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Abstract

When risk managers develop firm-wide measures of risk, the efforts can impose substantial

costs both of developing information systems and, on an ongoing basis, of computation and

aggregation. These costs can lead risk managers to base risk measures on a set of risk factors

(including asset prices) of lower dimension than the dimension of underlying sources of risk. Such

truncation of the set of risk factors, however, could cause risk measures to systematically

underestimate a portfolio's risk. This paper presents examples where risk aversion leads a firm to

hedge risk factors that have high explanatory power for many asset returns; however, the firm may

remain exposed to other, less-important risk factors if their market price of risk is sufficiently high.

Statistical techniques for identifying sources of risk that choose risk factors based on the variability of

asset prices without taking account of the market price of risk could systematically underestimate

portfolio risks.

                                                  
* We thank Henri Pages for helpful comments and suggestions. The views expressed in this paper are the authors' and

do not necessarily reflect positions of the Federal Reserve Bank of New York, the Federal Reserve System, the
Euro-Currency Standing Committee, or the Bank for International Settlements.
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Residual risk factors, portfolio composition
and risk measurement

1. Introduction

Two questions regarding measures of portfolio risk that are not equivalent are:

− What price shocks would lead to large losses?

− What losses would be caused by the class of price shocks that have occurred with

sufficient regularity in historical data to be identified by statistical techniques?

The price shocks identified by the first question may be different from the price shocks

used in the second question. At least two reasons for the difference can be mentioned.

− Selection bias: dealers' trading and hedging strategies may be conditioned on the same

statistical regularities identified by the designers of stress tests. The dependence of

observed statistical regularities on the sample period could cause stress tests to fail to

identify the shock in the first question. See, Mahoney, 1996.1

− Portfolio composition and aggregation of shocks to risk factors.

This note addresses the last point, how portfolio composition determines the aggregation

of shocks to the risk factors that drive asset price volatility. Computation burden and the

information-system costs of firm-wide aggregation of risk can cause risk managers to construct risk

measures that parsimoniously reduce the number of risk factors to a smaller dimension than the

dimension of asset prices. Such truncation of the set of risk factors, however, could cause risk

measures to systematically underestimate a portfolio's risk. This underestimate can occur even when

the exercises uses the full dimensionality of the portfolio's sensitivity to asset prices (i.e. the

sensitivity to every asset price is accounted for).

If a firm's risk aversion causes it to hedge risk factors that have high explanatory power in the

variability of asset returns, smaller risk factors that appear to be less consequential may remain

unhedged if those factors have a market price of risk. Statistical techniques that summarise the

variability of asset prices without taking into account the sizes of market prices of risk could then

systematically underestimate portfolio risks if the techniques ignore some factors with a market price

of risk. While this claim should not be surprising, its implications in the measurement of portfolio risk

should not be overlooked by designers of risk measures who may need to reduce the dimensionality of

the measurement exercise due to constraints of data availability or computation burden. The following

two examples illustrate this claim.

                                                  
1 "Empirical-based versus model-based approaches to value-at-risk: An examination of foreign exchange and global

equity portfolios", James Mahoney; in Risk measurement and systemic risk: Proceedings of a joint central bank
research conference. Board of Governors of the Federal Reserve System (1996).
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2. An example with financing constraints

Our first example considers portfolio risks in a setting where the portfolio manager faces

financing constraints.

Asset prices

Consider a portfolio that contains the four assets, whose returns are described by four

independent random risk factors, fj , j=1,..,4,

c1 = r* + (λ1 + f1)

c2 = r* + a1(λ1 + f1) + (λ2 + f2)

y1 = r* + (λ1 + f1) + a2(λ2 + f2) + (λ3 + f3)

y2 = r* + b1 (λ1 +f1) + (λ2 + f2) + a3(λ3 +f3) + (λ4 +f4)

where the remaining terms are constants. The constant terms λj are the market price of risk of the risk

factors, fj, and r* is the riskless interest rate. Each asset return is influenced by its "own" risk factor,

and some are also influenced by other assets' risk factors as well. The market price of risk of each risk

factor is assumed to be determined by its volatility and correlation with the return of a market

portfolio consisting of equal amounts of all four assets.

Assume that the risk factors f1 and f2 explain more than 90% of the variability of each of

the four asset prices, as is the case with the following parameter values: a1 = 0.5, a2 = 0.25, a3 = 0.25,

b1 = 0.75, σ1 = 0.01, σ2 = 0.01, σ3 = 0.0033, and σ4 = 0.004, where σi is the standard deviation of

the risk factor fi , E(fi ) = 0, and Cov(fi,fj) = 0.

