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Executive summary
The availability of web-scraped and scanner data sets provides central banks with 

unprecedented access to real-time data on individual product prices. However, to use 
these data for inflation nowcasting and forecasting, analysts need to classify products 
according to statistical conventions. In the absence of reliable, scalable classification 
methods, inflation analysts are flooded with data but lack actionable insight. 

Product classification at the scale of web-scraped data represents a major challenge. 
Manually processing this amount of data is not feasible. Classification using large 
language models (LLMs) is promising, but with the LLM models currently available, the 
processing time and cost become prohibitively high. Project Spectrum used the European 
Central Bank’s Daily Price Dataset (DPD), which contains billions of price-product daily 
observations for 34 million unique products. At the time of writing, classifying this data 
set using GPT-5 would take over six months of computing time at a cost exceeding EUR 
0.5 million. 

Project Spectrum – a collaboration between the Bank for International Settlements 
(BIS), the Deutsche Bundesbank and the European Central Bank – explored an alternative 
approach where artificial intelligence (AI) was used only to transform product descriptions 
into high-dimensional text embeddings. These were then classified into product categories 
using classic machine learning algorithms. Text embedding is a foundational AI technique 
used by many natural language processing applications. This method achieved accuracy 
levels comparable to LLM prompting, but at a fraction of the cost: the entire DPD was 
classified in just five days for approximately EUR 1,500.

Besides classifying all records in the current DPD, the project has developed a 
production pipeline solution that can classify new products as they are added to the DPD. 
In addition, to ensure continuous improvement, an iterative algorithm was implemented 
to gradually expand the reference data set. By selectively adding manually labelled data 
to the reference and validation sets, this algorithm systematically refines the classification 
logic, enhances overall predictive accuracy and adapts to a changing product range.  

By turning raw, fragmented product descriptions into structured data, Project 
Spectrum equips analysts and policymakers with timely, detailed insights into price 
developments. Ultimately, the project contributes to an emerging new generation of AI-
powered analysis, where data abundance can be translated more easily into actionable 
economic understanding.

This report is intended for monetary policy analysts who utilise high-frequency data 
for inflation nowcasting and data scientists within central banks looking for cost-effective 
alternatives to LLMs for large-scale classification. It also serves as a technical reference for 
statistical agencies seeking to automate the categorisation of scanner and web-scraped 
data into official indices. Finally, it provides a methodological framework for economic 
researchers studying price-setting behaviour at the individual product level.



Acronyms and abbreviations

AI Artificial intelligence
CPI Consumer price index
COICOP Classification of Individual Consumption by Purpose
DPD Daily Price Dataset
ECB European Central Bank
ECOICOP European Classification of Individual Consumption by Purpose
FFN Feedforward neural network
GPT Generative pre-trained transformer
KNN K-nearest neighbours
LLM Large language model

MIRACL Multilingual information retrieval across a continuum  
of languages

MTEB Massive text embedding benchmark
PRISMA Price-setting Microdata Analysis Network
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1. Using online price data for inflation nowcasting
Accurate and timely inflation nowcasts1 and forecasts are central to effective monetary 
policy because inflation often responds to policy measures with a time lag.2 By anticipating 
future price trends, policymakers can adjust interest rates and other policy tools earlier to 
maintain price stability and prevent costly economic fluctuations. Such foresight not only 
helps anchor inflation expectations and foster sustainable growth,3 but also reinforces 
public confidence in the monetary authority’s ability to respond promptly and effectively 
to emerging risks.

As a significant share of consumer spending is done online, data from e-commerce 
platforms are a rich source of real-time information for inflation nowcasting and price-
setting analysis. In traditional statistical sampling and in-store data collection, field officers 
visit stores and document prices at periodic intervals. As online data capture real-time 
price variations, they have the potential to provide more timely and targeted insights than 
traditional macroeconomic indicators, which are often available with some delay and at 
regular publication frequencies.4 The data also provide access to a richer set of information 
about products and price setting, including the frequency and size of individual price 
changes, price setting by large firms, shop-level data on the use of sales and discounts 
and the evolution of the range of offered products.5

However, while online price data are rich in detail, extracting actionable insights 
remains a challenge. The main issue is that web-scraped data are not standardised – 
they come in various formats, lack quality adjustments and contain key information in 
non-standardised textual form, making interpretation challenging.6 This heterogeneity 
necessitates extensive harmonisation efforts to create a unified data set. 

The principal challenge Project Spectrum addresses is the labelling of products 
in accordance with international classification standards, such as the Classification of 
Individual Consumption According to Purpose (COICOP). To harness information on 
individual prices for inflation analysis, it is crucial to map each product to a classification 
category. This enables the construction of consistent price series at a granular level. 
Ensuring accurate classification is also essential for maintaining comparability in inflation 
calculations across countries.

The advantages of improving the quality and accessibility of high-frequency price data 
are clear. At the same time, the challenges of creating a structured, unified data set from 
high-frequency data are manifold. In addition to the classification issue, the sheer scale 
of the collected data exceeds the capacity of traditional data-processing methods and 
requires extensive automation. While typical data sets used for economic policy contain 
hundreds or thousands of data points, web-scraped online price data contain millions, 
even billions of observations. Processing such massive amounts of data requires new skills 
and adjustments in the technical infrastructure for efficient storage and processing. Only 
when these data are structured and unified can central banks turn them into insights for 
decision-making, forecasting and economic analysis.

1.  Nowcast refers to an estimate of the (quasi) real-time value of an indicator before the official data are published.
2.  Friedman (1961) argues that monetary policy operates with “long and variable lags”, making accurate inflation forecasts crucial 
for effective policy decisions. Sims (1992) uses vector autoregressions to analyse monetary policy transmission, showing that infla-
tion reacts to policy changes with a delay.
3.  For example, Woodford (2003) highlights the importance of forward-looking monetary policy in anchoring expectations and 
maintaining economic stability.
4.  In the case of inflation, the first “flash” release on headline consumer price index (CPI) developments is available at the end of 
the month, and the details on CPI components are available a few weeks afterwards, depending on the Statistical Office. Therefore, 
web-scraped data provide information on the current price developments at least three weeks before the monthly official release. 
5.  For example, Alvarez-Blaser et al (2025) demonstrate the importance of large firms for the variability of aggregate inflation and 
the promise of structured big price data sets in refining inflation nowcasting.
6.  Another challenge, not addressed by Project Spectrum, is the complexity and cost of collecting and maintaining web-scraped data.



