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Executive summary

Financial market infrastructures (FMIs) are the backbone of the financial system and
must remain secure, resilient and adaptable as technologies and markets evolve. The
continued global rise of digital payments — accelerated by rapid innovation in areas
such as the Internet of Things (loT), artificial intelligence (Al)-driven commerce and
expanding fintech participation - places increasing demands on existing
infrastructures. These developments promise efficiency and inclusion but also
introduce greater complexity, scalability challenges and new forms of operational and
cyber risk.

To meet these challenges, the next generation of FMIs will need to embody
three reinforcing design qualities: flexibility, to adapt to innovation and regulatory
change; scalability, to accommodate sustained growth and stress conditions; and
security, to ensure quantum readiness and cryptographic agility’ in an evolving threat
environment.

Project FuSSE (Fully Scalable Settlement Engine) explored these issues through a
proof of concept (PoC) that examined how a modular, microservices-based?
architecture could support the design of flexible, scalable and secure settlement
systems. The project showed that microservices could enable systems to process high
transaction volumes efficiently, achieving 10,000 transactions per second (TPS)?
without linear increases in computing power. This architecture allows for individual
services, including those handling cryptographic operations, to scale independently,
improving performance and resilience. It could also facilitate cryptographic agility,
enabling adaptation to emerging post-quantum cryptography (PQC) standards
without large system redesigns.

At the same time, the project highlighted trade-offs. Microservices architectures
introduce new layers of operational complexity, require careful orchestration and
expand the potential attack surface. PQC algorithms add computational overhead,
which could multiply across service boundaries, but these impacts could be mitigated
through targeted scaling and load management.

The project also underscored that operational agility — the ability of institutions to
adapt governance, certification and incident-response frameworks in parallel with
technological change — is as important as cryptographic agility for maintaining trust
and continuity.

Cryptographic agility means designing a system in such a way so encryption and signature methods can
be swapped or upgraded more easily (for example, if an algorithm becomes unsafe), without needing to
rebuild the whole system.

Microservices are independent services (ie building blocks), each responsible for a specific function and
able to operate, be updated, and be scaled separately from the others.

FMI grade level performance typically also means measuring delays and how quickly transactions become
final during heavy load. These results are from simulations and will vary by deployment and configuration.
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For some advanced economies already running high-capacity instant payment
systems (IPS), Project FuSSE showed approaches to modularising the settlement core
- breaking it into distinct components - and embedding quantum-resilient
cryptography and how this could enable cryptographic and operational agility.

For some smaller or emerging-market jurisdictions that may be operating legacy
architectures and considering upgrading their systems or planning to introduce
real-time settlement, the project demonstrates a modular, open source approach that
could scale without requiring one-for-one (ie linear) increases in infrastructure
investment.

Although Project FuSSE is a PoC, its findings provide practical insights for central
banks and FMI operators. Its purpose is to explore design principles — not to prescribe
operational models or policy choices — and as such it could be deployed by interested
parties for experimentation and learning.

The results should be interpreted as technical findings illustrating architectural
feasibility under controlled test conditions, rather than a performance benchmark or
implementation guide. The project does not deliver a minimum viable product (MVP)
or production-ready components of a system, nor does it meet operational, security
or regulatory requirements under the principles for financial market infrastructures
(PFMI). The findings of the project could help system designers consider important
aspects of modern approaches to system scaling and quantum agility, both essential
to the future of FMIs.*

Project FUSSE was made possible in partnership with and through resource
contributions from the Inter-American Development Bank (IDB), the Central Bank of
Chile and the Bank of Canada.

The project does not: (i) specify or test a particular payment scheme, cost model or governance
arrangement; (i) recommend any specific deployment model (the use of cloud infrastructure was
illustrative and deployment-agnostic); (iii) select or endorse a particular PQC algorithm or migration path;
or (iv) provide full functional coverage of a real time gross settlement (RTGS) or IPS (including but not
limited to liquidity management, gridlock resolution, participant access, clearing or netting variations).
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1. Introduction

Financial market infrastructures (FMIs) are the backbone of the financial system and
as such must remain secure, resilient and adaptable over many years.

Across the world, the volume of digital payments continues to rise each year, with
especially strong growth in emerging market economies (see Graph 1). In Southeast
Asia, digital retail payment volumes have expanded rapidly for over a decade, while
in Latin America adoption accelerated sharply during the Covid-19 pandemic. Looking
ahead, transaction volumes are expected to grow even more rapidly,’ driven not only
by these trends but also by new developments such as Internet of Things (loT)-based
payments and emerging forms of artificial intelligence (Al)-driven, agentic commerce.

Cashless payment volumes Graph 1
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Note: Number of cashless transactions (credit transfers, direct debits, card and e-money
payments and cheques) per capita for emerging markets and developing economies (EMDEs)
and advanced economies (AEs).

Source: CPMI, Red Book statistics.

While these innovations promise greater efficiency and convenience, they also create
scalability challenges for traditionally designed FMIs. Furthermore, the breadth and

5 See CapGemini Research Institute (2025). Non-cash transactions stood at approximately 1.4 trillion in 2023

and are forecasted to more than double to 3.5 trillion in 2029.
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diversity of participants in FMIs is likely to grow as new kinds of institutions, such as
fintechs, gain access. This expansion increases both the availability of and demand for
new products and services, many built on emerging technologies.

While this fosters innovation, it also adds complexity and heightens the challenges of
designing infrastructures with sufficient flexibility.

Increases in both volume and participation could grow harder for traditionally
designed FMI systems to manage.® The architecture and design of next-generation
FMIs could consider at least three reinforcing qualities:

¢ flexibility, to evolve structurally and adapt to new technologies, regulations and
market innovations while maintaining stability;

e scalability, to handle long-term growth, high volumes and sudden surges in
activity (without sufficient capacity, stress or growth could cause operational
failures with systemic impact);’ and

e security, in the form of quantum readiness and both operational and
cryptographic agility, to safeguard trust in the face of a complex and evolving
cyber threat landscape.

Together, these qualities enable the architecture and design of stable, resilient
systems that could be capable of supporting the dynamic needs of the future.

While traditional measures of payment system performance emphasise cost, speed
and reliability, these describe outcomes as observed by users at a given point in time.
By contrast, Project FUSSE focuses on the architectural qualities that sustain those
outcomes as technologies, market conditions and risks evolve.

