5\ 4

AL S b

Project Rio

Fast-paced market monitoring

Technical white paper

November 2025
SCHWEIZERISCHE NATIONALBANK
; BANQUE NATIONALE SUISSE
<> B I S :-II']th()'JvatIOI’I BANCA NAZIONALE SVIZZERA

BANCA NAZIUNALA SVIZRA
SWISS NATIONAL BANK eh

Project Rio |

Publication date: November 2025

© Bank for International Settlements 2025. All rights reserved. Brief excerpts may be
reproduced or translated, provided the source is stated.

ISBN 978-92-9259-893-8 (online)

Contents

Executive summary
1 Introduction
2 Overview
2.1 The challenge of fast-paced analysis
2.2 Data streaming
2.3 Architecture
3. Data
3.1 Market data
3.2 Data aggregation and ingestion
4. Stream processing
4.1 Data processing
4.2 Processing engines
5. Data storage
5.1 Data storage overview
5.2 Short-term data storage
5.3 Long-term data storage
5.4 Data distribution
6. Visualisation
6.1 Interactive dashboard
6.2 Serving multiple users
7. Development
7.1 People
7.2 Design
7.3 Pilot
8. Conclusion

Glossary

Appendix A: Windowing techniques in stream processing

Appendix B: Overview of Rio measures and metrics

Project Rio |

co v U1 L1 A W

10

12
13
13
14
15
15
15
16
16
17
17
18
20
20
20
20
22
23
27
28

Project Rio |

Executive summary

Project Rio is a real-time market monitoring platform developed by the BIS Innovation Hub, in
collaboration with central bank partners, to keep pace with fast-moving electronic markets,
especially foreign exchange (FX), where conditions can shift in fractions of a second. Traditional
batch systems, which process information in hours or days, need to be complemented for
implementing monetary policy or managing reserves; Rio illustrates how streaming analytics can
provide immediate insights with latency often below two seconds, transforming high-frequency
venue data into actionable views for human decision-makers.

Built on modern, open source technology, Rio streams live order book and trade data from
the main FX venues where price discovery happens, harmonised through a market data aggregator
to simplify integration and ensure consistent timestamps. Data flow through a real-time backbone
into specialised processing engines that clean and reconstruct limit order books (LOBs) and
calculate liquidity, activity and risk measures in near real time. An interactive dashboard displays
these insights through a unified interface, combining livestreams with historical context so analysts
can see what is happening as it happens and whether it is typical for that time of day.

The architecture separates ingestion, processing, storage and visualisation to achieve
speed, resilience and flexibility. A high-performance store provides the dashboard with the latest
snapshots, while a time series database retains a complete history for analysis. A dedicated layer
handles more complex, multi-user queries without creating bottlenecks. This modular design
allows teams to update individual components independently, add new instruments or venues —
demonstrated by a successful extension to Brazilian real futures — and develop analytics without
large-scale system overhauls.

Rio's development followed an agile, user-centred process. A small, multidisciplinary team
created prototypes with seven central banks, refining measures and visual design based on
structured feedback. During a multi-month pilot involving nine central banks, users reported that
Rio integrated seamlessly into workflows and received high satisfaction ratings, confirming both
its value and approach. nevertheless, its components, methods and lessons have been reused
across Innovation Hub initiatives and shared within the central bank community.

Rio has show how central banks can monitor algorithmic, fragmented markets in real time
using widely accessible, modern technology. By combining streaming analytics, scalable storage
and intuitive visualisation within a robust, adaptable architecture, Rio offers a practical blueprint
for monitoring of fast-paced markets, bridging the gap between machine-speed markets and
human-speed decision-making.

Project Rio |

1 Introduction

Technology is transforming finance, enabling markets to trade at ever greater speed. Increasingly,
trading is machine-to-machine. Market monitoring is a cornerstone of effective monetary policy
implementation and foreign exchange (FX) reserve management. By applying technology
themselves, central banks have come a long way from the days when trading and market
monitoring relied on phone calls to market players.! Still rapid technological change drives central
banks to continuously look for new tools and approaches to monitor markets.?

Today, market monitoring systems typically process data in batches over hours or days.
While sufficient for some slower markets or longer-term analysis, this does not keep pace with fast
markets, such as FX, where developments can occur in fractions of a second. Speed is not the only
challenge for traditional systems. The new market structures generate vast amounts of data due to
continuous trading and smaller tick sizes. Additionally, markets involve more participants and are
increasingly fragmented, which presents challenges regarding data ingestion, storage and
processing.

The BIS Innovation Hub developed Rio to help. Rio uses stream processing, enabling
continuous data ingestion, processing and analysis as events occur. By processing data in real-time
streams, central banks can significantly reduce latency and gain immediate insights into markets.
Rio calculates a range of measures, both point-in-time and aggregated, to provide a flexible and
intuitive view of the market through its dashboard. Open source components combine to build a
scalable, real-time FX monitoring platform.

This paper tells the story of how Rio was built. It begins with an overview, followed by a
step-through of the design and development challenges and how they were overcome, and
concludes with some practical reflections. It was written for three audiences. First, for FX analysts
and traders with limited prior exposure to real-time analytics, the paper explains the platform’s
concepts, architecture and benefits in a clear and accessible manner. Second, for engineers and
software architects interested in building real-time FX monitoring platforms, the paper delves
deeper into platform architecture, technology and design decisions. Finally, for innovation or
technology practitioners working in central banks, the paper serves as a case study in how central
bank idiosyncratic requirements can be met with flexible, modern technology.

Terminology. This paper references different software, programming languages and other
technical details. For any word in italics, a description is included in the glossary.

L See M Bech, A llles, U Lewrick and A Schrimpf, “Hanging up the phone — electronic trading in fixed income
markets and its implications”, BIS Quarterly Review, March 2016.