7

Spectrum

To address these challenges, Project Spectrum used text embeddings and machine 
learning to automatically categorise web-scraped product descriptions, thereby enabling 
more timely and granular inflation analysis. The technological approach was validated 
using a large web-scraped price database: the DPD, which is collected by the European 
Central Bank in the context of the Price-setting Microdata Analysis Network (PRISMA) (see 
Osbat et al (2022)). The DPD is one of the most ambitious initiatives to collect price data 
by means of web scraping within the euro area. It collects approximately 4 million price-
product observations per day. Due to high product churn, nearly a million new products 
that need to be classified may be added each month. Using this large data set allowed 
Project Spectrum to verify the efficiency of its approach with respect to execution time and 
cost and prove its suitability for processing large-scale, high-frequency data sets.
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2. Related literature
Extraordinary economic episodes such as the Great Financial Crisis and the Covid-19 
pandemic underscored the need for better and more timely data on key macroeconomic 
indicators to provide central banks with immediate insights about current economic 
conditions and detect sudden changes early on. This stresses the pivotal role of the 
data infrastructure for contemporary economic forecasting (Tissot and de Beer (2020)). 
Several research papers document the benefits of using online prices for economic policy 
(Cavallo (2013)); and the first publications building on the Billion Prices Project,7 such as 
Cavallo and Rigobon (2016), provide empirical evidence that indices constructed from 
web-scraped prices effectively track the dynamics and the movements in official consumer 
price indexes (CPIs) in various countries and time horizons. This finding, confirming the 
utility of micro data, has been robustly supported by later works utilising micro prices from 
scanner data across various contexts, such as the German market (Günter (2024)), and 
broader international studies (Alvarez-Blaser et al (2025)).

High-frequency, web-scraped micro data on prices can improve forecast accuracy 
for headline inflation relative to well-established benchmark econometric models. This 
has been explored by Cavallo (2018b) and Harchaoui and Janssen (2018). More recently, 
focusing on the systematic analysis of using online prices for improving inflation 
forecasting tools, Aparicio and Bertolotto (2020) document for 10 countries that extending 
models with such data outperforms traditional benchmark models for predicting changes 
in the CPI.

Empirical evidence shows that online price data improve forecasting and nowcasting 
not only for headline inflation but also for its subcomponents. This is particularly important 
for CPI subcomponents that are notoriously difficult to predict due to their high volatility. 
Macias et al (2023) compare the performance of nowcasts for inflation of food and non-
alcoholic beverages in Poland using online price data against standard univariate models 
and central bank judgmental forecasts. They show that incorporating web-scraped data 
can reduce forecast errors. A key contribution of their work is highlighting the critical role 
of accurate classification of online price observations in nowcasting. Proper classification 
ensures that observed price changes genuinely reflect price dynamics within the relevant 
goods categories. Similarly, Beer et al (2025) focus on web-scraped prices on food and 
non-alcoholic beverages in Austria, demonstrating that integrating web-scraped data 
into time-series-based short-term forecasts significantly improves the predictability of 
disaggregated inflation rates.8 

The utility of web-scraped data extends beyond forecasting and nowcasting 
headline inflation or its subcomponents. Online prices offer an immense value for 
understanding firms’ price-setting behaviour, including the frequency and size of price 
changes. Such data facilitate the analysis of the distribution of price changes, allowing 
for a better understanding of inflation and helping to pin down the micro-foundations in 
macroeconomic models (Gautier et al (2023); Gautier et al (2024); ECB (2025); Dedola et 
al (2025)).

7.  The Billion Prices Project was a research initiative founded in 2008 by Alberto Cavallo and Roberto Rigobon that collected and 
analysed high-frequency online price data from retailers around the world to measure inflation in real time. See Cavallo 
and Rigobon (2016).
8.  The ECB Price-Setting Microdata Analysis Network (PRISMA) is actively deepening the understanding of price-setting behaviour 
and inflation dynamics in the European Union. In addition to collecting various micro data – including online prices, scanner data 
and underlying official micro prices – PRISMA is conducting substantial ongoing research, the details of which can be found at 
https://www.ecb.europa.eu/pub/research-networks/html/researcher_prisma.en.html.

https://www.ecb.europa.eu/pub/research-networks/html/researcher_prisma.en.html.
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3. Spectrum overview
Project Spectrum explores the potential of artificial intelligence (AI) to categorise product 
descriptions to improve inflation nowcasting automatically. It uses text embeddings and 
large language models (LLMs) with multilingual capabilities to transform raw, high-volume, 
unstructured product data into standardised, accessible information. By automating 
product classification, Project Spectrum facilitates the integration of high-frequency, 
online price data into the process of inflation nowcasting and forecasting, enabling, for 
example, more accurate short-term inflation rate forecasts.

A straightforward generative AI approach to product classification is to provide an 
LLM with a product description and the definition of product categories and to prompt 
it to predict the appropriate category. This approach, hereafter referred to as “direct LLM 
prompting”, is effective for a small number of products but has scalability challenges. Since 
the prompt needs to include the complete handbook of category descriptions, assuming 
a few hundred product categories, the prompt can reach around 56,000 tokens.9 Using 
currently available LLM models, using this approach at scale – with millions of goods and 
billions of observations – becomes problematic due to the time and cost of processing 
prompts of that size. For example, at the time of writing, classifying 34 million records 
using GPT-5 could take over 200 days and cost over EUR 650,000.10,11

Project Spectrum explores an alternative approach, where AI is used only to transform 
product information into embeddings, which are then classified into product categories 
by a classic machine learning algorithm (Graph 1). The project aims to show that this 
approach, hereafter referred to as the “embedding-based classifier”, can achieve similar 
accuracy to direct LLM prompting while significantly reducing classification time and 
cost. In addition to being both time- and cost-efficient, text embedding eliminates the 
randomness associated with prompting. The dynamic nature of LLM models helps direct 
LLM prompting to increase their performance and efficiency in the long run, but it can 
reduce replicability and reliability in classification.

From unstructured data to structured statistics

Step 1 Step 2 Step 3 Step 4 Step 5

Product 
description Embedding Embedding

vector Classification Predicted
category

This graph illustrates the process of turning unstructured product data into established categories, enabling the 
subsequent calculation of category-specific indices.

9.  A token is the fundamental unit of text (often a word, part of a word, or a piece of punctuation) that the underlying AI model uses 
for analysis and generation. An LLM prompt is first translated into a sequence of tokens for processing. The size of the prompt 
(measured in number of tokens) is the key parameter determining the processing time and cost.
10.  This extrapolation is based on empirical tests performed on a smaller number of records by Project Spectrum. Similarly extrap-
olating from Project Spectrum, one can assume that a human annotator can label two products per minute. During a dedicated 
40-hour work week, this person would label 4,800 products. It is clear that this approach becomes infeasible when applied to a data 
set of 34 million. 
11.  Most LLM models have some notion of product categorisation from their pre-training. As a result, a rudimentary classifica-
tion can also be performed by a much shorter prompt that includes the new product description but not the definition of product 
categories. However, this method has no control over the rules of categorisation, and hence it does not provide the reliability and 
repeatability that is necessary for inflation analysis.