With the assumed parameter values, the two risk factors f1 and f2 would explain more

than 90% of the variability of y1 and more than 90% of the variability of y2, while explaining 100%

of the variability of c1 and c2 (see Table 1). In other words, the variability of all asset returns can be

very well described by only two risk factors.2 With this excellent explanatory power of only two risk

factors, an analyst might be tempted to dismiss the remaining risk factors as unimportant residual

terms. Can such residual risks be ignored in considering specific risk?

Table 1

Explanatory power of risk factors in asset returns

c1 c2 y1 y2

Variance of asset returns ......................... 0.01 0.0112 0.0108 0.0131

Proportion of variance explained by: f1
and f2 ...................................................... 1 1 0.91 0.90

Proportion of variance explained by: f1
and f3 ....................................................... 1 0.2 0.95 0.33

Proportion of variance explained by: f1,
f2, and f3 .................................................. 1 1 1 0.91

                                                  
2 The correlations between the asset prices are, corr(c1, y1) = 0.93, corr(c1, y2) = 0.76, corr(c1, c2) = 0.45 and

corr(c2, y2) = 0.94.
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Portfolio allocation

The risk factors f1 and f2 can be interpreted as market risk factors, since they have a large

influence on all asset prices. The other risk factors represent spread risk. Consider the portfolio return

described by,

y   =   [y1 A + y2(1-A) - c1 B - c2(1-B)] N, (1)

where A and B are choice variables that determine portfolio composition, 0≤A≤1 and 0≤B≤1, and N is

the portfolio size. This profit function has the following interpretations.

Interpretation 1: A bank can invest and fund its positions in different markets (countries).

yj is the investment return in market j, and cj is the funding cost in market j, for j = 1,2.

In contrast to the model in section 3, here the bank does not have access to funding at the

risk-free rate. Hence, its portfolio must earn a return above the risk-free rate with the

corresponding risk.

Interpretation 2: A bank takes long positions in two assets with returns yj, j=1,2, and

short positions in two assets with returns cj, j=1,2.

Variance of portfolio return

Depending on portfolio composition, the risk factors that appear to have high explanatory

power in asset returns can have much smaller explanatory power in portfolio returns. Table 2

compares portfolio risk and estimates of that risk based on an incomplete model (with the portfolio

size variable N=100). Panel A shows results in terms of portfolio variance for contrast with Table 1,

while Panel B shows results in terms of portfolio standard deviation. The portfolio weights in Table 2,

are optimal portfolios corresponding to different values of the risk aversion parameter (ρ) in the utility

function,

U = E(y(A, B, f1, f2, f3, f4))  -  
ρ
2

V(y(A, B, f1, f2, f3, f4)) (2)

where E and V denote expected value and variance, and y is portfolio returns as defined in (1), where

portfolio size is held constant.

While the first two risk factors explain more than 90% of the variability of all asset

prices, their ability to describe the risks in portfolio returns can be much smaller. In the case of the

portfolio chosen by a moderately risk averse firm, the first two risk factors explain only 31% of the

variance of portfolio returns (56% in terms of portfolio standard deviation). Moreover, adding the

third risk factor would increase the explanatory power to only 47% of the variance of portfolio returns

(69% in terms of portfolio standard deviation).
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Table 2

Explanatory power of risk factors in portfolio returns

Panel A: Variance of portfolio returns

Risk
neutrality:

A=0 B=1

Slightly risk
averse:

A=0 B=0.4

Moderate risk
aversion:

A=0.3 B=0.4

Extreme risk
aversion:

A=0.7 B=0.6

Portfolio variance .................................... 1.23 0.33 0.15 0.10

Proportion of variance explained by: f1
and f2 ......................................................

0.86 0.49 0.31 0.21

Proportion of variance explained by: f1,
f2, and f3 .................................................

0.87 0.51 0.47 0.85

Panel B: Standard deviation of portfolio returns

Risk
neutrality:

A=0 B=1

Slightly risk
averse:

A=0 B=0.4

Moderate risk
aversion:

A=0.3 B=0.4

Extreme risk
aversion:

A=0.7 B=0.6

Portfolio Standard Deviation, σ(y) ...........
1.11 0.57 0.39 0.31

Proportion of σ(y) explained by: f1
and f2 ......................................................

