
Building API prototypes
for retail CBDC ecosystem
innovation

Project Rosalind

16 June
2023

Executive summary 2

Introduction 4

 The global landscape 4

 The two-tier CBDC model
and the use of APIs 5

Project Rosalind 6

 Project purpose and objectives 7

 The collaborative approach 9

Technical design and build 11

 Project architecture
for the two-tier model 12

 Assumptions and
design decisions 14

 API design principles and
assessment 15

AML anti-money laundering

ATM automated teller machine

API application programming
interface

BIS Bank for International
Settlements

BIS CPMI BIS Committee on Payments
and Market Infrastructures

CBDC central bank digital currency

CTF counter-terrorism financing

DID decentralised identifier

ESIP ecosystem service interface
provider

FAPI financial-grade API

FSB Financial Stability Board

HTLC hash timelock contract

LEI legal entity identifier

JSON JavaScript Object Notation

JWS JSON Web Signature

KYC know your customer

 API functionalities 17

 Account and token-based
central bank ledger 19

 Privacy model 20

 Security 21

 Standards 22

 Service providers 22

Use cases and user feedback 23

 Use cases explored 24

 User feedback and future
improvement on Rosalind APIs 25

Insights, learnings, and areas for
further exploration 26

Conclusion 28

NFC near-field communication

NFT non-fungible token

POS point of sale

PIP payment interface provider

PII personal identifiable
information

REST representational state
transfer

RTP request to pay

ARTP authenticated request to pay

TLS transport layer security

UTXO unspent transaction output

VC verifiable credentials

Contents Glossary of terms

BIS Innovation Hub Project Rosalind bis.org 1

https://www.bis.org/

Executive
summary
Project Rosalind is an experiment exploring
application programming interfaces (APIs) for
retail central bank digital currency (CBDC).

BIS Innovation Hub Project Rosalind bis.org 2

https://www.bis.org/

The project also highlighted several
areas for further exploration, related
to both technology and policy
considerations.

 Important considerations emerged
around how the APIs might allow
the ecosystem to share user
and payments data in a privacy-
preserving way, subject to user
permission.

 When designing APIs, there was a
trade-off between extensibility and
consistency. The project aimed to
keep APIs as simple and standardised
as possible whilst enabling service
providers greater flexibility to build
bespoke features for their specific
use cases. This approach could help
to maximise extensibility and support
innovation, but it might not deliver a
consistent experience for individuals
and businesses.

 Furthermore, as the project tested
the technological feasibility of an API
layer capable of connecting systems,
coordinating activities and facilitating
payments, it identified the need for
further work to define the operational
roles and responsibilities of all
participants in the ecosystem.

The key findings were:

 A well-designed API layer could
facilitate retail payments in CBDC.

 A set of simple and standardised
API functionalities could support a
diverse range of use cases. It also has
the potential to support innovation
in products and services based
on CBDC that could help meet the
future needs of users in a more
digital economy.

 The API layer could work with
different central bank ledger designs
to facilitate payments.

 The design of the API layer must
be consistent with, and implement
the requirements of, the wider
privacy model for a CBDC. This
was fundamental to the design
and build of the Rosalind APIs.

 APIs can support offline payments
in CBDC, but there are a range of
challenges involved in delivering
offline functionality.

At the centre of this architecture
is an API layer, which connects public
and private infrastructures. The API
layer offers a set of standardised
functionalities to enable different
systems to interoperate. The project
explored how central banks could
address the need for a universal and
extensible API layer for retail CBDC
payments. Collaborating with the
private sector, the project also explored
what the building blocks of a CBDC
ecosystem would be and how the APIs
could support innovative use cases.

The project involved the development
of a prototype API layer, with 33 API
endpoints in six functional categories.1
The design and functionalities of the
APIs were tested and validated through
more than 30 use cases identified and
explored by public and private sector
collaborators. A global showcasing
event and a TechSprint were important
parts of the project for deepening
understanding, sharing progress,
and engaging with the ecosystem.

The project is based on a
two-tier model representing
a public-private partnership
in which the central bank
issues CBDC and provides
the ledger infrastructure,
and the private sector
offers user-facing services
including digital wallets.

BIS Innovation Hub Project Rosalind bis.org 3

https://www.bis.org/

1 Introduction
1.1 The global landscape

Central banks are
accelerating their
explorations of retail CBDC.2
Many of them are trying
to understand how CBDC
could support a more
digitalised economy and
improve the availability and
utility of retail central bank
money in a digital age,
while sustaining confidence
and trust in the monetary
and financial system.

These central bank explorations are
supported by numerous initiatives
and projects, from both the public
and private sectors, covering a wide
range of topics, such as resilience,
cyber security, offline payments,
privacy protection and ledger design.
Authorities are also considering the
implications for operational, legal,
and regulatory frameworks for CBDC.

Building on the knowledge gained
from wholesale CBDC projects, the
Bank for International Settlements (BIS)
Innovation Hub is now spearheading
several technological experiments
related to retail CBDC. Experiments
cover CBDC architectural models, cyber
security, resilience, offline payments,
privacy, and cross-border payments.3

BIS Innovation Hub Project Rosalind bis.org 4

https://www.bis.org/

In the G20 roadmap, the need to
harmonise API protocols for data
exchange was identified as one of the
building blocks for enhancing cross-
border payments.5 The BIS CPMI’s
report to the G20 in 2022 also discussed
the benefits of adopting APIs for
payment systems and highlighted
the need for API standardisation.6

This model would require an API layer
which would help to pass instructions
from service providers to the central
bank ledger, and orchestrate activities
to initiate, verify, approve, and finalise
payments. An API is a set of defined
rules and protocols that are used to
allow applications and systems to
communicate with each other. APIs
can act as interfaces between different
systems in order to process requests to
perform specific tasks or access specific
data. They can improve functionality
and interoperability between payments
systems, while abstracting away the
inner workings of individual systems.
In the past decade, the use of APIs has
gained prominence for supporting
innovation and contributing to the
development of new products and
services. The United Kingdom’s Open
Banking programme is one such
example. APIs could also play an
important role in cross-border
payments.

There are a range of possible designs
for a two-tier retail CBDC system, with
various types of interaction between
private and public sector participants,
and different boundaries between
public and private sector infrastructure.