Graph 1
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Text embedding is an AI technique that transforms text into a high-dimensional space 
based on its semantic content. The result is an n-dimensional vector, where n ranges 
from hundreds to thousands, depending on the embedding model. Embeddings locate 
semantically similar texts close to each other in the vector space. This is illustrated in 
Graph 2, where around 30,000 product descriptions are mapped to a 3,072-dimensional 
space and then projected to two dimensions using the t-SNE algorithm for illustration. 
Graph 2 shows that similar products are clustered together, suggesting that embeddings 
are a promising approach for classification. Once product descriptions are mapped onto 
this multidimensional space, they can be processed by traditional classification algorithms.

Product clustering in an embedding space 
t-SNE of K-means clusters

This graph illustrates the distribution of approximately 30,000 products (each shown as a dot).  
Product descriptions were first transformed into 3,072-dimensional embeddings, which were subsequently 
grouped into five distinct clusters using the K-means algorithm. Next, for visualisation, these high-dimensional 
vectors and clusters were projected to two dimensions using the t-SNE algorithm. Colours represent the 
algorithmic clusters, while textual labels of each cluster (eg food delivery) were manually assigned based on a 
visual inspection and selecting the thematic pattern within each group.

Sources: PRISMA DPD and authors’ calculations.

Table 1 summarises the main advantages and shortcomings of some product 
classification approaches. Manual data labelling cannot scale to handle massive web-
scraped data. At the same time, traditional keyword-based algorithms (eg regular 
expressions, lexical or semantic dictionaries) struggle with unstructured, heterogeneous 
and multilingual product data sets and require constant dictionary updates. Direct LLM 
prompting can achieve high accuracy for multilingual data, but it is not easy to scale due to 
the time and cost of processing. Project Spectrum is testing the hypothesis that combining 
embedding models with classification algorithms is a practical, accurate approach that 
scales to handle massive web-scraped data sets. 

Graph 2 
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Comparison of classification approaches

Approach Advantage Drawback

Manual Accuracy Scalability 

Keyword based Simplicity Accuracy, language dependent 

Embedding-based classifier Accuracy, speed, cost, multilingual Training/reference data required

Direct large-language-model 
prompting Accuracy, simplicity, multilingual Processing time and cost 

Source: Authors’ elaboration.

To test this hypothesis, Project Spectrum implemented an embedding-based 
classification method and evaluated it by classifying products in the ECB’s DPD according 
to the European Classification of Individual Consumption by Purpose (ECOICOP) 2018.12  
This is the classification system established by Eurostat (the European Statistical Office) 
for constructing CPIs. The ECOICOP classification structures consumption items into 
hierarchical levels: divisions, groups, classes and subclasses, each offering progressively 
detailed categorisation. Project Spectrum aims to classify products at the subclass level, 
that is, the five-digit level. As an example, Table 2 shows that a loaf of bread would be 
classified as 01.1.1.3.

Example of European Classification of Individual Consumption  
by Purpose (ECOICOP) at different levels

Digit Level description ECOICOP code Description

2 Division 01 Food and non-alcoholic beverages

3 Group 01.1 Food

4 Class 01.1.1 Cereals and cereal products

5 Subclass 01.1.1.3 Bread and bakery products

Source: Authors’ elaboration.

12.   The classification used is the ECOICOP 2018 v1 (European Classification of Individual Consumption According to Purpose, 2018 
version 1). ECOICOP is the European adaptation of the United Nation’s COICOP (Classification of Individual Consumption Accord-
ing to Purpose). While based on the latest COICOP 2018 structure, this version (ECOICOP 2018 v1) does not achieve complete 
consistency with the final international COICOP 2018 version. For more details on the methodology and on ECOICOP Classification, 
see Eurostat (2024), and for details on the classification, see United Nations Statistics Division (2018), https://unstats.un.org/unsd/
classifications/unsdclassifications/COICOP_2018_-_pre-edited_white_cover_version_-_2018-12-26.pdf. The description of each 
ECOICOP five-digit category in different languages and tabulated for analytic purposes can be found at https://showvoc.op.europa.
eu/#/datasets/ESTAT_European_Classification_of_Individual_Consumption_according_to_Purpose_%28ECOICOP%29/downloads. 
ShowVoc is a web-based, multilingual platform for publishing, browsing and consuming data sets that comply with Semantic Web 
standards. The Publications Office of the European Union uses an instance of ShowVoc to disseminate its vocabularies, statistical 
classifications (such as NACE codes used by Eurostat) and code lists.

Table 1

Table 2

https://unstats.un.org/unsd/classifications/unsdclassifications/COICOP_2018_-_pre-edited_white_cover_version_-_2018-12-26.pdf
https://unstats.un.org/unsd/classifications/unsdclassifications/COICOP_2018_-_pre-edited_white_cover_version_-_2018-12-26.pdf
https://showvoc.op.europa.eu/#/datasets/ESTAT_European_Classification_of_Individual_Consumption_according_to_Purpose_%28ECOICOP%29/downloads
https://showvoc.op.europa.eu/#/datasets/ESTAT_European_Classification_of_Individual_Consumption_according_to_Purpose_%28ECOICOP%29/downloads
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4. Data

4.1. Daily Price Data set (DPD)

The DPD is a comprehensive data set that combines high-frequency price data with 
extensive metadata – such as product names, descriptions and shop-level details – enabling 
granular analysis of price developments. It focuses on euro area retailers with large market 
shares, in relevant cities, that sell both offline and online.13 The foundation of the DPD data 
collection initiative was the establishment of PRISMA by the European System of Central 
Banks to explore the use of various micro data sources on prices, including online price 
data (Osbat et al (2022)).

The collection of online prices spans multiple countries and languages. Each retailer is 
assigned a unique shop identifier that remains unchanged over time, facilitating consistent 
tracking of shops and their observed products. Each observation includes the following:

•	 Date: the date and time of price collection.

•	 Identifiers: an anonymised product ID and anonymised shop ID.

•	 Name: a concise textual explanation of the product (eg “Pizza Margherita”).

•	 Description: a more detailed text containing additional characteristics (eg flavour, 
size and composition).

•	 Shop category: the category label used by the online retailer (eg “Frozen Foods”), 
indicating how the product is organised on the website.