0.93 0.70 0.56 0.46

Proportion of σ(y) explained by: f1, f2,

and f3 ......................................................

0.93 0.72 0.69 0.92

Another feature of these results is that the amount of risk left unaccounted for does not

always decline as portfolio risk decreases. Table 3 shows the amount of portfolio risk (as measured by

portfolio standard deviation), as well as modelled risk (using f1 and f2 only) and the amount of risk

left unmeasured. The last row of Table 3 shows that the amount of risk left unaccounted for need not

decrease as portfolio becomes risk becomes smaller.

Table 3

The effect of neglected risk factors: portfolio risk left unmeasured

Risk
neutrality:

A=0 B=1

Slightly risk
averse:

A=0 B=0.4

Moderate risk
aversion:

A=0.3 B=0.4

Extreme risk
aversion:

A=0.7 B=0.6

Portfolio Standard Deviation, σ(y) ...........
1.11 0.57 0.39 0.31

Modelled Standard Deviation using f1
and f2 ......................................................

1.03 0.40 0.22 0.14

Risk left unmeasured ...............................
0.08 0.17 0.17 0.17



138

Stress test results

As with the variance of portfolio returns, risk factors that have high explanatory power in

asset prices can have much smaller explanatory power in stress tests of portfolio returns. The results

in Table 4 apply to the moderately risk averse portfolio (A=0.3, B=0.4).

Table 4

The effect of neglected risk factors: stress tests of portfolio returns

Actual shock in risk factors Stress test specification Proportion of actual change
predicted by the stress test

fi  =  σi,  i = 1 to 4 fi  =  σi ,  i = 1,2

fj  =  0,    j = 3,4

0.41

Same as above fi  =  σi ,  i = 1,2,3

f4  =  0

0.62

In contrast to their higher explanatory power in the space of asset prices, the truncated set

of risk factors has much weaker explanatory power in stress tests of portfolio returns. For example,

while the first two risk factors account for 79% of the change in y1 and 78% of the change in y2 due

to a one standard deviation shock to all risk factors, they account for only 41% of the actual change in

portfolio value.3 Adding the third risk factor to the stress test, would account for all the change in y1

and 82% of the change in y2, but yet account for only 62% of the true change in portfolio value.

3. Portfolio risk

Like the first example, our second example investigates sources of portfolio risk when

market returns follow the restrictions of linear arbitrage pricing theory and the portfolio is selected by

a risk averse portfolio manager. The difference between the two examples is the unconstrained choice

in the second example, where the portfolio manager can choose a portfolio with the risk-free return.

We demonstrate that portfolio risk will likely be mismeasured by risk-management methodologies

that do not include all sources of non-diversifiable risk in asset returns. Specifically, the example

suggests that an analysis of portfolio risk that uses only factors accounting for a large fraction of

return variance or that leaves out factors with high expected returns will often understate portfolio

risk.

                                                  
3 The first two risk factors account for 100% if the variability of c1 and c2.
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Asset returns

We assume that returns on the n risky assets follow a k factor model:

r = re + βf + ε

where returns above the risk-free rate (r), expected excess returns (re) above the risk-free rate, and

idiosyncratic errors (ε) are n x 1 vectors; the factors (f) are a k x 1 vector; and the matrix of factor

loadings (β) is a n x k matrix. The expected value of the factors and idiosyncratic errors is zero. For

convenience, we assume that the factors are uncorrelated both with each other and with the

idiosyncratic errors, that the factors are normalised so β′β = Ik (the k dimension identity matrix), and

that the variances of the idiosyncratic errors are equal so Var n( )ε σε= 2 I  (i.e. proportional to the n x n

identity matrix).

Thus, the variance of excess returns is given by:

Var(r) = β Var(f) β′ + Var(ε) = β Var(f) β′ + εσ2
nI

where Var(f) is a diagonal matrix. The normalisation assumption on β and the correlation assumptions

for f imply that β is the matrix of eigenvectors of β Var(f) β′ corresponding to the (positive)

eigenvalues on the diagonal of Var(f). The full decomposition is given by:

β β β β β β βVar f
Var f

( ) % ( ) %′ =
L
NM

O
QP

0

0 0
 and β β

β
β

β
β

β β%
% %

%′
′

L
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=
′
′

L
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O
QP

= nI

where %β  is the n x (n-k) matrix of eigenvectors corresponding to the zero eigenvalues of β βVar f( ) ′ .

