint clearing membership. In our case studies we made a
number of simplifying assumptions not required by our key results to go through, such as clearing members
novating all their trades to CCPs, having no bilateral positions with other clearing members, or disregarding
the links between clearing members and the clients they clear for. Even under these assumptions, which
essentially remove several additional ways in which contagion can spread through the network of payment
obligations, we still found strong contagion effects that amplified losses considerably. Furthermore, these
contagion effects significantly changed the ranking of clearing members that would cause the largest losses
in case of default.

These results suggest that any Cover-2 standard that excludes network effects has the risk of being not
conservative enough. One of the key lessons after the Great Financial Crisis was that stress scenarios need to
be “sufficiently severe” (Basel Committee on Banking Supervision, 2018, Principle 4). Our paper provides
evidence that accounting for network effects and joint clearing membership can be crucial to achieve this
objective.
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Appendices

A The second round of clearing

In this appendix we review the details of the second round of clearing in the model, developed in Ghamami
et al. (2022), which can be summarised as a second fixed point problem.

Let (π⋆,R1, p⋆,R1) ∈ [0, 1]× [0, p̄R1] be the greatest fixed point of ΦR1 defined in (1). Then, the payments
that are still outstanding at the start of the second round are given by p̄R2 = p̄R1 − p⋆,R1 ∈ [0, p̄R1]. We
define a function ΦR2 : [0, π⋆,R1]× [0, p̄R2] → [0, π⋆,R1]× [0, p̄R2] and the aim is to determine a fixed point
of this function, i.e., we want to find (π⋆,R2, p⋆,R2) such that

(π⋆,R2, p⋆,R2) = ΦR2(π⋆,R2, p⋆,R2),

where ΦR2(π, p) is defined as follows:

ΦR2
1 (π, p) = π⋆,R1 exp(−αΓ(π, p)),

ΦR2
2,(ij)(π, p) = min

{
p̄R2
ij , a

R2
ij

(
πri(π

⋆,R1, p⋆,R1) +
N∑

k=1

pki

)}
,

(3)

where

aR2
ij =

{
p̄R2
ij∑N

k=1 p̄
R2
ik

, if
∑N

k=1 p̄
R2
ik > 0,

0, otherwise,

denotes the repayment proportions for i, j ∈ N in the second round and Γ(π, p) denotes the total shares of
collateral sold in the second round, i.e.,

Γ(π, p) =

N∑

i=1

Γi(π, p),

where the total share of collateral sold by node i ∈ N is given by

Γi(π, p) = min



ri(π

⋆,R1, p⋆,R1),
1

π
max



0,

N∑

j=1

p̄R2
ij −

N∑

j=1

pji







 ,

if π > 0. For π = 0, we set

Γi(π, p) =

{
ri(π

⋆,R1, p⋆,R1), if i ∈ D(p⋆,R1) and max
{
0,
∑N

j=1 p̄
R2
ij −

∑N
j=1 pji

}
> 0,

0, otherwise.

Furthermore, ri(π⋆,R1, p⋆,R1) is the collateral returned to node i ∈ N and is defined as

ri(π
⋆,R1, p⋆,R1) =

{ ∑N
j=1(mij −∆ij(π

⋆,R1, p⋆,R1)), if i ∈ D(p⋆,R1),∑
j∈D(p⋆,R1)mij , if i ∈ N \ D(p⋆,R1).

In our setting, the market consists of clearing members and CCPs. Since we assume that CCPs do not
post initial margins to their clearing members, only clearing members can have collateral returned to them
in Round 2. In particular, this implies that ri(π⋆,R1, p⋆,R1) = 0 for all i ∈ C.
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B Existence results and proofs

Lemma B.1 (Properties of ΦR1). Let ΦR1 : [0, 1]× [0, p̄R1] → [0, 1]× [0, p̄R1] be the function defined in (1),
then ΦR1 is order-preserving, i.e., for all π̃, π ∈ [0, 1] with π̃ ≤ π and for all p̃, p ∈ [0, p̄R1] with p̃ij ≤ pij
for all i, j ∈ N it holds that

ΦR1
1 (π̃, p̃) ≤ ΦR1

1 (π, p),

ΦR1
2,(ij)(π̃, p̃) ≤ ΦR1

2,(ij)(π, p) ∀i, j ∈ N .

Proof of Lemma B.1. Let π̃, π ∈ [0, 1] with π̃ ≤ π and let p̃, p ∈ [0, p̄R1] with p̃ij ≤ pij for all i, j ∈ N .
We show that ΦR1

1 is order-preserving. The total assets satisfy

Ai(p̃) = bi +
N∑

k=1

p̃ki ≤ bi +
N∑

k=1

pki = Ai(p).

This implies that all nodes that default under p also default under p̃, in particular

D(p) ⊆ D(p̃), (4)

since for i ∈ D(p), it holds that p̄R1
i > Ai(p) ≥ Ai(p̃), and hence i ∈ D(p̃).

Next, we need to show that the number of shares of collateral sold satisfies

∆ij(π̃, p̃) ≥ ∆ij(π, p) ∀i, j ∈ N . (5)

Once this has been shown, we immediately obtain that

∆(π̃, p̃) =
N∑

i=1

N∑

j=1

∆ij(π̃, p̃) ≥
N∑

i=1

N∑

j=1

∆ij(π, p) = ∆(π, p),

and hence

ΦR1
1 (π̃, p̃) = exp(−α∆(π̃, p̃)) ≤ exp(−α∆(π, p)) = ΦR1

1 (π, p),

since α ≥ 0.
We now prove (5). Let i, j ∈ N .

• First, let i ∈ D(p). By (4), i ∈ D(p̃). We distinguish between three cases:

Case 1: Let π̃ > 0, then, ∆ij(π̃, p̃) = min

{
mij ,

p̄R1
ij

π̃

}
and ∆ij(π, p) = min

{
mij ,

p̄R1
ij

π

}
. Since

0 < π̃ ≤ π, it holds that
p̄R1
ij

π̃ ≥ p̄R1
ij

π which implies that

∆ij(π̃, p̃) = min

{
mij ,

p̄R1
ij

π̃

}
≥ min

{
mij ,

p̄R1
ij

π

}
= ∆ij(π, p).

Case 2: Let π̃ = π = 0, then if p̄R1
ij > 0, it holds that ∆ij(π̃, p̃) = mij = ∆ij(π, p). If p̄R1

ij = 0, then
∆ij(π̃, p̃) = 0 = ∆ij(π, p).

Case 3: Let 0 = π̃ < π, then if p̄R1
ij > 0, it holds that ∆ij(π̃, p̃) = mij ≥ min

{
mij ,

p̄R1
ij

π

}
=

∆ij(π, p). If p̄R1
ij = 0, then ∆ij(π̃, p̃) = 0 = min

{
mij ,

p̄R1
ij

π

}
= ∆ij(π, p).
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• Second, let i ∈ N \ D(p). Then, ∆ij(π, p) = 0 ≤ ∆ij(π̃, p̃). Hence, (5) holds.

Next, we show that ΦR1
2 is order-preserving. Let i, j ∈ N . We distinguish between two cases.