•	 Sector: the retailer sector being scraped (eg supermarket, electronics, fashion, furni-
ture or food delivery platforms).

The unstructured and “noisy” nature of the raw data driven by language differences, 
retailer-specific naming conventions, frequent missing attributes, and temporal changes 
in product identifiers creates substantial hurdles for data treatment. Table 3 shows a few 
examples of individual observations (with anonymised identifiers). 

13.  DPD data collection complies with strict ethical standards. The targeted institutions are consulted before conducting web scrap-
ing, and the ECB is committed to ensure data confidentiality. Web scraping follows protocols that minimise the impact on website 
traffic. The anonymised data provided to European System of Central Banks researchers ensures the anonymity of the retailer and 
protects sensitive information.
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Examples of observations in the DPD 

Name Shop_ 
category Sector Shop_id Product_id Description

Soda 33cl Boissons Food_delivery Id_A Id_1 Gasseuse 

Olive oil 500ml Home | Dispensa Supermarket Id_B Id_2 Frantoio 
Toscano

Lavadora carga 
frontal 

Gran electrodomestico | 
Lavadoras y secadoras | 
Lavadoras carga frontal

Electronics Id_C Id_3

Capacidad 
de 9kg y 
rendimiento 
para familias… 
motor inverte…

Jeans Herren | Bekleidung |  
Hosen | Cargohosen Fashion Id_D Id_4

Straight fit kernige 
Kontrastnate 5 
pocket. Loose fit. 
Used look. 

Chaise teinte 
rouge Meubles | Tables & bureaux Furniture Id_E Id_5 Solide structure 

en bois massif…

Source: Authors’ elaboration.

The ECB provided Project Spectrum with a data set containing all uniquely identifiable  
products in the DPD as of December 2025, around 34 million.14 The data set includes 111 
unique shop identifiers (around 60 distinct retailers, some of which operate in multiple 
countries). The data set consists of data fields relevant to classification, but it excludes 
price information. The length and completeness of the textual fields vary significantly. The 
name and description fields average 60 and 581 characters, respectively. In some cases, 
descriptions reach over 100,000 characters. However, not all products have complete 
textual information – approximately 400,000 lack both a name and a description.

4.2. Ground truth via manual labelling of reference and test data sets

Project Spectrum required manually labelled data for two purposes. First, a reference 
data set is used to train the classification algorithms. Embeddings transform product 
descriptions into numerical vectors, and classification algorithms then map descriptions 
to product categories. These algorithms are trained on reference data – example product 
descriptions that have been manually assigned to a given category. The project’s reference 
data set includes 30,000 products. This is not a random sample but overweights smaller 
categories (which also require a minimum number of example records).

The second manually labelled data set is the test data set, used to assess how well the 
classification performs versus human labelling. The test data set – also 30,000 product 
descriptions – is selected randomly from the available DPD data. This allows for comparing 
the identified classifications and establishing the goodness of fit. Both data sets were 
cleaned from duplicates.

14.  Duplicate entries often result from either scraping errors, the same product being sold by different retailers or retailers changing 
the product identifier over time.

Table 3
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The reference and test data sets used in the project to train and assess the classification 
models, respectively, were manually labelled. Manual labellers had clear instructions 
indicating which classification handbook to use and some initial training through feedback 
on their assigned labels in repeated rounds of iteration. For the reference set, each batch 
was manually checked for errors; if any were found, the correct labels were communicated 
back to the labellers, who then re-labelled the same batch or proceeded with the next one. 
This iterative process helped improve consistency and accuracy. For the test set, no such 
iteration took place – the trained labellers received the batch once and labelled it directly.

Some inaccuracy is expected in manual labelling due to ambiguities and human error. 
Table 4 illustrates this by comparing labels assigned by two different annotators for three 
examples of web-scraped product descriptions. The first product is a baby towel. One 
of the labellers classified it as a baby product, which may seem correct at first sight, but 
the proper label is 05.2.0.3, bathroom linen. The second example is uncooked pasta 
available via a food delivery service, which was labelled as a pasta product by one labeller 
and as takeaway food by another. These two examples illustrate the intrinsic ambiguity 
of categorisation. The third example illustrates human error: a cleaning product was 
mistakenly labelled as a hygiene article by one of the two labellers.

Examples of manual labelling disagreement

Name Shop_category Sector Labeller 1 Labeller 2

Bybadetuch mit 
Kapuze

Hirsch | Braun 80x80 
cm & Kinder 

Furniture 12.3.2.2
Article for babies

05.2.0.3
Table linen and 
bathroom linen

Terre d’Italia  
Trofie della Liguria

Pasta, Riso e farine Food_delivery 01.1.1.6
Pasta products  
and couscous

11.1.1.2
Fast food and take 
away food services 

Lejia perfumada con 
detergente frescor 
marinol 

Supermarket 05.6.1.1
Cleaning and 
maintenance 
products

12.1.3.2 Articles for 
personal hygiene 
and wellness, 
esoteric products 
and beauty products

Source: PRISMA DPD and authors’ elaboration.

Table 4
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To assess the quality of manual labelling used in the Spectrum Project, a random 
subsample of the labelled data (250 records) was validated by additional expert annotators. 
Based on this subsample, the error rate of human labellers is estimated at 8–10%, which 
is considered tolerable. The degree of agreement between annotators, as measured by 
Fleiss’ Kappa index, is moderate at the ECOICOP five-digit level, indicating the difficulty 
and ambiguity of properly labelling products at such a fine level. 

4.3. Sample representativeness

Whereas traditional household consumption surveys are built on strict probabilistic 
sampling to represent the entire economy, web-scraped data simply reflect the digital 
inventory and commercial priorities of specific retailers. Consequently, the composition 
of web-scaped data sets does not naturally scale to represent the entire economy. 
First, broad categorical gaps exist because entire sectors – such as energy, housing 
rents, telecommunications and motor cars – are either not sold online or are technically 
difficult to track. Second, even within covered sectors, the data often suffer from subclass 
imbalances where the volume of scraped items does not match actual consumer behaviour. 
For instance, a retailer’s online catalogue may offer hundreds of individual listings for 
books, while providing very few for fresh fish, creating a mismatch between the data set’s 
composition and the actual weights of the CPI basket. 

