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Measuring portfolio credit risk:  
modelling versus calibration errors1 

A model-based assessment of credit risk is subject to both specification and calibration 
errors. Focusing on a well known credit risk model, we propose a methodology for 
quantifying the relative importance of alternative sources of such errors and apply this 
methodology to a large data set. We find that flawed calibration of the model can 
substantially affect the measured level of portfolio credit risk. By contrast, a model 
misspecification generally has a limited impact, especially for large, well diversified 
portfolios. 

JEL classification: C15, G13, G21, G28.  

In the wake of recent advances in risk management, models of portfolio credit 
risk have attracted increasing attention. The validation of such models is of 
interest to both market practitioners and supervisors, not least because errors 
in the measurement of credit risk could translate into errors in financial 
institutions’ desired capital buffers. Such errors have different sources. They 
can be due to a violation of key modelling assumptions (ie misspecification) or 
to wrong estimates of key parameters (ie flawed calibration). Thus, a 
quantification of the relative importance of alternative sources of error in model 
outcomes would address issues of particular interest to the financial industry. 

In this article, we tackle such issues in the context of the well known 
asymptotic single-risk factor (ASRF) model. This model implies that capital 
buffers can be set at the level of individual credit exposures and, thus, are 
portfolio invariant. This implication, which is incorporated in the internal ratings-
based approach of the Basel II Framework, limits the data and operational 
requirements on users of the model. However, portfolio invariance rests 
critically on two assumptions, namely that the systematic component of credit 
risk is governed by only one common factor and that the portfolio is so finely 
grained that all idiosyncratic credit risk is diversified away. These assumptions 
have been criticised in the literature as being too strong and hence as being 
potential sources of misspecification errors. 

                                                      
1 The views expressed in this article are those of the authors and do not necessarily reflect 

those of the BIS. The authors thank Marcus Jellinghaus for valuable help with the data. 
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By contrast, flawed calibration of the ASRF model, another potential 
source of error in the measurement of credit risk, has received comparatively 
little attention. This unbalanced focus in the literature overlooks the fact that 
accurate estimation of key parameters of this model imposes substantial data 
requirements. In fact, users who would be attracted by the model’s simplicity, 
embodied in the “portfolio invariance” implication, are likely to also face 
difficulties in meeting those requirements.  

We propose a general methodology for identifying different sources of 
misspecification and calibration errors in the measurement of portfolio credit 
risk. Using a data set that contains estimated probabilities of default (PDs) and 
asset return correlations for a large cross section of firms, we quantify the 
relative impact of such errors on outcomes of the ASRF model. Our illustrative 
exercise suggests that model-implied measures of portfolio credit risk are more 
sensitive to plausible calibration errors than to misspecification errors. This is 
especially true for larger portfolios where the violation of the granularity 
assumption is less pronounced. 

The rest of this article is organised in four sections. After a brief overview 
of the related literature, the first section discusses at a conceptual level 
alternative sources of error in the calculation of portfolio credit risk. Then, the 
second section spells out the empirical methodology, which quantifies the 
relative importance of these sources in a unified framework. The third section 
describes the data and reports the empirical findings. The final section 
summarises the contribution of this analysis and identifies directions for future 
research. 

Calculated versus target capital: conceptual issues 

The ASRF model postulates that an obligor defaults when the value of its 
assets falls below a particular threshold. In addition, the model assumes that 
credit risk is related across obligors owing to the dependence (or the “loading”) 
of their assets on a single common risk factor and that the portfolio consists of 
a large number of small exposures (ie is of fine “granularity”). In this model the 
capital that covers all portfolio losses with a desired probability can be 
calculated at the level of individual exposures. In turn, an exposure-specific 
capital depends solely on the corresponding PD and common-factor loading. 