Project Rosalind is based on a version
of this two-tier model. It would enable
individuals and businesses to manage
their CBDC balances held at the central
bank and recorded on a central bank
ledger, and to make payments through
their private sector service providers.
Those providers, including payment
interface providers (PIPs) and ecosystem
service interface providers (ESIPs), might
be banks, financial institutions, or non-
financial institutions provided they have
the appropriate regulatory status and
permission to offer such services. See
Section 3.9 for details on the service
providers explored in this project. All
transactions would be settled on the
central bank ledger in real-time, on a one-
to-one basis, without bundling or netting
with other transactions, and with finality.

Two options for retail CBDC
models have emerged: a
single-tier system operated
by the central bank, and a
two-tier model where the
central bank provides a core
infrastructure, with user-
facing services provided
by private-sector service
providers.4 One of the key
features of the two-tier
model is the need for a
clearly defined and well-
functioning public-private
partnership.

1.2 The two-tier CBDC model
and the use of APIs

BIS Innovation Hub Project Rosalind bis.org 5

https://www.bis.org/

2 Project Rosalind
This chapter describes the purpose and
objectives of Project Rosalind in Section 2.1
and the delivery approach in Section 2.2.

BIS Innovation Hub Project Rosalind bis.org 6

https://www.bis.org/

The project had the following objectives:

 functionality – to explore how APIs
might best enable a central bank
ledger to interact with private sector
service providers, including the
different options for facilitating safe
and secure retail CBDC transactions;

 interoperability – to explore how
interoperability between different
systems and applications could be
achieved, including seeking insights
into the different design choices,
risks, opportunities, and trade-offs
involved in delivering interoperability;

 adoption – to explore the API
functionalities required to enable
the development of a diverse and
innovative set of CBDC use cases; and

 ecosystem – to gain insights
into how public and private sector
participants could work together
to innovate, support digital inclusion,
provide diverse payment options, and
deliver good consumer outcomes.

The purpose of Project
Rosalind was to explore
how APIs could be used
to support the functionality,
adoption and innovation
of CBDC systems by
developing prototypes for
an API layer in a two-tier
retail CBDC model.

2.1 Project purpose and objectives

BIS Innovation Hub Project Rosalind bis.org 7

https://www.bis.org/

Functionality

Interoperability

Adoption

Ecosystem

Individuals and
businesses

Central
bank ledger

Service
providers

API
 layer

Chart 1 below illustrates how these objectives link to the two-tier CBDC model.

BIS Innovation Hub Project Rosalind bis.org 8

https://www.bis.org/

Phase 1 focused on designing and
developing the API prototype and
testing its functionality with developers
(API users group) and industry experts
(Advisers group). This phase culminated
in a showcasing event. Phase 2 explored
more use cases by engaging more
widely with the ecosystem. In March
2023, the Rosalind TechSprint was
launched. Twenty-three teams
participated and demonstrated a
diverse range of CBDC use cases. In
April 2023, selected teams presented
their solutions to a group of central
banks at a demo day event. The list
of participants for both phases can
be found in Appendix 3.

This collaborative approach helped
ensure the API layer prototype was
designed and built with potential user
needs incorporated. During the project,
the Rosalind APIs enabled collaborators
to prototype solutions for more than
30 potential use cases. Details on some
of these use cases can be found in
Chapter 4 and in Appendix 2.

The project was delivered
through public and private
sector collaboration.
Guided by design
thinking principles and
methodologies, the project
created multiple channels
for ecosystem engagement,
as well as spaces for testing
new ideas and options. The
project was split into two
phases to allow for different
levels of ecosystem
participation.

2.2 The collaborative approach

BIS Innovation Hub Project Rosalind bis.org 9

https://www.bis.org/

Chart 2 below illustrates how the two phases were structured and the channels for collaboration.

Phase 1

Phase 2

Functionality Interoperability

Use cases API

Adoption

Ecosystem

Development team
Design, build, test, release
and collaborate with users

API users
group

Advisers
group

API layer

Sandbox

Ecosystem
participants

BIS Innovation Hub Project Rosalind bis.org 10

https://www.bis.org/

3 Technical design
and build

This chapter presents an in-depth view of
the various technical aspects of the project.
Sections 3.1 and 3.2 describe the project
architecture, key assumptions and design
decisions for the two-tier model. Section 3.3
discusses API design principles. Section 3.4
describes all the API functionalities developed.
Sections 3.5 to 3.9 cover other topics, including
account- and token-based central bank ledgers,
the privacy model, security, standards, and the
role of, and interactions with, service providers.

BIS Innovation Hub Project Rosalind bis.org 11

https://www.bis.org/

 Core API layer: This layer was the
focus of the project, as it orchestrated
messages and activities through the
API endpoints developed during the
project. It supported end-to-end
encryption between service providers
so that no personal identifiable
information (PII) was passed to the
central bank. All APIs were compliant
with financial-grade API (FAPI)
standards and with transport layer
security (TLS) authentication for
secure communication. This layer
also included the Rosalind Sandbox.
The Sandbox was a developer portal
and central repository of technical
documentation to support private
sector innovation. During the
project, the Sandbox provided the
environment to support API users
and TechSprint participants.

 Service providers layer: Interacting
with the core API layer, this layer
included front-end CBDC use cases
developed and tested by API users
and TechSprint participants.

used the Hyperledger Fabric
blockchain, and a smart contract was
implemented to mimic an unspent
transaction output (UTXO) model.
See Section 3.5 for key findings on
how the API could support both
account- and token-based central
bank ledgers.

 Ledger API layer: This layer
translated smart contracts into API
calls and transformed API requests
into a format understood by, and
actionable for, the central bank
ledger. The project used Overledger
technology to accelerate the
development of multiple central bank
ledger simulations for comparison.
It also enabled the project team to
explore how the API could work with
different types of central bank ledger.

As a result, the exploration of
different technology choices for a
central bank ledger and the ledger
API was limited. The service providers
layer was supported through the work
of API users and TechSprint participants.
These layers were implemented so
that interoperability could be tested,
and the output of this project could
be examined on an end-to-end basis.
Details on the four layers are set
out below.

 Central bank ledger layer: This
layer simulated the central bank
ledger. Both account- and token-
based ledgers were simulated to
test whether the core API layer
could simplify and abstract away
differences in ledger structures.
The account-based ledger used
Ethereum-based Hyperledger Besu
and a proxy contract model for
smart contract upgradability. It
included data storage and a series
of smart contracts to implement the
functionality. The token-based ledger

The Rosalind architecture
consisted of four layers: a
central bank ledger, ledger
API, core API and service
providers. The focus of the
project was the core API
layer because this layer
connected public and
private sector infrastructures.
It played a critical role in
supporting functionalities,
enabling interoperability,
and facilitating use
case discovery.