Despite these sampling challenges, the DPD at the time of writing covers approximately 
50% of euro area CPI expenditures.15 While coverage varies by data set, based on website 
selection and national consumption habits, coverage figures confirm that web-scraped 
data can capture a substantial portion of the inflationary landscape. The DPD covers key 
economic sectors, including food, clothing, personal care, electronics and furniture. The 
ad hoc nature of web-scraped data collection can introduce specific selection biases. 
Because web scraping is limited to retailers with an online presence, certain market 
segments – such as large distributors in the food sector – are heavily represented, while 
smaller “corner shops” are excluded. The specific choices made regarding which data 
to web scrape can further compound these biases. The selection biases that may occur 
when using web scraping have been extensively analysed in Cavallo (2015) and Cavallo 
and Rigobon (2016). The data collection approach of the DPD aims to minimise selection 
bias by targeting representative retailers that operate through both online and brick-and-
mortar channels, while also ensuring coverage across a variety of sectors.

The Spectrum data set’s coverage of ECOICOP categories is illustrated in Graph 3. Since 
the test data set is a random sample, the graph is illustrative of the entire Spectrum data 
set’s composition. The number of categories covered is 154 out of 253, totalling 50.16% of 
CPI. A notable challenge remains at the granular level, where several categories are under-
represented with fewer than five data points each. These imbalances are partly mitigated 
by the use of a curated reference data set and by the iterative refinement process that 
further expands the reference and validation data sets after deployment.

15.  To compute the data set’s coverage in terms of the CPI basket, the project used Eurostat weights for euro area–19. This coverage 
may vary for individual economies due to differences in their national consumer baskets. This coverage estimate aligns with the 
scope reported in comparable studies, such as Cavallo and Rigobon’s (2016), in which, using web-scraped data for 25 countries, they 
cover at least 70% of the weights of their corresponding CPI; and Gautier et al (2023), who, using micro-CPI data for 11 euro area 
countries, on average, cover 60%. This notwithstanding, there is substantial heterogeneity in terms of CPI coverage across countries. 
Coverage depends primarily on the selection of websites for scraping or, in the case of micro-price data provided by National Sta-
tistical Offices, the specific prices chosen for collection and disclosure.
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 Product coverage of Project Spectrum’s test data set 

This treemap displays the euro area–19 CPI basket by ECOICOP divisions (parent) and subclasses (child).  
Box sizes are proportional to their expenditure weight, while colours reflect the number of records within the test 
data set. Dark blue represents subclasses with five or more records, light blue indicates less than five records, and 
white denotes zero records. Division shading reflects the cumulative coverage of its underlying subclasses.

Sources: Eurostat and Project Spectrum’s manually labelled test data set.

Graph 3
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5. Implementation 
Graph 4 illustrates the main steps carried out in Project Spectrum. Step 1 involved 
preparing a curated reference data set of 30,000 records and simultaneously training the 
manual labellers. In step 2, the reference data set was used to configure, train and fine-
tune the classification algorithms. Step 3 consisted of classifying a test data set of 30,000 
records using two alternative methods (the embedding-based classifier and direct LLM 
prompting) and then comparing the predicted classifications with manual labels.

Project Spectrum at a glance 

Preparation
Step 1

Training & tuning
Step 2

Testing
Step 3

Manual labelling

Adjustement of sampling 
& training of manual labellers

Reference data set

Manual labelling

Training and tuning 
classification 

algorithms KNN/FFN

LLM prompting

Embedding

Classification
(KNN / FFN)

Reference data set Test data set

Comparison

Note: KNN = k-nearest neighbours; FFN = feedforward neural network; LLM = large language model.

Source: Authors’ elaboration.

The embedding-based classifier was implemented in two variants: one using the 
k-nearest neighbours (KNN) algorithm, and one using a feedforward neural network (FFN). 
Both algorithms are widely used for multiclass prediction problems. The two variants used 
the same embedding vectors as input and were trained on the same curated reference 
data set.

5.1. Curated reference data set

The Project Spectrum data set presents some classification challenges because of its severe 
class imbalance – characterised by a high number of records within some categories and 
sparsity within others. To overcome this problem, the reference data set was curated by 
reducing the number of products in over-represented categories (eg food deliveries) 
and increasing the relative frequency of records in rare categories. Technically, this was 
achieved by starting with a larger random sample and removing records from categories 
with high representation.

Graph 4
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Graph 5 shows the coverage of the resulting curated data set. Though many categories 
still have low or zero coverage, the number with adequate coverage has increased 
compared with the random sample. Notably, the reference data set shows a good 
coverage in Food and beverages (division 01). Results presented hereafter are limited to 
the coloured categories, excluding those for which reference data were not available to 
the project.  

Product coverage of the curated reference data set

This treemap displays the euro area–19 CPI basket by ECOICOP divisions (parent) and subclasses (child). Box 
sizes are proportional to their expenditure weight, while colours reflect the number of records within the curated 
reference data set. Dark blue represents subclasses with five or more records, light blue indicates less than five 
records, and white denotes zero records. Division shading reflects the cumulative coverage of its underlying 
subclasses.

Sources: Eurostat and Spectrum Project’s manually labelled reference data set.

5.2. Embedding model

The project experimented with several embedding models, including Text-Embedding-3-
Large and Text-Embedding-3-Small, both part of OpenAI’s third-generation embedding 
series. These embeddings are optimised for various natural language processing tasks, 
particularly those requiring semantic understanding (OpenAI (2024a)).

Text-Embedding-3-Large supports up to 3,072 dimensions, demonstrating superior 
performance on benchmarks like MIRACL (multilingual information retrieval across a 
continuum of languages) and MTEB (massive text embedding benchmarks). MIRACL 
evaluates multilingual information retrieval, while MTEB benchmarks text embeddings 
across tasks such as clustering, classification and retrieval. In contrast, Text-Embedding-
3-Small has 1,536 dimensions and offers a balance between performance and efficiency. 
It is ideal for use cases where computational resources are limited but efficient text 
embeddings are still required (OpenAI (2024a)). Comparative tests (not included in this 
report) showed that classification accuracy is sensitive to the choice of model. All results 
presented in this report were obtained using Text-Embedding-3-Large, as it performed 
better than smaller models.

Graph 5
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To prepare the data, the text fields of each record – name, description, shop category, 
and sector – were concatenated into a single, unified text field. This combined text was 
then converted into numerical vectors using the embedding model. In a future production 
deployment, these preparatory steps will have to be performed for each new product that 
needs to be classified.

5.3. Classification using the k-nearest neighbour algorithm

K-nearest neighbours (KNN) is a multiclass classifier algorithm that predicts a data point’s 
subclass based on its proximity to neighbours in a multidimensional feature space. In 
Project Spectrum, this feature space corresponds to the embedding space; consequently, 
KNN operates by calculating the similarity between high-dimensional text embeddings. 

For each target product, the system generates an embedding vector and identifies 
the k reference products with the highest vector similarity. Vector similarity ranges from 
1 (complete similarity) to –1 (opposite directions). The predicted class is determined by 
a majority vote among these k neighbours, ensuring that it reflects the most frequent 
category in the local neighbourhood.