2 See Markets Committee, “Monitoring of fast-paced electronic markets”, Markets Committee Papers, no 10,
September 2018.

https://www.bis.org/publ/mktc10.htm
https://www.bis.org/publ/mktc10.htm

Project Rio |

2 Overview

e Rio monitors fast markets like FX, where developments can occur in fractions of a second. The
FX market is vast and generates enormous amounts of data from thousands of market
participants, trading venues and data sources.

e Stream processing can reliably process vast amounts of data and accommodate the variety of
analytical tools necessary to monitor FX markets.

e Rio, a fast analytics tool developed by the BIS and central banks, can handle thousands of
updates every second and analyse markets in less than two seconds, before presenting the
results in an interactive dashboard.

2.1 The challenge of fast-paced analysis

Financial markets have undergone profound structural changes over the last two decades.
Technological advances have increased the share of electronic and automated trading. Trading
occurs at ever higher frequencies across multiple venues and involves new types of financial
institution. As these trends make market monitoring more challenging for central banks, there is a
demand for tools capable of handling live high-frequency data from multiple venues. But since
industry solutions tend to target algorithmic trading and market-making use cases, they are less
suited for the market monitoring needs of central banks.

When central banks monitor fast-paced markets, the most important objectives are to
better understand current market liquidity and functioning conditions and to identify key market
drivers (Markets Committee (2018)). This requires computing metrics such as trading activity,
market liquidity and market risk. These measures are well established, but there is a technical
challenge in computing them with large quantities of data and a user experience challenge in
making the metrics meaningful for real-time analysis by humans.

2.2 Data streaming

Stream processing is the technology for real-time analytics. Developed since the early 1990s, it
experienced significant advancements in the early 2000s with the introduction of systems like
Apache S$4 and Storm. These systems were supplemented by open source frameworks, such as
Kafka Streams and Apache Flink, which saw increasing adoption. By the early 2020s, these systems
and frameworks had matured and become more widely available thanks to cloud platforms.

Stream processing handles continuous data streams, processing high volumes of events
instantaneously as they arrive and with the capacity to scale. Stream processing is flexible and allows
for various real-time data operations (like filtering, aggregation and pattern detection) with
reliability and resilience.

3 See P Carbone, M Fragkoulis, V Kalavri and A Katsifodimos, Beyond analytics: the evolution of stream processing
systems, May 2020, dcatkth.github.io/papers/SIGMOD-streams.pdf.

Project Rio |

Unlike traditional batch processing, which works with static data, stream processing works
with a continuous flow of incoming data. Data points receive immediate attention by being split
into parallel tracks, allowing different processes to work side by side and further speeding up
processing. Sometimes data need to be processed sequentially, and sometimes they do not.*
Stream processing can handle either.

Data stream processing systems work like a digital assembly line, combining a “conveyor
belt” event-streaming platform that moves data with multiple processing engines that clean,
organise and analyse data. Processing engines operate independently, like chefs in a kitchen
preparing ingredients one after another. Multiple preparation stations can operate simultaneously,
and the semi-finished products of one chef can be stored and used by others to create more
complex combinations. In Rio, the engines quickly arrange data for use in real-time dashboards or
alerts, often completing the process in under a second (Graph 1).

This setup offers practical benefits. Since each engine is separate from the others, one part
can be upgraded without shutting down the whole system. If a problem occurs, the conveyor belt
keeps a data backup, making it easier to restart where things left off. Data streaming systems can
also handle structured or semi-structured data (eg spreadsheets) and non-structured “messy” data
(eg social media posts), allowing teams to adapt quickly to new types of information without
rebuilding everything from scratch.

Data streaming as a kitchen Graph 1

Ingredients
arrive

Prepared dishes
leave

Kitchen workstations

4 Parallel processing suits stateless, order-insensitive stages, eg mappings like “convert units from °F to °C", in
which events can be split with no coordination. Sequential processing is needed for stateful or order-
dependent stages, eg for computing a running account balance, where each result relies on the preceding
event, so items must flow one after another.

Project Rio |

To turn the endless conveyor of fresh ingredients into bite-sized, analysable portions, the
chefs periodically scoop everything that has rolled past in, say, the last 30 seconds or five minutes
into a mixing bowl — this is windowing. Each bowl captures a short slice of time, so recipes such as
running averages or top-N rankings can be completed before the next bowl arrives. Because several
bowls can be on the counter at once, different chefs can season, sauté or plate them in parallel,
keeping the line moving even as the volume swells. In other words, windowing carves the flow into
timed mini-batches. Parallel processing allows multiple stations to work on those mini-batches
simultaneously. A step-by-step illustration of these techniques appears in the Appendix.

A stream processing system typically consists of four components: data ingestion, stream
processing, data storage and visualisation (Graph 2).

Stylised stream processing system components Graph 2

Data ingestion)

Stream processing)

Data storage)

Visualisation)

1. Data ingestion: Data are ingested through message queues or distributed streaming
platforms. These platforms ensure reliable, fault-tolerant and scalable data ingestion from
various sources. Open source examples include Apache Kafka and RabbitMQ.

2. Stream processing: Stream processing engines handle and transform data. These engines offer
interfaces and frameworks for defining and executing real-time data processing. They can also
perform essential operations for working with incomplete data, such as filtering, aggregation
and windowing. Open source examples include Kafka Streams, Apache Flink or Apache Spark.

3. Data storage: Processed data are frequently stored for further analysis or reference, which is
especially important for long-term analysis. Open source examples include TimescaleDB, a
time series database, and Delta Lake, a data storage layer for data lakes.

4. Visualisation: Data and analysis must be visualised to enable users to gain insights from live
data streams, identify anomalies and make informed decisions based on current information.
Open source options include Grafana, which can be used to create interactive dashboards and
alerts.

Project Rio |

2.3 Architecture

Rio is a data streaming platform (Graph 3). It ingests and stores FX trade data from various FX
venues. The collected data are then transformed into a format suitable for analysis through multiple
stream processing engines. Other engines analyse the data before a dashboard visualises them.