3.1 Project architecture for
the two-tier model

BIS Innovation Hub Project Rosalind bis.org 12

https://www.bis.org/

Chart 3 below presents the project architecture for the two-tier model.

Core API layer

Rosalind
Sandbox

 FAPI/TLS

 Orchestration

 Messaging

 PKI

Central bank ledger layer Ledger API layer Service
provider layer

Proxy
contact

Data
storage

Code
contract

Accounts

Aliases

Locks

Smart
contract
functions D

LT
 c

on
ne

ct
or

s

CB
D

C
A

PI
D

LT
 A

PI
Si

gn
in

g
A

PI

Simulation of
token-based ledger

Transaction signing
responder (Keys)

Simulation of
account-based ledger

BIS Innovation Hub Project Rosalind bis.org 13

https://www.bis.org/

 All transactions would be settled on
the central bank ledger in real-time,
on a one-to-one basis and, without
bundling or netting with other
transactions.

 PII and transaction information
would not be visible to the API or the
central bank ledger. This information
would be stored at the PIP level and
encrypted when passing through the
API layer. Section 3.6 provides more
details on this privacy model.

 CBDCs are direct claims on the
issuing central bank. Service
providers would not issue their own
liabilities, nor would they undertake
any custody, warehousing, or
issuance of “synthetic” CBDCs.

 CBDCs would be unremunerated
and could be converted one-to-one
into commercial bank money.

 There would be no limits to the
quantity of CBDCs held in each
user account or permitted in each
payment transaction, nor on the
aggregate level of issuance in the
entire CBDC system.

 Individuals’ and businesses’
wallets would be provided by PIPs.
Those PIPs would be responsible
for complying with the relevant
anti-money laundering (AML) and
counter-terrorism financing (CTF)
requirements. PIPs would also be
required to keep records of their users’
transaction history, as this would not
be provided by the Rosalind APIs.

In order to prototype APIs
for the two-tier model, the
following assumptions and
design decisions were made.7

3.2 Assumptions and
design decisions

BIS Innovation Hub Project Rosalind bis.org 14

https://www.bis.org/

Table 1: API design principles and assessment

Principle Approach in Rosalind

The API should use industry
standards and support
secure and safe payment
transactions.

 Industry-standard REST APIs were used for the API endpoints. In order to describe the Rosalind APIs in a consistent manner and to
make it easy for users to test and apply relevant tools, the project used OpenAPI specifications to define the structure and syntax,
and JavaScript Object Notation (JSON) for data format. The OpenAPI specifications are a widely adopted language-agnostic way to
describe APIs. The JSON data format is known for simplicity, versatility, and user-friendliness. For API names, nouns and plurals
were used. To ensure secure and safe payment transactions, the project implemented FAPI authentication, with attributes in
ISO20022 format. Section 3.7 below provides further information on authorisation and authentication.

The API should enable
interoperability between
different systems and
technologies.

 The project experimented with both account- and token-based ledgers and concluded that the API had the potential to support
central bank ledgers with different underlying technologies (see Section 3.5). The API also supported more than 30 use cases
explored in Phase 1 and Phase 2, demonstrating the potential to interoperate with different private sector systems and
applications (see Chapter 4).

A number of API design principles were explored during
the project and an assessment of the approach taken by
the project against these principles is detailed below.

3.3 API design principles
and assessment

BIS Innovation Hub Project Rosalind bis.org 15

https://www.bis.org/

Principle Approach in Rosalind

The API should be
standardised.

 The project aimed to develop a standardised set of APIs that could deliver the core functionalities required to support a variety
of different use cases. The definition of core and non-core API functionality was explored. For example, the project assessed
whether opening a sub-account – which could be linked to a main account – should be a non-core functionality. In the end, it
was implemented in the Rosalind APIs because this type of account’s relationships could have a broad use (eg separate business
accounts, parent and child wallets) and a standardised API could help to ensure consistency in its application across the ecosystem.

 The project also explored the question of how to build “right-sized” API services, eg when multiple functionalities should be
combined into a single API call. A form of A/B testing was used for this. Two APIs were provided to users and their usage was
assessed. The first API returned the total amount of CBDC held in a user account, and the second API returned both the total and
unlocked amount of CBDC held in a user account. During the project, the second API was used twice as many times as the first API.

 Standardisation was also applied to how user and transaction data are captured, transmitted, and used. Given the project scope
and the privacy model implemented (see Section 3.6 below), the project tested how cut-down versions of the ISO20022 messages
could be used by service providers to exchange data.

The API should be extensible. The project explored extensibility. The Rosalind APIs were designed in a modular way, where a set of simple, basic and
standardised APIs could be combined in a variety of ways to support more complex and advanced use cases. The functionality
of each API was narrowly defined and independent from other APIs. This approach makes it possible to add new capabilities and
functionalities with minimal impact to existing APIs. This modular design demonstrated its potential to support multiple innovative
use cases during the Rosalind TechSprint.

 To maximise extensibility, the project allowed service providers to add bespoke functionalities over and above the standardised set
of APIs provided by the core API layer. Whilst this approach helped to broaden the scope of innovative use cases that the API was
able to support, it might potentially compromise consistency in user experience, creating hurdles for adoption. More consistency
would require a higher level of standardisation in API functionalities, and less flexibility for service providers. This extensibility and
consistency trade-off could be an area for further research and experimentation.

The API layer should offer a
good developer experience
and support innovation.

 The users of the Rosalind APIs were developers from service providers. To support innovation, the API layer needed to offer a good
developer experience. During the project, a simple sandbox was set up to provide basic technical documentation and guidance,
allowing users to raise issues and give feedback. The sandbox was implemented iteratively, with input from many user teams.

Table 1: API design principles and assessment (continued)

BIS Innovation Hub Project Rosalind bis.org 16

https://www.bis.org/

ARTP contains an authentication
payload so that the recipient can send
his or her payment request with the
payload – via the recipient’s PIP – to the
payer’s PIP for validation. This makes it
possible for the request to be approved
automatically and a push payment to
be triggered. ARTP could support
third-party payment initiation, for
example for ESIPs. It could also support
point-of-sale (POS) transactions, in
which the recipient sometimes has
internet connection, but the payer
does not.