An empirical evaluation of various distance metrics and hyperparameter configurations 
was performed to identify the setting that provides the highest classification accuracy. 
For the parameter k, odd values between 1 and 15 were tested. While k = 11 achieved 
the highest weighted-average F1 score (by a margin less than 1 percentage point), k = 5 
was selected for its superior performance when accounting for CPI category weights. For 
vector similarity, Euclidean, Manhattan and Cosine distances were evaluated. Euclidean 
and Manhattan distances focus on coordinate-based gaps, while Cosine distance focuses 
on the orientation of the feature vectors. In the tests, Euclidean and Cosine distances 
yielded similar classification results, with Manhattan distance performing worse. Cosine 
distance was ultimately selected as it is a standard approach for the KNN algorithm. To 
resolve ties in the majority voting scheme, random selection and distance-based weighting 
were tested, and the former was selected for the final implementation.

Graph 6 illustrates the KNN inference procedure for a new product with the name 
and description “Organic apple juice, 1L bottle, no added sugar”. In the graph, the circle 
in the middle represents the new product to be classified, while the five circles around it 
correspond to the five nearest reference data points in the embedding space. As indicated 
by the colour coding, three of these neighbours belong to the ECOICOP subclass 01.2.2.3, 
one to subclass 01.1.8.2 and one to subclass 01.1.9.9. Based on majority voting, the new 
product will be classified as 01.2.2.3 – fruit and vegetable juices – which is the correct label.
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Classifying products based on k-nearest neighbours (KNN) 
Under which categories are the closest five products?

Neighbour codes

01.1.9.9: Other food01.1.8.2: Jams01.2.2.3: Fruit juices

d=
0.

49
1

d=0.469

d=0.484

Bio 
Apfelmus 360g

Heimischer 
Apfel 1L

Dessert fruitier 
pomme nature sans sucres

 ajoutées,…

d=
0.

49
1

d=0.476

Appel zonder 
suiker 10x200 ml

d=0.461
Apfel Direktsaft

naturtrüb 1L

Organic apple
 juice,1L, 

no added sugar

This graph shows how a new product is categorised based on its similarity to existing items. First, all products 
are converted into numerical vectors using the text-embedding-3-large model. The central circle represents a 
new, unclassified product. The algorithm identifies the k = 5 closest items from the curated reference set, where 
“closeness” is measured by Cosine distance d. Finally, the new product is labelled with the most frequent category 
(the majority label) among these five neighbours; any ties are resolved by random selection. In this example the 
predicted category is 01.2.3 “Fruit juices”. 

Source: Authors’ elaboration.

5.4.  Classification using a feedforward neural network

As a second option for the embedding-based classifier, an alternative to KNN, the project 
designed a custom feedforward neural network (FFN). The aim was to develop a supervised 
method that could learn features from labelled embedded data, process them and make 
label predictions. 

First, the curated reference data set was split into two sets: one for training (85%) and 
the other for fine tuning (15%). The splits were stratified by ECOICOP codes to maintain 
balanced category distributions and to prevent any data leakage or memorisation.

The FFN architecture consisted of an input layer that received the embedding 
vectors, followed by two hidden layers that progressively transformed the input into 
more meaningful representations for classification. The final output layer produced the 
predicted class.16

16.  The input layer matched the dimension of the embedding space (3,072); the two hidden layers had 128 and 64 neurons, respec-
tively; and the output layer had a number of neurons matching the number of ECOICOP subclasses. The model was trained using 
the Adam optimisation algorithm with cross-entropy loss. Regularisation techniques such as dropout, batch normalisation and 
weight decay were used to improve generalisation. In addition to 50 epochs, early stopping was applied to retain the model config-
uration that achieved the best validation performance.

Graph 6
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Using two hidden layers, the models were able to capture complex patterns in the 
data encoded in the embedding vectors and learn their relationships. The model was 
trained for 50 rounds (epochs), each followed by evaluation on unseen data, during which 
the weights were adjusted to ensure proper information capture and prevent overfitting. 
Once training was complete, the best model was saved, and the final performance was 
measured on the test data set. 

5.5. Direct large language model prompting

For direct LLM prompting, the project used OpenAI’s GPT-5 model with an instruction 
prompt that explicitly referenced the ECOICOP 2018 v1 handbook. The model was 
instructed to assign the most appropriate ECOICOP five-digit code to each product, based 
on the official ECOICOP definitions and descriptions. As an input, the model was asked to 
consider the following columns: name, description, shop category, sector and item type. 
The process was iteratively applied across all products, yielding an ECOICOP prediction 
for each.

One challenge with direct LLM prompting was classifying food delivery items. These 
products often overlap semantically with items belonging to division 01–Food and non-
alcoholic beverages, while being formally categorised under “11.1.1.2–Take-away food 
services.” Without additional guidance, the model would tend to classify, for example, 
a can of soda, under “01.2.2.2–Soft drinks”, which aligns semantically with the product 
description, but does not align with the intended label of the data set. This is where the 
columns “item type” and “sector” help navigate to the right division: the sector value 
“supermarket” indicates that a product belongs to division 01, that is, a food item or 
beverage that can be purchased in the supermarket for consumption at home. To address 
this issue, the prompt was refined to explicitly instruct the model to assign products to 
class 11.1.1.2 if “sector” corresponds to food delivery. 
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6. Evaluation

6.1. Classification accuracy 

To evaluate performance, the predicted ECOICOP categories were compared with 
the manual labels, which serve as the ground-truth benchmark. The project defined 
classification accuracy as the ratio of predictions that match the manual label at the 
subclass level (ie the five-digit level of ECOICOP). Graph 7 illustrates the classification 
accuracy of the embedding-based classifiers (KNN and FFN) for each ECOICOP category.17

Some categories, such as food delivery (11.1.1.2) or household furniture (05.1.1.1), 
achieve a very high classification accuracy, over 90%. Many clothing and home 
appliance categories reach an accuracy above 70%. Some other categories, notably 
health and housing, see a lower accuracy. Note that the graph excludes categories not 
covered in the reference data set, such as education or energy, in order to focus on the 
targeted categories.

Accuracy of the embedding-based classifier at the European 
Classification of Individual Consumption by Purpose (ECOICOP) five-digit level 

17.  Accuracy on a sub-class level is calculated by dividing the number of correct predictions on that sub-class by the total number 
of products manually labelled in the same sub-class. Using the terminology of classification algorithms, this corresponds to in-class 
recall, often written as TP / (TP + FN) where TP stands for “true positive” and FN for “false negative” predictions.