The literature has paid closer attention to misspecification of the ASRF 
model than to the potentially flawed calibration of its inputs. Analysis of 
violations of ASRF assumptions has led to proposals of ways to mitigate the 
impact of such violations on capital calculations. The various proposals, which 
have been reviewed in BCBS (2006), attempt to strike a balance between the 
reduction of errors and the associated data or computational 
burden.2  However, users who rely on the stylised ASRF model in order to 

                                                      
2 Adjustments to capital measures that correct for violations of the ASRF granularity 

assumption have been derived in Martin and Wilde (2002), Emmer and Tasche (2003) and 
Gordy and Lütkebohmert (2006). In turn, violations of the single-common-factor assumption 
have been the focus of Pykhtin (2004), Düllmann (2006), Garcia Cespedes et al (2006) and 
Düllmann and Masschelein (2006). In addition, Heitfield et al (2006) and Düllmann et al (2006) 
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alleviate such a burden are also likely to face constraints in estimating the 
model’s parameters. Thus, they are prone to an imperfect calibration of the 
model, which would generate additional bias in the assessment of portfolio 
credit risk.3  

In this special feature, we extend previous analyses by examining four 
sources of error in a model-based assessment of portfolio credit risk. Two of 
these sources relate to the possible misspecifications of the ASRF model that 
have received much attention in the literature. The other two relate to an 
erroneous calibration of the correlation of credit risk across exposures.4 

In the remainder of this section, we define and discuss each of these 
sources of error at a conceptual level. The metric we use to compare different 
model outcomes is credit value-at-risk (net of expected losses), which is 
equivalent to the capital buffer necessary to cover default losses with a desired 
probability.5  The comparison is based on a hypothetical benchmark 
assessment of risk, which assumes knowledge of all relevant parameters and 
is referred to as “target capital”, and alternative assessments, which are 
subject to one or more of the above-mentioned sources of error.  

Multiple factors of credit risk 

The obligors in a credit portfolio are likely to be affected not only by aggregate 
economic conditions but also by conditions relevant for specific business lines. 
Conceptually, these various conditions can be summarised in mutually 
independent and often unobservable risk factors. If several of these factors are 
of material importance, the single-factor assumption of the ASRF model would 
be violated. This would entail systematic errors in model-implied measures of 
credit risk and, consequently, in the capital set aside to compensate for it. 

A violation of the single-factor assumption is conceptually different from a 
failure to measure the impact of multiple factors on the correlation across 
obligors. Such a failure is independent of a modelling misspecification and can 
arise, for example, when higher concentration in a particular industrial sector is 
not captured in the estimated average correlation. However, even if the 
average correlation across obligors is measured accurately, an erroneous 
single-factor assumption ignores the fact that there are multiple sources of 
default clustering. This leads to an underestimation of the probability of a large 
number of defaults and, consequently, to an underestimation of the target 
capital. 

                                                                                                                                        
have examined both assumptions in the context of representative portfolios of US and 
European banks, respectively.  

3 For a discussion of the impact of estimation errors on capital calculations, see Löffler (2003). 

4 In order to focus on “pure portfolio” characteristics of credit losses, we abstract from errors in 
the measurement of PDs and losses-given-default (LGDs). 

5 In this article the terms “model outcome”, “assessment of portfolio risk” and “capital” are used 
interchangeably. Importantly, our capital calculations do not correspond to “regulatory capital”, 
which reflects considerations of bank supervisors, or to “economic capital”, which reflects 
additional strategic and business objectives of financial firms. 

Violations of the 
single-factor 
assumption … 
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Graph 1 (left-hand panel) illustrates such an effect in the context of a 
stylised portfolio, in which exposures are the same across obligors and have 
homogeneous PDs and losses-given-default (LGDs). In this portfolio, a fraction 
ω of the obligors belong to group 1, while 1–ω belong to group 2. The 
associated asset returns are uncorrelated across groups but are affected by a 
group-specific common factor. Thus, increasing the value of ω between 0 and 
1 increases the relative importance of the first common factor for the overall 
credit risk in the portfolio. The red line plots the target capital as a function of 
ω,6  while the green line portrays an alternative capital calculation implied by a 
single-factor structure. This structure matches exactly the average level of 
asset return correlations across exposure pairs. 

The difference between the red and green lines illustrates the multi-factor 
effect that we analyse empirically below. This difference is largest when the 
role of multiple factors is greatest and, hence, when a single-factor structure 
approximates most poorly the dispersion of asset return correlations. In our 
example, this occurs at ω = 1/2. 