 Payments (six APIs): Enables a
push payment initiated by the
payer to one or more recipients.
To ensure that payers are provided
with full control over their payment
transactions, pull payments are not
supported. Instead, the Rosalind
APIs support request to pay (RTP)
and authenticated request to pay
(ARTP). RTP requires the recipient to
make a pay request to the payer, and
the payer would have to specifically
approve that request – by interacting
through their PIPs – before a push
payment could take place.

 Account management (11 APIs):
Enables individuals and businesses
to manage their CBDC accounts,
eg open a new account, disable an
existing account and check account
balances. In the event that any
CBDC access devices (eg phones or
smart cards) are lost, a user could
request to stop making payments
by freezing his or her CBDC account
temporarily. The user would still be
able to receive payments. Account
management APIs also include
aliases. The use of aliases could
improve interoperability with
existing payments infrastructures,
support privacy and empower user
control over their personal data.

For the core API layer, the
project team developed
33 API endpoints in six
functional categories. A
short description of these
categories is provided
below, with further details
on all of the endpoints
and their functionalities in
Appendix 1. During the
project, 541,865 API calls,
7,652 notifications and 1,595
errors were made, sent and
logged. The project also
implemented a CBDC with
four decimal places to
enable micropayments.

3.4 API functionalities

“ During the project, 541,865
API calls, 7,652 notifications
and 1,595 errors were
made, sent and logged”

BIS Innovation Hub Project Rosalind bis.org 17

https://www.bis.org/

 Participants (two APIs): Enables
service providers to obtain each
other’s public key for point-to-point
encryption and to pull notifications
after sending and receiving API calls.

 ESIPs (two APIs): This set of APIs
enables individuals and businesses
to “connect” and “disconnect” their
CBDC accounts to and from third-
party applications. This could
support many use cases, such
as third-party payment initiation,
external smart contract applications
and budgeting applications. Details
on ESIPs can be found in Section
3.9 below.

 Offline (two APIs): Enables
individuals and businesses to use
CBDCs offline for offline payments
and to bring CBDCs online later
by transferring their balances.

 Programmability (10 APIs):
Aiming to provide a basic set of
programmable features, the project
developed three types of locking
mechanism, namely two-party
lock, three-party lock and hash
timelock contract (HTLC) lock. The
two-party lock allows the recipient
to specify an amount to be reserved
until a set of conditions are met
for the payment to take place.
The conditions would be agreed
in advance with the payer. The
recipient’s PIP would be responsible
for determining whether the
conditions are met. This lock
assumes a high level of trust
between two transacting parties,
and it may not work for all use cases.
Therefore, the project added a
three-party lock, which introduced a
trusted third party that determines
when the payment should be
triggered. The HTLC lock would
support atomic swaps and has the
potential for integration with other
systems. All locks have an expiry
date and time to ensure that no
CBDCs are locked indefinitely.

BIS Innovation Hub Project Rosalind bis.org 18

https://www.bis.org/

Achieving almost identical API
functionalities for each ledger structure
demonstrated that it is feasible to
abstract the ledger structure through
a ledger-agnostic API while retaining
compatibility for service providers and
the wider ecosystem. It also showed the
potential for the API layer to work with
both account- and token-based ledgers.
This is important because there are
multiple reasons why different ledger
technologies may be chosen, and
many central banks are exploring and
experimenting with a range of ledger
designs and technologies for retail
CBDC systems. It also showed that API
design – which determines payments
functionality – can be achieved before
the design of the ledger, to ensure that
user needs, rather than technical
implementations, drive the solution.

Some of the constraints in the account-
based ledger, such as the inability to
retrieve transaction history and user
accounts, as well as the workaround
for accessing lock information, also
applied to the token-based ledger.

Two differences were identified
between account- and token-based
ledger structures. Firstly, the format of
account numbers and service provider
IDs was different, reflecting the
differences in each ledger’s underlying
data model. Secondly, the offline
payment solution tested during the
project was Ethereum-specific, so it
would not work for the token-based
ledger.

To assess whether the API
could work with different
central bank ledgers, the
project tested simulations
of both account- and token-
based central bank ledgers.
This approach demonstrated
that almost identical
API functionalities and
endpoints would work
for either ledger.

3.5 Account- and token-based
central bank ledgers

“ Achieving almost
identical API functionalities
demonstrated that it is
feasible to abstract the
ledger structure through a
ledger-agnostic API, while
retaining compatibility for
service providers and the
wider ecosystem.”

BIS Innovation Hub Project Rosalind bis.org 19

https://www.bis.org/

Only pseudonymous identifiers
were created. User PII, together with
other payments data and transaction
history, was stored by service providers.
Service providers’ identities were
pseudonymised to the central bank.
Where necessary and with user
permission, data could be shared
between service providers (but not
with the central bank) with end-to-end
encryption when passing through
the core API layer.

This privacy model assumed that
a high level of privacy for end users
is essential, but transactions would
not be fully anonymous. Participants in
the system – from either the public or
private sector – should only have access
to the minimum amount of information
needed for them to play their defined
roles and perform their specified tasks.

The API layer assumed a
privacy model that would
not give the central bank
ledger and API layer any
visibility of or access to PII
and payments data.

3.6 Privacy model

“ Participants in the system
– from either the public or
private sector – should only
have access to the minimum
amount of information for
them to play their defined
roles and perform their
specified tasks.”

BIS Innovation Hub Project Rosalind bis.org 20

https://www.bis.org/

Implementing non-repudiation features
could have performance implications.
Signing messages and validating
signatures could significantly increase
the number of activities and the size of
messages in the system, reducing speed
and capacity to process transactions.

The final security feature explored
was anti-replay. Replaying an API call
requesting write access to the central
bank ledger, either maliciously or
accidentally, could result in an account
being charged twice. The Rosalind APIs
required each “write” API call to include
a unique idempotency ID. An API call
with the same idempotency ID as the
previous one would not be accepted.

The Rosalind APIs used JSON Web
Signatures (JWS) to sign and validate
transactions for non-repudiation. The
signatures used for signing transactions
were required for all “write” API calls.
For each API call, the signature was
included in the x-jws-signature header
of the message. During the project, this
feature was turned off in order to
accelerate use case development, but it
would be a key security feature for any
future production systems. The project
also tested how this could apply to an
offline use case in which the central
bank would be asked to sign the
transfer of funds from the user account
to an escrow account held by the
central bank. The signature would
be used by an offline device to verify
that the message came from the
central bank and was intended for
that particular device.