Graph 7



23

Spectrum

Treemaps of in-class prediction accuracy for KNN (panel A) and FFN (panel B) combined with text-embedding-3-
large on the test data set of 30,000 records. Box sizes are proportional to expenditure weights in the euro area–19 
CPI basket across ECOICOP divisions (parent) and subclasses (child). Shading represents accuracy levels ranging 
from dark green (high accuracy) to white (low accuracy). Categories lacking reference data are excluded.

Sources: Eurostat and Spectrum data set.

In Graph 8, each bar corresponds to one ECOICOP five-digit category (ie subclass). 
The categories are ordered by classification accuracy, from most to least accurate. The 
line tracks the cumulative CPI coverage of the categories, concluding at approximately 
50%, which aligns with the data set’s total coverage. The leftmost few categories have 
a very high classification accuracy, but they collectively cover a small portion of CPI. 
Moving progressively towards the right, the cumulative CPI coverage increases but the 
classification accuracy decreases with each new category. The graph shows a substantial 
degree of heterogeneity in terms of accuracy across categories. For example, categories 
with at least 70% accuracy collectively cover 36% of CPI (KNN).

 

B. FNN
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Model performance across ECOICOP categories

In-class prediction accuracy for KNN (panel A) and FFN (panel B) combined with text-embedding-3-large on 
the test data set of 30,000 records. Each bar represents a specific five-digit ECOICOP category, ranked by its 
prediction accuracy. The overlaid line tracks the cumulative weight of these categories within the euro area-19 
CPI basket. This allows for a comparison between model precision and the actual economic significance of each 
product group.

Sources: Eurostat and Project Spectrum data set.

If one were to set a minimum threshold for accuracy, then CPI coverage would naturally 
be limited. Each possible level of such a threshold represents a different balance between 
accuracy and CPI coverage for the given classification approach.

This is illustrated in Graph 9, which shows the cumulative weighted average 
classification accuracy against cumulative CPI coverage for three classification approaches. 
On the left, high accuracy is achieved for a small number of categories, resulting in low 
overall CPI coverage. Moving to the right, CPI coverage increases but weighted average 
classification accuracy decreases. The rightmost end of the curves corresponds to the 
entire Project Spectrum data set, covering approximately 50% of CPI. At this point, direct 
LLM prompting achieves 86% accuracy, while the embedding-based classifiers reach 80% 
and 75% for FFN and KNN, respectively.  

The three curves have similar shape, confirming the natural trade-off between accuracy 
and CPI coverage. The graph also shows that the embedding-based classifier achieves 
reasonable accuracy, albeit somewhat lower than full LLM prompting, in line with the 
project’s initial hypothesis.

Applying FFN after text embeddings achieves higher classification accuracy than 
applying KNN on the same embeddings. This is not surprising, as neural networks often 
perform better on complex multiclass classification tasks than simpler, distance-based 
algorithms. In contrast, KNN is a more intuitive approach and offers greater traceability 
than FFN, which operates as a black box. In the context of inflation analysis, this trade-off 
might be considered when selecting the most suitable algorithm.

A. KNN % %B. FFN

Graph 8
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Classification accuracy – CPI coverage trade-off

Average weighted accuracy as a function of cumulative CPI coverage for the euro area–19. The curves compare 
direct prompting (GPT-5) against FFN and KNN classifiers using text-embedding-3-large. Results are evaluated 
on the test data set of 30,000 records, with final aggregate accuracy scores noted in the legend.

Sources: Eurostat and Project Spectrum data set.

Project Spectrum aims to correctly classify products at the five-digit (ie subclass) level.  
In this analysis, a prediction is classified as erroneous if it fails to match any of the five 
ECOICOP digits. However, for inflation nowcasting, classification errors at the subclass 
(five-digit) level usually have a lower impact than those at higher hierarchy levels. This will 
depend on divergent patterns in pricing across certain categories; for example, no great 
divergences are expected between women’s and men’s clothing, while there might be 
large differences in price developments for olive oil or butter, as they can be subject to 
different shocks. 

The importance of accurate predictions at granular ECOICOP levels will depend on the 
underlying economic question. For example, when analysing VAT reductions on targeted 
goods, accuracy at a very granular level is crucial to evaluate the VAT pass-through to final 
prices (see Forteza (2025)). This granularity is also relevant when analysing, for example, 
the transmission of specific shocks or the degree of volatility. In contrast, studies show that 
for inflation analysis, classifying products at the division level, and ignoring more granular 
levels, can be sufficient, as explored by Beer et al (2025) using web-scraped prices for 
food forecasting. 

To illustrate the embedding-based classifier’s accuracy at the division level, Graph 10 
compares classifier predictions with manual labels. The graph shows that most predictions 
stay within the correct division, with only sporadic errors occurring across divisions. This 
is a promising result, which further supports the applicability of the embedding-based 
classifier for inflation analysis.

Graph 9



Spectrum

26

Evaluation of classification errors on a division level

Normalised confusion matrices comparing predictions by text-embedding-3-large combined with KNN (panel A) 
and FFN (panel B) to manual labels in the test data set of 30,000 records. Each row corresponds to a true 
division according to manual labels, and each column corresponds to a division predicted by the embedding-
based classifier. Rows are normalised by the total number of manual labels in that division. Numbers and 
shading correspond to the ratio of products with the given manual label and predicted division. Diagonal cells 
represent predictions that are correct on the division level, while off-diagonal cells correspond to division-level 
classification errors.

Sources: Eurostat, PRISMA DPD and authors’ calculations.

6.2. Feasibility and cost comparison of classification methods 

Table 5 compares processing cost and execution time between direct LLM prompting and 
an embedding-based classifier combined with KNN or FFN. The results confirm that the 
embedding-based classifier requires a fraction of the cost and time of LLM prompting. 
Text embedding is a light AI function, and the classification algorithms can be performed 
very efficiently using, for example, vector similarity operations. In contrast, for direct LLM 
prompting, every product classification involves an LLM inference step, which is much 
more resource intensive.

Average processing latency and operational cost per product record  

Model approach Mean time per 1,000 products 
(seconds)

Mean cost per 1,000 products 
(EUR)

Direct LLM (GPT-5) ~500.0 22,2 

Embedding + KNN < 8.1 < 0. 030

Embedding + FFN < 6.8 < 0. 031

Average processing time and cost per product record. The analysis compares direct LLM prompting (GPT-5) with 
classification via text-embedding-3-large combined with KNN or FFN. 