Rio components Graph 3

FX trading venues)

Kafka streaming platform)

Configured databases)

Interactive dashboard)

Rio’s architecture combines the components of a stream processing system (Graph 4). FX
data are ingested into the Kafka streaming platform through a market data aggregator. Once inside
the platform, data are processed by engines that prepare and analyse them. Multiple databases
are configured to ensure that data are available quickly and reliably. Finally, data are visualised in
interactive dashboards.

Rio architecture Graph 4

Data storage

@Wiiﬁj@ i
é&é@@@@@@@

| ??@@@@@@?@@@@@ _’_

Raw data dashboard

R ITVIVI VI IIIwS

T
S
-
®
o
[
s
)
o
©
©
-
®
o
]
<
P
©
=

Processing engines

Kafka streaming platform

Project Rio |

Rio was deployed on Microsoft Azure, with separate resource groups for development and
“production” environments to ensure operational clarity. An Azure-native cost management
dashboard provided a comprehensive view of both real-time and historical expenditure, offering
extensive insight into the platform'’s resource utilisation. A core design principle was infrastructure
as code (1aC), adopted to guarantee that the platform’s complex, cloud-based infrastructure could
be defined, replicated and maintained consistently. Using laC improved reliability, reduced
configuration drift and enabled quick, version-controlled deployments. All components were
described using Terraform templates stored in an Azure DevOps Git repository and deployed
automatically through continuous integration and delivery pipelines.

The architecture focused on software-as-a-service (SaaS) components to lower operational
overhead and enhance scalability. Azure-native services like PostgreSQL and Redis were leveraged
alongside specialised solutions, including Databricks (for PySpark processing and exploratory
notebooks) and Confluent (for Apache Kafka streaming). Custom business logic for data ingestion,
stream processing and historical calculations was encapsulated in Azure Container Instances (ACl)
to ensure isolation, portability and efficient resource management. Secure operation relied on
Azure Key Vault, which managed all credential storage and rotation, while Azure Blob Storage acted
as the primary data repository.

Apache Airflow served as the main orchestration layer, scheduling daily historical
computations and dynamically adjusting the platform’s power state to match active market hours,
thereby optimising both performance and cost. During the pilot phase, each participating
institution was allocated a dedicated Grafana instance for visualisation. Access to these dashboards
was securely routed through an Azure Application Gateway, with traffic load balanced via Nginx to
ensure resilience and a consistent user experience.

Project Rio |

3. Data

e Rio analyses markets by connecting to the two large primary venues where price discovery
occurs.

e Hedge funds and proprietary trading firms use the same high-frequency data feeds.

e The use of a unified market data API simplified the integration of Brazilian real futures data
(Project Samba) with metrics and visualisations created for spot markets.

3.1 Market data

FX trading activity is increasingly fragmented.> Additionally, an increase in “internalisation”
(matching client trades) by larger banks has resulted in a decline in visible FX trading activity.
Nonetheless, primary venues for FX spot remain essential for price discovery and market liquidity,
especially in times of high volatility, when internal matching of client trades by dealers is less
possible. As liquidity on FX venues exhibits network effects, inter-dealer trading in a currency pair
tends to cluster around one primary venue.

Rio takes live high-frequency data from two primary market venues for FX spot: LSEG FX
Matching (formerly Reuters Matching) and Electronic Broking Services (EBS) Market (owned by
CME Group) (Graph 5). EBS and Refinitiv match clients’ FX trading interests via an anonymous
electronic limit order book (LOB) that operates almost 24/6 from early Monday morning, Sydney
time, to Friday afternoon closing, New York time. A LOB collects and matches orders. It consists of
a bid side representing the buying interest and an offer side representing the selling interest in a
currency pair (Box 1).

Rio data venues and ingestion Graph 5

Data
received via
internet

Kafka streaming platform

> See A Schrimpf and V Sushko, “FX trade execution: complex and highly fragmented”, BIS Quarterly Review,
December 2019.

10

Project Rio |

Using primary venues gives central banks a “foundational” view of market liquidity. Despite
the fragmentation of FX markets, these primary venues continue to be important for liquidity and
price discovery. When volatility spikes or market liquidity deteriorates elsewhere, trading volume
increases at Refinitiv and EBS.®

Box 1
Central limit order books

A limit order book (LOB), illustrated in Graph 1A, is a record of buy and sell orders for a market. For Rio and FX
markets, LOBs are electronic systems that aggregate and match buy and sell orders for currency pairs. Every
LOB has a bid (buy) side and an offer (sell) side, reflecting the buying and selling interests of its participants.
Traders use two order types. First, limit orders specify a trade direction (buy/sell), quantity and price, and the
remain active until they are cancelled, modified or matched. Second, market orders execute immediately at
the best available price for a specified amount. Order matching follows a strict price-time priority protocol:
superior-priced orders execute first, while orders at identical prices are prioritised by submission time. When
compatible orders meet, a trade occurs. Modern trading venues stream high-frequency incremental LOB
updates to maintain efficiency, providing cumulative changes to the order book’s state since the last update.
These real-time feeds enable precise reconstruction of the LOB's status, often including concurrent trade data
for comprehensive market visibility. To manage the high data volume, a truncation threshold is applied,
retaining only the most relevant price levels or changes while discarding minor updates. This ensures efficient
data processing without compromising analytical accuracy.

[llustration of the LOB Graph 1A
Quoted % . . .
amount Bid side Offer side
Sell
Buy market order S_el[
limit limit
order order
]
Trade J,

T I I I I

T T T Price

Best bid price Mid price Best offer price

Best bid offer

- spread

=

6 See A Chaboud, D Rime and V Sushko, “The foreign exchange market”, in R Girkaynak and J Wright (eds),
Research handbook on financial markets, Edward Elgar, May 2023, pp 253-75.

11

Project Rio

3.2 Data aggregation and ingestion

Rio connects to EBS and Refinitiv using a market data aggregator. The aggregator acts as a
middleman between the market venues and the data streaming platform. Hence, Rio only needs

to interface with the aggregator rather than with each venue. This allows for additional market

venues to be added easily (eg B3 FX futures; see Box 2).