With these assumptions, the variance matrix of returns can be expressed as:

Var r j j

n

j( ) ( )= ′ +∑β β σ σε
1

2 2

where σ j
jVar f j k

j k
2

0
=

≤

>
RST

( ) ,

,
, either the variance of the j-th factor or 0, and βj is the j-th eigenvector

of Var(r), a column of either β or %β .4 The inverse of the variance matrix of returns is:

Var r j j

n

j
− −= ′ +∑1

1

2 2 1( ) ( )β β σ σε

A portfolio is defined by the shares (ω) held in the n risky assets. Returns on a portfolio

are:

ω′(r + r0i) + r0(1-ω′i) = ω′r + r0

where r0 is the risk-free rate and i is a n x 1 vector of ones. Expected portfolio returns and the variance

of returns are:

E(ω′r + r0) = ω′re + r0 and

Var r r Var f( ) ( ( )′ + = ′ ′ + ′ω ω β β ω σ ω ωε
0 2 .

Arbitrage profits could be obtained with these assets unless riskless portfolios earn the

risk-free rate of interest (i.e., have a zero expected excess return). When the number of risky assets is

large, idiosyncratic risk can be largely eliminated by diversification. For example, a portfolio whose

                                                  
4 The decompositions of A and A + bI are closely related, where A is a n x n matrix, b is a number, and I is the n x n

identity matrix. It can be shown that the eigenvalues of A + bI equal b plus the eigenvalues of A while the
eigenvectors of the two matrices are identical.
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weights are % % / ( )ω β= −i n k  has variance σε
2 / ( )n k−  and will have little risk when the number of

assets, n, is large. Thus, portfolios whose risk arises only from idiosyncratic risk will have a return

equal to the risk-free rate.5 A portfolio whose risk arises from idiosyncratic risk has weights on risky

assets satisfying ω′β = 0, with not all weights equal to zero. If these portfolios have zero expected

excess return then ω′re = 0. These conditions imply that the vector of expected excess returns, re,

must be a linear combination of the columns of β. Thus, absence of arbitrage opportunities implies

that expected returns satisfy:

re = βλ
where the elements of λ represent the marginal expected excess return from additional investments in

portfolios reproducing particular factors.

Portfolio choice

To investigate the possible implications of choosing too few factors to describe returns and

the risk of a portfolio, we consider portfolios formed by mean-variance optimisation. Mean-variance

optimises generally choose portfolios to reduce risk unless the returns to bearing risk are sufficiently

attractive. We use mean-variance optimisation to illustrate possible tradeoffs that might occur in real

portfolio choices.

We assume that the portfolio manager selects the portfolio weights on risky assets, ω, to

maximise an objective function that rewards expected return and penalises variance of returns:

E r r Var r r( ) . ( )′ + − ′ +ω ρ ω0 00 5 .

In this objective function, the coefficient ρ describes risk aversion; managers with higher values of ρ

are more risk averse. The optimising portfolio weights are:

ω ρOPT eVar r r= −( ( )) 1 .

This well-known result shows that the portfolio manager tends to give higher weights to assets with

high expected excess returns and lower weights to assets with high variances. This portfolio has

realised return equal to:

r re e+ −ρ 1 ′Var r r re e( )− −+1 1ρ ′Var r f( ) ( )− +1 β ε

with variance:

ρ−2re ′ Var r re( )−1 .

If all market participants are mean-variance optimisers and if there are a large number of

assets (none of which is a large part of the market portfolio), then in market equilibrium:

r Var r Var fe avg market market avg= ≈ ′ =( ( )) ( )ρ ω β β ω ρ β λ

                                                  
5 As the discussion suggests, this property holds exactly only in a limiting case as the number of assets grows. See

J. Ingersoll, Theory of financial decision making, (Rowman & Littlefield, 1987), Chapter 7 for a more detailed
discussion. We assume that the result holds exactly here to simplify the algebra that follows.
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where ωmarket represents the portfolio weights in the market portfolio and ρavg is a wealth-weighted

average of market participants’ risk aversion.6 It follows that the elements of λ are proportional to the

factor variances, or λ σ κl l l= 2 , where the constant of proportionality, κl, will be large either if the

factor has large β for many assets or if the large elements of β correspond to assets with large shares

in the market portfolio. This second condition could occur if the relative factor loadings corresponded

closely to the shares in the market portfolio.