                                                      
6 Target capital is lowest at ω = 1/2 because at this value the portfolio is evenly diversified 

between the two common factors, which minimises the probability of large losses. The 
dependence of the desired capital buffer on the relative exposure to multiple factors is studied 
by Düllmann and Masschelein (2006), at both a theoretical and an empirical level. 

Modelling misspecifications and capital, illustrative examples 
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Note: Calculated capital, in per cent, per unit of aggregate exposure, on the vertical axes. For each 
panel, PD = 1% and LGD = 45% are the same across exposures. 

1  The portfolio consists of two groups of exposures, with ω denoting the weight of the first group. 
Within each group, the asset return correlation equals 20% for all exposure pairs. The inter-group 
correlation is zero. The red line plots the target capital level, which incorporates two common 
factors. The green line plots the capital calculated under a one-common-factor approximation of the 
correlation structure. This approximation imposes the same common-factor loadings across firms 
and does not change the average asset return correlation.    2  The blue line plots target capital for 
a portfolio in which all pairwise asset return correlations equal 10%. The number of exposures in 
this portfolio varies across the horizontal axis. The brown line plots the corresponding capital 
estimates when N is assumed to be infinite. Graph 1 



 

BIS Quarterly Review, March 2007 87
 

Granularity 

The “perfect granularity” assumption of the ASRF model postulates that all 
exposure-specific, ie idiosyncratic, risk is diversified away. Since this cannot be 
attained by any real-world portfolio, the granularity assumption leads to an 
underestimation of the overall credit risk and, consequently, to an 
underestimation of target capital. Given an overall correlation across 
exposures, this underestimation is smaller for a portfolio that comprises more 
obligors and, thus, benefits from greater diversification gains. This is illustrated 
in the right-hand panel of Graph 1. 

Correlation level  

Even if the ASRF model is correctly specified, calculated capital may be 
affected by errors in the inputs to this model. For instance, a user of the model 
who has data constraints may choose to rely on readily available external 
estimates of the asset return correlations in popular credit indices. Such 
estimates would lead to a discrepancy between target and calculated capital to 
the extent that the underlying indices were not representative of the user’s own 
portfolio. 

One driver of the potential discrepancy is a bias in the average level of the 
asset correlations underpinning the calculation of capital. When this bias is 
positive, for instance, it inflates the probability that a large number of defaults 
might occur simultaneously and leads to an overestimation of the target capital. 
Conversely, a negative bias leads to an underestimation. This is the correlation 
level effect we examine empirically below. 

Dispersion in pairwise correlations 

The effect of a bias in the overall level of calibrated correlations could be 
augmented by errors in the dispersion of these correlations across exposure 
pairs. Such errors are likely to emerge either if users of the ASRF model rely 
on external estimates of asset return correlation or if they apply the average of 
internal estimates to all exposures. This would lead to a correlation dispersion 
effect on calculated capital. Even though in practice this effect is likely to be 
tightly related to the correlation level effect, our empirical methodology will 
disentangle the two in order to quantify their separate roles. 

The effect of correlation dispersion on calculated capital is seen most 
clearly in a stylised example. Suppose that all firms in one portfolio have 
homogeneous PDs and exhibit homogeneous pairwise asset return 
correlations. Suppose further that a second portfolio is characterised by the 
same PDs and average asset return correlation but includes a group of firms 
that are more likely to default together. The second portfolio is more likely to 
experience several simultaneous defaults and, thus, requires higher capital in 
order to attain solvency with the same probability. 

However, this result can be weakened or even reversed if PDs vary across 
firms. To see why, suppose that the strongly correlated firms in the second 
portfolio are the ones that have the lowest individual PDs. In other words, the 
firms that are likely to generate multiple defaults are less likely to default. This 
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may lower the probability of default clustering, depressing the target capital 
level below that for the first portfolio. 

Empirical methodology 

Our empirical methodology comprises two general steps. In the first step, we 
construct a large (small) hypothetical portfolio that comprises equal exposures 
to 1,000 (200) firms.7  The sectoral composition of this portfolio is designed to 
be in line with the typical loan portfolio of large US wholesale banks.8  Given 
the constraints of such a composition, the portfolio is drawn at random from our 
sample of firms. Since each draw could be affected by sampling errors, we 
examine 3,000 different draws for both large and small portfolios. 

For a portfolio constructed in the first step, the second step calculates five 
alternative capital measures, which differ in the underlying assumptions 
regarding the interdependence of credit risk across exposures.9  Each of these 
alternatives employs the same set of PD estimates, and assumes that LGD 
equals 45% for all exposures and that asset returns are normally 
distributed.10  We order the measures so that each measure differs from a 
previous one owing to a single assumption.11 

The first measure is the target capital, which incorporates data on asset 
return correlation estimates. Assuming that these and the other risk parameter 
estimates we adopt (as well as our distributional assumption) are accurate, we 
conduct a Monte Carlo simulation to construct the probability distribution of 
default losses at the one-year horizon. Then, we set the target capital to a level 
that covers unexpected default losses with a probability of 
99.9%,12  recognising that our methodology also applies to alternative 
definitions of target capital. 

The second capital measure differs from the target one owing to a 
restriction on the number of common factors governing asset returns. 
Specifically, we use a correlation matrix of asset returns that can emerge in the 
presence of a single common risk factor but fits as closely as possible the 

                                                      
7 In this analysis, the distinction between large and small portfolios is not based on the size of 

the aggregate exposure but reflects different degrees of diversification across individual 
exposures. 

8 Such a portfolio does not incorporate consumer loans and, thus, may not fully represent all 
aspects of credit risk. To construct a large portfolio, we apply the 40 sector-specific weights  
provided by Heitfield et al (2006). For a small portfolio, we rescale the 10 largest sectoral 
weights so that they sum up to one and set all remaining weights to zero. 

9 The box on page 89 provides further detail on the calculation of each of the five capital 
measures. 

10 The particular data used in this article are described in the next section. 

11 We choose one of several possible orderings of the five capital measures. On the basis of 
background analysis, we are confident that an alternative ordering would not change our main 
conclusions significantly, even if it altered specific numerical results. 

12  The covered level of unexpected losses equals the 99.9th percentile of the distribution of 
credit losses minus the mean of this distribution. 
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unrestricted correlation matrix underpinning the target capital calculation. The 
difference between the resulting capital estimate and the target level is denoted 
the “multi-factor effect”. 

Calculating capital measures: technical details 

This box outlines three general methods for calculating the distribution of default losses. These methods 
are used to derive the five capital measures considered in the text.  

The first method relies on Monte Carlo simulations and delivers the target capital level. This 
method can be applied to any portfolio comprising N equally weighted exposures, provided that the 
associated probabilities of default, PD, losses-given-default, LGD, and correlation matrix of asset 
returns, R, are known. The method consists of three general steps. In the first step, one uses the 
vector of PDs and the assumption that asset returns are distributed as standard normal variables to 
obtain an N x 1 vector of default thresholds. In the second step, one draws an N x 1 vector from N 
standard normal variables whose correlation matrix is R. The number of entries in this vector that 
are smaller than the corresponding default threshold is the number of simulated defaults for the 
particular draw. In the third step, one repeats the second step a large number of times to derive the 
probability distribution of the number of defaults. Denoting this distribution’s (1 – α)th percentile by 
β and the average PD in the portfolio by A(PD), the target capital for a credit value-at-risk 
confidence level of (1 – α) equals LGD*(β – A(PD)) per unit of exposure.1 

The second method relies on the so-called Gaussian copula, which is outlined in detail in 
Gibson (2004). This method delivers the second capital measure in the main text and rests on the 
assumptions that (i) the portfolio consists of N equally weighted exposures with identical LGD2  and 
(ii) only one common factor drives credit risk. To apply this method, one needs to calibrate the LGD, 
obtain values for the firm-specific PDs and estimate firm-specific loading coefficients, li , which are 
defined by the following equation: 

iiii ZlMlV 21−+=                                                                                                                  (1) 

where Vi is the asset value of firm i, M is the common risk factor and Zi is the idiosyncratic risk 
factor. Equation (1) implies that the correlation between the asset returns of firm i and j equals li*lj. 
A particular estimate of li is obtained by fitting the single-common-factor assumption to the original 
correlation structure in a mean-squared-error sense, ie by minimising the following sum: 
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where ρij is an element of the correlation matrix R. Andersen et al (2003) provide an efficient 
algorithm for solving this minimisation problem. Estimated in this way, the loading coefficients li 
account almost exactly for the average pairwise correlation in R. 

The third method, which applies to the other three measures in the main text, is a special case 
of the ASRF model. In comparison to the second method, it makes the additional assumption that 
all idiosyncratic risk is diversified away. This implies that the capital buffer for the portfolio is the 
sum of exposure-specific capital buffers, κi, which are calculated as follows: 
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__________________________________  

1  This article sets N = 200 or 1,000, LGD = 45%,  α = 0.1% and PD and R as estimated by Moody’s KMV. In 
addition, the third step of the first method carries out 500,000 Monte Carlo simulations.    2  For a calculation of the 
probability distribution of credit losses when individual exposures have different LGDs and portfolio weights, see Hull 
and White (2004). 
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The third measure differs from the second one in that it assumes, in 
addition, that all idiosyncratic credit risk is diversified away. In other words, it 
ignores the impact of imperfect granularity in the portfolio. This assumption 
allows one to apply the ASRF model, which delivers an analytic solution for 
capital calculations. The difference between the third and second measures is 
the “granularity effect”. 

The fourth measure differs from the third one in that it is based on the 
assumption that asset return correlations are the same across all exposures in 
the portfolio. The common correlation, which is set equal to the average of the 
pairwise correlations underpinning the third capital measure, is used as an 
input to the ASRF model. The difference between the fourth and third capital 
measures is denoted the “correlation dispersion effect”. 

Finally, the fifth measure incorporates a bias in the estimates of asset 
return correlations. This measure differs from the fourth one in that it relies on 
a standard rule-of-thumb value of the (common) asset return correlation. The 
difference between the fifth and fourth measures is denoted the “correlation 
level effect”. 

An important feature of this methodology is that it allows one to quantify 
the relative importance of alternative drivers of capital miscalculations. 
Specifically, the methodology can be applied to dissect the difference between 
the fifth capital measure, which we henceforth dub the “shortcut” one, and the 
first, ie target, capital measure. By construction, this difference equals exactly 
the sum of the multi-factor, granularity, correlation dispersion and correlation 
level effects. 

Empirical results 

In this section, we employ the methodology outlined above to investigate the 
discrepancy between target and shortcut capital for simulated portfolios with 
realistic features. In addition, we derive the relative importance of alternative 
drivers of this discrepancy.  

Data 

Our empirical analysis relies on two data sets provided by the commercial 
service Moody’s KMV. One data set consists of one-year expected default 
frequencies (EDFTM) that are point-in-time estimates of individual PDs, while 
the other comprises estimates of pairwise asset return correlations implied by 
the GCorr model. Both EDF and GCorr models are based on an extended and 
operational version of the seminal framework of Merton (1974), which is 
broadly consistent with the ASRF model.13 

Combining these two data sets, we obtain a pool of 10,891 non-financial 
firms, for which individual PD and pairwise correlation estimates are available. 

                                                      
13 See Crosbie and Bohn (2003), Das and Ishii (2001) and Crosbie (2005) for a description of 

these proprietary models and related references. The Moody’s KMV sample comprises only 
firms with publicly traded equities. A multi-factor loading structure is employed for the 
estimation of the GCorr model. 
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The vast majority of the firms in the sample are headquartered either in the 
United States (52% of the total number) or in western Europe (40%). For 
illustrative purposes, we use EDF and GCorr estimates in July 2006 as the 
“true” PDs and correlations underpinning the target capital level. Of course, any 
error in these estimates would warrant a revision of the target capital. 

Table 1 summarises the characteristics of the simulated portfolios. For 
both large and small portfolios, the distribution of EDFs has a long right tail, 
with the median values much lower than the mean. Correlation estimates are 
clustered mainly between 5 and 25%, with their mean standing at 9.78% for 
large portfolios and 10.49% for small ones. In addition, reflecting the benign 
credit conditions during the sample period, more than 10% of the sample firms 
have the lowest PD estimates permitted by the EDF model (ie 0.02%). 

Target versus shortcut capital levels 

We proceed to quantify and decompose the difference between target and 
shortcut capital measures (Table 2). For illustrative purposes, the constant 
correlation underlying shortcut calculations is set at 12%. This is about 

Characteristics of simulated portfolios1 

In per cent 

A. Large portfolios (1,000 exposures) 

 Mean Standard 
deviation 

Median Minimum Maximum 

Average PD 2.42 0.19 2.42 1.79 3.12 

Standard deviation of PDs 5.16 0.26 5.16 4.25 6.14 

Median PD 0.26 0.03 0.26 0.18 0.36 

Average correlation2 9.78 0.22 9.77 9.14 10.73 

Standard deviation of loadings3 9.33 0.31 9.32 8.33 10.47 

Corr (PD, loadings)4 –20.00 2.04 –20.10 –26.70 –12.80 

B. Small portfolios (200 exposures) 

 Mean Standard 
deviation 

Median Minimum Maximum 

Average PD 2.28 0.36 2.26 1.24 3.68 

Standard deviation of PDs 5.05 0.53 5.06 3.01 6.89 

Median PD 0.24 0.05 0.23 0.11 0.55 

Average correlation2 10.49 0.44 10.48 8.99 12.00 

Standard deviation of loadings3 10.54 0.70 10.55 7.80 12.79 

Corr (PD, loadings)4 –19.80 4.59 –20.20 –31.80 –1.20 

Note: The calculations in this table use 3,000 simulated portfolios for each portfolio size and are carried out in two steps. First, 
portfolio-specific statistics specified by row headings are calculated for each simulated portfolio. Second, summary statistics specified 
by column headings are calculated for each of the portfolio-specific statistics calculated in the first step. 
1  Based on Moody’s KMV estimates of PDs and asset return correlations for July 2006.    2  Based on all pairwise correlations.    3  The 
derivation of common-factor loadings assumes that there is a single common factor and implements the procedure outlined in the box 
(page 89).    4  The sample correlation between PDs and loadings on the single common factor.  Table 1 
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2 percentage points higher than the average asset return correlation in the 
simulated portfolios (recall Table 1) and is close to the 12.5% rule-of-thumb 
correlation suggested by Lopez (2004). 

The results show that the shortcut capital measure can be significantly 
higher than the corresponding target level. The difference is much more 
pronounced in the context of large portfolios, for which it amounts on average 
to 76 basis points (per unit of exposure, or 26% of the target capital). This is 

Four sources of error in estimated capital1 
Per unit of aggregate exposure, in per cent 

A. Large portfolios (1,000 exposures) 

 Mean Standard 
deviation 

Median 95% interval 50% interval 

Target capital2 
Deviation from the target due to:3 

2.95 0.16 2.95 [2.64, 3.27] [2.84, 3.05] 

 Multi-factor effect –0.03 0.03 –0.05 [–0.09, 0] [–0.05, 0] 
 Granularity effect –0.11 0.01 –0.11 [–0.14, –0.09] [–0.12, –0.10] 
 Correlation dispersion effect 0.35 0.04 0.35 [0.27, 0.43] [0.32, 0.38] 
 Correlation level effect 0.55 0.06 0.55 [0.44, 0.66] [0.52, 0.59] 
“Shortcut” capital  
(correlation = 12%)  3.71 0.18 3.71 [3.37, 4.06] [3.59, 3.83] 

Memo: correlation level effect if:      
 Correlation = 6% –0.96 0.07 –0.96 [–1.11, –0.83] [–1.00, –0.91] 
 Correlation = 18% 2.01 0.09 2.01 [1.84, 2.18] [1.95, 2.07] 

 Correlation = 24% 3.47 0.13 3.47 [3.23, 3.72] [3.39, 3.56] 