Rio relies on the MarketFactory aggregation and connectivity service, owned by ION Group,
to getorder book updates. In addition to the single interface, MarketFactory also harmonises data
fields and provides consistent timestamping. The benefits of a market data aggregator were also
evident during the project’s development, as both EBS and Refinitiv upgraded their platforms and
APIs. This created some overhead, as the type of data Rio was ingesting was no longer available.
Using a data aggregator meant that no additional development was required

Box 2
Brazilian real futures: Project Samba

Samba was a project to extend Rio (Graph 2A), to include Brazilian FX futures in collaboration with the Central
Bank of Brazil. Rio connected to the B3 market data feed using MarketFactory and added features to integrate
Brazilian FX futures with Rio's existing instruments.”

FX futures trading differs from FX spot trading in LOBs. To monitor them effectively, three significant
adaptations were required. First, futures contract “rollovers” needed to be managed. Second, futures’ fixed daily
trading hours needed to be accommodated. Third, trading volumes needed to be converted to account for
different traded contract sizes (full-size (USD 50,000) and mini (USD 10,000) USDBRL futures contracts).

The successful implementation demonstrated Rio's versatility across all components of the monitoring
platform. Data about different instruments from new markets in other formats were ingested and aggregated
with additional logic. Existing measures were amended to create new and meaningful monitoring measures for
FX futures. Finally, charts and visualisations were incorporated into the customisable dashboard.

Samba extension of Rio components Graph 2A

Data ingestion)—(BS feed connection)

Stream processing)-(Futures rolling agent)

Data storage)—(New data attributes)

Visualisation)—(Futures specific charts)

1 B3 is a financial market infrastructure in Brazil that provides exchange and OTC trading services.

12

Project Rio |

4. Stream processing

e Rio processes data fast.

e |t uses Apache Kafka as a digital conveyor belt to push data through multiple processes that
clean, organise and analyse them.

e Rio lets central bank analysts trial and adjust different measures and metrics (see Appendix B).

4.1 Data processing

Rio constantly receives market data, which must be processed and analysed. This is not carried out
by a single programme or component but rather is distributed across multiple engines that
consume the data streaming through the Kafka platform (Graph 6). Each engine is distinct but can
rely on others. For example, engines clean and filter data before reconstructing the limit order book.
Other engines then use this reconstructed limit order book to compute liquidity, trading activity
and volatility metrics.

Rio stream processing engines Graph 6

Data storage

9990000009

PySpark

: ééé An%ytical data I
3»@@@@@%@%%%%2@ - I RIO

$oooedooedoee : IEE

Processing engines

Kafka streaming platform

The latency requirements for processing and analytical engines are different. Data
processing and reconstruction of the limit order book must be fast, efficient and reliable, as engines
consume them on the platform. On the other hand, analysis consumed by humans can afford to
take a little longer, but it also needs to be more flexible and accessible. Therefore, different
technologies were used to construct the engines.

13

Project Rio |

4.2 Processing engines

Rio uses three “Kafka-native” technologies to process data to construct engines. First, Kafka
Streams is used to develop engines that reconstruct the limit order book. Kafka Streams uses Scala
with highly customisable logic and a wide programming library. Second, KSQL is used to quickly
carry out basic data processes (eg filter, join, aggregate). KSQL uses SQL, which does not have the
flexibility of Kafka Streams but can carry out simple tasks quickly. Finally, Kafka Connect populates
the various data stores with the outputs of the different engines (outlined in the next section).

Rio uses PySpark to construct the engines that carry out different analyses. The “Py” in
PySpark stands for the programming language Python. Rio uses PySpark for engines that calculate
complex market measures and analyse historical data that update every minute rather than every
second. Changes and additions are easy thanks to central bank analysts’ existing familiarity with
Python.

14

Project Rio |

5. Data storage

¢ Rio's data storage is managed by Kafka Connect and distributed across different
components to make the platform fast and scalable.

e An in-memory data store (Redis) stores the latest information for the dashboard to
maximise speed. In contrast, a longer-term database (TimescaleDB) holds information in
the cloud.

e A “storage distribution framework” (Delta Lake) avoids creating a bottleneck when multiple
queries run simultaneously.

5.1 Data storage overview

Rio generates a large amount of data that must be stored. In 24 months, four terabytes were
produced. The Rio platform serves different functions and needs three data storage components
to run efficiently (Graph 7). Kafka Connect populates all of the components: (i) a core database
(TimescaleDB); (ii) a faster in-memory data store (Redis); and (iii) a framework that structures and
distributes data (Delta Lake) to manage simultaneous queries.

Rio data storage Graph 7

Kafka streaming platform

Long-term Delta Short-term
storage Lake storage

Kafka Connect Kafka Connect Kafka Connect

??@@@@@@??@@@@

5.2 Short-term data storage

Rio’s dashboard must be fast and responsive, using an in-memory data store (Redis). Within Redis,
a specialised RedisTimeSeries module caches the most frequently accessed data (like the top levels
of bids and offers in the order book) so that dashboard updates are always real-time. Additionally,
Redis has a channel data structure designed for real-time data streams, allowing the dashboard to
subscribe to specific channels to receive real-time messages from Kafka Connect continuously and
as they arrive. In Rio’s Redis, calculations that would otherwise need to be carried out by the

15

Project Rio |

dashboard (eg calculating moving averages or summing values over a sliding window) are also
performed. This makes the Rio dashboard fast and responsive.

5.3 Long-term data storage

Rio stores all ingested data and computed metrics to allow for long-term analysis. It uses
TimescaleDB, as it is optimised for quickly ingesting time series data and allows complex queries.
Additionally, as TimescaleDB uses PostgreSQL, it integrates with a wide range of SQL-based
analytics tools, both visual (eg Grafana) and computational (eg Python, R, Bl platforms).