This was achieved by passing an
alias to the lookup alias service, which
returns the PIP ID for that account.
In addition, the project explored the
feasibility of allowing ESIPs to view
account balances by connecting to the
account in advance. This required that
the appropriate permissions be granted
to the ESIP by the account owner.8

To authenticate payment transactions,
the project applied elements of the
FAPI standard. Each API call was
over HTTPS, using TLS1.2 and above.
Authentication information must be
included in the HTTP headers of all API
calls. These headers are x-fapi-financial-
id (ID of the service provider calling
the API) and x-api-key (secret key of
the service provider calling the API).

Non-repudiation is a security feature
that provides assurance that a party
cannot later deny having sent a
message or made a payment. This is
critical in disputes or fraud cases, as
it ensures the integrity of payments.

It is essential that an API
layer supports safe and
secure retail payments.
The project investigated
and applied industry best
practice to security features,
such as authorisation,
authentication, non-
repudiation and anti-replay.

With regard to user authorisation,
the Rosalind APIs explored the
technological feasibility of allowing
a PIP to act on behalf of individuals
and businesses. Individual and business
users are linked to a PIP, and only that
PIP can be given the permission to
make API calls (eg pay and lock funds)
to pass on account owners’ instructions
to change account state and balance in
the central bank ledger. If another PIP
wanted to request a payment from an
individual or a business, it would have
to interact with the account owner’s PIP.

3.7 Security

BIS Innovation Hub Project Rosalind bis.org 21

https://www.bis.org/

A CBDC ecosystem would
benefit from diversity in
service providers, through
which new and creative
ideas could be generated
and turned into innovative
products and services.

As such, the API would need to provide
the relevant functionalities to support
different types of service provider.
The project experimented with API
functionalities to support two possible
types of service provider: PIPs and
ESIPs. PIPs would be the gateways to
a retail CBDC ecosystem. They would
be expected to offer individuals and
businesses digital “pass-through”
wallets to manage their CBDC accounts
and balances. They would also be
expected to manage their relationships
with these customers, execute their
instructions to make payments, request
others to pay and accept payment

As a starting point for
developing the APIs, the
project explored how relevant
industry standards could be
implemented and whether
any adaption was needed.

3.8 Standards 3.9 Service providers

requests from others. They would be
responsible for compliance with AML,
know-your-customer (KYC) and CTF
regulations. In the Rosalind APIs, PIPs
are the default service provider type
and would be able to use all APIs.

ESIPs would not provide wallets. They
would specialise in other value-added
services, such as providing tools for
business analytics, budgeting and fraud
monitoring. ESIPs would also work with
PIPs to provide extra programmability
services, for example by acting as
decisioning parties in a three-party lock
or as third parties to initiate payments.
This is an area for further research and
experimentation.

For example, the project tried to
implement ISO 20022 messaging
standards on a small number of APIs.
This included camt.103 for request to
lock and lock APIs, pain.013 for the
RTP API and pacs.008 for payment
APIs. Modifications were made to
ensure that these messages would
work for the Rosalind APIs and
were aligned for consistency. To
reduce message size and increase
interoperability, the project also used
the ISO 20022 abbreviations for tag
names. For authentication, the project
applied FAPI standards (see Section
3.7). The use of the legal entity
identifier (LEI) format was also
implemented to help identify
service providers.

BIS Innovation Hub Project Rosalind bis.org 22

https://www.bis.org/

4 Use cases and
user feedback

This chapter describes the use cases explored
during the project in Section 4.1 and user
feedback in Section 4.2.

BIS Innovation Hub Project Rosalind bis.org 23

https://www.bis.org/

 One use case also explored the
use of rich content receipts, where
consumers would be provided with
both payment details and the
conditions required for the consumer
or merchant to trigger payments.

 Some use cases explored digital
inclusion by testing a number of
offline payments solutions. One
use case explored digital inclusion
through prototyping parent and
child wallets. Solutions to enable
micropayments were also developed.
A few use cases tested how
decentralised identifiers (DIDs) and
verifiable credentials (VC) could be
used to minimise the data stored in
and transmitted through the central
bank APIs for different types of
payment, as well as how bank-
verified user information could be
used to fast-track the onboarding
process.

 The use cases explored making
payments online, in stores and
offline, with the use of near-field
communication (NFC), and via
interactions with POS, QR codes,
mobile phones, smart cards,
biometric devices and smart
assistants. The RTP and ARTP APIs
have unlocked several interesting
e-commerce solutions to streamline
consumers’ payments experiences.

 Some of the use cases also explored
private sector programmability.9 The
API could enable individuals and
businesses to put away a certain
amount of CBDC for a specific use
and to trigger payments under
conditions that they have agreed in
advance. The combination of locks
and split payments has enabled a
number of creative uses to make it
possible for multiple payment legs
to be settled at the same time.

 The portfolio of use cases included
a range of ideas, from addressing
existing pain points in payments,
enhancing user experience, and
streamlining processes to enabling
integration with existing payment
rails, cards networks and POS
interfaces. Some use cases explored
new ways to make payments, and
others tested applications with
emerging technology. All investigated
the potential for a CBDC system to
support user needs in a more
digitalised economy.

 The use cases covered a broad
range of domains for individuals and
businesses, such as peer-to-peer
transfers, retail payments for goods
and services, and small-value
business transactions including
receiving commissions, paying
salaries and supporting trade finance.

During the project,
public and private sector
collaborators developed
more than 30 prototypes of
retail CBDC use cases and
tested the functionality,
and demonstrated the
capability of the Rosalind
APIs. Key observations on
the use cases are presented
below, and a detailed list
of those presented at the
showcasing event and the
TechSprint demo day event
is set out in Appendix 2.

4.1 Use cases explored

BIS Innovation Hub Project Rosalind bis.org 24

https://www.bis.org/

 In the Rosalind APIs, the HTLC lock
was implemented with a standard
SHA256 hash algorithm and an
encoded 32 bytes hex value for
secrets. This functionality could be
expanded to offer different hash
algorithms and length of secrets.

 The project focused on designing
positive flows assuming a smooth
completion of a CBDC payment
transaction. This would not be
sufficient for a payments system in
which negative flows or “unhappy
path” – setting out error states,
alternative paths, and recovery
journey – are critical to a good
user experience.