Flexibility, scalability and security function as enablers of these traditional objectives:
flexibility supports long-term cost efficiency and adaptability to policy or
technological change; scalability maintains high throughput and operational reliability
as volumes expand,® and security, including quantum readiness, safeguards trust and
continuity.

Project FUSSE therefore does not assume that cost, speed and reliability are already
achieved, but rather seeks to explore how they could be maintained and improved
over successive iterations of system design.

6 See Darbha et al (2025), ECB (2023) and CPMI (2022).
7 See CPSS-10SCO (2012).

Scalability also maintains costs proportional to uptake. A scalable system reduces the risks of building
unused capacity, avoiding high capital cost.

10
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2. Project FUSSE

2.1 Overview

Project FUSSE (Fully Scalable Settlement Engine) explores how settlement engines
could be designed from the outset with three reinforcing qualities: (i) the flexibility to
evolve as standards mature, (ii) the scalability to handle exponential growth without
proportional infrastructure costs, and (iii) the security to remain resilient in a
post-quantum threat environment.

While several instant payment systems (IPS) have successfully adopted microservices
architectures, for example the Unified Payments Interface (UPI) in India, the TARGET
Instant Payment Settlement (TIPS) in Europe and Pix in Brazil, optimising for scalability
and resilience, Project FuSSE places equal emphasis on forward-looking security
requirements, particularly the transition to PQC.

Project FuSSE differs from distributed ledger technology (DLT)-based settlement
approaches. While DLT systems offer benefits such as atomic settlement and
cryptographic verification across multiple participants, they often face throughput
constraints due to consensus mechanisms and synchronisation requirements.
Project FUSSE shows that other approaches could achieve comparable or greater
transaction throughput, while incorporating quantum-resistant cryptography, when
using cloud-native design patterns that enable independent scaling of
security-intensive operations.’

2.2 Technical approach

The PoC was designed as a settlement engine architecture rather than as a full
payment scheme. It simulates the core functions that underpin real-time settlement
in central bank money, consistent with RTGS principles, while remaining agnostic to
the payment layer or use case that connects to it. The architecture could therefore
support next-generation retail IPS, wholesale interbank settlement or other FMI
components requiring high throughput and deterministic finality.

The system was deployed in a cloud-based environment to demonstrate elastic
scaling and resilience using widely available open source tools (eg Kubernetes, Kafka,
Redis), illustrating that cloud-native principles, containerisation, stateless processing
and horizontal scaling could be applied in either private, hybrid or on-premise
infrastructures.™

References to alternative settlement designs are intended to provide context rather than a head-to-head
evaluation. Any comparative assessment would need to align trust assumptions, finality semantics and
threat models before drawing conclusions on scalability or security.

It should be noted that this does not imply that FMIs should operate in the public cloud.

11
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The architecture introduced several novel features under the themes of flexibility and
scalability. FUSSE employs a microservices-based'! design in which each functional
component operates as a stateless service that could be deployed, updated or
replaced independently. This modularity enables continuous system evolution
without requiring full-system redeployment. The architecture supports horizontal
scalability, making it possible to increase overall capacity by running additional service
instances rather than upgrading hardware, achieving sub-linear growth in computing
resources as transaction volumes rise.

The system also implements a decentralised communication pattern, in which
transaction messages carry their own routing instructions (“routing slips”).
Decentralised routing improves modularity but requires strong controls for route
integrity, versioning and auditability in order to ensure predictable processing and
supervisory transparency.

Testing validated that such an architecture could handle large and rapid increases in
transaction volumes while maintaining fast settlement and enabling new functions to
be applied with minimal disruption.

The project also tested the application of PQC' to explore the potential of a
microservices approach in supporting cryptographic agility, as well as to understand
the impact of emerging security standards on scalability and flexibility.

2.3 Monolithic vs microservices architectures

Traditional financial systems often rely on monolithic architectures, in which
application logic, data access and interfaces are bundled into a single deployable unit.
While this simplifies deployment and ensures consistency, it limits scalability and
flexibility as systems grow."® Even minor updates require redeployment of the entire
system, creating brittleness, slowing innovation and exposing single points of failure.
Over time, such architectures become bottlenecks, particularly in financial
infrastructures facing high transaction volumes, frequent regulatory change and
evolving cyber risks.'

In contrast, microservices architectures break functions and software into small,
independent pieces (or services) that are each designed for a specific function and
that communicate via lightweight protocols. Each service could be scaled, updated

A microservices architecture is a way of designing software in which applications are broken down into
small, independent services that each handle a specific function. These services communicate through
Application programming interface (APIs), making systems more scalable, more flexible and easier to
maintain.

PQC is important because most of today’s cryptography relies on mathematical problems that are
extremely hard for classical computers to solve but that could be broken by future quantum computers.
This creates a risk of the “harvest now, decrypt later” strategy, in which criminals store sensitive information,
such as financial data, with the intention of unlocking it once quantum technologies mature.

Other drawbacks of monolithic architectures may include high complexity and coupling, “all-or-nothing”
deployment, technology lock-in and potential reliability risks, while other advantages may include easier
testing and debugging.

" See Tapia et al (2020).

12
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and operated independently, enabling greater flexibility and faster adaptation to new
technologies or regulatory requirements. This modularity also allows for incremental
adoption of enhanced security standards, including PQC.

Monolithic vs microservices architecture Graph 2
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Note: Monolithic (left-hand side) vs microservices-based (right-hand side) architectures.

However, the approach adds complexity: orchestration,’ data consistency and
inter-service security'® must be carefully managed, and the attack surface expands as
the number of interactions grows. In fintech and payments, cloud-native and
event-driven microservices are increasingly seen as a way to balance scalability,
security and flexibility in a composable framework.".1®

Instant payment systems (IPS) and microservices architectures

Several payment systems demonstrate how microservices architectures could support
high scalability, flexibility and resilience in real-time retail payments.

In India, UPI was launched in 2016 with a microservices architecture. UPI has grown
rapidly and now settles around 18 billion payments every month across more than

Orchestration manages and synchronises automated tasks across multiple systems, combining them into
comprehensive workflows so that individual tasks operate together to achieve a specific goal or process.

Inter-service security in microservices ensures that communication between services is authenticated,
authorised and encrypted to prevent unauthorised access and data breaches.

See Challa (2021).
See Battula (2025).

13
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675 banks.” Its modular architecture has enabled the system to scale to higher
transaction volumes and to integrate new services and participants more easily.

In Europe, the TIPS system, operated by the Eurosystem, similarly leverages modular
and distributed design features to support very high throughput. TIPS can process up
to 2,000 payments per second and has demonstrated the capacity to complete and
finalise more than 43 million transactions in a single day.*

In Brazil, the Pix system was launched by the Central Bank of Brazil in 2020. Built to
accommodate massive participation, Pix now has almost 900 million account aliases
registered by 160 million individuals and more than 15 million businesses. In
aggregate, users initiate some 6.6 billion transactions every month.?!

These examples highlight how microservices could provide the architectural
foundation for rapid scaling, continuous innovation and resilience in the face of rising
digital payment volumes. They illustrate the benefits of modular design for the future
development of FMIs.

It is also worth noting that payment schemes and the FMIs that settle their
transactions (which may include a production settlement engine) could have different
governance arrangements.

For example, in Brazil, the Pix scheme is owned by the central bank, which also
operates SPI, its payment system. TIPS follows a similar approach. In India, UPI is run
jointly by private banks and the central bank through the National Payments
Corporation of India (NPCI), an organisation created specifically for this purpose.?

2.4 Architecture and components

The Project FuSSE PoC showed how a microservices-based architecture could be used
for a settlement engine. In this design, all transaction-related tasks are performed by
a set of independent microservices that scale horizontally to increase overall system
capacity.

Each service is responsible for a discrete function, such as decrypting, processing,
validating or settling transactions, before issuing an encrypted confirmation message
to both the sender and the receiver. A supporting set of technologies manages these
services and enables secure communication between them.

The service is stateless and therefore receives all the information it requires to
complete its task directly within the transaction message itself, eliminating the need
to reference historical records. This not only enables rapid processing but also allows
multiple instances of the same service to operate simultaneously, thereby supporting

19 See NPCI (2025).

®  See Bank of Italy (2020).

21 See Central Bank of Brazil (2025).
2 See Frost et al (2024).
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horizontal scaling. Capacity could thus be increased by running more service
instances, rather than by upgrading the underlying hardware.

To coordinate processing, Project FUSSE tested a decentralised communication
pattern (known as a routing slip pattern)? in which transaction messages carry their
own “itinerary” - akin to a dynamic list of the steps required for completion (Graph 2).

Each service reads the embedded routing slip, performs its task, prunes the completed
step and forwards the message to the next service. This removes the reliance on a
centralised orchestrator, improving resilience and efficiency. It also means that the full
processing path is visible within each message, which enhances traceability and
auditability.?

This communication pattern provides multiple benefits. By decoupling orchestration
logic from services, the system allows for new steps to be added or existing steps to
be modified without redesigning a central controller, improving modular flexibility.

Common processing units, such as for signature verification, could be reused across
different transaction flows, while the stateless design improves fault tolerance by
allowing retries or rerouting if a component becomes unavailable. Versioned routing
ensures that each transaction follows a stable process even if the system is updated,
while process-agnostic services could be reused across multiple flows. Together, these
features simplify maintenance, support diverse deployment models and enhance
adaptability to evolving business requirements.

Additionally, the communication among microservices follows an event-driven design
pattern,?® in which events executed by one microservice are subscribed to by others.
This minimises hard dependencies and makes it easier to evolve or replace
components.

In practice, each transaction event is accompanied by a routing slip detailing its
required processing chain. The framework automatically updates the routing slip
before forwarding messages, abstracting this logic away from individual service
developers.

The FuSSE architecture therefore combines efficiency with modularity, while
maintaining transparency for auditing and control.

3 More information can be found in sources like G Hohpe and B Woolf, Enterprise integration patterns:

Designing, building, and deploying messaging solutions, Addison-Wesley, October 2003.

2 Decentralised orchestration can improve modularity, but it introduces governance and control

requirements around route integrity, versioning and auditability. In production environments, routing
metadata and permitted processing paths would need strong integrity protection and change controls to
maintain predictable processing and supervisory transparency.

®  For additional information, see Christudas (2019). An event-driven design reduces tight connections

between services by letting them communicate in response to an event instead of through direct calls,
making it easier to update or replace parts without affecting others. A direct call from service A to service B
depends on service B being available and responding in an expected way.

15
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Additional information on the architecture and open source components and
underlying technologies employed by Project FUSSE can be found in Appendix A.

2.5 Microservices design and workflow

The Project FUSSE PoC architecture uses many different microservices?® to process,
decrypt, manage and settle transactions as well as to encrypt and sign notifications
to senders and receivers (Graph 3).

FuSSE architecture Graph 3
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The architecture included more microservices than shown above (eg those for monitoring the
system), but these were not included for simplicity.

Together, these services illustrate how a microservices-based FMI design could
support scalability, flexibility and enhanced security while offering a practical pathway
for integrating quantum-ready cryptography into next-generation settlement
systems. The end-to-end settlement process tested in the project can be simplified
into nine steps, as shown in Graph 3.

% The PoC implemented the following microservices:

e  bridge, the entry point for participant messages;

e signature verification, which validates the authenticity of digital signatures against sender public keys;
e encryption and decryption, quantum-ready mechanisms to protect confidentiality;

e  signing, which secures messages to guarantee integrity and authenticity;

e  signature key pair generation, which provides secure keys for cryptographic functions;

. transaction validation, which performs business checks such as funds availability;

e settlement engine, which executes ledger updates, acknowledgments and multi-ledger support;
e  journal entry synchronisation, which persistently stores transaction outcomes;

e notification, which communicates settlement updates to participants;

e audit trail and logging, which records status messages for monitoring and client queries; and

. profile management, which administers digital identities and participant information.

16
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e  First, a transaction message (associated with a payment, for example) is received
into the bridge microservice.

e The signature verification microservice then checks that the message signature is
from a participant.

e Ifitis, the message is decrypted by the decryption microservice.

e The transaction validation microservice then checks if the message format is
correct, if the sender’s account has met predefined conditions (eg in the context
of a payment, if the sender has enough money in their account) and that the
receiver's account information is correct.

¢ Now that the settlement message is received, verified, processed, decrypted and
validated, it can be settled. The settlement engine microservice manages this. To
ensure speed, this microservice updates the sender and receiver balances in fast
short-term memory.

e To ensure completeness, the journal entry synchronisation microservice updates
the long-term ledger with the full payment details in persistent storage.

e Finally, following settlement, the sender and receiver are notified (by the
notification microservice) with a message that is encrypted and signed by
two separate microservices, the encryption and signing microservices,
respectively (see Section A4 for information on the decryption and encryption
standards employed by the PoC).

2.6 Cryptography

Cyber resilience in FMIs is a critical determinant of the resilience of the wider financial
system and economy.?” While cyber resilience encompasses multiple dimensions, one
essential element is the protection of participant privacy (confidentiality) and
transaction integrity through the encryption of payment messages transmitted to and
from the system.

Equally important are strong authentication mechanisms, to ensure that only
authorised parties can access or initiate transactions, and non-repudiation controls
that prevent participants from denying the validity of their actions within the system.

Traditional cryptography relies on mathematical problems that are computationally
difficult to solve using classical computers. This protects access to systems and data
by making decryption practically impossible without the appropriate keys. Quantum
computing represents a transformative advance in computational capabilities, posing
a disruptive challenge: algorithms such as Shor's algorithm? could make these
problems solvable in practice, undermining the foundations of current cryptographic
methods that underpin global financial systems. This risk is heightened by the “harvest

27 See CPMI-IOSCO (2016).

% Shor's algorithm is a quantum algorithm theoretically capable of calculating prime factors of large

numbers. This algorithm poses a threat to asymmetric cryptography (such as the encryption algorithm
RSA), which relies for its security on the difficulty of efficiently factoring very large numbers (BIS (2023a)).

17
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now, decrypt later” strategy, in which adversaries capture encrypted data today with
the expectation of decrypting them once quantum computing resources become
available.?

To address this risk and strengthen resilience, the Project FUSSE cryptography module
implements a hybrid architecture, enabling quantum-ready algorithms to run
alongside traditional ones. This design was chosen with two key objectives:

1. cryptographic agility, the ability to evolve and replace cryptographic
algorithms as new standards emerge without redesigning the entire system;
and

2. scalability - since cryptographic operations are resource-intensive,
microservices could be scaled independently to meet performance demands,
minimising the impact on the rest of the settlement engine.

As mentioned, Project FuSSE integrates PQC microservices with traditional technology
in its architecture. The PQC microservices are:

e signature verification, which validates the digital signatures on each
payment message; and
e signing, which securely signs messages to ensure the authenticity and

integrity of outgoing data.

The microservices that are implemented with traditional cryptographic technology
.30
are:

e decryption, which decrypts incoming messages to ensure they can be
processed securely; and
e encryption, which encrypts settlement messages sent to participants.

Graph 4 highlights which microservices are PQC-enabled and which are implemented
with traditional cryptography. Additional information can be found in Section A4.

2 SeeBIS (2023a).

0 SeeBIS (2023a). It is argued that it is possible to make an AES, a specific traditional algorithm for encryption

employed by FUuSSE, quantum-resistant by increasing the size of the key it uses.
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Cryptographic microservices Graph 4
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Note: There are two PQC-enabled microservices and two microservices that employ traditional

cryptography. The third microservice for the key pair generator is not included in this diagram.

2.7 Monitoring

A custom monitoring tool was developed for the PoC to identify bottlenecks and

issues across each microservi
tool included “system views"

ce as part of the end-to-end settlement process. This
for performance; “operator views” for information on

microservice instances, balances and transactions; and a “business view" for balances
and transactions. Additional information can be found in Section A.5.
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3. Results and discussion

3.1 Test results

The PoC achieved its specific target goal of settling 10,000 TPS®! as a means to
demonstrate the achievement of its broader objectives of flexibility, scalability and
security discussed in the next subsections. This was achieved across three stages
(2,500, 5,000 and then 10,000 TPS). In each stage the solution was further optimised
with computing power added as required.

Increasing throughput fourfold (from 2,500 to 10,000 TPS) required between two and
a half and less than four times more resources (ie servers, memory, central processing
units (CPUs), etc).

The project showed that it was possible to increase the number of settled TPS without
an equivalent increase in computing power, even with more resources added for the
more computationally intensive cryptographic microservices.

Infrastructure cost® did not scale linearly with performance.

This shows one of the benefits of the flexibility afforded by a microservices
architecture. Additional information on the testing, the results achieved and the
infrastructure used in this PoC can be found in Appendix B.

3.2 Discussion
3.2.1 Scalability and flexibility

The microservices-based architecture adopted in the PoC demonstrated both
scalability, by effectively handling increasing loads through independent service
scaling, and flexibility, achieved through a modular service design that enables
independent updates, rapid feature extension and seamless integration of new
components without affecting the overall system. Testing showed that by tuning
parameters at both the infrastructure and microservice levels, the PoC could sustain
transaction volumes that are typically higher than those of other IPS currently in
operation, without requiring a proportional, linear increase in computing power. This
efficiency highlights how computing resources could be allocated in a flexible way,
with additional computing capacity directed specifically to more computationally
intensive cryptographic microservices as required, without over-provisioning the
entire system.

31 See NPCI (2025) and Central Bank of Brazil (2025). Two widely used IPS systems are UPI (India) and Pix
(Brazil). The former processes around 7,500 TPS and the latter around 2,500 TPS.

32 Testing was conducted in the cloud-based Azure Kubernetes Service (AKS) provided by Microsoft.
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The architecture’s modularity also proved valuable when adapting to design
requirements. For example, to comply with the project’s open source approach, one of
the underlying database components had to be replaced and another was
downgraded.

Given the isolation provided by a microservices design approach, such a change only
affected the specific microservice that relied on that component, while the rest of the
system continued to function without disruption. This showed how architectural
modularity not only supports scalability but also simplifies system evolution and
maintenance.

3.2.2 The interplay between architecture, security, scalability and flexibility
As described in Section 2.4 and in the first Project FUSSE release report,®® the project

tested PQC components to explore how a settlement engine could be designed in a
quantum-resilient manner while maintaining scalability and flexibility (see Graph 5).

Security, scalability and flexibility Graph 5
The modular design and PQC algorithms are
standardised interfaces enabled @ more computationally
cryptographic updates to be demanding

integrated quickly and without
major rework

Security

Flexibility Scalability
Security microservices

could be scaled

independently

PQC algorithms are generally more computationally demanding, with larger keys and
signatures that introduce additional latency and throughput challenges. In this
context, the adoption of a microservices architecture proved to be advantageous for
several reasons.

First, it allowed specific, security-related microservices, such as those responsible for
signing, signature verification and encryption, to be scaled independently, limiting
their performance impact on the wider system. This isolation made it possible to
manage heavier cryptographic workloads while maintaining operational stability.

Second, the architecture provided cryptographic agility: because PQC standards are
still evolving, a modular design enables individual components to be modified,

3 See BIS (2024).
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updated or replaced as new algorithms mature, without requiring major
re-engineering of the entire system.

At the same time, the project underscored that the interplay between architecture and
security introduces inherent trade-offs. In a distributed microservices environment,
PQC overheads could multiply at every service boundary, increasing resource
demands and potentially affecting system latency.

Nevertheless, modular design and PQC could reinforce one another if systems are
engineered to anticipate the costs of transmitting and processing larger
cryptographic payloads.

Scalability could help offset these impacts through the addition of compute nodes or
dynamic load management, but choices must be made to balance performance,
resilience and security.

The modular design and standardised interfaces employed in Project FuSSE further
enabled cryptographic updates to be integrated quickly and without major rework.

In parallel, the use of technologies with broad community support ensured regular
maintenance and upgrades.3 As a result, when both the public key infrastructure (PKI)
component and the cryptographic library released updates, integration and
interoperability of these were easily and consistently achieved across the system.

Project FUSSE showed how settlement systems can remain secure, resilient and
adaptable by decoupling cryptographic services from the core settlement logic, but it
also showed that security, scalability and flexibility can at times pull in different
directions.

Flexibility and crypto-agility could be embedded in the foundation of settlement
systems, but this introduces operational complexity and performance trade-offs.

Looking forward, key design questions for next-generation FMIs could include how
to balance flexibility with complexity, how to scale without compromising resilience
and how to prepare for quantum-era risks without undermining today’s reliability and
trust.

As PQC standards and operational frameworks mature, coordinated progress across
technology, regulation and governance will be essential to ensure that
next-generation infrastructures remain both secure and adaptable.

3.2.3 Cryptographic agility and operational agility

The project highlighted the importance of cryptographic agility and how a
microservices architecture could support this, particularly as PQC standards continue

3 However, this reliance on community-driven ecosystems also introduces potential drawbacks, as

development priorities and design decisions made by the community may not always be fully aligned with
the specific requirements or long-term objectives of the user institution.
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to evolve. This capability becomes essential to ensuring long-term security and trust.
However, the project also underscored that cryptographic agility alone is not
sufficient. It must be accompanied by operational agility, the institutional capacity to
adapt governance, risk management and operational processes in line with evolving
security requirements. This includes updating key management practices, certification
frameworks, incident response mechanisms and oversight procedures in a
coordinated and timely manner.3

3.2.4 Broader technical considerations

The Project FuSSE PoC explores a limited set of functionalities, and other
considerations exist that were not in scope of the PoC.

The maturity and interoperability of the PQC ecosystem and integration with existing
PKI and hardware security modules (HSMs) are important considerations.

Systems must also meet operational and resilience standards under the Principles for
financial market infrastructures (PFMI), covering availability, fraud prevention and
incident management.

Further technical aspects include liquidity and gridlock resolution, access and
participation requirements, procedures for participant defaults, enhanced analytics
and observability, cryptographic asset management, and incident response and
recovery procedures.

3 Operationalising PQC will depend on ecosystem maturity and integration with existing controls, including

PKI profiles, key lifecycle procedures, interoperability testing and, where required, HSM support.
Quantifying end-to-end impacts (eg payload size, bandwidth and CPU overhead across service boundaries)
would support migration planning.
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4. Conclusion

Project FUSSE showed that a settlement engine could be developed using a modular,
microservices-based architecture that supports scalability, flexibility and
quantum-resistant security. The PoC showed that such an approach enables the
adoption of PQC measures while maintaining performance and operational stability.
In particular, the architecture’'s modularity allows services responsible for
cryptographic operations, such as encryption, decryption and signature verification,
to be scaled horizontally and independently on demand, ensuring low latency and
consistent throughput under high loads. This isolation of specific business and
technical functionalities, such as cryptography, allows resource-intensive functions to
be scaled without affecting other components, while also simplifying upgrades,
maintenance and system evolution.

At the same time, the project underscored that these architectural benefits come with
trade-offs. Microservices architectures introduce added complexity, requiring careful
orchestration, monitoring and management of inter-service dependencies, while also
broadening the potential attack surface. Project FuSSE further revealed that
post-quantum algorithms, particularly digital signatures, could create additional
computational and bandwidth overhead, yet these impacts could be effectively
managed through scalable design and targeted resource allocation. Beyond
cryptographic agility, the ability to adapt cryptographic algorithms as standards
evolve, the project highlighted the need for operational agility, ensuring that
governance, certification and incident-response processes evolve in step with
technological change.

This PoC demonstrates architectural feasibility and provides design insights for central
banks considering next-generation systems. However, any production
implementation would require significant additional work, including operational
resilience frameworks, security hardening, regulatory compliance validation and
extensive testing under real-world conditions. The findings should be viewed as a
foundation for further development rather than a deployment-ready solution.
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Appendix A: Underlying technologies

A.1 Resource management

Managing multiple microservices and the increasing computational power required
by scaling them is a challenge. When transaction volumes increase and microservices
multiply to handle them, underlying technology is required to distribute, monitor and
optimise the sources of this computational power (eg the best mix of servers). For this
task, the PoC uses Kubernetes.*® Kubernetes allows the overall capacity of the system
to elastically grow or shrink by managing how the requirements of multiple
microservices are met.

A.2 Communication between microservices

Communication between microservices is a second challenge. Microservices are part
of a process, but they operate independently. Payment messages flowing between
microservices in a linear queue could create bottlenecks. The PoC uses Apache Kafka
as an intermediary for all transaction messages as they are worked on by the different
microservices.’” This event-driven way of communicating allows each microservice to
pick up messages that need attention and then publish them once the task is
complete (ready for the next microservice). This allows many microservices to work
simultaneously without delay or duplication.

Kafka was selected due to its strengths in high-throughput messaging (millions of
messages are handled per second), horizontal scalability (brokers and consumers
scale independently), durability and fault tolerance (messages are persisted to disk
and replicated), support for decoupled microservices in event-driven designs, and
replay ability and auditability (events are retained for a configurable time window).
Kafka acts as the central nervous system of the Project FUSSE architecture, enabling
coordination and consistency while maintaining flexibility and decoupling for scalable
and secure settlement systems.

A.3 Persistence
Settled transactions must also be recorded. The PoC uses Apache Cassandra as a

longer-term database where every transaction is stored. Recording every transaction
on a long-term replicable “golden copy” is a slow process.®® Therefore, Redis>

% Kubernetes is an open source platform that automates the deployment, scaling and operation of

containerised applications across clusters of machines.

3 Kafka is a distributed event-streaming platform used to publish, store and process high volumes of

messages between systems in real time.

% See CPMI (2014). A golden copy is an accurate picture of settled transactions in a payment system that can

be used to recover in the event of a disaster.

3 Redis is an in-memory data store commonly used as a fast cache or database for low-latency reads/writes.

27



| Project FuSSE: Fully Scalable Settlement Engine

supplements Cassandra®® as a short-term, “in-memory” database for recording the
balances held by senders and receivers.

Multiple synchronised instances of Redis can run in parallel just like a microservice to
avoid any bottlenecks. The two databases complement one another. Cassandra acts
as a large-scale filing system with lots of information and the potential for queries,
whereas Redis can be updated very quickly with limited and simple information for
balance queries by microservices.

In summary, Project FUSSE employs a dual-database architecture combining Redis
and Cassandra to meet requirements for both real-time responsiveness and
long-term durability:

. Redis (in-memory/hot path): Used for latency-sensitive data like account
balances and recent transactions, offering sub-millisecond response times.
It supports features like time-to-live (TTL)*" commands, pub/sub and
streams, and achieves horizontal scalability via Redis Cluster with high
availability through Redis Sentinel. The in-memory ledger quickly updates
sender and receiver balances in Redis. To speed up balance updates,
“connection pooling” is used to reuse existing connections between the in-
memory ledger microservice and Redis instances.

. Cassandra (persistent/cold path): Used for long-term, durable storage of
historical data and system state. Its write-optimised engine ensures
consistent performance under high ingestion loads, following an eventual
consistency model. Cassandra acts as a large-scale filing system for full
transaction details and potential queries, while Redis handles quick balance
queries.

A.4 Cryptography

Many of the existing encryption standards used in financial and payment systems are
vulnerable to future quantum computers.”> The three cryptographic microservices
utilise quantum-safe CRYSTALS (Cryptographic Suite for Algebraic Lattices)
cryptography algorithms.** Specifically, the digital signature scheme implemented
follows the post-quantum standard set by the National Institute for Standards and
Technology (NIST),* namely Dilithium (ML-DSA (FIPS 204)).

This "lattice-based” cryptography is considered promising against future quantum
computers because it relies on nondeterministic polynomial (NP)-hard

40 (Cassandra is a distributed NoSQL database designed for high availability and fast writes at scale across

multiple servers and locations.

4 Time-to-live (TTL) commands are used to determine the remaining time to live of a key that has an

expiration set.
4 See BIS (2023b).
4 CRYSTALS is a family of PQC algorithms based on lattice math, designed to resist attacks from both classical
and quantum computers (eg Kyber for key establishment and Dilithium for digital signatures).

4“4 See NIST (2024).
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“shortest-vector” and “closest-vector” problems, which are exponentially difficult to
solve efficiently even with known quantum algorithms. Due to the computational
intensity of these quantum-safe standards, the number of signature microservices
required to avoid bottlenecks during testing was five times that of any other service.

More information on the cryptographic aspects of Project FUSSE can be found in its
first release report.*®

A.5 Monitoring

To test the PoC, a monitoring tool was required. Many interfaces already exist to check
system performance. However, in testing Project FUSSE's architecture, it was necessary to
identify any bottlenecks or issues that might require better calibration or additional
microservice instances. In other words, any monitoring tool had to show the performance
across each microservice as part of the end-to-end settlement process.

A custom monitoring tool was built for the PoC. The tool contained “system views" to
show performance and “operator views” and “business views” with information on
balances and transactions. Prometheus® collects the metrics exposed by each
microservice and Grafana,*’ querying Prometheus, creates visualisations of those metrics.
Both Grafana and Prometheus are open source software. In accordance with the rest of
the PoC's architecture, the custom monitoring tool was scalable and flexible, allowing for
additional microservices and views to be easily added.

4 See BIS (2024).

4 Prometheus is an open source monitoring system that collects time series metrics (often by scraping

endpoints) and supports querying and alerting.

4 Grafana is a dashboarding and visualisation tool that turns metrics and logs into charts and operational

views.
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Appendix B: Testing and results

B.1 Environment

The settlement messages were representative, containing fictitious data, and were
used to test the PoC wusing software that simulated multiple senders
(eg 10,000 different accounts) sending messages to the system.

Each settlement message was in JSON file format*® (which is efficient for data
transmission), containing the sender account, the receiver account and the value of
the transaction. Apache JMeter®® was used to create multiple senders sending
messages to the 10,000 different accounts used in testing.

B.2 Results

The PoC was tested across three phases, first reaching 2,500 TPS before reaching
5,000 and 10,000 TPS (Table 1).

FuSSE testing results Table 1
Phase TPS | M/services | Partitions Pods CPUs | RAM Worker
nodes*
1 2,500 2 12 20 14 12GB 2
2 5,000 3 24 32 21 18GB 3
3 10,000 5 75 54 35 30GB 5

In the first phase, the development team assigned each microservice a Kubernetes
"pod” and increased them to handle additional messages.>'

At 20 pods, the PoC processed 2,500 transaction messages every second end-to-end,
using two worker nodes with 14 CPUs and 12 GB of random-access memory (RAM).

In the second phase, a goal of 5,000 TPS was set. To achieve this, the development
team added more computing power, but also made three key changes to the PoC:

4 JSON is a lightweight text format for representing structured data (key-value pairs and lists) that is widely

used for data exchange between systems.

4 Apache JMeter is a load-testing tool that simulates many users or clients to generate traffic and measure

system performance.

Worker nodes are the Kubernetes compute nodes that provide CPU and memory resources for running
application pods.

Kubernetes allows the overall capacity of the system to elastically grow or shrink by storing microservices
in multiple pods that can be assigned computing resources from multiple sources and still be coordinated.
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(i) Kafka was optimised for every microservice; (ii) Redis connection pooling was used;
and (iii) additional microservice instances for decrypting transactions were deployed.

e Toenable microservices to move messages faster, the Kafka connections between
each one had to be individually configured. Kafka connects microservices by
picking up messages that need attention and then publishing them once a task
is complete. However, each microservice has a different task and speed at which
that task is completed, so Kafka's connections to each microservice had to be
adjusted to optimise how many messages were picked up and then available for
next time.

e To speed up the balance updates from settled transactions, the connection
between the in-memory ledger microservice and Redis was optimised. Where
multiple instances of the microservice and Redis existed, connection pooling was
employed to reuse existing connections instead of creating new ones. This sped
up balance updates.>

e To avoid a bottleneck with decrypting messages, more decrypt microservices
were added. Due to the quantum-safe encryption standards employed, the
number of decrypting microservices required was five times that of any other
service.

The additional microservices required more Kubernetes pods and computing
resources. The number of pods increased to 32 and the cluster was scaled to
three worker nodes, with 21 CPUs and 18 GB of RAM allocated to the workloads.

From this base, the third phase aimed at settling 10,000 TPS. No changes to the
configuration were made in this phase. Instead, additional computing power was
added to understand the cost of doubling performance. For this phase, premium
virtual machines replaced the standard-issue ones used previously. This increased the
CPUs and RAM available, as well as the “networking interfaces” available and the
performance of the disc on which Cassandra recorded transactions.

The results successfully showed that the PoC could scale horizontally. Computing
power did not need to be doubled in order to double performance (ie from 5,000 to
10,000 TPS).

For the final phase of testing, 35 CPUs with 30 GB of RAM were allocated to the
workloads across five worker nodes. These results were also achieved continuously
when 100,000 transactions were pushed to the system. Even in this scenario,
10,000 TPS were consistently settled with no issues.

2. (Cassandra did not require any equivalent optimisation.
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Appendix C: Applicability

This appendix outlines the contexts in which FUSSE-type designs may be useful and
the considerations that determine their suitability.

C.1 Applicability across FMI contexts

The potential relevance of the type of architecture explored in Project FUSSE varies
according to the maturity and structure of national payment and settlement systems.

In emerging or smaller jurisdictions, FMIs often rely on legacy batch systems that have
limited capacity to scale and may face resource constraints that make comprehensive
system replacement difficult. In such settings, the modular characteristics of Project
FuSSE could support incremental modernisation. Individual components could be
introduced gradually, allowing for functions such as transaction validation or message
routing to be modernised without needing to replace the entire infrastructure.

For mid-sized economies that operate conventional RTGS systems but have not yet
introduced instant payment capabilities, the same design principles could provide a
bridge to more flexible real-time settlement. A lighter-weight settlement layer built
using microservices could connect to the existing RTGS, extending its functionality
while maintaining established governance and operational arrangements.

In advanced economies with well developed IPS, current infrastructures are generally
robust and high-capacity, but often remain complex to modify or upgrade. In such
cases, the concepts explored in Project FUSSE may be most relevant at the component
level, for example in introducing independent services for message handling or
signature verification or in testing cryptographic agility in anticipation of post-
quantum standards.

C.2 Settlement model and deployment environment

The Project FUSSE PoC simulated settlement in central bank money within an
RTGS-type framework. It did not implement a specific payment scheme, but showed
a potential core engine that could underpin various payment or FMI applications.

The PoC was deployed in a cloud-based environment to explore elasticity and
resilience. This configuration served the purposes of the project and does not imply
any policy preference for cloud deployment. The same architectural principles could
be applied in private or hybrid infrastructures operated under existing oversight and
resilience frameworks.
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C.3 Scalability and resource considerations

The system’s ability to process up to 10,000 TPS illustrates horizontal scaling potential
rather than a performance target.

In smaller systems, the same architecture could operate efficiently at lower volumes;
in larger or growing systems, capacity could be increased by running additional
service instances. These results indicate that modular scaling could help align
computing resources with transaction demand without major redesign.

C.4 Implementation factors

Institutions evaluating a Project FUSSE-type design may consider:

o strategic objective: whether the aim is to enhance capacity, modernise
system architecture or strengthen cryptographic resilience;

e integration approach: whether to build new functionality alongside existing
systems or to refactor selected components;

e operational capability: readiness to manage containerised and event-driven
infrastructures securely; and

¢ regulatory alignment: ensuring the approach remains consistent with the
PFMI, particularly on operational resilience and governance.

C.5 Summary

Project FUSSE represents a technical exploration of settlement engine design rather
than a prescriptive model. Its architectural concepts, modularity, horizontal scalability
and cryptographic agility may be adapted to different institutional settings according
to scale, maturity and policy priorities.

The applicability of such approaches depends on each operator's objectives,

technological environment and capacity to manage more distributed architectures
within existing oversight frameworks.
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Appendix D: Security learnings from the cryptographic
microservices

Project FUSSE demonstrates how cryptographic functions can be modularised into
independently scalable microservices (eg signing and signature verification) to
support high throughput while maintaining cryptographic agility as post-quantum
cryptography (PQC) standards evolve. In FMI contexts, such services may be expected
to support two related but distinct security objectives: (i) authentication and integrity
(ensuring that only authorised participants can originate messages and that messages
are not altered) and (ii) non-repudiation (ensuring that participants cannot credibly
deny having authorised actions, including in third-party dispute resolution).

A related security assessment of the cryptography microservices used in the PoC
highlights that achieving these objectives, particularly non-repudiation, depends not
only on algorithm choice but also on end-to-end protocol and evidence design. The
learnings below illustrate considerations that may become important if adopting such
architectural approaches.