5.4 Data distribution

Rio allows multiple users to run complex queries over years of granular data, without causing
bottlenecks in the underlying databases. To achieve this, Rio includes Delta Lake. Delta Lake
supplements the two databases by providing an alternative route for longer, more complex
historical queries and data downloads. Each query is processed efficiently, allowing Rio to be used
for both real-time analytics and more in-depth enquiries.

16

Project Rio |

6. Visualisation

e Rio provides an interactive dashboard for visualising data, which allows central banks to
understand immediately what is happening in markets.

e Creating a dashboard that could effectively display data in real time was a technical and
design challenge.

¢ Not only does the streaming platform have to connect reliably to the visualisation
software, the software must also be flexible enough to provide users with the necessary
information.

6.1 Interactive dashboard

Rio helps central banks analyse complex data. Meaningful analysis must be accessible and useful
to humans. Rio’s dashboard helps central bankers put real-time data and metrics into an
understandable context and see what happens in FX markets. An APl connects the streaming
platform to the dashboard (Graph 8).

Rio visualisation Graph 8

Kafka streaming platform Grafana — backend Grafana — frontend

Long-term
storage

b._.

FastAPI

Short-term
storage

Interactive dashboard

17

Project Rio |

The Rio dashboard was built using Grafana.” Grafana is an open source software with
two significant advantages for visualising data:

e It has a two-tier architecture, with a front-end for querying and visualising data in dashboards
(based on TypeScript) and a back-end that sources the data and prepares them for
visualisations (based on Go).

e Both the front- and back-end benefit from a large open source community that has developed
libraries of “plug-ins” — visualisations and applications that are easy to add and change.

Although the development team initially used Grafana as a stopgap measure until a more
sophisticated dashboard could be developed, the software proved flexible enough to meet the
project’s needs. This flexibility enabled fast prototyping, allowing the team to try out different ideas
with central banks and quickly respond to their feedback.

Rio used many of the standard Grafana plug-ins and carried out some additional
development. The front-end had a plug-in for each chart, gauge and layout. Apache ECharts, a
visualisation library, was also integrated to provide even more dynamic and interactive graph
options. On the back-end, Rio enhanced a community-developed WebSocket plug-in. The Rio
WebSocket is a continuous, two-way connection between the dashboard and the Rio API. This
ensures that the dashboard display updates as soon as new data are received (compared with a
“normal request”, in which a request for information is sent periodically or in response to a prompt).

6.2 Serving multiple users

Rio’s dashboard is interactive and therefore needs to be able to access the underlying data easily
and quickly. During Rio’s development, Grafana directly queried Redis and TimescaleDB. This had
to be changed for three reasons. First, it created a bottleneck that slowed the dashboard as Grafana
searched the two databases for information. Second, it made maintenance and additions to the
streaming platform more onerous, as corresponding changes were also required for Grafana.
Finally, it did not allow easy access to Rio’s processed data from other potential applications.

Rio uses FastAPI to solve these challenges. Through this setup, a unified API provides the
dashboard with access to data stored in Redis and TimescaleDB. The API streamlines access to the
stored time series and real-time data, integrating historical and real-time data so the dashboard
can provide analysis with context (Graph 9).

7 Initial Rio prototypes trialled both Tableau and PowerBI, but neither worked as well as Grafana for real-time

data, and licensing requirements also introduced overhead that could be avoided by opting for open source
software.

18

Project Rio

The Rio dashboard

Il RIO

Major Markets
EUR/CHF -0.11%
1.0211° 1.0213°
bid offer

o s %
EUR/USD -0.06%
1.1047° 1.1047°
bid offer

o = 4
USD/JPY 0.09%
122.5450° 122.5550°
bid offer

(e} = %
EUR/GBP 0.08%
08417° 0.8418°
bid offer

o = 4
EUR/SEK 0.03%
10.3400° 10.3475°
bid offer

(6} = L4
NZD/USD -0.06%
0.6940° 0.6942°
bid offer

o = 4

v

EUR/JPY 0.04%
1353750° 135.3950°
bid offer

(¢} = 4
USD/CHF -0.06%
0.9242° 0.9244°
bid offer

(8} = 4
AUD/USD -0.01%
0.7516° 0.7517°
bid offer

(8] = 4
EUR/NOK -0.10%
9.6655° 9.6710°
bid offer

() = 4
GBP/USD -0.14%
1.3122° 1.3125°
bid offer

(6} = L4
USD/CAD 0.10%
1.2499° 1.2500°
bid offer

[4) = 4

Overview Detail view

Major Markets Focus

Liquidity and trading activity @

relative to historical 0.75 quantile
10

0 :j;o

-10)

< °
E $o o
a0 L ©
°

€ °

-30

°
-40
-50
-100 50

50 100 150 2
total trade count

® AUD/USD @ EUR/CHF @ EUR/GBP @ EUR/JPY @ EUR/NOK @ EUR/SEK @ EUR/USD
@ GBP/USD @ NZD/USD @ USD/CAD @ USD/CHF @ USD/JPY

Liquidity ®

High

Trading activity @

P

-
Low

Volatility @
i °

(==
Low

0.96 bp

1m spread

1.29bp

Sm spread

®»)
BBO Spread Low

32

Net trade count

298

Total trade count

. B
Total trade count High

3bp

RV

11bp

Range

¢)
RV High

@ Last45minutes v Q Q v (=]

Time Period (CEST) @
01 Apr 2022 13:42:47 - 01 Apr 2022 14:27:47

Evolution @

1m bid-offer spread

37.92

13:45 13:50 1358 14:00 1405 1410 1415 1420 1425

@ AUD/USD @ EUR/CHF @ EUR/GBP @ EUR/JPY @ EUR/NOK @ EUR/SEK O EUR/USD @ GBP/USD @ NZD/USD @ USD/CAD
@ USD/CHF @ USD/IPY

EUR/USD Focus

Limit order book ® @ o8 @ Trades

11040
11038

1345 1350 1355 14:00 1405 1410 1415 1420 1425

@ mid-price @ buy @ sell @ bid @ offer

19

Project Rio |

7. Development

Rio was built in two and a half years by a small team of developers. Initially, the project began as a
quick prototype, streaming FX data and calculating simple metrics. However, as the prototype was
shared with central bank experts, demand for additional fidelity and functionality grew. The early
prototype grew into a minimum viable product in successive phases, successfully trialled in a pilot
with central banks worldwide.

Rio’s development addressed three interconnected and overlapping challenges: first,
overcoming the technical difficulties and uncertainties associated with building a novel system;
second, ensuring that Rio was designed to meet and serve central banks’ needs; and finally,
ensuring that Rio was viable and attractive as a coherent product for central banks.

7.1 People

The Rio team used the Scrum agile methodology to organise the project. An agile approach was
essential because the project was complex and innovative, with multiple challenges. Scrum also
helped establish a clear structure for a team that began during the Covid-19 lockdowns and did
not meet in person for several months during the development phase.

The Rio team evolved throughout the project as development requirements changed.
Initially, leadership was shared between an economist and a software architect seconded from the
Swiss National Bank (SNB). They were supported by two engineers hired from an external firm and
another economist. The development of the visualisation dashboard necessitated new skills. At this
stage, the economists returned to the SNB, and the software architect led a team of external
engineers, consultants, and visualisation developers from a digital agency.

7.2 Design

Rio’s dashboard is the product of collaboration between seven central banks and the BIS. In a
dashboard working group, central bank experts with market monitoring responsibilities met to
describe their requirements. Then, prototypes were demonstrated through design thinking
exercises and interviews with the project team, and feedback was collected in iterative cycles.

This user-centric development approach benefited Rio. The team received clear feedback
on what they should prioritise, and the central bankers saw their feedback quickly incorporated
into a tool built for their needs. Given the novelty of this type of development, a digital agency was
hired to assist the team in following a structured process, conducting interviews with central banks
and undertaking some of the front-end development work.

7.3 Pilot

Following Rio’s development, a pilot exercise was conducted for central banks to better understand
its value. The pilot had two parts. First, it evaluated user feedback on the product (ie central bank

20

Project Rio |

experts used Rio daily). Second, it gathered information on how and where central banks
encountered challenges in market monitoring that Rio could address (ie senior management was
interviewed to understand broader monitoring needs).

The user pilot ran over several months with nine central banks. Feedback and ratings
were collected on access to data, historical analysis, real-time analytics, visualisation and
customisation. The results were positive, with an average satisfaction rating of 82%. The feedback
was consistent with the design and development — central banks said that using Rio was intuitive,
valuable and fitted “seamlessly” into their existing workflows. In short, the pilot established Rio as
a useful and complementary tool for central banks’ daily operations.

The senior management interviews added valuable business context. They highlighted the

high costs of market data, long potential delivery times for technology upgrades and the
attractiveness of a subscription service available through a browser.

21

Project Rio |

8. Conclusion

Rio was one of the first projects at the BIS Innovation Hub. Breaking new ground, it helped many
subsequent projects understand the latest technologies available to central banks. Rio was the first
project at the Innovation Hub to be developed using an agile methodology and employing design
thinking. It was also the first project to widely utilise open source technologies and involve multiple
central banks at a working level. This facilitated valuable technology and know-how transfer to
central banks. It was the first Innovation Hub project showcased to central bank governors. Finally,
it was the first project to run a successful pilot.

Central bank market monitoring remains a challenge. Electronic markets are not getting
slower and continue to grow.® Monitoring algorithms that can trade millions in the blink of an eye
requires novel technological approaches. Rio succeeded by taking an experimental and
incremental approach. By combining multiple ubiquitous software components outside central
banks, the development team demonstrated that novel challenges can be addressed with
innovative technology. Its components have been reused and shared with central banks, and the
central bankers involved in the project discovered new ways of working collaboratively. Specifically,
at the SNB, Rio catalysed stream-processing projects that underpin the most critical operations of
the central bank. Rio showed that central banks can keep pace with the right approach and focus.

8 See Bank for International Settlements, BIS Triennial Central Bank Survey, September 2025.

22

https://www.bis.org/statistics/rpfx25_fx.htm

Project Rio |

Glossary

Apache ECharts: An open source JavaScript visualisation library that makes it possible to create
interactive and customisable charts and graphs for web applications. It supports various chart
types, from basic line, bar and pie charts to more complex visualisations like heat maps and Sankey
diagrams.

Apache Flink: An open source, unified stream processing and batch processing framework that
handles bounded and unbounded data sets.

Apache Kafka: A distributed event streaming platform for building real-time data pipelines and
streaming applications. It is capable of handling trillions of events a day.

Apache S4: An early Yahoo!-built platform for continuous, real-time data processing. It was
officially retired in 2017, but it helped shape later streaming frameworks.

Apache Spark: An open source unified analytics engine for large-scale data processing, with
built-in modules for streaming, SQL, machine learning and graph processing.

Apache Storm: Originally created by Twitter, Apache Storm is a distributed, fault-tolerant system
for real-time processing of unbounded data streams.

Azure Application Gateway: A web traffic load balancer and security service from Microsoft Azure
that manages and optimises the delivery of web applications, including support for SSL termination
and routing rules.

Azure Blob Storage: A Microsoft Azure service for storing large amounts of unstructured data,
such as text or binary files, with scalable access and redundancy options.

Azure Container Instances (ACI): A Microsoft Azure service that allows users to run Docker
containers directly in the cloud without managing virtual machines or container orchestration
systems.

Azure DevOps: A suite of development tools and services from Microsoft that supports source
control, continuous integration and delivery (CI/CD), and project management for collaborative

software development.

Azure Key Vault: A cloud service that securely stores and manages cryptographic keys, passwords,
and other secrets used by applications and services.

Batch processing: A method of processing data in which transactions are collected over a period
and processed together in a single batch.

Business Intelligence (Bl) platforms: Software systems or technology-driven solutions that
organisations use to collect, integrate, analyse, visualise and present business data.

23

Project Rio |

Confluent: A data streaming platform based on Apache Kafka that provides enterprise-grade tools
for building, managing, and scaling real-time data pipelines.

Databricks: A cloud-based analytics and machine learning platform built on Apache Spark that
enables collaborative data engineering, data science, and real-time analytics.

Data lake: A centralised repository that stores all structured and unstructured data at any scale.

Delta Lake: An open source storage layer that brings transactions (processed atomically,
consistently, in isolation and with durability (“ACID")) to Apache Spark and big data workloads.

Design thinking: A human-centred problem-solving approach that cycles through empathise,
define, ideate, prototype and test stages to create solutions that balance user desirability, technical
feasibility and business viability.

FastAPI: A modern, fast (high-performance) web framework for building APIs with Python based
on standard Python type hints.

Grafana: An open source platform for monitoring and observability, particularly useful for
visualising time series data.

Go (also known as Golang): An open source, general-purpose programming language whose
features include memory safety and support for concurrent programming, making it well suited for
cloud and network services, microservices and other scalable applications.

Hopping window: A windowing technique in stream processing in which windows overlap by a
specified amount.

Infrastructure as code (laC): A method of managing and provisioning infrastructure through
machine-readable definition files rather than manual configuration, ensuring consistency,

repeatability, and version control.

In-memory data store: A database management system that primarily relies on main memory for
computer data storage in order to provide faster query responses than disk-based storage.

Kafka Connect: A tool for scalably and reliably streaming data between Apache Kafka and other
systems.

Kafka Streams: A client library for building applications and microservices in which the input and
output data are stored in Kafka clusters.

KSQL: An open source, Apache Kafka-native SQL engine for stream processing on Kafka topics
using SQL-like queries.

Latency: The time delay between the cause and effect of some physical change in the system being
observed.

24

Project Rio |

Microsoft Azure: A cloud computing platform and service created by Microsoft, offering a wide
range of infrastructure, platform, and software services through a global network of data centres.

Nginx: An open-source web server and reverse proxy used for load balancing, caching, and
managing network traffic efficiently across distributed systems.

Order book: An electronic list of buy and sell orders for a specific security or financial instrument,
organised by price level.

PostgreSQL: An advanced, open-source database management system, often shortened to
"Postgres." It is renowned for its high level of SQL standards compliance, extensibility, reliability,
and robust feature set that rivals many proprietary database systems.

PowerBI: Microsoft's business-intelligence suite for modeling, analyzing, and sharing interactive
reports. It is tightly integrated with Excel, Azure, and Microsoft 365.

PySpark: The Python API for Apache Spark, allowing Python developers to write Spark applications
using Python APlIs.

Python: A high-level, interpreted, object-oriented programming language known for its clear
syntax and readability. It is used for web development, data analysis, artificial intelligence, scientific
computing and more.

R: An open source programming language and software environment primarily designed for
statistical computing, data analysis and graphical representation.

RabbitMQ: An open source message broker that facilitates communication between applications
by sending, receiving and storing messages in a distributed system. It supports multiple messaging
protocols, such as AMQP (Advanced Message Queuing Protocol), and is widely used for decoupling
services, load balancing and enabling asynchronous processing in microservice architectures.

Redis: An open source, in-memory data structure store used as a database, cache and message
broker.

RedisTimeSeries: A Redis module that adds a dedicated time-series data structure to Redis,
optimised for high-volume ingestion and real-time querying of time-stamped data. It enables
efficient storage and analysis of metrics that change over time.

Scala (Scalable Language): A high-level, general-purpose programming language for web
development, data processing and distributed computing. It runs using the Java Virtual Machine
(JVM) runtime and allows access to Java libraries.

Scrum: An agile framework that organises work into short sprints (one to four weeks) with defined

roles (product owner, scrum master, developers) and regular events (planning, daily stand-up,
review, retrospective) to deliver incremental value and continuously improve.

25

Project Rio |

Software-as-a-service (SaaS): A software delivery model in which applications are hosted and
maintained by a provider and accessed over the internet, reducing the need for local installation
or infrastructure management.

Stream processing: The continuous processing of real-time data streams to derive insights or
perform actions instantaneously as data arrive.

SQL (Structured Query Language): A standardised language used to manage data in relational
database management systems (RDBMS). It performs various operations on the data, including
querying, manipulating, defining and controlling them.

Tableau: A data-visualization and analytics platform (by Salesforce) for exploring data and building
interactive dashboards. Known for intuitive drag-and-drop visuals, broad data-source connectivity,
and strong support for exploratory analysis and storytelling

Terraform: An open source infrastructure as code (laC) tool that enables users to define and
deploy cloud infrastructure using declarative configuration files across multiple service providers.

Tick size: In the foreign exchange market, it is the smallest possible price movement between two
currency pairs, representing the minimum increment by which an exchange rate can change.

TimescaleDB: An open source relational database optimised for fast ingest and complex queries
on time series data.

TypeScript: A statically typed superset of JavaScript (JS), the ubiquitous and dynamic language of
the web that runs in browsers and on servers via Node.js. TypeScript adds optional types, interfaces,
and generics with rich tooling, compiling to plain JS for broad compatibility and more reliable
large-scale development.

Tumbling window: A windowing technique in stream processing in which each window is fixed in
size and does not overlap with other windows.

Unified API: An application programming interface that provides a single access point to multiple
underlying services or systems, simplifying integration and interaction.

WebSocket: A computer communications protocol, providing full-duplex (two-way)
communication channels.

26

Project Rio |

Appendix A: Windowing techniques in stream processing

Following the ingestion and transformation of real-time data, a crucial step involves applying
windowing techniques to process the data. Windowing is a key method in stream processing that
involves dividing a continuous data stream into discrete segments, or “windows”, for processing.
This approach is vital for managing infinite data streams and delivering timely analytics. Rio
specifically utilises tumbling and hopping windows (Graph A1).