B. Small portfolios (200 exposures) 

 Mean Standard 
deviation 

Median 95% interval 50% interval 

Target capital2 3.35 0.30 3.34 [2.78, 3.94] [3.15, 3.53] 
Deviation from the target due to:3 
 Multi-factor effect –0.04 0.10 0 [–0.23, 0] [0, 0] 
 Granularity effect –0.53 0.07 –0.53 [–0.65, –0.41] [–0.59, –0.47] 
 Correlation dispersion effect 0.38 0.11 0.37 [0.17, 0.58] [0.30, 0.45] 
 Correlation level effect 0.36 0.11 0.36 [0.15, 0.61] [0.29, 0.44] 
“Shortcut” capital  
(correlation = 12%) 3.52 0.34 3.51 [2.85, 4.23] [3.28, 3.75] 

Memo: correlation level effect if:      
 Correlation = 6% –1.07 0.12 –1.07 [–1.31, –0.85] [–1.15, –0.99] 
 Correlation = 18% 1.76 0.19 1.75 [1.41, 2.15] [1.63, 1.88] 

 Correlation = 24% 3.15 0.27 3.14 [2.65, 3.70] [2.97, 3.33] 

1  Summary statistics for the simulated portfolios underpinning Table 1 (3,000 for each portfolio size). The column entitled “95% 
interval” reports the 2.5th and 97.5th percentiles of the statistics specified in the particular row heading. The column entitled “50% 
interval” reports the corresponding 25th and 75th percentiles.    2  Based on Moody’s KMV estimates of PDs and asset return 
correlations and a Monte Carlo procedure for calculating the probability distribution of default losses.    3  Four sources of deviation 
from the target capital level; a negative sign implies underestimation. The sum of the target capital level and the four deviations equals 
the shortcut capital level. Each deviation is based on the assumptions underlying previous deviations plus one additional assumption: 
(a) for the multi-factor effect, the correlation matrix underpinning the target capital level is approximated under the assumption that 
there is a single common factor; (b) for the granularity effect, there is the additional assumption that the number of firms is infinite; 
(c) for the correlation dispersion effect, the additional assumption is that the loadings on the single common factor are the same across 
exposures; (d) for the correlation level effect, the additional assumption imposes a different level for the constant pairwise correlation. 
See the box on page 89 for further detail on alternative capital measures.  Table 2 
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predominantly the result of the correlation dispersion and correlation level 
effects. By contrast, these two effects are almost fully offset by the granularity 
effect in small portfolios, for which the shortcut capital estimate is 5% higher 
than the target level.14  The following subsections discuss in some detail the 
four alternative effects behind the overall discrepancies between target and 
shortcut capital.15 

Multi-factor effect 

The multi-factor effect lowers the model-implied capital measure, for the 
reasons outlined above, but its quantitative impact is almost negligible. 
Imposing a single-factor structure on asset returns leads to a capital allocation 
on large portfolios that is, on average, 1% lower than the target level. At 1.2%, 
this decline is only slightly larger for small portfolios. 

The low importance of the multi-factor effect is a result of the fact that a 
single-factor framework approximates quite well the multi-factor structure in the 
data. For the portfolios used in this exercise, the single-factor framework 
outlined in the box on page 89 explains almost perfectly the level of the original 
correlations (with an error of less than 2 basis points) and accounts for the bulk 
(76% on average) of the cross-sectional variation in pairwise correlations. The 
robustness of this finding to alternative portfolio specifications and alternative 
estimates of risk parameters is an important question for future research. 

Granularity effect 

As expected, the granularity assumption of the ASRF model leads to an 
underestimate of the target capital ratio. Importantly, the underestimation 
increases when the size of the portfolio decreases. As Table 2 reports, the 
granularity effect leads to a 4% underestimation of the target capital for large, 
diversified portfolios and a 16% underestimation for small, less diversified 
portfolios. These results are in line with previous analyses of the granularity 
effect.16 

In practice, the size of the exposures would vary across obligors, which 
would complicate the analysis of the granularity effect. For example, a portfolio 
that consists of a large number of exposures but is highly concentrated in a 
subset of them can be associated with a larger granularity effect than a 
portfolio with a smaller number of equally weighted exposures. Our 

                                                      
14 Even though the exercise focuses on a particular sectoral distribution of exposures, credit risk 

does differ across the simulated portfolios. Accordingly, columns 2 to 5 in Table 2 report 
descriptive statistics of the distribution of the portfolio-specific capital estimates. 