This appendix summarises learnings from an assessment of the cryptographic
microservices and message workflow used in the PoC.>

D.1 Learnings from workflow and encryption/signature design

What is signed matters for non-repudiation. In the illustrative PoC flow, messages
are verified before decryption, implying that the signed object may be ciphertext. For
use cases requiring non-repudiation and third-party verifiability, institutions may wish
to consider ensuring that signed content remains readable and unambiguous to an
independent verifier (eg by signing a canonical plaintext representation, or a well-
defined commitment that can be verified without disclosure of secret keys).

Evidence retention is a functional requirement. Authentication-only designs may
verify signatures and then discard them. Where non-repudiation is a requirement,
durable evidence is typically needed, including signed messages, signatures, signer
identities and certificates (often including the chain), retained in a protected archive
that supports future verification. The PoC does not specify a signature-evidence
archiving approach, highlighting a future design consideration, where evidence
preservation could be treated as part of the settlement/audit design (eg embedded
in ledger records or protected audit logs).

Time anchoring strengthens long-horizon assurance. Signer-generated
timestamps can be disputed in scenarios such as key compromise or certificate
revocation. Where evidentiary assurance must remain robust over long horizons,

>3 Many of these learnings could also relate to PFMI expectations on governance and operational risk

management (including cyber resilience), but are discussed here as design learnings rather than as
indicators of PFMI compliance.
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institutions may wish to consider third-party timestamping of message hashes to
strengthen verifiability without disclosing message content.

Non-repudiation depends on identity governance and certification policy. Non-
repudiation is influenced by the trust model for identity binding (eg the independence
and assurance of certification authority operations) and by certificate-policy details
relevant to dispute contexts. This reinforces the report’'s broader conclusion that
operational agility, governance, certification and oversight processes, must evolve in
parallel with cryptographic agility.

Signatures do not secure the protocol on their own. Digital signatures are
designed to be verifiable many times, therefore there is a risk signed messages can
still be replayed. In asynchronous, high-throughput microservice environments,
institutions may wish to consider protocol-level protections such as unique
transaction identifiers recorded in the ledger and, where sequencing matters,
sequence numbers or message-chaining mechanisms to detect replay, omission, or
re-ordering.

PQC readiness involves standards and migration readiness, not only algorithm
selection. As PQC standards mature, scaled implementations may need to consider
standards-compliant algorithms (eg ML-DSA) where interoperability and institutional
acceptance are required, and may explore hybrid approaches as a risk-management
option for long-lived evidence.

D.2 Standard controls that remain essential in microservice-based
settlement designs

Many security requirements are well established (eg secure service-to-service
transport, authorisation controls, robust secrets management, and hardened key
storage, potentially including HSM integration). In Project FuSSE type architectures,
these controls would particularly important because microservices and messaging
middleware increase the number of components, interfaces and operational
dependencies that must be secured consistently.

D.3 Key considerations

Taken together, these learnings reinforce a key message from the report, that scaling
and cryptographic agility introduce additional design choices and trade-offs that
must be managed deliberately.

Institutions may wish to treat evidence design (what is signed, what is archived, how
time is anchored and how identity is governed) and protocol integrity (replay and
sequencing protections) as core requirements alongside throughput, modularity and
PQC agility.

35



| Project FuSSE: Fully Scalable Settlement Engine

Contributors

Bank for International Settlements

Alonso Carrillo — Adviser

Baltazar Rodriguez - Adviser

Beju Shah — Head, Toronto Innovation Centre
Daniel Tavares de Castro — Adviser

Darko Micic — Cloud architect

Eleni Siskou — Legal Counsel

Henry Holden - Adviser

Holly Luo - Adviser

Jose Luis Lopes - Adviser

Juan Jose Lopez - Adviser

Karmela Holtgreve - Deputy Head, BIS Innovation Hub
Keerthi Nelaturu - Adviser

Miguel Diaz — Deputy Head, BIS Innovation Hub

Victor Rayado Perez — Adviser

Inter-American Development Bank

The Government of the Grand Duchy of Luxembourg (Financing)

Ana Maria Zarate Moreno — Senior Specialist, Financial Markets

Anderson Caputo Silva — Division Chief, Connectivity, Markets and Finance
Diego Herrera Falla — Principal Specialist, Financial Markets

Henrique Chitman — Senior Consultant, Financial Markets

Central Bank of Chile

Carolina Contreras Rodriguez - Software Engineer, Financial Technology Hub
Enrique Gonzalez Vasquez - Senior Project Manager, Financial Technology Hub
German Gonzélez Morris - Senior Project Architect, Financial Technology Hub
Jaime Pradenas Baeza — Head, Financial Technology Hub

Juan Ignacio Zucal - Senior Project Manager, Financial Technology Hub

Rafael Troncoso Aguirre - Senior Project Manager, Financial Technology Hub

36



Project FuSSE: Fully Scalable Settlement Engine

Bank of Canada
Dinesh Shah - Senior Payments Technical Advisor, Banking and Payments Department
Francisco Rivadeneyra - Senior Research Director, Banking and Payments Department

Umar Faruqui - Director, Payments Policy and Strategy, Banking and Payments
Department

37



	Contents
	1. Introduction
	2. Project FuSSE
	2.1 Overview
	2.2 Technical approach
	2.3 Monolithic vs microservices architectures
	2.4 Architecture and components
	2.5 Microservices design and workflow
	2.6 Cryptography
	2.7 Monitoring

	3. Results and discussion
	3.1 Test results
	3.2 Discussion
	3.2.1 Scalability and flexibility
	3.2.2 The interplay between architecture, security, scalability and flexibility
	3.2.3 Cryptographic agility and operational agility
	3.2.4 Broader technical considerations


	4. Conclusion
	References
	Appendix A: Underlying technologies
	A.1 Resource management
	A.2 Communication between microservices
	A.3 Persistence
	A.4 Cryptography
	A.5 Monitoring

	Appendix B: Testing and results
	B.1 Environment
	B.2 Results

	Appendix C: Applicability
	C.1 Applicability across FMI contexts
	C.2 Settlement model and deployment environment
	C.3 Scalability and resource considerations
	C.4 Implementation factors

	Appendix D: Security learnings from the cryptographic microservices
	D.1 Learnings from workflow and encryption/signature design
	D.2 Standard controls that remain essential in microservice-based settlement designs
	D.3 Key considerations

	Contributors