Factor contributions to return and portfolio variance

We can combine these results to compare factor contributions to the variance of returns or to

the variance of the portfolio. These contributions will suggest when a factor is more important to

return or portfolio variances.

One measure of the contribution of a factor to a set of returns is the share of summed

return variances that can be attributed to the factor. With the structure assumed above, this calculation

is very easy because each factor is uncorrelated with the other sources of risk. Specifically, the

fraction of total return variances contributed by factor l is given by:

trVar f

trVar r

tr

tr

l l l l l

j j j
j

n
l

j
j

n

( )

( )
( ) ( )

β β β σ

β β σ σ

σ

σ σε ε

=
′

′ +
=

+
= =

∑ ∑

2

2 2

1

2

2 2

1

where tr represents the trace of a matrix - the sum of the diagonal elements.

Turning to portfolio returns, the variance of realised returns contributed by factor l is:

Var r Var r f r Var r Var f Var r r

r Var r Var r r

e
l l

e
l l

e

l
e

l l
e

( ( ) ( ) ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ρ β ρ β

ρ σ β β

− − − − −

− − −

⋅ ′ ⋅ ⋅ = ⋅ ′ ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ′ ⋅ ⋅ ⋅ ′ ⋅ ⋅

1 1 2 1 1

2 2 1 1

This expression can be simplified considerably by using the expression for the inverse of
Var(r) derived above, the property that β βj l j l= ≠0 , , and the arbitrage-free value of re to obtain:

ρ σ
λ

σ σε

− ⋅ ⋅
+

2 2

2 2 2l
l

le j
where λl is marginal expected excess return for factor l.

The contribution of factor l to portfolio variance can be compared to the overall variance

of the portfolio. Recall that the variance of the optimising portfolio is:

ρ−2 re ′ Var r re( )−1

Substituting for the inverse of Var(r) and for the arbitrage-free value of re gives the following

expression for the portfolio variance:

ρ β λ β β σ σ β λ ρ λ σ σε ε
−

=

− − −

=

⋅ ⋅ ′ ⋅ ′ + ⋅ ⋅ = ⋅ +∑ ∑2

1

2 2 1 2 2 2 2 1

1

( ) j j
j

n

j j j
j

n

d i d i

where λl = 0,l>k

                                                  
6 Specifically, ρavg = (∑ ρi

-1 Wi/W)-1 where ρi and Wi are risk aversion and wealth, respectively, of participant i and W

is total wealth of all market participants.
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Thus, the fraction of portfolio variance that is attributable to a factor is:
σ λ

σ σ

λ

σ σ

σ

σ σ

σ κ

σ σ

σ

σ σ

λ
σ σ

λ
σ σ

σ κ
σ σ

ε ε ε ε ε

ε ε ε

l l l l l l l

j

jj

n
j
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n
j j

jj

n

2 2

1
2 2 2

2

1
2 2

2

1
2 2

4 2

1
2 2

2

1
2 2

2

2 2
1

2

2 2
1

4 2

2 2
1

⋅

+ +
⋅

+ +
⋅

+

+ + += = =
∑ ∑ ∑

d i d i d i d i d i

d i d i d i

Note that the fractions do not add up to one because the idiosyncratic, asset specific, sources of risk

also contribute some risk to a portfolio.

Contributions to portfolio and return variances

A factor will contribute substantially to portfolio variance either if κl is large or if σl
2  is

large. Note that the first case, when κl is large, is one where the factor may account for a larger share

of portfolio variance than of overall return variance. (This is most likely when κl is large and σl
2  is

small.) The second case highlights that factors with large variance will contribute usually substantially

to both portfolio variance and to the variance of returns, σ σ σεl j
j

n
2 2 2

1

/ +
=

∑d i.

4. Conclusion

This paper presents two simple but somewhat realistic examples of portfolio exposure to the

sources of risk in the underlying assets. Both examples suggest that all factors with priced risk should

be included in risk measurement systems.

The first example considers a risk-averse portfolio manager who optimises subject to

some financing constraints. The example shows that the resulting portfolio will include investments

with high market prices of risk; these investments may generate exposure to factors that do not

account for a substantial part of asset return variance.

The second example also models a risk-averse portfolio manager selecting a portfolio,

but without financing constraints. The model shows that the market risk of a portfolio may be

determined by factors that contribute fairly little to asset return variance. Thus risk measurement

methodologies that do not include all sources of priced risk could substantially understate the risk

faced by some participants.
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