Sources: PRISMA DPD and authors’ elaboration.
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Besides cost and execution time, another advantage of the embedding-based 
classifier is its modularity. Embedded product descriptions can be saved and reused, for 
example, if new classification categories are introduced or if the classification algorithm 
is improved. This results in a flexible system that can adapt to the latest technology. As 
embedding models evolve, they can be updated in the embedding-based classifier, and if 
better classifiers are created, those can be deployed while keeping the embedding model 
unchanged. Users can combine the embedding model and classifier that best suits their 
specific needs.

In contrast, direct LLM prompting is a one-step process that must be repeated for 
each new classification. The prompt workflow has only a few intermediate steps; hence, 
reusability is limited if, for example, a different LLM needs to be tested. Furthermore, direct 
LLM prompting is a black-box approach, whereas certain classification algorithms, notably 
KNN, offer higher levels of explainability.
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7. Initial deployment and a continuous refinement process
The results presented above demonstrate the concept’s applicability to the set of product 
categories covered by the manually labelled reference data set, which at the time of 
writing covered around 50% of the euro area CPI expenditure basket. Besides classifying 
the entire existing DPD, the project has developed the solution as a production pipeline 
that can classify new products as they appear on the market. This is important due to 
the high turnover of products in web-scraped data; each month new products enter the 
data set and need to be classified. The Spectrum pipeline performs this process at a high 
speed – it takes around three hours of computing time for one million new products.

Classification accuracy and coverage can be further improved by enlarging the 
reference data set. With Project Spectrum’s initial reference data set of 30,000 products, 
the accuracy varies across ECOICOP categories due to sample sparsity and heterogeneity 
in the underlying product classes. This is an unavoidable consequence of starting from 
a random sample: by construction, sampling variability leaves some categories under-
represented and others over-represented, which in turn depresses classification accuracy 
for the under-represented product classes.

The Spectrum pipeline therefore supports an iterative human-in-the-loop process to 
gradually extend the reference and validation data sets, selectively focusing on under-
represented product categories. This is implemented as a semi-automated process 
with a human labeller in the loop (see Graph 11). It allows for the gradual increase in 
overall accuracy while narrowing the performance gap between categories. Adding more 
reference data also helps address potential new product categories appearing in an ever-
evolving product landscape.

Iterative process to expand the reference data set

Embed

Add to
validation
data set

Add to
reference
data set

New products

Manual labelling

DPD full data set
embedded

(Re-) Classify full
data set

Select a pseudo-random batch of products for
manual labelling.
 
Category selection criteria: Apply KNN FFN 

algorithms
using the current 
reference data set

Validation data setReference data set

New labelled 
products

Random split

Predicted labels vs 
labels in current 
validation set

Low in-class accuracy
Limited sample size in reference/validation set
CPI relevance at division and subclass level
High in-class bias

Compute in-class accuracy
& performance statistics

Source: Authors’ elaboration.

Graph 12
Graph 11
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The process to enlarge the reference data selects new records for manual labelling 
in batches, for example 1,000 products at a time. These records are selected by stratified 
sampling, prioritising subclasses based on a combination of criteria. The initial set of 
prioritisation criteria include manual testing results, classification accuracy, number of 
manually labelled records, CPI weight and the statistical properties of each class in the 
embedding space (specifically in-class bias).18

The sample selection is performed based on the records’ location in the embedding 
space, oversampling the vicinity of prioritised subclasses. After a new batch of products 
is manually labelled, these products are added either to the reference or to the validation 
data sets, and all DPD products are reclassified.19 Finally, in-class accuracies and other 
relevant statistics are re-computed, as these will serve as an input to selecting the next 
batch of products to label manually. This process is designed as a self-reinforcing path 
to progressively improve classification accuracy across all categories and make the 
embedding-based classifier an increasingly accurate tool for structuring product data 
supporting inflation analysis.

Project Spectrum has implemented this methodology, initiated the iterative 
refinement process and completed the first few iteration cycles. This involved manually 
labelling another 6,000 products, which were equally distributed between the reference 
and validation data sets. The resulting data – the product embeddings and preliminary 
classifications for all 34 million products in the DPD, as well as boosted reference and 
validation data sets – have been made available to project partners. 

Further improving classification accuracy and keeping the classification algorithm up 
to date with an evolving product portfolio will require continuous iteration and occasional 
manual labelling of new data batches. Project Spectrum has proved that such a continuous 
operation is realistic from a cost and time perspective, providing analysts and policymakers 
with increasingly accurate and detailed insights into price developments. 

18.  It is expected that these prioritisation criteria might need to be fine-tuned as the iteration is progressing.
19.  Classifying the entire data set is computationally efficient, totalling approximately EUR 150 in processing costs. Linear scaling 
is possible by increasing concurrency. The embeddings do not need to be re-computed.
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8. Conclusions and next steps 
Project Spectrum has explored the potential of AI in transforming unstructured data into 
actionable economic intelligence. As digitalisation and e-commerce expand, leveraging 
online price data is becoming increasingly vital for effective monetary policymaking. 
The project has proved that combining text embeddings with machine-learning-based 
classification provides an efficient approach to structuring these high-frequency, large-
scale online price data sets.  

The embedding-based classifier achieves comparable accuracy with direct LLM 
prompting while demanding significantly less cost and processing time. Given the 
vast volume and diversity of product-level data, automating and refining product 
classification at scale represent major steps forward that could ultimately improve inflation 
nowcasting when using web-scraped data. In dynamic economic environments, where 
product-level price shifts can signal broader inflationary trends before they appear in 
aggregated indices, access to granular, near-instant insights can give policymakers a 
forward-looking advantage.

This research contributes to the growing body of literature on automated classification 
systems applied to economic data. It offers practical implications for statistical agencies 
and economic researchers working with web-scraped product information. In addition, 
knowledge about automatically structuring data at scale also supports broader applications 
of AI in financial stability assessment, risk modelling and data-driven policy strategies.

The experimental results presented in this report focus on data collected in the euro 
area; however, the approach is globally applicable thanks to the multilingual capabilities 
of AI models. For broad use in economic analysis, analysts will need to expand the 
reference data set – for which this report has presented a viable pathway. Already scalable 
up to production, the embedding-based classifier promises to turn data abundance into 
actionable economic understanding. 

Project Spectrum also opens the door to further work in this area. A potential next step 
is to test the solution with different data sets and languages. Though Project Spectrum 
has focused on data sets and retailers within the euro area, the multilingual capabilities of 
embedding models make the approach globally applicable. 

A further validation step involves constructing CPI indices at the ECOICOP subclass level 
to benchmark them against the “gold standard” of official inflation time series. Executing 
this historical back-test requires historical price data, which remains outside the scope of 
the current Project Spectrum phase but is identified as a priority in the follow-up phase.
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