Comparison of the tumbling and the hopping window Graph A1
Tumbling window Hopping window
L J ® @ L ® ® L ® ® L @ L L 4 L J

¢ Tumbling windows: These are fixed-size, non-overlapping intervals used to segment the
data stream. Each window is processed independently, making tumbling windows suitable
for generating consistent, regular summaries of data such as hourly trading volume or daily
price volatility.

e Hopping windows: These windows overlap and are defined by two parameters: the
window size and the hop size. Hopping windows enable more frequent updates than do
tumbling windows, offering a more detailed view of the data. They are especially useful for
applications in which it is important to smooth out the effects of anomalies in individual
windows, such as in the calculation of moving averages or the detection of short-term
trends.

27

Project Rio

Appendix B: Overview of Rio measures and metrics

Graph B1 illustrates how currency pairs relate to liquidity and trading activity. The chosen time
window is divided into three sub-intervals. For each currency pair, the three dots show the
evolution of liquidity (Tm bid-offer spread) and trading activity (total trade count). The darkest
coloured dot (lightest) indicates the most (least) recent sub-interval. The position of the dots
demonstrates the percentage deviation of total trade count and spreads from the four-week
historical 0.75 quantile, with time-of-day effects considered.

Liquidity and trading activity Graph B1

Liquidity and trading activity @
redative L historical 0.75 guantile

im spread

total trade count
& EUR/IPY EUR/USD @ USD/CHE USDIPY AUD/USD @ EURSGEP @ EUR/NOK @ EURSSEK

Graph B2 shows the Rio monitoring component that alternatively makes it possible to track the
evolution of price (returns), Tm bid-offer spread (liquidity), realised volatility and cumulated net
trade counts (trading activity as cumulated number of buy minus sell trades) for selected time
window and currency pairs.

Evolution Graph B2

Fvolution @ o=+

28

Project Rio

For a selected time window, Graph B3 displays the gauge showing how liquidity relates to the four-
week historical distribution (with time-of-day effects considered). The figures represent the best
bid-offer spread for Tm and volume-weighted bid-offer spreads for 5m (in base currency),
expressed in basis points.

Liquidity Graph B3

Liquidity & 1.59 bp | 2.46 bp
©]

For the selected time window, Graph B4 shows the gauge indicating how trading activity compares
with the four-week historical distribution (accounting for time-of-day effects). The figures are net
trade count (ie number of buy minus sell trades) and total trade count (ie sum of buy and sell
trades) for the selected time window.

Trading activity Graph B4

Trading activity © 3 47

=
.

For the selected time window, Graph B5 shows the gauge indicating how volatility relates to the
four-week historical distribution (taking into account time-of-day effects). The numbers display
realised volatility (RV) and traded price range in basis points for the chosen time interval.

Volatility Graph B5

Volatility @ 4bp |18 bp
v .

29

Project Rio

Graph B6 shows the mid-price inclusive trades and/or limit order book (LOB). For the LOB chart,
darker (lighter) colour shading indicates larger (smaller) quoted volume at a price level.

Limit order book Graph B6

Limit order book @ @ Los Trades

1418 1420
@ midprice @ bid @ offer

Graph B7 displays the LOB bid and offer side depth (ie the cumulative quoted volumes in millions
of the base currency). Reference lines indicate quantiles derived from the four-week historical
distribution, with time-of-day effects considered.

Bid and offer depth Graph B7

Bid and offer depth @

Q50 reference R

30

Project Rio

Graph B8 shows the volume weighted bid-offer spreads for 1m (ie best bid-offer spread) and 5m
(in base currency) in basis points. Reference lines show quantiles from the four-week historical
distribution (time-of-day effects taken into account).

Bid-offer spread Graph B8

Bid-offer spread ©

050 reference R

350

500

250

2m
-8

150

100

spread Tm @ spread 5m @ spresd 1m reference @ spread Sm reference

Graph B9 displays the total trade count as the sum of buy and sell trades. The reference line
indicates quantiles derived from the four-week historical distribution, accounting for time-of-day
effects.

Total number of trades Graph B9

Total number of trades @

Q50 reference e

rumber
Y

®buy @ el @ reference

31

Project Rio |

Graph B10 shows the number of buy and sell trades on the respective trade price levels aggregated
for the selected time window.

Trades by price Graph B10

Trades by price @

price

lw‘ \l I| }\\III\II

niumber

@ buy e

Graph B11 shows the bars for net trade counts as the number of buy minus sell trades. Shaded
areas indicate the cumulated net trade counts since the start of the selected time window.

Net number of trades Graph B11

Net number of trades @

number

@ net trade count @ buy or sel

32

Project Rio

Graph B12 shows the CLS FX spot volumes in USD equivalent with 1Tm bid-offer spreads in basis
points (right-hand scale, calculated based on FX trading venue data).

CLS volume and bid-offer spread Graph B12

CLS volume and bid-offer spread @ QS reference -

e 210

180

o
T -

™ | .

1a:18 120 1422 14:24 14:26 1428 1430 14:32 14:34 14:36 14:38 4 14:42 1446

@ volume @ volume reference @ spread (rhs)

Graph B13 shows the realised volatility and bi-power variation in basis points. Reference lines show
quantiles from the four-week historical distribution (time-of-day effects taken into account).

Realised and bi-power volatility Graph B13
Realized and bi-power volatility @ Qs0reference
80
60
1420 1422 1424 1426 14:28 1430 132 14:34 1436 1442
realized volatility @ bi-power varistion @ RV reference @ BV reference

33

Project Rio |

Graph B14 shows the candlestick chart shows price evolution over the selected time interval. A
green (red) candlestick indicates a price increase (decrease).

Candlestick price Graph B14

Candlestick price @

:.:"__..
o l--'L-"'-_

o+
[S P

34