 The Rosalind Sandbox could be
further improved by enhancing
documentation, providing test
scripts and multimedia content
for developers.

 Regarding ESIPs, role-based
rules and permissions could be
implemented through the APIs to
define the levels and types of access
that ESIPs would need to have to
serve user needs.

 The programmability functionality
could be developed further to
support conditional split payments;
for example, when payment
conditions are met, allowing multiple
parties in a supply chain to be paid
at the same time as goods or services
are delivered. This could be achieved
through enhancing the locking
communication flow to enable
individuals and businesses to reserve
funds for and make payments to
multiple recipients at the same time.

 Aliases and encryptions implemented
in Rosalind were preliminary and
would require significant development
were they eventually to be deployed
in a production system.

To support interoperability, the tiered
architecture has the potential to enable
retail payments services to operate
seamlessly and to support more
complex use cases. In addition, use
cases could be developed in a number
of ways on the API, offering choices to
developers. Some users suggested that
the APIs could benefit from further
work to provide greater alignment
with industry standards on security.
Furthermore, as regards innovation and
ecosystem building, the combined use
of a few basic functionalities, such as
split payments, lock and unlock and the
four decimal places allowed in Rosalind,
has the potential to support a number
of potentially innovative use cases.

Within the project scope, the following
items were identified as specific API
functionalities that could benefit from
future improvements:

The exploration of use
cases provided valuable
feedback on the Rosalind
APIs. Regarding functionality,
user feedback suggested
that the API was relatively
simple and easy to use and
provided robust handling of
multiple payment legs. Some
suggested that, to improve
efficiency and performance,
an asynchronous API model
could be explored.

4.2 User feedback and future
improvement on Rosalind APIs

BIS Innovation Hub Project Rosalind bis.org 25

https://www.bis.org/

5 Insights,
learnings and
areas for further
exploration

BIS Innovation Hub Project Rosalind bis.org 26

https://www.bis.org/

 As the project tested the
technological feasibility of an API
layer capable of connecting systems,
coordinating activities and facilitating
payments, the need to define the
operational roles and responsibilities
of all participants in the ecosystem
was identified. For example, the
project explored how individuals
and businesses could have multiple
service providers linked to the same
account and how they may be able to
switch service providers quickly and
easily. Whilst an important function,
this type of arrangement could bring
complexity. For example, there were
questions about who the default
recipient service provider might be,
which service provider(s) should be
trusted to initiate transactions on
behalf of the user, and when things
go wrong, which provider should
take the responsibility.

The project work also suggested areas
that could be explored further:

 The Rosalind privacy model requires
user data to be captured, stored
and managed by each private
sector service provider. It allows
permissioned information to be
shared between two service
providers through peer-to-peer
encryptions. This raised further
considerations about how the API
might allow the ecosystem to share
user and payments data in a privacy-
preserving way, subject to user
permission.

 In terms of API design, there was a
trade-off between extensibility and
consistency. The project aimed to
keep APIs as simple and standardised
as possible and allowed service
providers greater flexibility to build
bespoke features on their end for
their specific use cases. This approach
would help to maximise extensibility
and support innovation, but it might
potentially reduce consistency in
user experience. More consistency
would require a higher level of
standardisation in API functionalities
and therefore less flexibility for
service providers to add bespoke
elements.

 The design of the API layer must
be consistent with and implement
the requirements of the wider
privacy model for a CBDC. This was
fundamental to the design and build
of the Rosalind APIs. The privacy
model was decided at the beginning
of the project and before any API
design decisions were made.

 APIs can support offline payments
in CBDC, but there are a range of
challenges involved in delivering
offline functionality. Offline payments
would require robust security and
anti-replay protections. The specific
design tested in the project – transfer
of CBDCs off and back onto the
central bank ledger with significant
security controls to prevent
counterfeiting, double-spending
or loss of funds – created a much
tighter coupling between the offline
payment device and the core ledger
than other payments use cases
tested during the project. This tight
coupling would limit the Rosalind
APIs’ ability to support different
types of offline payments solution.
Further research and experiment
would be needed in this area to
improve the Rosalind APIs.

The project provided the following
insights and learnings:

 A well-designed API layer could
facilitate retail payments in CBDC.
This was demonstrated through
the wide range of front-end use
cases explored during the project.

 A set of simple and core API
functionalities could support a broad
and diverse range of use cases. It also
has the potential to enable a robust
ecosystem to foster innovation in
products and services that could
help meet the future needs of a
more digitalised society.

 The APIs could work with different
central bank ledger technologies.
In the project, simulations of both
account- and token-based central
bank ledgers were tested, and
almost identical API functionalities
and endpoints would work for
either of the ledgers.

BIS Innovation Hub Project Rosalind bis.org 27

https://www.bis.org/

6 Conclusion
Project Rosalind demonstrated that a well-
designed API layer can enable a central
bank ledger to interact with private sector
service providers to safely provide retail
CBDC payments.

The API layer can be ledger-agnostic so
that central bank ledger choices can be
abstracted. The API layer can also be
application-agnostic, and a set of core
API functionalities can support a broad
and diverse range of use cases. Through
collaboration with the ecosystem, the
project has also demonstrated the
potential of a CBDC system to enable a
robust ecosystem to foster innovation,
and to help meet the future needs of
a more digitalised society.

This experiment has provided insights
into and learnings on many important
aspects of a retail CBDC system, such
as API design, privacy, account- and
token-based ledgers, security, standards,
interoperability, programmability and
ecosystem roles and responsibilities.

BIS Innovation Hub Project Rosalind bis.org 28

https://www.bis.org/

4 See Bank for International Settlements,
Annual Economic Report, June 2021
(www.bis.org/publ/arpdf/ar2021e.pdf)
for details on these options and Auer
et al (2023) for the latest developments
on retail CBDC around the world.

5 See Financial Stability Board, Enhancing
cross-border payments: Stage 3 roadmap,
13 October 2020, www.fsb.org/2020/10/
enhancing-cross-border-payments-
stage-3-roadmap/

6 See BIS Committee on Payments and
Market Infrastructures, Interlinking
payment systems and the role of
application programming interfaces: a
framework for cross-border payments,
8 July 2022, www.bis.org/cpmi/publ/
d205.htm

7 Due to the experimental nature of the
project, these assumptions and design
decisions should not be taken as
recommendations or endorsements of
any specific CBDC design choices.