Case 1: Let i ∈ N \ D(p). Then,

ΦR1
2,(ij)(π, p) = p̄R1

ij ≥ ΦR1
2,(ij)(π̃, p̃).

Case 2: Let i ∈ D(p). Then, i ∈ D(p̃). Then,

ΦR1
2,(ij)(π̃, p̃) = min

{
p̄R1
ij , π̃mij + aR1

ij (π̃)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)}
,

ΦR1
2,(ij)(π, p) = min

{
p̄R1
ij , πmij + aR1

ij (π)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)}
.

We distinguish between two cases.
First, let ΦR1

2,(ij)(π, p) = p̄R1
ij , then ΦR1

2,(ij)(π, p) = p̄R1
ij ≥ ΦR1

2,(ij)(π̃, p̃).
Second, let

p̄R1
ij > ΦR1

2,(ij)(π, p) = πmij + aR1
ij (π)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
. (6)

We show that

p̄R1
ij > ΦR1

2,(ij)(π̃, p̃) = π̃mij + aR1
ij (π̃)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)
. (7)

Rearranging (6) gives p̄R1
ij − πmij > aR1

ij (π)
(
γ
(1)
i bi + γ

(2)
i

∑N
k=1 pki

)
≥ 0 and hence

0 <
p̄R1
ij − πmij∑N

k=1max{0, p̄R1
ik − πmik}

= aR1
ij (π),

which implies that

p̄R1
ij − πmij > aR1

ij (π)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
=

p̄R1
ij − πmij∑N

k=1max{0, p̄R1
ik − πmik}

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
,

⇐⇒ 1 >

(
γ
(1)
i bi + γ

(2)
i

∑N
k=1 pki

)

∑N
k=1max{0, p̄R1

ik − πmik}
. (8)

It also holds that aR1
ij (π̃) > 0. We prove this by contradiction. Assume that aR1

ij (π̃) = 0. This implies
that p̄R1

ij ≤ π̃mij . But since 0 = aR1
ij (π̃) < aR1

ij (π), we obtain

π̃mij + aR1
ij (π̃)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)
≤ πmij + aR1

ij (π)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
= ΦR1

2,(ij)(π, p) < p̄R1
ij ,

which is a contradiction to p̄R1
ij ≤ π̃mij . Hence, aR1

ij (π̃) > 0.
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From aR1
ij (π̃) > 0 it follows directly that

N∑

k=1

max{0, p̄R1
ik − π̃mik} > 0 and p̄R1

ij − π̃mij > 0. (9)

Then,

π̃mij + aR1
ij (π̃)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)
= π̃mij +

max{0, p̄R1
ij − π̃mij}∑N

k=1max{0, p̄R1
ik − π̃mik}

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)

≤ π̃mij +
max{0, p̄R1

ij − π̃mij}∑N
k=1max{0, p̄R1

ik − πmik}

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
< π̃mij +max{0, p̄R1

ij − π̃mij} = p̄R1
ij ,

(10)

where the last inequality follows from (8). Observe that (6) implies that indeed
∑N

k=1max{0, p̄R1
ik −

πmik} > 0. Hence, (7) holds.
It remains to show that

ΦR1
2,(ij)(π̃, p̃) = π̃mij + aR1

ij (π̃)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)

≤ πmij + aR1
ij (π)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
= ΦR1

2,(ij)(π, p).

It is clear that ΦR1
2,(ij) is order-preserving in the argument p. So we only need to show that it is also order-

preserving in π. If mij = 0, then it follows directly that aR1
ij (π̃) ≤ aR1

ij (π) and hence ΦR1
2,(ij)(π̃, p̃) ≤

ΦR1
2,(ij)(π, p). If mij > 0, we define a function fij(·; p̂) : [π̃, π] → [0, p̄R1

ij ) by

fij(π̂; p̂) = π̂mij + aR1
ij (π̂)

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̂ki

)

︸ ︷︷ ︸
=Ai(p̂;γ

(1)
i ,γ

(2)
i )

= π̂mij + aR1
ij (π̂)Ai(p; γ

(1)
i , γ

(2)
i ),

where p̂ ∈ [p̃, p]. In particular, fij(π̂; p̂) = ΦR1
2,(ij)(π̂, p̂) under the given constraints on the parameters.

Furthermore, since aR1(π̃) > 0 and aR1(π) > 0, we obtain for all π̂ ∈ [π̃, π] that π̃mij ≤ π̂mij ≤
πmij < p̄R1

ij and hence aR1
ij (π̂) > 0.

From (6) and (7), it follows directly that Ai(p; γ
(1)
i , γ

(2)
i ) <

∑N
k=1max{0, p̄R1

ik −πmik} and Ai(p̃; γ
(1)
i , γ

(2)
i ) <∑N

k=1max{0, p̄R1
ik − π̃mik}. Hence, for all p̂ ∈ [p̃, p] we obtain

Ai(p̃; γ
(1)
i , γ

(2)
i ) ≤ Ai(p̂; γ

(1)
i , γ

(2)
i ) ≤ Ai(p; γ

(1)
i , γ

(2)
i ) <

N∑

k=1

max{0, p̄R1
ik − πmik}

≤
N∑

k=1

max{0, p̄R1
ik − π̂mik} ≤

N∑

k=1

max{0, p̄R1
ik − π̃mik}.

(11)
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The function fij is continuous and piecewise differentiable.25 Similarly to the argument used in (Ghamami
et al., 2022, Proof of Lemma A.1), we can consider the derivative of fij , and obtain

∂fij(π̂; p̂)

∂π̂
= mij +

∂aR1
ij (π̂)

∂π̂
Ai(p̂; γ

(1)
i , γ

(2)
i ),

∂aR1
ij (π̂)

∂π̂
=

(∑N
k=1max{0, p̄R1

ik − π̂mik}
)
(−mij) + (p̄R1

ij − π̂mij)
+
∑N

k=1mikI{p̄R1
ik>π̂mik}(∑N

k=1max{0, p̄R1
ik − π̂mik}

)2 ,

and hence,

∂fij(π̂; p̂)

∂π̂
= mij

(
1−

Ai(p̂; γ
(1)
i , γ

(2)
i )

∑N
k=1max{0, p̄R1

ik − π̂mik}

)
+

(p̄R1
ij − π̂mij)

+
∑N

k=1mikI{p̄R1
ik>π̂mik}(∑N

k=1max{0, p̄R1
ik − π̂mik}

)2 Ai(p̂; γ
(1)
i , γ

(2)
i ).

The first term of the derivative satisfies

1−
Ai(p̂; γ

(1)
i , γ

(2)
i )

∑N
k=1max{0, p̄R1

ik − π̂mik}
≥ 0,

because of (11). Furthermore, it is clear that the second term of the derivative is non-negative. Hence, the
derivative is non-negative. Together with the continuity of fij , this implies that fij is order-preserving on
[π̃, π] and hence ΦR1

2,(ij)(π̃, p̃) ≤ ΦR1
2,(ij)(π, p).

Theorem B.2 (Existence of a least and greatest price-payment equilibrium in Round 1). Let ΦR1 : [0, 1] ×
[0, p̄R1] → [0, 1]× [0, p̄R1] be the function defined in (1).