15 In quantifying the magnitude of each effect, the adopted sign is such that an effect can be 
added to the target capital level or subtracted from the corresponding shortcut level.  

16 For instance, Gordy and Lütkebohmert (2006) propose an adjustment formula to correct for 
the granularity effect. An application of this formula (equation (6) in their paper) matches 
exactly a granularity effect that leads to a 5.4% underestimate of the target capital for large 
portfolios and a 24% underestimate for small portfolios. 
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methodology could also accommodate such cases, but we abstract from them 
in this special feature in order to simplify the exposition.17  

Correlation dispersion effect 

Equalising the asset return correlations across exposure pairs causes 
calculated capital to be more conservative than the target level. In particular, 
target capital is overestimated by 12% for large portfolios. At 11% for small 
portfolios, this overestimation classifies the correlation dispersion effect as the 
most important of the four considered sources of discrepancies between 
shortcut and target capital. In line with the intuition presented above, the 
positive sign of the correlation dispersion effect is due to the fact that, in our 
sample, higher-PD exposures tend to be less correlated among themselves 
(Table 1).18 

Correlation level effect 

A mismatch between the average correlations underpinning target and shortcut 
capital calculations would also have a substantial effect. Increasing the 
average asset return correlation from 9.8% (the level estimated by Moody’s 
KMV for the simulated portfolios) to 12% leads to a 19% overestimation of the 
target capital for large portfolios. For small portfolios, an average asset return 
correlation of 12% implies a smaller but still significant overestimation of 11%. 

This result is not surprising, because a higher average asset return 
correlation translates into a higher probability of default clustering, which raises 
the estimated capital. Alternatively, however, the average level of asset return 
correlations may be underestimated, which would lead to insufficient capital. 
Table 2 reports that setting this level to 6% would lead to underestimating the 
target capital level by about 32% for both portfolios.19 

Conclusion 

In this article, we developed an approach to evaluating errors in the 
measurement of portfolio credit risk. In particular, we used this approach to 
quantify the magnitude of different sources of a discrepancy between a 
predefined target capital level and a shortcut alternative, which is based on the 
ASRF model and rule-of-thumb correlation estimates. On the basis of simulated 

                                                      
17  Accommodating disparate exposures would introduce an additional dimension in portfolio 

characteristics, requiring the simulation of a greater variety of hypothetical portfolios and 
making it more difficult to interpret the multi-factor and correlation dispersion effects. 

18 The negative relationship between PDs and correlations (ie loading coefficients) is likely to be 
a general phenomenon. For example, Dev (2006) finds that global factors often play bigger 
roles for firms of better credit quality. 

19 Table 2 reports the correlation level effect based on alternative levels of average correlations: 
6%, 18% and 24%. These alternatives correspond to rule-of-thumb correlation values reported 
in previous studies (between 5 and 25%) and to plausible estimation errors. As regards such 
errors, Tarashev and Zhu (2007) show that, for a true constant correlation of 9.78% and five 
years of monthly data on asset returns, the 95% confidence interval for the estimated average 
correlation is between 6.4 and 13.3%. 

… especially if the 
model is 
erroneously 
calibrated 
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portfolios, we found that plausible errors in estimated asset return correlations 
could lead to substantial deviations from the target capital levels for both large 
and small portfolios. By contrast, the violation of key assumptions of the ASRF 
model, ie the single-factor or the perfect granularity assumption, tend to result 
in relatively smaller errors in calculated capital. The only exception is that the 
granularity assumption does have a significant impact for small portfolios. 

The illustrative nature of our analysis identifies different avenues for future 
research. For one, it would be valuable to analyse the robustness of our 
empirical results to alternative portfolio specifications and to different (realistic) 
values of PDs, LGDs and asset return correlations. In addition, it would be 
important to derive rigorously the range of plausible estimation errors in the 
parameters used to calculate portfolio credit risk and to study the implications 
of alternative assumptions as regards the distribution of asset returns. 
Tarashev and Zhu (2007) attempt to address this latter set of issues. 
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