8 The Rosalind APIs do not support
non-custodial wallets, which are wallets
that give owners exclusive control over
private keys.

9 The Rosalind APIs do not support central
bank-initiated programmability.

Endnotes
1 The six categories and 33 API endpoints

are: Account (Open, OpenSubAccount,
Disable, Enable, Freeze, Close, Alias,
DeleteAlias, LookUpAlias, Balances
and AvailableBalances), Payments
(Pay, SplitPay, RequestToPay,
AuthenticatedRequestToPay, Fund and
Defund), Programmability (RequestToLock,
TwoParty, ThreeParty, HTLC, CancelLock,
DrawDownLock, DrawDownHTLC,
LockbyLockID, LockbyPIP and
LockbyAccount), Participants (Key and
Notification), ESIPs (ConnectAccount
and DisconnectAccount) and Offline
(Download and Upload). See Appendix 1
for details.

2 See R Auer, G Cornelli and J Frost, “Rise
of the central bank digital currencies:
drivers, approaches and technologies”,
BIS Working Papers, no 880, 23 January
2023 (www.bis.org/publ/work880.htm)
for the latest developments on retail
CBDC around the world.

3 See BIS Innovation Hub, “BIS Innovation
Hub work on central bank digital
currency (CBDC)” (www.bis.org/about/
bisih/topics/cbdc.htm) for details.

BIS Innovation Hub Project Rosalind bis.org 29

http://www.bis.org/publ/arpdf/ar2021e.pdf
http://www.fsb.org/2020/10/enhancing-cross-border-payments-stage-3-roadmap/
http://www.fsb.org/2020/10/enhancing-cross-border-payments-stage-3-roadmap/
http://www.fsb.org/2020/10/enhancing-cross-border-payments-stage-3-roadmap/
http://www.bis.org/cpmi/publ/d205.htm
http://www.bis.org/cpmi/publ/d205.htm
https://www.bis.org/publ/work880.htm
https://www.bis.org/about/bisih/topics/cbdc.htm
https://www.bis.org/about/bisih/topics/cbdc.htm
https://www.bis.org/

Categories Sub-categories API endpoints Description

Account Account
management

Open Creates a new parent account on central bank ledger. Types could be personal and business.

OpenSubAccount Creates a new sub-account to a specific parent account on central bank ledger. Types could be personal and
business.

Disable Enables the account holder to disable a parent or sub-account on central bank ledger. Once disabled, no activities
will be allowed on this account.

Enable Enables a previously disabled parent or sub-account on central bank ledger.

Freeze Allows the account holder to freeze a parent or sub-account on central bank ledger. Depositing into this account is
allowed, but withdrawing or making payments are not allowed.

Close Closes an account.

Alias Alias Creates an alias on an account.

DeleteAlias Deletes (logically) an alias on an account.

LookUpAlias Returns details of an alias on an account.

Balances Balances Returns the total balances of an account.

AvailableBalances Returns the total and available (not locked) balances of an account.

Payments Push payments Pay Transfers CBDCs from one account to another.

SplitPay Transfers CBDCs from one account to multiple accounts.

Request to pay RequestToPay Requests other accounts to pay.

Authenticated
RequestToPay

Enables the recipient’s PIP to include an authentication packet with the RequestToPay so that the payer’s PIP can
automatically approve the request (i.e. for POS).

Fund and
defund

Fund Adds CBDCs to an account.

Defund Draws down CBDCs from an account.

Appendix 1:
Rosalind API endpoints and functionalities

BIS Innovation Hub Project Rosalind bis.org 30

https://www.bis.org/

Categories Sub-categories API endpoints Description

Programmability Set locks RequestToLock Sends requests to lock funds in an account with one of the three types of lock specified below.

TwoParty Locks an amount of CBDC in an account. Decision to unlock and release the funds is given to the recipient’s PIP.
This lock contains an expiry date to ensure that funds will not be locked indefinitely.

ThreeParty Locks an amount of CBDC in an account. Decision to unlock and release the lock is given to a third-party PIP with
an appropriate permission. This lock contains an expiry date to ensure that funds will not be locked indefinitely.

HTLC Locks an amount of CBDC in an account using HTLC.

Cancel locks CancelLock Removes the lock previously placed on an account.

DrawDownLock Removes the TwoParty or ThreeParty lock previously placed on an account and draws down the funds either in full
or in part.

DrawDownHTLC Removes the HTLC lock previously placed on an account and draws down the funds either in full or in part.

Locks
information

LockbyLockID Returns information on a single active lock.

LockbyPIP Returns information on one or more active locks placed on all accounts with a specific PIP.

LockbyAccount Returns information on one or more active locks placed on an account.

Participants Key Returns the public key of a specific PIP. The key is used to send secure data between PIPs.

Notification Pulls notifications via the API. Webhooks with the same standards are also provided.

ESIPs Connectivity ConnectAccount Connects an account to a third-party application or a merchant.

DisconnectAccount Disconnects an account from a third-party application or a merchant. This can be called by either the account
holder or the connected party.

Offline Download and
upload

Download Draws down CBDCs from an account holder’s online wallet and adds the CBDCs to the account holder’s
offline wallet.

Upload Draws down CBDCs from an account holder’s offline wallet and adds the CBDCs to the account holder’s
online wallet.

BIS Innovation Hub Project Rosalind bis.org 31

https://www.bis.org/

 UC5 – a prototype that would enable
support for the use of CBDCs in the
existing cards network, so that
individuals could pay with CBDCs
when travelling in a foreign country.

 UC6 – prototypes of two
micropayments solutions. The
first solution demonstrated how
CBDC micropayments could support
a corporate sustainability strategy.
The second solution was a parking
app that makes it possible to charge
individuals for their parking by
the minute.

 UC2 – a prototype of parent and
child wallets. Through interacting
with the wallets, a parent could guide
his or her child’s digital payment
experience and teach the child about
earning money and responsible
spending. This use case demonstrated
the use of collaborative payments to
enable cognitive accessibility.

 UC3 – a prototype that demonstrated
how CBDCs could be reserved at the
time of purchase and released on
physical delivery of goods. It also
demonstrated how CBDCs could
interoperate with commercial bank
money through an ecosystem
services layer.

 UC4 – a prototype of an offline
ledger connecting the Rosalind APIs
that would make it possible to carry
out consecutive offline transactions
with instant and final settlements.