1. The set of fixed points of ΦR1 is a complete lattice. In particular ΦR1 admits a greatest and a least
fixed point.

2. Let (π(0), p(0)) = (1, p̄R1) and define recursively for k ∈ N0

(π(k+1), p(k+1)) = ΦR1(π(k), p(k)).

Then,

(a) (π(k), p(k))k∈N0 is a monotonically non-increasing sequence, that is, π(k+1) ≤ π(k) and p
(k+1)
ij ≤

p
(k)
ij for all i, j ∈ N and for all k ∈ N0.

(b) The limit limk→∞(π(k), p(k)) exists and is the greatest fixed point of ΦR1.

Proof of Theorem B.2. 1. We will prove the statement using Tarksi’s fixed point theorem (Tarski, 1955).
First, [0, 1] × [0, p̄R1] is a complete lattice with respect to the component-wise ordering. Second, it
follows directly from the definition of ΦR1 in (1) that indeed ΦR1 : [0, 1]× [0, p̄R1] → [0, 1]× [0, p̄R1].
Third, ΦR1 is an order-preserving function by Lemma B.1. By Tarski’s fixed point theorem, the set of
fixed points of ΦR1 is a complete lattice and hence a least and greatest fixed point exist.

2. Next, we show that the greatest fixed point can be obtained by fixed point iteration.
25The only points where fij is not differentiable are points p̄R1

ik/mik ∈ [π̃, π] with mik > 0, k ∈ N .
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(a) We prove that π(k+1) ≤ π(k) and p
(k+1)
ij ≤ p

(k)
ij for all i, j ∈ N and for all k ∈ N0 by induction.

For k = 0, it follows directly from the definition of ΦR1 in (1) that π(1) = ΦR1
1 (π(0), p(0)) =

exp(−α∆(π(0), p(0))) ≤ 1 = π(0) and p
(1)
ij = ΦR1

2,(ij)(π
(0), p(0)) ≤ p̄R1

ij = p
(0)
ij for all i, j ∈ N .

Our induction hypothesis is that π(k+1) ≤ π(k) and p
(k+1)
ij ≤ p

(k)
ij for all i, j ∈ N and for a

k ∈ N0.
Then, by the definition of the sequence

(π(k+2), p(k+2)) = ΦR1(π(k+1), p(k+1)) ≤ ΦR1(π(k), p(k)) = (π(k+1), p(k+1)),

where the inequality follows from the induction hypothesis and the fact that ΦR1 is order-
preserving by Lemma B.1. Hence, this completes the induction step.
It follows directly from the definition of ΦR1 that it is bounded from below by (0, 0) (where the
first 0 is 1-dimensional and the second zero is the N × N zero matrix). Hence, there exists a
monotone limit (π̂, p̂) = limk→∞(π(k), p(k)). This limit is a fixed point of ΦR1, since

ΦR1(π̂, p̂) = ΦR1( lim
k→∞

(π(k), p(k))) = lim
k→∞

ΦR1(π(k), p(k)) = lim
k→∞

(π(k+1), p(k+1)) = (π̂, p̂),

where the second equality follows from the right-continuity of ΦR1. It remains to show that
(π̂, p̂) = (π⋆,R1, p⋆,R1), i.e., that it is the greatest fixed point of ΦR1.
We show by induction that (π(k), p(k)) ≥ (π⋆,R1, p⋆,R1) for all k ∈ N0. It is clear, that
(π(0), p(0)) = (1, p̄R1) ≥ (π⋆,R1, p⋆,R1). Suppose (π(k), p(k)) ≥ (π⋆,R1, p⋆,R1) for a k ∈ N0.
Then,

(π(k+1), p(k+1)) = ΦR1(π(k), p(k)) ≥ ΦR1(π⋆,R1, p⋆,R1) = (π⋆,R1, p⋆,R1),

where the inequality follows from the induction hypothesis and the fact that ΦR1 is order-
preserving. The last equality holds because (π⋆,R1, p⋆,R1) is a fixed point of ΦR1.
Hence,

(π̂, p̂) = lim
k→∞

(π(k), p(k)) ≥ (π⋆,R1, p⋆,R1)

and since (π̂, p̂) = ΦR1(π̂, p̂), we obtain that (π̂, p̂) = (π⋆,R1, p⋆,R1).

Corollary B.3. It holds that F ⊆ D(p⋆,R1).

Proof of Corollary B.3. From Theorem B.2, F = D(p(0)). Since, (p(k))k∈N0 is monotonically non-increasing,
it holds that for all k ∈ N

D(p(k)) = {i ∈ N | bi +
N∑

ν=1

p
(k)
νi < p̄R1

i } ⊆ {i ∈ N | bi +
N∑

ν=1

p
(k+1)
νi < p̄R1

i } = D(p(k+1)).

Hence, in particular F = D(p(0)) ⊆ D(p⋆,R1).

Remark B.4. The existence of a greatest and least fixed point for the second round of clearing was proved in
Ghamami et al. (2022). In particular, [0, π⋆,R1]× [0, p̄R2] is a complete lattice with respect to the component-
wise ordering and ΦR2 is order-preserving. The greatest fixed point of ΦR2 therefore exists by Tarksi’s fixed
point theorem.
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Additionally, since ΦR2 is also right-continuous, one can show using the same type of arguments as for
ΦR1, that the greatest fixed point (π⋆,R2, p⋆,R2) of ΦR2 can be obtained by setting (π(0), p(0)) = (π⋆,R1, p̄R2)
and then defining recursively for k ∈ N0

(π(k+1), p(k+1)) = ΦR2(π(k), p(k)),

which is a non-increasing sequence that is bounded from below by (0, 0) (as it was the case for ΦR1). In
particular, (π⋆,R2, p⋆,R2) = limk→∞ΦR2(π(k), p(k)), i.e., it converges to the greatest fixed point.

C Data description and network reconstruction for the case studies

Our case studies rely on data from CCP public disclosures, which we source from Clarus FT. These data
provide a substantial amount of information that can be directly used to calibrate our model. For each CCP
i ∈ {1, . . . , nC}, we know its clearing members and we observe the total notional cleared (denoted by
ai), the default fund (δi), the CCP’s capital (i.e., skin-in-the-game σi), and the aggregate initial margins
(
∑nM

j=1mji). This is enough to have a well-rounded picture of CCP’s waterfalls, which we illustrate in
Figure 13 for the CCPs in our sample (aggregated over both IRS and CDS data). As the Figure shows, the
bulk of loss absorbing resources are given by initial margins and the default fund, whereas skin-in-the-game
is thin to a level that is almost imperceptible in the graphs. In addition, we also obtain, for each clearing
member i ∈ {1, . . . , nM} the total notional cleared by market (denoted by li).

There are however some important model objects that we do not observe, most notably the network of
variation margin payment obligations (p̄R1). Accordingly, we need to estimate it based on observable data.
In the following, we describe how we estimate this network.

We start with a matrix of notional positions, X ∈ [0,∞)N×N , where Xij is the total liability from i to j
arising from a derivative contract. We assume that the first nM rows and columns correspond to the clearing
members, and the last nC rows and columns correspond to CCPs. Hence,

X =




X1,1 . . . X1,nM X1,(nM+1) X1,(nM+2) . . . X1,(nM+nC)

. . . . . . . . . . . . . . . . . . . . .
XnM ,1 . . . XnM ,nM XnM ,(nM+1) XnM ,(nM+2) . . . XnM ,(nM+nC)

X(nM+1),1 . . . X(nM+1),nM
X(nM+1),(nM+1) X(nM+1),(nM+2) . . . X(nM+1),(nM+nC)

. . . . . . . . . . . . . . . . . . . . .
X(nM + nC), 1 . . . X(nM+nC),nM

X(nM+nC),(nM+1) X(nM+nC),(nM+2) . . . X(nM+nC),(nM+nC)




=

(
A B

C D

)
,

where A ∈ [0,∞)nM×nM , B ∈ [0,∞)nM×nC , C ∈ [0,∞)nC×nM , D ∈ [0,∞)nC×nC .
In our empirical analyses we assume that clearing members do not trade bilaterally. This implies that

the upper left nM × nM -dimensional submatrix A is the zero matrix. Similarly, since the CCPs do not have
any trading relationships with other CCPs, the lower right nC × nC-dimensional submatrix D is also the
zero matrix. Hence, we need to estimate the following two submatrices

B =




X1,(nM+1) . . . X1,(nM+nC)

. . . . . . . . .
XnM ,(nM+1) . . . XnM ,(nM+nC)


 ,

C =




X(nM+1),1 . . . X(nM+1),nM

. . . . . .
X(nM + nC), 1 . . . X(nM+nC),nM


 .
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Figure 13: Default waterfall for the six CCPs (original (top left), normalised by total exposure (top right)
and by size of the default waterfall (bottom left)), and boxplot of the normalised skin-in-the game (bottom
right).
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Since positions at CCPs are netted, we assume that there are no index pairs i, j ∈ N such that both
Xij > 0 and Xji > 0 for i, j ∈ N . This implies, that there are no index pairs for which both Bij > 0 and
Cji > 0, where i ∈ {1, . . . , nM} and j ∈ {1, . . . , nC}.

Hence, we can estimate the two matrices B,C simultaneously, by estimating the matrix Y ∈ RnM×nC ,
where Y = B − C⊤. In particular, Y can take positive and negative entries. Fix i ∈ {1, . . . , nM} and
j ∈ {1, . . . , nC}. First, if Yi,j ≥ 0, we set Bij = Xi,(nM+j) = Yi,j which means that clearing member i
has an obligation to CCP j and we set Cj,i = X(nM+j),i = 0 (i.e., no obligation from CCP j to clearing
member i). Second, if Yij < 0, then we set Bij = Xi,(nM+j) = 0, i.e., clearing member i does not have
any obligations to CCP j, and we set Cj,i = X(nM+j),i = |Yij |, i.e., the CCP j has an obligation to clearing
member i.

We have the following information about Y . From public disclosures, we know the clearing members
of each CCP. This means that we know the adjacency matrix that corresponds to Y , which we denote by
Aobserved ∈ {0, 1}nM×nC . In particular,

Aobserved
ij =

{
1, if i is a clearing member of j,
0, else.

Furthermore, as mentioned above, for each clearing member i ∈ {1, . . . , nM} we know the total notional
amount that it clears (li). In turn, for each CCP j ∈ {1, . . . , nC} we know the total notional that it clears,
denoted by aj . Moreover, we also know that each CCP has a matched book, as that is the essence of their
business model. These considerations together give rise to the following mathematical constraints on matrix
Y :

nC∑

j=1

|YijAobserved
ij | = li ∀i ∈ {1, . . . , nM} (total notional cleared by clearing member)

nM∑

i=1

|YijAobserved
ij | = aj ∀j ∈ {1, . . . , nC} (total notional cleared by CCP)

nM∑

i=1

YijA
observed
ij = 0 ∀j ∈ {1, . . . , nC} (matched book of CCP).

(12)

Given these additional constraints, we cannot use standard methods available to reconstruct financial
networks from observed row and column sums, see e.g. Gandy & Veraart (2017) and the references therein.

To obtain a matrix Y , we solve an optimisation problem that penalises deviations from the constraints
formulated in (12). We consider the following objective function f : RnM×nC → R, where

f(y) =

nM∑

i=1


li −

nC∑

j=1

|YijAobserved
ij |




2

+

nC∑

j=1

(
aj −

nM∑

i=1

|YijAobserved
ij |

)2

+ P

nC∑

j=1

(
nM∑

i=1

YijA
observed
ij

)2

,

where P > 0 is a constant that we include to put an additional penalty weight on the term that captures how
well the CCPs’ books are matched. Then, we consider the following optimisation problem

min
Y ∈RnM×nC

f(Y )

subject to Adj(Y ) = Aobserved,

where Adj(Y )ij = 1 if Yij > 0 and 0 otherwise, hence it computes the adjacency matrix that corresponds
to Y .26

26In fact, we only need to find those Yij for which Aobserved
ij = 1. Hence, the number of unknown parameters can be reduced from

nM · nC to
∑nM

i=1

∑nC
j=1 A

(Y )
ij .
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When solving this optimisation problem for our data for the IRS and CDS markets, we obtain in both
cases matrices in which CCPs have indeed matched books and the deviations from the observed row and
columns sums are very small. After having obtained the matrix Y , we can use it to compute the matrix X
of notional positions as described before. Figures 14 and 15 show the reconstructed matrix of IRS notional
amounts and of CDS notional amounts, respectively.

Finally, we then assume that the variation margin payments due from derivative positions are propor-
tional to the original estimated position, i.e., if the derivative position is Xij then we set p̄R1

ij = νXij for
some constant ν ≥ 0.

The final quantities we need are the liquidity buffers of the clearing members, i.e., bi, where i ∈ M.
Since we do not have this information, we simulate numbers such that pre-shock (i.e., before setting some
liquidity buffers to 0) there are no fundamental defaults.
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Figure 15: Reconstructed network of derivative positions for Credit Default Swaps (in million USD).
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D Clearing with pecking order

In this appendix we develop a clearing mechanism in which clearing members that default do not pay
the CCPs pro-rata (as assumed in our benchmark model) but according to a pecking order, and compare the
results. We use ideas developed in Elsinger (2011) for clearing in networks with different seniorities of debt.
We characterise the pecking order in terms of a matrix Ω ∈ {0, 1, . . . , nC}nM×nC , where Ωij represents the
rank of CCP j in clearing member i’s pecking order. If Ωij = 1, this means that CCP j is paid first by
clearing member i, and payments to other CCPs are only made if assets are left after the payments to j are
made. If Ωij = 0, then this means that clearing member i does not have any payment obligations to CCP
j. In the following we assume that each clearing member has a strict ranking of CCPs to which it makes
payments, so no two CCPs are considered of equal seniority in a clearing member’s pecking order.27

Our mathematical model does not depend on which criteria are used by the clearing members to decide
on their pecking order. For our case studies, we assume that the pecking order is obtained by considering the
size of the payment obligations, i.e., a clearing member ranks the CCP to which it has the highest payment
obligations first in the pecking order and then pays other CCPs according to decreasing nominal amounts of
payments due. As before, we assume that CCPs still pay their clearing members pro rata and not according
to a pecking order.

D.1 First round of clearing with pecking order

In the following, we assume that p̄R1
i > 0 for all i ∈ C, i.e., all CCPs have strictly positive payment

obligations. Since CCPs have matched books, this means that we do not have redundant CCPs in the model.
To simplify notation, we assume that M = {1, . . . , nM} and C = {nM + 1, . . . , nM + nC}, i.e., the first
nM indices correspond to the clearing members and the remaining indices to the CCPs.

We can characterise a price-payment equilibrium as a suitable fixed point. We consider a function
ΦR1, pecking : [0, 1]× [0, p̄R1] → [0, 1]× [0, p̄R1], and are interested in a fixed point (π⋆,R1, pecking, p⋆,R1, pecking)
such that

(π⋆,R1, pecking, p⋆,R1, pecking) = ΦR1, pecking(π⋆,R1, pecking, p⋆,R1, pecking),

where ΦR1, pecking is defined as follows.

ΦR1
1 (π, p) = exp(−α∆(π, p)),

Φ
R1, pecking
2,(ij) (p) =





min

{
p̄R1
ij ,

p̄R1
ij∑N

k=1 p̄
R1
ik

(
γ
(1)
i bi + γ

(2)
i

∑N
k=1 pki

)}
, if i ∈ C ∩ D(p),

min

{
p̄R1
ij , πmij +

(
γ
(1)
i bi + γ

(2)
i

∑N
k=1 pki −Wij(π)

)+}
, if i ∈ M∩D(p),

p̄R1
ij , if i ∈ N \ D(p),

(13)

where as before D(p) = {i ∈ N | Ai(p) < p̄R1
i }, specifies the nodes in default in a system with payments

p ∈ [0, p̄R1], and again Ai(p) = bi +
∑N

k=1 pki denotes the available assets of node i ∈ N .
Furthermore,

Wij(π) =

nC∑

k=1

(p̄R1
i,nM+k − πmi,nM+k)

+I{Ωik<Ωij},

27Our model is related to that of Elsinger (2011), who adapt the Eisenberg & Noe (2001) framework to a setting with different
seniorities of debt. In contrast to Elsinger (2011), our framework includes (possibly illiquid) collateral and bankruptcy costs and
is therefore more general. We have formulated our model for a strict pecking order, but this assumption can be relaxed and one
can consider a situation in which more than one CCP can have the same rank in the pecking order. This would lead to a slightly
different definition of ΦR1, pecking.
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i.e., Wij(π) are the payment obligations (that remain after seizing the initial margins for these position at a
current price of π ∈ [0, 1] per share) of clearing member i to the CCPs that are before CCP j in the pecking
order. Again ∆(π, p) models the total amount of collateral sold in Round 1 and it is defined exactly as in
Section 2.

When comparing ΦR1, pecking in (13) to ΦR1 in (1), the only difference is for i ∈ M ∩ D(p), i.e., for
defaulting clearing members. In (1) defaulting clearing members paid the CCPs pro rata, i.e., they distributed

their available assets according to the proportions aR1
ij (π) =

max{0,p̄R1
ij −πmij}∑N

k=1 max{0,p̄R1
ik−πmik}

. When there is a pecking

order, this is no longer the case. A defaulting clearing member first uses all its assets to pay the CCP ranked
first, then uses the remaining assets to pay the CCP ranked second, and so on. This is captured by the second

branch of ΦR1, pecking in (13). The term
(
γ
(1)
i bi + γ

(2)
i

∑N
k=1 pki −Wij(π)

)+
captures the resources that

clearing member i can use to pay the CCP j with pecking order rank Ωij on top of the initial margins.

Lemma D.1 (Properties of ΦR1, pecking ). Let ΦR1, pecking : [0, 1]× [0, p̄R1] → [0, 1]× [0, p̄R1] be the function
defined in (13), then ΦR1, pecking is order-preserving.

Proof of Lemma D.1. Let π̃, π ∈ [0, 1] with π̃ ≤ π and let p̃, p ∈ [0, p̄R1] with p̃ij ≤ pij for all i, j ∈ N .
Since Φ

R1, pecking
1 is identical to ΦR1

1 , we know from the proof of Theorem B.2 that ΦR1, pecking
1 is order-

preserving.
Next, we show that ΦR1, pecking

2 is order-preserving. Based on the same arguments as in the proof of
Theorem B.2, it holds that

D(p) ⊆ D(p̃). (14)

Next, we show that ΦR1
2 is order-preserving. Let i, j ∈ N . We distinguish between three cases.

Case 1: Let i ∈ N \ D(p). Then,

Φ
R1, pecking
2,(ij) (π, p) = p̄R1

ij ≥ Φ
R1, pecking
2,(ij) (π̃, p̃).

Case 2: Let i ∈ C ∩ D(p). Then, i ∈ C ∩ D(p̃). Then,

Φ
R1, pecking
2,(ij) (π̃, p̃) = min

{
p̄R1
ij ,

p̄R1
ij∑N

k=1 p̄
R1
ik

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)}
,

Φ
R1, pecking
2,(ij) (π, p) = min

{
p̄R1
ij ,

p̄R1
ij∑N

k=1 p̄
R1
ik

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)}
.

We distinguish between two cases. First, let ΦR1, pecking
2,(ij) (π, p) = p̄R1

ij , then

ΦR1
2,(ij)(π, p) = p̄R1

ij ≥ Φ
R1, pecking
2,(ij) (π̃, p̃).

Second, let

p̄R1
ij > Φ

R1, pecking
2,(ij) (π, p). (15)

Then,

p̄R1
ij > Φ

R1, pecking
2,(ij) (π, p) =

p̄R1
ij∑N

k=1 p̄
R1
ik

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki

)
≥

p̄R1
ij∑N

k=1 p̄
R1
ik

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki

)

= Φ
R1, pecking
2,(ij) (π̃, p̃),
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where the last equality follows from assumption (15).
Case 3: Let i ∈ M∩D(p). Then, i ∈ M∩D(p̃). Then,

Φ
R1, pecking
2,(ij) (π̃, p̃) = min



p̄R1

ij , π̃mij +

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki −Wij(π̃)

)+


 ,

Φ
R1, pecking
2,(ij) (π, p) = min



p̄R1

ij , πmij +

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki −Wij(π)

)+


 .

Again, we distinguish between two cases. First, let ΦR1, pecking
2,(ij) (π, p) = p̄R1

ij , then

ΦR1
2,(ij)(π, p) = p̄R1

ij ≥ Φ
R1, pecking
2,(ij) (π̃, p̃).

Second, let

p̄R1
ij > Φ

R1, pecking
2,(ij) (π, p). (16)

It follows directly from the definition of Wij , that Wij(π) ≤ Wij(π̃) and hence −Wij(π) ≥ −Wij(π̃).
Hence,

p̄R1
ij > Φ

R1, pecking
2,(ij) (π, p) = min



p̄R1

ij , πmij +

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

pki −Wij(π)

)+




≥ min



p̄R1

ij , π̃mij +

(
γ
(1)
i bi + γ

(2)
i

N∑

k=1

p̃ki −Wij(π̃)

)+




= Φ
R1, pecking
2,(ij) (π̃, p̃),

where the last equality follows from assumption (16). Hence, indeed ΦR1, pecking is order-preserving.

Theorem D.2 (Existence of a least and greatest price-payment equilibrium in Round 1 in the setting with a
pecking order). Let ΦR1, pecking : [0, 1]× [0, p̄R1] → [0, 1]× [0, p̄R1] be the function defined in (13).

1. The set of fixed points of ΦR1, pecking is a complete lattice. In particular ΦR1, pecking admits a greatest
and a least fixed point.

2. Let (π(0), p(0)) = (1, p̄R1) and define recursively for k ∈ N0

(π(k+1), p(k+1)) = ΦR1, pecking(π(k), p(k)).

Then,

(a) (π(k), p(k))k∈N0 is a monotonically non-increasing sequence, that is, π(k+1) ≤ π(k) and p
(k+1)
ij ≤

p
(k)
ij for all i, j ∈ N and for all k ∈ N0.

(b) The limit limk→∞(π(k), p(k)) exists and is the greatest fixed point of ΦR1, pecking.
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Proof of Theorem D.2. 1. We will prove the statement using Tarksi’s fixed point theorem (Tarski, 1955).
First, [0, 1] × [0, p̄R1] is a complete lattice with respect to the component-wise ordering. Second, it
follows directly from the definition of ΦR1, pecking in (1) that indeed ΦR1, pecking : [0, 1] × [0, p̄R1] →
[0, 1] × [0, p̄R1]. Third, ΦR1, pecking is an order-preserving function by Lemma D.1. By Tarski’s fixed
point theorem, the set of fixed points of ΦR1, pecking is a complete lattice and hence a least and greatest
fixed point exist.

2. This statement can be proved along the lines of the proof of Theorem B.2. We provide the details
below.

(a) We prove that π(k+1) ≤ π(k) and p
(k+1)
ij ≤ p

(k)
ij for all i, j ∈ N and for all k ∈ N0 by induction.

For k = 0, it follows directly from the definition of ΦR1, pecking in (13) that
π(1) = Φ

R1, pecking
1 (π(0), p(0)) = exp(−α∆(π(0), p(0))) ≤ 1 = π(0) and

p
(1)
ij = Φ

R1, pecking
2,(ij) (π(0), p(0)) ≤ p̄R1

ij = p
(0)
ij for all i, j ∈ N .

Our induction hypothesis is that π(k+1) ≤ π(k) and p
(k+1)
ij ≤ p

(k)
ij for all i, j ∈ N and for a

k ∈ N0.
Then, by the definition of the sequence

(π(k+2), p(k+2)) = ΦR1, pecking(π(k+1), p(k+1)) ≤ ΦR1, pecking(π(k), p(k)) = (π(k+1), p(k+1)),

where the inequality follows from the induction hypothesis and the fact that ΦR1, pecking is order-
preserving by Lemma D.1. Hence, this completes the induction step.
It follows directly from the definition of ΦR1, pecking that it is bounded from below by (0, 0)
(where the first 0 is 1-dimensional and the second zero is the N ×N zero matrix). Hence, there
exists a monotone limit (π̂, p̂) = limk→∞(π(k), p(k)). This limit is a fixed point of ΦR1, pecking,
since

ΦR1, pecking(π̂, p̂) = ΦR1, pecking( lim
k→∞

(π(k), p(k))) = lim
k→∞

ΦR1, pecking(π(k), p(k))

= lim
k→∞

(π(k+1), p(k+1)) = (π̂, p̂),

where the second equality follows from the right-continuity of ΦR1, pecking. It remains to show
that (π̂, p̂) = (π⋆,R1, pecking, p⋆,R1, pecking), i.e., that it is the greatest fixed point of ΦR1, pecking.
We show by induction that (π(k), p(k)) ≥ (π⋆,R1, pecking, p⋆,R1, pecking) for all k ∈ N0. It is clear,
that (π(0), p(0)) = (1, p̄R1) ≥ (π⋆,R1, pecking, p⋆,R1, pecking). Suppose
(π(k), p(k)) ≥ (π⋆,R1, pecking, p⋆,R1, pecking) for a k ∈ N0. Then,

(π(k+1), p(k+1)) = ΦR1, pecking(π(k), p(k))

≥ ΦR1, pecking(π⋆,R1, pecking, p⋆,R1, pecking) = (π⋆,R1, pecking, p⋆,R1, pecking),

where the inequality follows from the induction hypothesis and the fact that ΦR1, pecking is order-
preserving. The last equality holds because (π⋆,R1, pecking, p⋆,R1, pecking) is a fixed point of ΦR1, pecking.
Hence,

(π̂, p̂) = lim
k→∞

(π(k), p(k)) ≥ (π⋆,R1, pecking, p⋆,R1, pecking)

and since (π̂, p̂) = ΦR1, pecking(π̂, p̂), we obtain (π̂, p̂) = (π⋆,R1, pecking, p⋆,R1, pecking).
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D.2 Second round of clearing with pecking order

We now adapt the second round of clearing by Ghamami et al. (2022) to the pecking order setting. Let
(π⋆,R1, pecking, p⋆,R1, pecking) ∈ [0, 1]× [0, p̄R1] be the greatest fixed point of ΦR1, pecking.

Again, the payments outstanding at the start of the second round are given by p̄R2, pecking = p̄R1 −
p⋆,R1, pecking ∈ [0, p̄R1]. Consider the function ΦR2, pecking : [0, π⋆,R1, pecking]× [0, p̄R2] → [0, π⋆,R1, pecking]×
[0, p̄R2]. Our aim is to determine a fixed point of this function, i.e., we want to find (π⋆,R2, pecking, p⋆,R2, pecking)
such that

(π⋆,R2, pecking, p⋆,R2, pecking) = ΦR2, pecking(π⋆,R2, pecking, p⋆,R2, pecking),

where ΦR2, pecking(π, p) is defined as follows:

Φ
R2, pecking
1 (π, p) = π⋆,R1, pecking exp(−αΓ(π, p)),

Φ
R2, pecking
2,(ij) (π, p) =





min

{
p̄R2
ij ,

p̄R2
ij∑N

k=1 p̄
R2
ik

∑N
k=1 pki

}
, if i ∈ C,

min

{
p̄R2
ij ,
(
πri(π

⋆,Round 1, p⋆,Round 1) +
∑N

k=1 pki − W̃ij

)+}
, if i ∈ M,

(17)

where

W̃ij =

nC∑

k=1

p̄R2
i,nM+kI{Ωik<Ωij}

are the payment obligations of member i to CCPs that come before CCP j in the pecking order.
As before, Γ(π, p) denotes the total shares of collateral sold in the second round, i.e.,

Γ(π, p) =

N∑

i=1

Γi(π, p),

where the total share of collateral sold by node i ∈ N is given by

Γi(π, p) = min



ri(π

⋆,R1, pecking, p⋆,R1, pecking),
1

π
max



0,

N∑

j=1

p̄
R2, pecking
ij −

N∑

j=1

pji







 ,

if π > 0. For π = 0, we set

Γi(π, p) =

{
ri(π

⋆,R1, pecking, p⋆,R1, pecking), if i ∈ D(p⋆,R1, pecking) and max
{
0,
∑N

j=1 p̄
R2, pecking
ij −

∑N
j=1 pji

}
> 0,

0, otherwise.

Furthermore, ri(π⋆,R1, pecking, p⋆,R1, pecking) is the collateral returned to node i ∈ N and is defined as

ri(π
⋆,R1, pecking, p⋆,R1, pecking) =

{ ∑N
j=1(mij −∆ij(π

⋆,R1, pecking, p⋆,R1, pecking)), if i ∈ D(p⋆,R1, pecking),∑
j∈D(p⋆,R1, pecking)mij , if i ∈ N \ D(p⋆,R1, pecking).

In our setting, the market consists of clearing members and CCPs. Since we assume that CCPs do not
post initial margins to their clearing members, only clearing members can have collateral returned to them
in Round 2. In particular, ri(π⋆,R1, pecking, p⋆,R1, pecking) = 0 for all i ∈ C.
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Lemma D.3 (Properties of ΦR2, pecking ). Let ΦR2, pecking : [0, π⋆,R1, pecking]×[0, p̄R2, pecking] → [0, π⋆,R1, pecking]×
[0, p̄R2, pecking] be the function defined in (17), then ΦR2, pecking is order-preserving.

Proof of Lemma D.3. Let π̃, π ∈ [0, π⋆,R1, pecking] with π̃ ≤ π and let p̃, p ∈ [0, p̄R2, pecking] with p̃ij ≤ pij
for all i, j ∈ N .

We first show that ΦR2, pecking
1 is order-preserving. To see that for all i ∈ N it holds that Γi(π, p) ≤

Γi(π̃, p̃), we consider three cases.
Case 1: Let π̃ > 0. Then, 0 < π̃ ≤ π and therefore

Γi(π, p) = min



ri(π

⋆,R1, pecking, p⋆,R1, pecking),
1

π
max



0,

N∑

j=1

p̄
R2, pecking
ij −

N∑

j=1

pji









≤ min



ri(π

⋆,R1, pecking, p⋆,R1, pecking),
1

π
max



0,

N∑

j=1

p̄
R2, pecking
ij −

N∑

j=1

p̃ji









≤ min



ri(π

⋆,R1, pecking, p⋆,R1, pecking),
1

π̃
max



0,

N∑

j=1

p̄
R2, pecking
ij −

N∑

j=1

p̃ji







 = Γi(π̃, p̃).

Case 2: Let 0 = π̃ = π, then it follows directly from the definition that Γi(π, p) = Γi(π̃, p̃).
Case 3: Let 0 = π̃ < π. If i ∈ D(p⋆,R1, pecking) and max

{
0,
∑N

j=1 p̄
R2, pecking
ij −

∑N
j=1 pji

}
> 0, then

Γi(π̃, p̃) = ri(π
⋆,R1, pecking, p⋆,R1, pecking)

≥ min



ri(π

⋆,R1, pecking, p⋆,R1, pecking),
1

π
max



0,

N∑

j=1

p̄
R2, pecking
ij −

N∑

j=1

pji







 = Γ(π, p),

otherwise it holds that Γi(π̃, p̃) = 0 = Γ(π, p).
Hence, Γ(π, p) =

∑N
i=1 Γi(π, p) ≤

∑N
i=1 Γi(π̃, p̃) = Γi(π̃, p̃) and therefore

Φ
R2, pecking
1 (π, p) = π⋆,R1, pecking exp(−αΓ(π, p)) ≥ π⋆,R1, pecking exp(−αΓ(π̃, p̃)) = Φ

R2, pecking
1 (π̃, p̃).

It is clear from the definition of Φ
R2, pecking
2 that ΦR2, pecking

2,(ij) (π̃, p̃) ≤ Φ
R2, pecking
2,(ij) (π, p) for all i, j ∈

N .

Theorem D.4 (Existence of a least and greatest price-payment equilibrium in Round 2 in the setting with a
pecking order). Let ΦR2, pecking : [0, π⋆,R1, pecking]× [0, p̄R2, pecking] → [0, π⋆,R1, pecking]× [0, p̄R2, pecking] be the
function defined in (17).

1. The set of fixed points of ΦR2, pecking is a complete lattice. In particular ΦR2, pecking admits a greatest
and a least fixed point.

2. Let (π(0), p(0)) = (π⋆,R1, pecking, p̄R2) and define recursively for k ∈ N0

(π(k+1), p(k+1)) = ΦR2, pecking(π(k), p(k)).

Then,

(a) (π(k), p(k))k∈N0 is a monotonically non-increasing sequence, that is, π(k+1) ≤ π(k) and p
(k+1)
ij ≤

p
(k)
ij for all i, j ∈ N and for all k ∈ N0.
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(b) The limit limk→∞(π(k), p(k)) exists and is the greatest fixed point of ΦR2, pecking.

Proof of Theorem D.4. 1. We will prove the statement using Tarksi’s fixed point theorem (Tarski, 1955).
First, [0, π⋆,R1, pecking] × [0, p̄R2, pecking] is a complete lattice with respect to the component-wise or-
dering. Second, it follows directly from the definition of ΦR2, pecking in (17) that indeed ΦR2, pecking :
[0, π⋆,R1, pecking] × [0, p̄R2, pecking] → [0, π⋆,R1, pecking] × [0, p̄R2, pecking]. Third, ΦR2, pecking is an order-
preserving function by Lemma D.3. Hence, by Tarski’s fixed point theorem, the set of fixed points of
ΦR2, pecking is a complete lattice and hence a least and greatest fixed point exist.

2. Since ΦR2, pecking is right-continuous, the same arguments as in the proof of Theorem D.2 (part 2) can
be used to prove the statement.

D.3 Pecking order: two simple examples

We now show that clearing with a pecking order can lead to a different equilibrium compared to clearing
based on the pro rata rule. We provide two examples, the first showing situations when a pecking order
can reduce the number of contagious defaults, and the second illustrating that clearing with a pecking order
can also increase the number of contagious defaults. We consider a similar situation as in Example 1 in
Subsection 3.1, where a joint clearing member defaults.

D.3.1 Example #1: Clearing with a pecking order can reduce the number of contagious defaults

We consider a system consisting of nC = 2 CCPs and nM = 3 clearing members. Figure 16 provides
an illustration of the network of payment obligations. The weights along the edges represent the payment
obligation due from i to j in the first round, i.e., p̄R1

ij , and the numbers in parentheses represent the corre-
sponding initial margins (mij). For simplicity, we assume that the liquidity buffers are zero for all nodes
except for the joint clearing member M1 which has a liquidity buffer of 2.5.

3 (0) 2 (0)

2 (1)3 (1)

2.5

M2 CCP1

M1

CCP2 M3

1

Figure 16: Example in which clearing with a pecking order can reduce the number of contagious defaults.

There is one joint clearing member (M1) that clears at both CCPs. The other two clearing members only
clear at one CCP each (M2 at CCP1 and M3 at CCP2). Again we label the clearing members Mi with index
i for i ∈ {1, 2, 3}, CCP1 with index 4 and CCP2 with index 5 in the matrices and vectors below. Formally,
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p̄R1 =




0 0 0 3 2
0 0 0 0 0
0 0 0 0 0
0 3 0 0 0
0 0 2 0 0




, m =




0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, b = (2.5, 0, 0, 0, 0)⊤.

The joint clearing member M1 is the only node in fundamental default, i.e., F = {1} = {M1}.
We assume that γ(1)i , γ

(2)
i ∈ [0, 1] for all i ∈ N and assume that α = 0.

Then, if we use clearing with pro rata payments, i.e., by using ΦR1 and ΦR2 in (1) and (3) respectively,
then both CCPs default. In particular, here

p⋆,R1 =




0 0 0 8
3

11
6

0 0 0 0 0
0 0 0 0 0
0 8

3 0 0 0
0 0 11

6 0 0




,

and ∆ = 2, i.e., all initial margins are used in the first round. Therefore, no initial margins are returned
in round 2 and therefore Γ = 0 and p⋆,R2 = 0. The total shortfall is S = 1. Assuming illiquid collateral
(α > 0) increases the shortfall, but cannot lead to more defaults because all nodes with payment obligations
are already in default.

If, however, clearing is done using a pecking order of the clearing members, i.e., by using ΦR1, pecking

and ΦR2, pecking in (13) and (17) respectively – where clearing members rank CCPs according to the size of
their payment obligations – then only CCP2 defaults. In particular, clearing member M1 ranks CCP1 on
rank 1 of its pecking order and CCP2 on rank 2, because M1’s payment obligations to CCP1 are larger than
those to CCP2. Then,

p⋆,R1, pecking =




0 0 0 3 1.5
0 0 0 0 0
0 0 0 0 0
0 3 0 0 0
0 0 1.5 0 0




,

and ∆ = 2, i.e., all initial margins are used in the first round. Therefore, no initial margins are returned in
round 2 and therefore Γ = 0 and p⋆,R2, pecking = 0. The the total shortfall is the same as before (S = 1).

Hence, this is an example in which the pecking order causes a smaller number of contagious defaults.
This is not always the case. Here, CCP1 is on rank 1 in M1’s pecking order. Hence, all available assets
are used to pay CCP1 first, before CCP2 is paid. In this example, this results in CCP1 being paid in full
(all initial margins are used), but now there is a payment shortfall of 1/2 from M1 to CCP2. With pro-rata
payments this shortfall was only 1/6.

If M3 has payment obligations, the higher shortfall can cause additional contagious default, as the next
example shows.

D.3.2 Example #2: Clearing with a pecking order can increase the number of contagious defaults

For this example, we add one more CCP and one more clearing member to the previous situation. Figure 17
provides a graphical illustration. Formally,
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Figure 17: Example in which clearing with a pecking order can increase the number of contagious defaults.

p̄R1 =




0 0 0 0 3 2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 7

8
0 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 7

8 0 0 0




, m =




0 0 0 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0.1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, b = (2.5, 0, 0, 0, 0, 0, 0)⊤.

Then, if we use clearing with pro rata payments, i.e., by using ΦR1 and ΦR2 in (1) and (3) respectively,
then as before CCP1, CCP2 are the only contagious defaults. In particular, here

p⋆,R1 =




0 0 0 0 8
3

11
6 0

0 0 0 0 0 0 0
0 0 0 0 0 0 7

4
0 8

3 0 0 0 0 0
0 0 11

6 0 0 0 0
0 0 0 7

4 0 0 0




,

and ∆ = 2. Furthermore, Γ = 0 and p⋆,R2 = 0. The total shortfall is S = 1.
If, however, clearing is done using a pecking order of the clearing members, i.e., by using ΦR1, pecking

and ΦR2, pecking in (13) and (17) respectively, then CCP1 no longer defaults, CCP2 still defaults and now
additionally both CCP3 and M4 default.

In particular, here

p⋆,R1, pecking =




0 0 0 0 3 1.5 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1.6
0 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 1.5 0 0 0 0
0 0 0 1.6 0 0 0




,
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and ∆ = 2.1, i.e., all initial margins are used in the first round. Therefore, no initial margins are returned in
round 2 and therefore Γ = 0 and p⋆,R2, pecking = 0. The total shortfall has now increased to S = 1.3. Hence,
this is an example in which using a pecking order for clearing can increase the total shortfall.

D.4 Pecking order: a case study

We now consider an example of clearing in IRS. The stress scenario is chosen such that Deutsche Bank
and the Royal Bank of Scotland are the only fundamental defaults. Figure 18 shows the difference between
the shortfall from clearing with a pecking order (where clearing members rank CCPs according to the size
of payment obligations) and clearing using the pro rata rule. For both clearing models we assume liquid
collateral and no additional frictions. We find that there are winners and losers when using a pecking order.
The winner here is LCH Swap Clear which receives more payments from Deutsche Bank. CME and JSCC,
however, receive less payments under the pecking order rule. When comparing the total shortfall in the
system, clearing with a pecking order results in a slightly larger shortfall of S = 5, 920, 148 (million USD),
which compares to S = 5, 919, 408 (million USD) under the pro rata rule.

ICE Clear Credit (29)
ICE Clear Europe (28)

Eurex (27)
JSCC (26)
CME (25)

LCH SwapClear (24)
Morgan Stanley (23)

JPMorgan Chase (22)
Goldman Sachs (21)

Citigroup (20)
Bank of America (19)
Sumitomo Mitsui (18)

Mitsubishi UFJ (17)
Mizuho (16)

UniCredit (15)
Standard Chartered (14)

Royal Bank of Scotland (13)
Lloyds (12)
HSBC (11)

Barclays (10)
Societe Generale (9)

Credit Agricole (8)
BNP Paribas (7)

Banco Santander (6)
Deutsche Bank (5)
Commerzbank (4)

UBS (3)
Credit Suisse (2)

Royal Bank of Canada (1)
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Figure 18: Difference in the shortfalls obtained from using a pecking order and a pro rata rule. Blue cells
represent winners under the pecking order (i.e., smaller shortfalls), red cells represent losers under the
pecking order (i.e., higher shortfalls).

We also investigate the impact of clearing with pecking order when conducting a stress test as before,
by wiping out the liquidity buffers of different pairs of clearing members. Figure 19 shows the difference
in shortfall between clearing with pecking order and clearing pro rata for different combinations of clearing
member pairs being shocked. Here, we assume that collateral is liquid and that there are no further frictions.
We find that in the large majority of cases, clearing with a pecking order results in a slightly larger shortfall
in the system.
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Figure 19: Difference in shortfall when clearing members use a pecking order (ΦR1, pecking and ΦR2, pecking)
rather than the pro-rata repayment (ΦR1 and ΦR2) when different pairs of clearing members are shocked. All
numbers in million USD.
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Amini, H., Filipović, D. & Minca, A. (2015). Systemic risk and central clearing counterparty design. Swiss
Finance Institute Research Paper No. 13-34. Available at SSRN: https://ssrn.com/abstract=2275376.
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