Use cases presented at the showcasing
event are listed below:

 UC1 – a set of four retail CBDC
solutions. The first solution
demonstrated that during online
checkout, a consumer could scan
the merchant’s QR code to pay. The
second solution showed that during
online checkout, a consumer could
approve a payment request from the
merchant. The third solution explored
how, by allowing the merchant to
scan a consumer’s QR code, a
payment request from the merchant
could be accepted without further
user approval. The last solution
showed how a consumer could
receive and store electronic receipts.

During the project, API
user teams and TechSprint
participating teams
developed their front-end
solutions and demonstrated
the technological feasibility
of their use cases by using
the Rosalind APIs.

Appendix 2:
Use cases explored in Project Rosalind

BIS Innovation Hub Project Rosalind bis.org 32

https://www.bis.org/

 UC8 – a use case that makes it
possible for commuters to purchase
train tickets using CBDCs and to be
refunded immediately if the train
arrives late. The refund process would
be visible to all parties involved.

 UC9 – a set of four use cases that
demonstrated how a traveller in a
foreign country could use an app to
set up an e-SIM on his or her phone
to make secure payments, both
online and offline, and to securely
store CBDCs with a time limit to
spend the funds.

 UC4 – a prototype that demonstrated
how decentralised identifiers (DIDs)
and verifiable credentials (VC) could
interact with Rosalind APIs to enable
users to discover and transact in
CBDC securely, and with PII protected.

 UC5 – a prototype of a trade finance
use case that demonstrated how a
secure three-party escrow could be
used to enable importers to lock the
full price of the delivery and, upon
receipt of goods, have it automatically
released. This use case also showed
how a marketplace of locked CBDC
receivables could be accessed by
potential investors.

 UC6 – a prototype of a CBDC wallet
that demonstrated how, through
open banking, individuals could use
personal information verified by their
banks to open CBDC accounts and
make payments.

 UC7 – a use case that demonstrated
how CBDCs could be used to
improve the efficiency of payments
for the itinerant or gig economy,
where the employer and the worker
could agree to programmable
payments to be released upon
completion of the work.

Use cases presented at the TechSprint
demo day event are listed below:

 UC1 – a prototype that demonstrated
how consumers could link their
wallets to merchants to buy
subscriptions and make bill payments
with “one-click checkouts”, as well
as how a CBDC wallet could interact
with a smart assistant to enable
voice-authenticated payments.

 UC2 – a use case that would allow
governments to provide dynamic
and real-time support to citizens
on their energy bills.

 UC3 – a use case that would make it
possible to accumulate points when
making offline CBDC payments.
These points could be used to
support a set of charitable projects,
and the donors would be rewarded
with claimable non-fungible tokens
(NFTs). This use case could help
companies meet their social
responsibility commitments.

 UC10 – a proof of concept that allows
a user to load and unload CBDCs
onto and from their offline smart-
card device and their online CBDC
wallet. Counterfeiting or double-
spending could be monitored
through the use of an offline ledger.

 UC11 – a use case in which the Rosalind
APIs could facilitate saving and
borrowing activities within a defined
group chosen by individual users.

 UC12 – a use case demonstrating
how a CBDC digital wallet could
integrate with the existing POS
interface to enable payments in
shops and support merchant adoption.

BIS Innovation Hub Project Rosalind bis.org 33

https://www.bis.org/

Acknowledgements
Special thanks to Cecilia Skingsley,
Raphael Auer, Simon Scorer, Shantel
Mullings and Codruta Boar for their
inputs to this report; Beju Shah, Alan
Soughley, Ben Dovey, Katie Fortune,
Rachel Greener, Amy Lee, Ketul Patel
and Ben Dyson for their support during
the project; Eryk Walczak and Agnes
Kennedy for supporting the project
work within the London Centre; and
Charlotte Crosswell, Markos Zachariadis,
Morten Bech and Silvia Attanasio for
the excellent panel discussion at the
showcasing event.

We thank colleagues in the central
banking community, individuals, teams,
companies and organisations in the
ecosystem that have offered their
support, expressed their interest in
participating in the project, attended
the showcasing event and the
TechSprint demo day event, and
provided us with their valuable
feedback.

TechSprint participants
(in alphabetical order)
Amazon
BMO
Boom
Budapest University of
Technology and Economics
eCora
Global Cloud Payments
IDEMIA
Knox Networks
Magyar Nemzeti Bank
(Central Bank of Hungary)
Millicent Labs
Nuggets
OneID
OneStep Financial
Revolut
SUPER HOW?
Secretarium
Thales
Vayana Network
Worldline

Vendor team
UST
Quant

API users group
(in alphabetical order)
Amazon
Bank of Canada
Barclays
IDEMIA
Mastercard

Advisers group
(in alphabetical order)
Richard G Brown, Chief Technology
Officer, R3
Paul Carey, Staff Engineer, Stripe
Mitch Cohen, Chief Security Officer,
eCurrency
Adrian Field, Director of Market
Development, OneID
JJ Geewax, Principal Engineer, Google
Catherine Gu, Head of CBDC and
Protocols, Visa

Project sponsors
Francesca Hopwood Road, Centre Head,
BIS Innovation Hub London Centre
Tom Mutton, Director, CBDC, Bank of
England

Project team
Amy Jiang, Adviser, BIS Innovation Hub
London Centre
Danny Russell, Principal Architect,
CBDC, Bank of England
Carmen Barandela, Lead Architect,
CBDC, Bank of England (until end of
December 2022)
John Yeo, Adviser, BIS Innovation Hub
London Centre

Appendix 3:
Project participants, collaborators, and acknowledgement

BIS Innovation Hub Project Rosalind bis.org 34

https://www.bis.org/

Project Rosalind
Building API prototypes for retail
CBDC ecosystem innovation
bis.org

https://www.bis.org/

	Button 84:
	Button 9:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 10:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 8:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 87:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 86:
	Page 2:
	Page 3:
	Page 4:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 85:
	Page 2:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 88:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 89:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 90:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 91:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:

	Button 92:
	Button 94:
	Button 95:
	Button 120:
	Button 98:
	Button 100:
	Button 102:
	Button 104:
	Button 106:
	Button 107:
	Button 108:
	Button 109:
	Button 1010:
	Button 1011:
	Button 1012:
	Button 1013:
	Button 1014:
	Button 1015:
	Button 1016:
	Button 1017:
	Button 1018:
	Button 119:
	Button 123:
	Button 124:
	Button 125:
	Button 127:
	Button 128:
	Button 83:

