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Abstract

In this paper, I study a number of statistical issues that arise in the formulation of stress

scenarios for market risk in financial instruments. The possibility of reducing the number of scenarios

through the use of data-based, statistical dimension reduction methods is explored. Using data on

returns to spot exchange, stock market and interest rate products for a number of countries, I show

that principal components analysis may be used to reduce the effective dimensionality of the scenario

specification problem in several cases. Given the data dimensionality uncovered by PCA for the

datasets considered, various methods for specifying stress scenarios are discussed.

                                                  
* Views expressed in this paper need not reflect the views of the Board of Governors of the Federal Reserve System or

of other members of its staff or of the Eurocurrency Standing Committee. Any errors are my own.



1. Introduction and general issues in market risk scenario specification

Market risk is commonly defined as the susceptibility of portfolio values to changes in asset

prices, volatilities of prices, and related functions of asset prices.  Measuring market risk may seem to

require specifying a very large number of perturbations of prices and volatilities. However, in

empirical practice, many asset price and volatility movements are highly correlated

contemporaneously. The "effective dimensionality" of market risk is therefore often considerably less

than the number of assets held in a typical portfolio. "Risk factors" are often defined and used to

summarise observed changes in market prices and volatilities. This paper discusses some of the

statistical issues that arise in the search for market risk factors and scenarios that describe stressful

market risk events.

The remainder of this section discusses some general methodological considerations. The

need for applying statistical methods for scenario specification is reviewed. Principal Components

Analysis (PCA) is proposed as a tractable and easy-to-implement method for extracting market risk

factors from observed data. Section 2 presents the returns series analysed in this paper, and tests

whether the data are in fact amenable to PCA methods. Section 3 performs PCA on several groupings

of these series. I find that the stock market and the exchange rate returns series are more highly

correlated than, say, short term interest rates. This suggests that dimensionality reduction may apply

for certain groups of series, but not for others. On the basis of the PCA results, I provide suggestions

for stress scenarios for stock market and spot exchange rate shocks.  Section 4 concludes and

mentions several shortcomings of PCA not dealt with elsewhere in the paper. An appendix discusses

some of the mathematical aspects of nonparametric density estimation and of PCA.

It is important to note that the dimensionality of the market risk scenario problem is, to a

considerable extent, a choice variable for the researcher. Increasing the number of market risk factors

tends to enhance descriptive accuracy or the amount of data variability captured by the scenarios, but

also risks increasing the methodological complexity and unwieldiness of the study. An optimal cut-off

for specifying additional risk factors will depend, in general, on the purposes for which the risk factors

are being constructed.

When the number of series is small, say one or two, it is usually possible to simply "eyeball"

scatter plots of the data and to decide heuristically what a relevant stress scenario might be.

Unfortunately, "eyeball methods" become infeasible when the data are high-dimensional. To specify

stress scenarios in such cases, it is necessary to resort to formal statistical methods. The statistical

methods should provide answers to issues such as the effective dimensionality of the data and nature

of data-coherent stress scenarios. Formulating market risk factors and extracting their distributions

from the data is an intermediate step between assembling the data and specifying scenarios.
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One may distinguish between model-driven and data-driven statistical methods for

generating risk factors.1 Model-driven methods rely heavily on hypothesised relationships between

asset prices, returns, and volatilities (which are then estimated from the data). Examples of model-

driven methods are the capital asset pricing model (CAPM) for returns and "GARCH" models for

volatilities. Data-driven methods, on the other hand, impose less structure on the data. When a

researcher is unwilling to impose a lot of structure on the data and would rather extract risk factors

directly, data-driven methods are preferable. One method which is in widespread use among statistical

practitioners is "Principal Components Analysis" (PCA). This method, whose technical details are

described in the appendix to this paper, is frequently employed when one needs to reduce the data

dimensionality to a tractable threshold without being willing to commit to strong hypotheses about the

nature of the data generating process.

2. Data and preliminary data analysis

The data series I study in this paper are daily-frequency observations on spot exchange rates,

stock market indexes, and long-term and short-term interest rates, and were obtained from the Federal

Reserve Board's internal economic database. I consider data for nine countries: Belgium, Canada,

France, Germany, Japan, the Netherlands, Switzerland, the United Kingdom, and the United States.

The exchange rate series consist of the bilateral spot exchange rates of the first eight countries vis-a-

vis the United States.2 For each of the nine countries, a leading stock market index was chosen to

represent movements in equity prices. Both short-term (3-month) and long-term (10-year) interest

rates were collected for each of the nine countries. In addition, a nine-point term structure series for

the US Treasury returns and four separate stock market indexes for the United States (S&P 500, Dow

Jones Industrials-30 Average, Nasdaq Composite, and Wilshire 5000) were studied. The observations

run from 2 January 1990 to 8 October 1996, or slightly less than 1,700 observations. Cross-sectional

missing values, caused chiefly by differing national market holiday conventions, were deleted prior to

further analysis. I first took natural logarithms of the exchange rate and stock market index series, and

then first-differenced all series to induce stationarity.

Prior to applying PCA to these returns series, it is important to determine whether PCA is in

fact a meaningful procedure given the distributional properties of the data. The main distributional

requirement is "axis symmetry," i.e., that the joint distribution of the data be symmetric about its

                                                  
1 In practice, of course, one finds that successful model-driven methods are congruent with the data, and successful

data-driven methods can be interpreted to conform to certain statistical models.

2 The spot exchange rates are measured in units of foreign currency per US$ except for Sterling, where the inverse
convention was applied.
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axes.3 Unfortunately, formal statistical techniques for testing axis symmetry are not well developed.

To test the proposition of axis symmetry, I chose the following informal "eyeball method:" I

computed the joint density of various pairs of series and graphed their contour plots. Significant

deviations from axis symmetry are then readily apparent to the eye. Appendix B contains a brief

discussion of the nonparametric density estimation methods that I employed to obtain the contour

plots.

Contours of six (randomly chosen) bivariate densities are plotted in Figures 1 through 6. The

returns data are standardised for this exercise.  Density estimates are provided for a -5 to +5 standard

deviations range from the joint mean of the data.  The heights of the displayed contours are 0.40, 0.30,

0.20, 0.10, 0.04, 0.01, and 0.001.4 The height of the outermost lines is only 1/400th of the height of

the innermost "ring." For a practical assessment of axis symmetry, though, it is more practical to

consider the shapes of the lines with heights between 0.01 and 0.40. The first three figures depict

bivariate data sets that are not highly correlated; the second group of three figures depicts series that

are highly correlated. In no case does failure of axis symmetry appear to be a prominent problem.

Since axis symmetry cannot be rejected, at least not on the basis of the informal tests conducted, I

conclude that we may indeed apply PCA methods to the data at hand.

3. Principal components analysis and effective dimensionality of the data

3.1 Fraction of variance explained by principal components

For a collection of returns series, the number of principal components (PCs) to be retained

for further analysis is determined by the correlation structure of the data. If the data are all highly

mutually correlated, one or two PCs will suffice to explain a large fraction of total data variation. On

the other hand, if the data are either uncorrelated or only correlated across subgroups, more PCs need

to be retained. By studying the fraction of the variance that is explained by successive PCs, one may

obtain an estimate of the effective dimensionality of the data.

Since PCA is sensitive to the units of measurement of the data, we report our results both for

the "raw" and for "standardised" (zero mean and unit variance) series. Standardisation is found to have

little qualitative effect except when groups of series with differing group variances, such as exchange

rates and interest rates, are analysed.

In Table 1, I list the fractions of the total variance explained by successive principal

components. Numbers that exceed 1/N (where N is the number of series under consideration) are

                                                  
3 Intuitively, axis symmetry can be thought of as an absence of non-linear dependence among the series. Multivariate

normality is sufficient but not necessary for axis symmetry. Other well-known distributions, such as the multivariate
Student-t, are also elliptic and hence axis-symmetric.

4 The height of 0.001 was chosen deliberately so that even a single data point would "show up" in the contour plots.
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italicised, and numbers that exceed 2/N are underlined. I start with several more narrowly defined

groups of series, and then go on to study larger data groups. For the eight groupings considered, I

find:

(A) Short Term Interest Rates, 9 Countries. In the sample period, correlations among the nine

short term interest rates were quite low. This is reflected in Panel (A) of Table 1: Whether

standardised or raw interest rate changes are considered, the first two PCs barely explain

50% of total variance.

(B) Long Term Interest Rates, 9 Countries. In this case, the first PC alone explains ca. 50% of

total data variability, and first three jointly explain about 75% of the variance.

(C) 9-Point US Term Structure Series. Here, the first PC explains more than 80% of total

variation, and the second explains about 10%. None of the other seven PCs explains more

than about 3% of total variation.

(D) Spot Exchange Rates, 8 Countries. All of the series are very highly correlated, and the first

PC explains more than 70% of the total variance. No other PC explains more than 15% of

the variance.

(E) Stock Market Indexes, 9 Countries. The first PC explains about 40% of the variance, and the

next two each contribute more than 10%.

(F) 4 US Stock Market Indexes. All series are well known to be very highly correlated at daily

frequencies; this is borne out in the PCA, where the first (of four) PCs explains close to 90%

of total variance.

(G) Combination of Stock Market Indexes and Exchange Rates, 17 Series. For the raw data, only

the first four PCs each explain more than a 1/N fraction of total variance, but none of these

four is particularly dominant. A similar results applies for the standardised returns series.

(H) Combination of Stock Market Indexes, Exchange Rates, and Long Term Interest Rates,

26 Series. For the unstandardised series, the first PC explains 50% of the variance, and two

more PCs explain more then a 2/N fraction of the variance. However, upon standardisation

the influence of the first PC is diminished to 26%, and the second PC has roughly equal

weight (21%).

From these numbers, it would appear that there is considerable scope for dimension

reduction among the equity returns series and exchange rate series, as well as within the US term

structure of interest rates. However, the two broad asset classes (G) and (H) are less mutually

correlated, leading to a lower contribution to the total variance provided by the first few leading

principal components.
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3.2 Correlations of estimated principal components with observed time series

In the preceding subsection we found that, in several cases, one or two PCs suffice to

explain most of the variability present in the data. This suggests that the effective dimensionality of

the data groups is smaller than the number of series in the groups. However, this finding alone does

not let us attribute an economic interpretation to the PCs, since it does not tell us whether the PCs are

correlated with all of the series in the respective group, or only with a subset of the series

Since PCs are linear functions of the data, it is useful to study their correlations with the

observed returns series to uncover their economic interpretation (if one exists). In Table 2, we list

correlations for the first four PCs (computed from the raw as well as the standardised returns series)

with the corresponding observed series. The discussion below focuses, to the most part, on the

correlations between the observed series and the PCs obtained after first standardising the data. We

find:

(A) Short Term Interest Rates, 9 countries. In keeping with the finding reported above that none

of the PCs explains a large fraction of the total variance in the data, we find that each of the

first four PCs is highly correlated with only one or at most two of the individual 3-month

interest rate series. This finding precludes the use of PCA to reduce the dimensionality of

the multivariate short-rate process.

(B) Long Term Government Bond Interest Rates, 9 countries. In contrast to the short rate case,

the long rates (especially the six European series) are highly correlated with each other and

with the first PC.  The Canadian and US series are highly correlated with P2, and the

Japanese long rate is highly correlated with P3. This suggests that for purposes of scenario

specification, the nine series can be reduced to three "meta series:" one "European"

dimension, one "North American" dimension, and one "East Asia" dimension.

(C) 9-Point US Term Structure Series. For this group of time series, the first PC is highly

correlated with all nine series, and the correlations are of the same sign. The second PC is

negatively correlated with the short-maturity series and positively correlated with the long-

maturity series. The third PC is positively correlated with the short- and long-maturity

series, and negatively correlated with the intermediate-maturity series. This finding lets us

interpret the first principal component as a factor that shifts the whole term structure, the

second PC as a factor that tilts or rotates the yield curve, and the third as a factor that affects

curvature. In many cases, it will be quite satisfactory to concentrate

(D) Spot Exchange Rates, 8 Countries. Here, all series except the Can$/US$ are highly

correlated with the first PC. The Can$/US$ series is highly correlated with P2, and Yen/US$

series is highly correlated with P3 (as well as with P1). This means that these data show one

dominant risk factor at work, viz. the joint comovements of all exchange rates (except the

Canadian series) against the US$; the fluctuations of the Canadian currency vis-a-vis the

US$ are governed by a separate risk factor, given by P2.
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(E)  Stock Market Indexes, 9 Countries. Concentrating on the standardised-PC correlations with

the observed series, it is obvious that all but one of the series (the French stock market index

returns) are highly correlated with the first PC. In addition, the Canadian and US series are

also highly correlated with P2. Given these findings, one can easily conclude that there is

one dominant global risk factor as well as a separate "North American" risk factor.

(F) 4 US Stock Market Indexes. All four series are highly correlated with P1; in addition, the

Nasdaq Composite returns series is also somewhat correlated with P2. It seems, though, that

it would suffice for many purposes to specify a single risk factor that governs the daily-

frequency returns of all four indexes.

(G) Combination of Stock Market Indexes and Exchange Rates, 17 Series. (Here, it is definitely

preferable to concentrate on the second part of panel (G) of Table 2, since the two types of

series have differing levels of variance.) From the correlation numbers, P1 may be

interpreted as an "exchange rate shock" and P2 as a "stock market shock." However, these

first two principal components explain only 56% of the total data variability (cf. Table 1).

Hence, a simple two-factor model may not be satisfactory for capturing a sufficiently large

fraction of the variance in the data.

(H) Combination of Stock Market Indexes, Exchange Rates, and Long Term Interest Rates,

26 Series. Attributing economic significance to the PCs computed from the joint behaviour

of all 26 series is even more difficult than in the previous case. P1 is negatively correlated

with most stock market returns series; the exchange rate returns are negatively correlated

with P1 but positively with P2; finally, the long term interest rates are positively correlated

with both P1 and P2. These findings strongly suggest that it is not fruitful to study all 26

series jointly if the objective is reducing the dimensionality of the data.

To sum up, PCA applied to the various groupings of the data reveals that it is feasible to

reduce the dimensionality of the scenario specification problem for certain groups of assets, especially

for exchange rates and stock market index fluctuations. On the other hand, we also found groups of

series—most notably the set of short-term interest rates—where there appears to be little scope for

dimension reduction. Both the "positive" and the "negative" results are useful since they point out the

types of groupings of the data for which dimension reduction is appropriate, as well as the ones for

which it is not.

3.3 Stress scenarios based on principal components analysis

The preceding analysis suggests that several groupings of the data are well characterised as

possessing only one or at most two "meta-dimensions." How does one specify scenarios that make use

of this information? Consider first the case where a single principal component suffices to capture

most of the variance of the data. Since the first PC is a one-to-one transformation of the observed

data, it is possible to "reverse" the calculations and to compute the values of each of the series that
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correspond to given values of the first PC. Next, since the PC is a random variable we may pick tail-

event quantiles of the empirical distribution of the PC to generate corresponding tail events of the

observable series.

When more than one PC is required to describe a sufficient amount of the total variance in

the data, one may proceed by specifying separate "shocks" in each of the directions given by the

retained PCs, in analogy to the case of a single relevant PC. Alternatively, one may choose to form

arbitrary linear combinations of the estimated PCs to generate "combined" shocks. Or, if the PCs are

highly correlated with one of the observable series, one could simply sort the data by that series, and

associate stress scenarios with particularly large realisations of that series.

Frye (1996) and Jamshidian and Zhu (1996) explain in detail how trading firms may use

PCA as a basis for their risk management process. Once the "relevant dimensions" of market risk are

established via PCA, scenarios are generated by taking various linear combinations of the first two or

three PCs of the data.

In the remainder of this section, we report the results of specifying shock scenarios for the

following four groupings of the data: spot exchange rates (8 series), the US T-Bond term structure (9

series), long-term government bond returns (9 series), and stock market indexes (9 series). For each of

these datasets, four separate types of scenarios were generated. The first three are based on

fluctuations in the direction specified by each of the first three PCs of the data; the fourth scenario is

created by taking the direct sum of the first three scenarios.  To indicate how the potential

computational burden might be reduced for firms that would calculate their exposure to each of these

shocks, "fluctuations" that do not exceed at least 0.5% per day or 1 basis point per day are set to zero.

For each of these four types of scenarios, the following quantiles of the resulting

distributions are reported: 0.5%, 1%, 5%, 10%, 90% 95%, 99%, and 99.5%. By measuring the

exposure to shocks of increasing severity-from 10% to 0.5%, and from 90% to 99.5%-it may be

possible to determine if there is "curvature" in the exposure, i.e., if there is gamma risk that could lead

to systemic breakdowns if these exposures are hedged by dynamic trading strategies. Note that the

quantiles of the shock distributions should not be interpreted as meaning that any of these particular

scenarios will occur with the specified probabilities; "real world" shocks are combinations of the

shocks in the directions of the various PC-shocks. The results are listed in Table 3.

Turning first to the scenarios for the eight exchange rates (Panel A), we note that the shocks

generated by fluctuations along the first PC affect mainly the European series; the second shock

affects mostly the Can$/US$ exchange rate, and the third induces fluctuations in the Yen/US$ rate.

The fourth shock, which is a weighted sum of the first three shocks, leads to fluctuations in all series

except the Can$/US$ series

The scenarios for shocks to the US term structure, tabulated in Panel B of Table 3, show that

shocks in the direction of the first PC-which was identified above as a "shift" factor-indeed lead to a

shift in all rates, with the changes being largest for the longer-term bonds. The second scenario is a
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"tilt" of the yield curve, and the third serves to increase or decrease curvature. The numerical

magnitude of the shocks, measured in basis points, may seem somewhat small. However, it should be

remembered that they are "pure factor shocks," and that "actual" shocks are combinations of the

"pure" shocks. To wit, the fourth scenario, which is a simple combination of the first three, does lead

to fluctuations that exceed 20 basis points at either end of the distribution.

In Panel C of Table 3, various scenarios for fluctuation in long term bond rates across nine

countries are presented. The first PC-shock leads to sizeable changes in all long rates except for Japan

and the US; these two series are affected by PCs 2 and 3, respectively. Interestingly, a simultaneous

shock to all three PCs leads to a scenario in which the Canadian and US long rates fluctuate strongly

while the other series do not show much action.

Stock market shock scenarios are given in Panel D of Table 3. Here, the first PC induces

shocks for all European series except France. The second shock affects US stock returns strongly, but

has a smaller impact on the stock returns of Belgium, Canada, France and Germany as well. The third

PC leads to large fluctuations in the series for France, and affects Japanese stock market returns as

well. A combination of these three scenarios affects all stock markets except the ones for Canada and

the United States.

We close this section by observing that the numerical values given in all of the scenarios

confirm the qualitative interpretation of the nature of the PCs derived earlier in this paper. The

numerical values presented here serve mainly to give a "flavour" of the severity of market risk

scenarios that can be generated by PCA.

4. Conclusions

In this note, I have set out to discuss some of the technical issues that need to be addressed

in the process of specifying scenarios that are based on data driven methods such as principal

components analysis. The methodological points were illustrated empirically with a dataset that

consists of daily-frequency observations on long- and short-term interest rates, stock market indexes,

and exchange rates for nine industrialised countries. I find that the effective dimensionality of several

subgroups of these time series is considerably smaller than the number of series included. These

results would allow us to reduce the number of market risk scenarios to groups. Several methods for

generating scenarios in terms of observables on the basis of the PCA-based results were discussed,

and numerical values of several simple scenarios were presented.

We close by discussing some shortcomings of PCA that have not been mentioned up to this

point. First, and most importantly, PCA is strongly affected by the choice of units of the series. An

important consequence of this fact is that PCA will not detect risk factors that do not contribute

significantly to the total variability of the data. This shortcoming could be remedied, at least in
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principle, by multiplying the series with appropriate portfolio weights. However, this requires

knowledge of the actual asset holdings of participants in the reporting exercise.

A second shortcoming, less serious than the first, is that PCA is suitable for detecting risk

factors that are linear functions of the data. Volatility factors, which are of interest for the valuation of

options and of products with embedded-option characteristics, are more difficult to derive by PCA. To

obtain volatility factors, it appears to be preferable to use a more model-driven approach to data

analysis, say by specifying and estimating a multi-factor GARCH process. Third, by construction, the

factors derived from PCA are mutually orthogonal. If the true market risk factors (assuming that there

is such a thing as a "true" risk factor!) are not orthogonal, then the PCA-based factors will be linear

combinations of the true factors, and it will be harder to give economic interpretations to the

PCA-derived factors.
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Appendix A

Technical exposition of principal components analysis

Consider a collection of T observations of N asset returns. Let X denote the resulting T × N

data matrix, and assume without loss of generality that X has full column rank. (Otherwise, one or

more of the returns series are redundant and may be omitted.) Our goal is to find a linear combination

of the observed asset returns that "explains" as much as possible of the observed variability of the

data. We will demonstrate that principal components analysis, PCA for short, achieves this objective.

The following discussion is based on Theil (1971, pp. 46–56). Let P denote the T × N

matrix of the eigenvectors of XX' that correspond to the N non-zero eigenvalues (sorted in descending

order) of XX'. (Since XX' is positive semi-definite, exactly N of its eigenvalues are positive and the

remaining T-N are zero.) One can show that the first column of P, i.e., the first "principal component"

(PC) of X, maximises the explained variance ("R2") of the multivariate regression of X on any linear

combination of the columns of X. Thus, the first PC solves the objective set out above. Similarly, the

second column of P, i.e., the second PC, maximizes the explained variability in the data, given the

explanation already provided by the first PC. Since the eigenvectors are mutually orthogonal, all of

the principal components are uncorrelated with each other. Note that principal components are not

unique up to sign, i.e., multiplying a PC by -1 has no effect on the explanatory power of the PC.

One may write X = P A, where A is the N × N matrix of "loadings" of the data on each of

the principal components. This representation shows that PCA is a special form of the general

statistical method of "factor analysis." In PCA, the "factors" are not directly observed, but are

constructed by taking linear combinations of the data. Since each of the PCs is (in principle) a

function of all N data vectors, PCA is a function of the joint distribution of all data points. This

distinguishes it from regression analysis, which is concerned with the conditional distribution of the

"dependent" variable(s) given observations on the "independent" variables. In PCA, one does not

distinguish between dependent and independent variables.

The fraction of the data variance explained by each of the successive PCs is given by

λ λi i/ ,∑d i  where λ i  is the i'th (sorted) eigenvalue of XX', i = 1,…,N.  The cumulative fraction of

the data variance explained by the first j PCs is given by λ λ λ1 + + ∑... /j id i d i.

In empirical practice, when the data are correlated, the first few PCs tend to capture most of

the variability. The leading PCs, then, can be used to represent the "meta-dimensions" in which the

data fall. One could also say that the number of leading PCs, say, those that capture between 50% and

90% of the total variance, represents the effective dimensionality of the data, which will be well less

than  in general.
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Appendix B

Nonparametric density estimation

Technical references to the field of nonparametric density estimation are Silverman (1986),

Green and Silverman (1994) and Wand and Jones (1995) and the references contained in these works.

The pieces cited explain both the intuition that underlies nonparametric density estimation methods as

well as many of the mathematical subtleties and computational considerations that arise in this field in

practice.

The key idea in nonparametric density estimation—as in other areas of nonparametric

statistics—is to apply "local smoothing" techniques to obtain estimates of the probability density of

the data. Local smoothing means that the estimate of the density at a point is influenced mostly by the

number of observations close to that point, whereas it is little affected by the properties of the data far

away from the point of interest. Generally, the local smoothing estimators are so-called "kernel

methods." In all kernel methods, the crucial parameter is the "bandwidth." The bandwidth parameter

determines the size of the region (around the point of interest) which is used to perform the smoothing

operation.

The bivariate density estimates reported in the paper were computed using a

two-dimensional Gaussian kernel and a (scalar) bandwidth chosen as σN −0 2. , where σ  is the average

standard deviation of both series. The estimation routines were coded in the "Gauss" programming

language by the author.
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Table 1

Fractions of variance explained by successive principal components

Note: There are two lines for each group of series. Line 1 applies to the raw returns series,

the second for the standardised returns series. Numbers greater than 1/N are italicised, numbers

greater than 2/N are underlined, where N is the number of series included in the group.

(A) Short Term Interest Rates (9 countries)

0.355 0.232 0.154 0.090 0.069 0.046 0.032 0.014 0.008

0.202 0.179 0.112 0.102 0.097 0.093 0.080 0.074 0.060

(B) Long Term Government Bond Interest Rates (9 countries)

0.494 0.159 0.094 0.084 0.069 0.033 0.029 0.026 0.011

0.480 0.122 0.100 0.087 0.063 0.061 0.037 0.034 0.016

(C) 9-Point US Term Structure

0.843 0.093 0.028 0.011 0.007 0.007 0.005 0.004 0.003

0.810 0.121 0.031 0.013 0.009 0.006 0.004 0.003 0.003

(D) Spot Exchange Rates (8 countries)

0.812 0.084 0.043 0.022 0.022 0.010 0.007 0.001

0.716 0.130 0.079 0.042 0.017 0.008 0.006 0.001

(E) Stock Market Indexes (9 countries)

0.395 0.192 0.164 0.076 0.052 0.043 0.037 0.023 0.019

0.409 0.130 0.113 0.090 0.071 0.060 0.050 0.043 0.033

(F) US Stock Market Indexes (4 series)

0.868 0.107 0.018 0.007

0.883 0.090 0.019 0.008

(G) 9 Stock Market Indexes & 8 Exchange Rates

0.298 0.233 0.129 0.113 0.053 0.035 0.030 0.026 0.024

0.358 0.202 0.069 0.064 0.057 0.047 0.038 0.035 0.031

(H) 9 Stock Market Indexes, 8 Exchange Rates, & 9 Long Term Rates

0.500 0.147 0.087 0.076 0.064 0.032 0.027 0.025 0.010 0.009

0.257 0.213 0.075 0.056 0.044 0.039 0.034 0.032 0.028 0.027
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Table 2

Correlations of the data series with the first four principal
 components, for various data groupings

Note: Two sets of correlations are reported for each group of returns, (i) between the data

and the "raw-data PCs" and (ii) between the data and "standardised-data PCs." Correlations greater

than 0.45 in absolute value are underlined.

(A) Short Term Interest Rates (9 countries)

Correlation between data and raw-data PCs

Country P1 P2 P3 P4

BE -0.580 0.813 -0.008 0.031

CA -0.184 -0.081 0.978 -0.001

FR -0.899 -0.426 -0.099 0.039

GE -0.218 0.070 0.043 -0.193

JA 0.021 0.021 0.042 -0.047

NE -0.174 0.109 0.102 -0.182

SZ -0.079 0.039 0.033 -0.278

UK -0.130 -0.007 -0.044 -0.958

US 0.005 0.047 0.036 -0.080

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE 0.433 0.403 -0.163 -0.077

CA 0.224 0.220 -0.274 0.742

FR 0.390 0.624 -0.143 0.024

GE 0.728 -0.077 0.227 -0.058

JA 0.114 -0.488 -0.332 0.319

NE 0.709 -0.193 0.164 0.077

SZ 0.537 -0.431 0.114 -0.065

UK 0.269 0.059 -0.394 -0.576

US 0.014 -0.228 -0.766 -0.107
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Table 2 (cont.)

(B) Long Term Government Bond Interest Rates (9 Countries)

Correlation between data and raw-data PCs

Index P1 P2 P3 P4

BE 0.777 -0.247 0.290 -0.015

CA 0.695 0.655 0.006 0.293

FR 0.814 -0.218 0.279 -0.053

GE 0.829 -0.215 0.285 -0.060

JA 0.315 -0.031 0.185 -0.309

NE 0.811 -0.227 0.289 -0.038

SZ 0.407 -0.100 0.184 0.015

UK 0.777 -0.325 -0.532 0.065

US 0.416 0.503 -0.190 -0.708

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE 0.830 -0.180 -0.035 0.097

CA 0.579 0.525 -0.158 -0.094

FR 0.849 -0.110 -0.009 0.125

GE 0.894 -0.135 -0.055 0.094

JA 0.349 0.156 0.923 -0.011

NE 0.879 -0.163 -0.055 0.080

SZ 0.503 -0.239 -0.017 -0.819

UK 0.704 -0.036 -0.067 0.235

US 0.365 0.804 -0.113 -0.099
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Table 2 (cont.)

(C) 9-Point US Term Structure

Correlation between data and raw-data PCs

Maturity P1 P2 P3 P4

m03 0.624 -0.676 0.334 0.164

m06 0.807 -0.518 0.117 -0.119

y01 0.911 -0.294 -0.146 -0.198

y02 0.956 -0.109 -0.208 0.046

y03 0.975 0.005 -0.143 0.074

y05 0.979 0.120 -0.042 0.067

y07 0.960 0.223 0.070 0.041

y10 0.942 0.276 0.128 -0.004

y30 0.875 0.359 0.243 -0.134

Correlation between data and standardised-data PCs

Maturity P1 P2 P3 P4

m03 0.664 -0.677 0.269 0.159

m06 0.836 -0.482 0.025 -0.208

y01 0.922 -0.224 -0.212 -0.109

y02 0.954 -0.039 -0.225 0.075

y03 0.968 0.067 -0.154 0.086

y05 0.969 0.170 -0.048 0.075

y07 0.949 0.261 0.067 0.042

y10 0.931 0.308 0.129 0.003

y30 0.865 0.385 0.258 -0.117
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Table 2 (cont.)

(D) Spot Exchange Rates (8 countries)

Correlation between data and raw-data PCs

Country P1 P2 P3 P4

BE -0.956 0.074 -0.106 0.174

CA 0.009 0.188 0.191 -0.028

FR -0.969 0.085 -0.054 0.100

GE -0.985 0.062 -0.080 0.037

JA -0.608 -0.790 0.070 0.017

NE -0.981 0.065 -0.086 0.051

SZ -0.947 0.038 -0.087 -0.301

UK 0.822 -0.148 -0.547 0.003

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE -0.955 0.023 0.080 0.126

CA 0.011 0.971 -0.232 0.050

FR -0.969 0.030 0.091 0.075

GE -0.983 0.006 0.076 0.094

JA -0.617 -0.278 -0.735 -0.047

NE -0.979 0.009 0.077 0.101

SZ -0.941 0.008 0.046 0.091

UK 0.829 -0.130 -0.111 0.532
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Table 2 (cont.)

(E) Stock Market Indexes (9 countries)

Correlation between data and raw-data PCs

Country P1 P2 P3 P4

BE 0.587 0.229 -0.087 0.151

CA 0.436 0.129 -0.110 -0.569

FR -0.012 -0.654 -0.758 0.012

GE 0.718 0.387 -0.316 0.338

JA 0.806 -0.479 0.346 0.017

NE 0.688 0.368 -0.228 -0.015

SZ 0.667 0.354 -0.241 0.053

UK 0.613 0.269 -0.232 -0.313

US 0.400 0.164 -0.155 -0.734

Correlation between data and standardised-data PCs

Country P1 P2 P3 P4

BE 0.661 -0.303 0.017 0.189

CA 0.577 0.636 -0.139 0.070

FR -0.060 0.241 0.930 -0.242

GE 0.766 -0.285 0.068 -0.138

JA 0.496 -0.020 0.313 0.763

NE 0.824 -0.201 -0.016 -0.188

SZ 0.759 -0.179 0.002 -0.162

UK 0.729 0.017 0.021 -0.224

US 0.538 0.680 -0.159 -0.023
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Table 2 (cont.)

(F) US Stock Market Indexes (4 series)

Correlation between data and raw-data PCs

Index P1 P2 P3 P4

djia30 0.925 0.329 0.191 0.017

nasdaqc 0.890 -0.454 0.033 0.025

sp500 0.954 0.225 -0.179 0.086

wilt5000 0.982 0.065 -0.080 -0.161

Correlation between data and standardised-data PCs

Index P1 P2 P3 P4

djia30 0.939 0.280 0.198 0.018

nasdaqc 0.862 -0.502 0.053 0.041

sp500 0.966 0.170 -0.167 0.098

wilt5000 0.986 0.006 -0.072 -0.149
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Table 2 (cont.)

(G) 9 Stock Market Indexes & 8 Exchange Rates

Correlations between data and raw-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.520 -0.260 -0.236 0.112

CA -0.372 -0.219 -0.137 0.123

FR 0.068 -0.118 0.693 0.709

GE -0.628 -0.327 -0.386 0.352

JA -0.609 -0.574 0.404 -0.368

NE -0.713 -0.133 -0.308 0.239

SZ -0.632 -0.224 -0.330 0.262

UK -0.598 -0.180 -0.233 0.239

US -0.325 -0.232 -0.183 0.174

Exchange Rate

BE -0.594 0.741 0.144 -0.024

CA 0.054 0.013 -0.011 -0.071

FR -0.598 0.744 0.157 -0.056

GE -0.617 0.753 0.146 -0.048

JA -0.353 0.503 0.130 -0.006

NE -0.614 0.750 0.148 -0.051

SZ -0.650 0.685 0.113 -0.021

UK 0.485 -0.660 -0.103 0.036
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Table 2 (cont.)

Correlations between data and standardised-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.241 -0.616 0.326 0.047

CA -0.168 -0.563 -0.604 -0.213

FR 0.080 0.026 -0.289 0.553

GE -0.262 -0.718 0.285 0.139

JA -0.123 -0.491 0.046 0.130

NE -0.466 -0.690 0.176 0.052

SZ -0.336 -0.679 0.176 0.030

UK -0.348 -0.640 -0.018 -0.026

US -0.117 -0.545 -0.626 -0.266

Exchange Rate

BE -0.931 0.230 -0.015 -0.013

CA 0.043 0.074 0.254 -0.737

FR -0.938 0.242 -0.023 -0.025

GE -0.956 0.233 -0.014 -0.004

JA -0.601 0.205 -0.098 0.240

NE -0.952 0.234 -0.017 -0.008

SZ -0.935 0.146 -0.014 -0.006

UK 0.800 -0.233 -0.009 0.126
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Table 2 (cont.)

(H) 9 Stock Market Indexes, 8 Exchange Rates, & 9 Long Term Rates

Correlations between data and raw-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.380 0.071 -0.130 -0.023

CA -0.306 -0.149 0.016 0.129

FR 0.044 -0.012 -0.025 0.026

GE -0.477 0.140 -0.159 -0.047

JA -0.185 0.006 -0.022 0.016

NE -0.436 0.066 -0.030 -0.023

SZ 0.345 0.011 -0.052 0.002

UK -0.411 0.076 0.086 0.047

US -0.264 -0.166 0.055 0.309

Exchange Rate

BE -0.031 0.105 0.035 -0.100

CA 0.132 0.140 -0.008 0.106

FR 0.002 0.102 0.047 -0.100

GE -0.029 0.107 0.043 -0.100

JA 0.026 0.023 0.055 -0.122

NE -0.027 0.106 0.048 -0.101

SZ -0.048 0.090 0.049 -0.094

UK -0.016 -0.101 0.036 0.044

Long Term Rate

BE 0.783 -0.248 0.292 0.027

CA 0.710 -0.642 -0.000 0.276

FR 0.828 -0.242 0.244 -0.018

GE 0.833 -0.244 0.272 -0.000

JA 0.349 -0.016 0.182 -0.414

NE 0.821 -0.250 0.277 0.017

SZ 0.450 -0.116 0.161 0.047

UK 0.787 -0.283 -0.546 0.015

US 0.464 0.492 -0.090 -0.669
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Table 2 (cont.)

Correlations between data and standardised-data PCs

Stock Market Index P1 P2 P3 P4

BE -0.512 -0.275 0.230 0.336

CA -0.385 -0.259 0.475 -0.386

FR 0.082 -0.027 0.027 -0.066

GE -0.602 -0.351 0.223 0.363

JA -0.287 -0.197 0.387 0.217

NE -0.707 -0.164 0.344 0.240

SZ -0.560 -0.206 0.420 0.252

UK -0.591 -0.208 0.356 0.098

US -0.326 -0.266 0.522 -0.464

Exchange Rate

BE -0.615 0.730 -0.070 -0.048

CA 0.110 0.059 0.036 0.245

FR -0.602 0.756 -0.050 -0.050

GE -0.630 0.750 -0.066 -0.051

JA -0.357 0.524 -0.043 -0.101

NE -0.627 0.749 -0.064 -0.053

SZ -0.643 0.693 0.004 -0.030

UK 0.508 -0.654 0.075 0.029

Long Term Rate

BE 0.606 0.473 0.341 -0.053

CA 0.407 0.412 0.091 0.378

FR 0.637 0.478 0.333 -0.043

GE 0.622 0.514 0.408 -0.020

JA 0.178 0.345 0.079 0.070

NE 0.611 0.508 0.418 -0.027

SZ 0.358 0.291 0.315 0.040

UK 0.539 0.391 0.254 0.079

US 0.265 0.349 -0.134 0.643
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Table 3

Market risk scenarios generated by PC shocks

A. Exchange Rate "Shock Scenarios"
(measured in percent per day; values less than 0.5% are suppressed)

Shock in direction of first PC:

Quantile BE CA FR GE JA NE SZ UK

0.5% -2.25 - -2.12 -2.28 -1.34 -2.28 -2.43 1.76

1% -1.92 - -1.80 -1.94 -1.15 -1.94 -2.07 1.50

5% -1.09 - -1.03 -1.11 -0.66 -1.10 -1.18 0.85

10% -0.79 - -0.74 -0.80 - -0.80 -0.85 0.61

90% 0.79 - 0.74 0.80 - 0.80 0.84 -0.63

95% 1.10 - 1.03 1.11 0.64 1.11 1.18 -0.87

99% 1.87 - 1.76 1.90 1.10 1.89 2.01 -1.48

99.5% 2.17 - 2.04 2.20 1.27 2.19 2.32 -1.71

Shock in direction of second PC:

Quantile BE CA FR GE JA NE SZ UK

0.5% - -0.76 - - - - - -

1% - -0.70 - - - - - -

5% - - - - - - - -

10% - - - - - - - -

90% - - - - - - - -

95% - - - - - - - -

99% - 0.82 - - -0.55 - - -

99.5% - 0.93 - - -0.63 - - -
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Table 3 (cont.)

Shock in direction of third PC:

Quantile BE CA FR GE JA NE SZ UK

0.5% - - - - 1.30 - - -

1% - - - - 1.17 - - -

5% - - - - 0.76 - - -

10% - - - - 0.54 - - -

90% - - - - -0.58 - - -

95% - - - - -0.79 - - -

99% - - - - -1.44 - - -

99.5% - - - - -1.67 - - -

Simultaneous positive shock to first three PCs:
(sorted by value of GE column)

Quantile BE CA FR GE JA NE SZ UK

0.5% -2.18 - -2.05 -2.22 -1.65 -2.21 -2.37 1.68

1% -1.90 0.57 -1.80 -1.93 - -1.93 -1.99 1.48

5% -1.12 - -1.06 -1.13 -0.69 -1.13 -1.21 0.92

10% -0.80 - -0.76 -0.80 - -0.80 -0.84 0.65

90% 0.79 - 0.75 0.82 - 0.81 0.84 -0.57

95% 1.09 - 1.03 1.11 - 1.10 1.13 -0.87

99% 1.88 - 1.76 1.90 1.58 1.89 2.04 -1.55

99.5% 2.18 - 2.05 2.22 1.67 2.21 2.36 -1.71
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Table 3 (cont.)

B. US Term Structure "Shock Scenarios"
(measured in basis points; values less than 1 bp are suppressed)

Shock in direction of first PC:

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -11 -14 -18 -21 -22 -22 -21 -20 -16

1% -8 -11 -14 -16 -17 -17 -16 -15 -12

5% -5 -6 -8 -9 -9 -9 -9 -8 -7

10% -4 -5 -6 -7 -7 -7 -7 -6 -5

90% 3 4 6 7 7 7 7 6 5

95% 5 6 8 9 10 10 9 9 7

99% 8 11 14 16 17 17 16 15 12

99.5% 10 13 17 20 21 21 20 18 15

Shock in direction of second PC:

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -11 -9 -5 - 1 4 6 7 7

1% -9 -7 -4 - 1 3 4 5 6

5% -5 -4 -2 - - 2 2 3 3

10% -4 -3 -1 - - 1 2 2 2

90% 3 2 1 - - -1 -2 -2 -2

95% 5 3 2 - - -2 -3 -3 -3

99% 8 6 3 - -1 -3 -4 -5 -5

99.5% 10 7 4 - -1 -4 -5 -6 -6
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Table 3 (cont.)

Shock in direction of third PC:

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -4 - 3 4 3 - -1 -2 -4

1% -3 - 3 3 2 - -1 -2 -3

5% -2 - 2 2 2 - - -1 -2

10% -2 - 1 2 1 - - -1 -2

90% 1 - -2 -2 -1 - - - 2

95% 2 - -2 -2 -2 - - 1 2

99% 3 - -3 -4 -3 - - 2 3

99.5% 4 - -4 -4 -3 -1 1 2 4

Simultaneous positive shock to first three PCs:
(sorted by value of 30yr column)

Quantile m03 m06 y01 y02 y03 y05 y07 y10 y30

0.5% -15 -17 -19 -21 -21 -21 -20 -19 -15

1% -8 -11 -14 -17 -18 -18 -18 -17 -14

5% -4 -5 -6 -8 -9 -9 -10 -9 -8

10% -3 -4 -5 -6 -6 -7 -7 -7 -6

90% 1 4 6 8 9 9 8 8 6

95% 2 3 3 5 6 8 8 9 8

99% 8 12 17 20 20 20 18 17 14

99.5% 11 17 25 29 29 27 25 22 17
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Table 3 (cont.)

C. Long Term Interest Rate "Shock Scenarios"
(measured in basis points; values less than 1 bp are suppressed)

Shock in direction of first PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -13 -14 -15 -13 -5 -13 -5 -17 -6

1% -12 -13 -14 -12 -5 -12 -4 -15 -6

5% -7 -8 -8 -7 -3 -7 -3 -9 -4

10% -5 -5 -6 -5 -2 -5 -2 -6 -3

90% 5 5 5 5 2 5 2 6 2

95% 7 7 8 7 3 7 2 9 3

99% 13 14 15 13 5 13 5 16 6

99.5% 20 21 22 19 7 19 7 25 10

Shock in direction of second PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -4 15 -3 -3 3 -3 -3 -1 17

1% -3 12 -2 -2 2 -2 -2 - 13

5% -2 7 -1 -1 1 -2 -1 - 8

10% -1 5 -1 - - -1 -1 - 6

90% - -5 - - -1 - - - -6

95% 1 -7 - 1 -1 1 1 - -8

99% 2 -11 1 2 -2 2 2 - -13

99.5% 3 -12 2 2 -2 2 2 - -14
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Table 3 (cont.)

Shock in direction of third PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% - -5 - -1 16 -1 - -2 -2

1% - -4 - - 13 - - -2 -2

5% - -2 - - 7 - - -1 -1

10% - -2 - - 5 - - - -

90% - 1 - - -6 - - - -

95% - 2 - - -8 - - - 1

99% - 3 - - -13 - - 1 2

99.5% - 4 - - -15 - - 1 2

Simultaneous positive shock to first three PCs:
(sorted by value of US column)

Quantile BE CA FR GE JA NE SZ UK US

0.5% 3 -16 2 2 -3 3 3 - -17

1% -6 -17 -7 -6 -3 -6 -1 -9 -14

5% - -10 -1 -1 5 - - -3 -9

10% -1 -8 -2 -2 3 -2 - -3 -6

90% 4 8 5 4 7 4 1 6 6

95% - 8 - - 7 - - 1 9

99% 3 16 5 4 13 4 - 6 15

99.5% 17 27 21 17 20 17 5 23 18



52

Table 3 (cont.)

D. Stock Market Shocks
(measured in percent per day; values less than 0.5% are suppressed)

Shock in direction of first PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -1.82 -1.33 - -3.37 -3.10 -2.32 -2.64 -2.43 -1.59

1% -1.34 -0.98 - -2.50 -2.31 -1.71 -1.94 -1.79 -1.17

5% -0.75 -0.55 - -1.41 -1.33 -0.95 -1.08 -1.01 -0.64

10% -0.52 - - -0.97 -0.94 -0.65 -0.73 -0.69 -

90% 0.56 - - 1.00 0.83 0.73 0.83 0.74 0.52

95% 0.75 0.55 - 1.35 1.15 0.97 1.11 1.00 0.69

99% 1.32 0.97 - 2.41 2.10 1.71 1.95 1.76 1.20

99.5% 1.53 1.13 - 2.81 2.45 1.98 2.26 2.05 1.39

Shock in direction of second PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% -0.66 1.23 0.99 -0.99 - - - - 1.72

1% -0.58 1.09 0.88 -0.87 - - - - 1.52

5% - 0.67 0.55 -0.52 - - - - 0.94

10% - 0.51 - - - - - - 0.72

90% - - - - - - - - -0.62

95% - -0.62 - 0.57 - - - - -0.85

99% 0.57 -0.94 -0.71 0.84 - - - - -1.29

99.5% 0.63 -1.05 -0.80 0.93 - - 0.51 - -1.43
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Table 3 (cont.)

Shock in direction of third PC:

Quantile BE CA FR GE JA NE SZ UK US

0.5% - - -4.11 - -1.81 - - - -

1% - - -3.01 - -1.34 - - - -

5% - - -1.78 - -0.82 - - - -

10% - - -1.35 - -0.64 - - - -

90% - - 1.45 - 0.56 - - - -

95% - - 1.95 - 0.77 - - - -

99% - - 3.16 - 1.28 - - - -

99.5% - - 3.61 - 1.47 - - - -

Simultaneous positive shock to first three PCs:
(sorted by value of GE column)

Quantile BE CA FR GE JA NE SZ UK US

0.5% -1.83 -1.19 -2.00 -3.51 -4.08 -2.28 -2.63 -2.46 -1.37

1% -1.62 - 1.27 -2.82 -1.87 -1.77 -2.00 -1.46 -

5% -0.87 - 0.88 -1.52 -1.00 -0.96 -1.08 -0.81 -

10% -0.53 - - -1.01 -1.12 -0.65 -0.75 -0.71 -

90% 0.59 - 0.66 1.05 1.01 0.65 0.75 0.56 -

95% 0.93 -0.51 -2.61 1.42 - 0.93 1.03 - -0.72

99% 1.28 1.16 2.03 2.48 3.07 1.70 1.97 1.92 1.44

99.5% 1.85 - -2.28 3.13 1.57 2.08 2.34 1.66 -
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Abstract

This paper presents methodologies for generating scenarios for term structure and volatility

shocks from historical data. These methodologies are selected to provide good approximations to data

and to be easy to replicate. The approaches are based on principal components estimated from return

data.

Government bond returns from seven countries are used to illustrate the methods. The

country level data suggest that three to four principal components are sufficient to capture most

variation in individual country term structures. The first principal components for bond returns are

somewhat correlated across countries; there is less evidence of correlation for other components.

Cross-country evidence suggests that correlations between components changed from 1990-93 to

1994-96. Generalised autoregressive conditional heteroskedasticity (GARCH) variance models for

these principal components are estimated for each country. In several country models asymmetric

responses of volatility to return surprises are detected.

The evidence suggests that variation in particular country term structures can be well

described by relatively few common components. However, considerably more components are

required to jointly describe movements in several country term structures, in part because returns of

short maturity government securities were not highly correlated across the sample countries in

1990-1996.

                                                  
* Views expressed in this paper are those of the author and do not necessarily reflect positions of the Federal Reserve

Bank of New York, the Federal Reserve System, the Eurocurrency Standing Committee, or the Bank for International
Settlements. The author thanks Erika Nanke for excellent research assistance and his colleagues on this project for
many helpful suggestions.
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1. Introduction

Why measure exposure to asset prices? Management of financial firms must know their

firm's exposure to asset price changes both to understand the riskiness of the firm's business and to

appreciate which price changes would generate large losses at the firm. In order to understand the

exposure of a financial firm, it is necessary to identify asset price movements that could cause large

changes in market value of the firm or in the value of the firm's trading book.

Measures of aggregate exposure over a set of major market-making firms could identify

events that would cause large losses at many firms. Aggregated exposure might also identify asset

price movements that could generate unusual market dynamics by, for example, inducing additional

hedging-related transactions that could exacerbate the initial price movement.

Whether at the firm level or aggregated over many firms, exposure could be measured in at

least one of three ways: The first is historical, using large historical movements in asset prices to

define scenarios. In this method, firms would price their books of actively traded instruments at each

scenario. The change in value of their books would measure exposure to each scenario's shocks. The

second approach to measuring exposure is based on firm sensitivities to asset price changes. Here

firms estimate the sensitivities (defined as the derivatives) of the value of their books to changes in a

set of prices. The third approach begins with the development of hypothetical future events that might

create large losses. Plausible asset price responses to each event are constructed with the aid of market

experts and used to define the scenario associated with the event. The implied change in value of

firms' books defines the possible exposure generated by the event.

Each of these three approaches can generate scenarios that help evaluate how the market

value of firms might change in response to asset price shocks. The first approach may provide a better

measure of responses to large price changes than the second approach which probably better describes

the impact of small asset price changes. The value of the third approach depends critically on the

selection of the particular stressful events and the definition of their asset market consequences.

The two sections below outline methodologies for generating scenarios for term structure

and volatility shocks from historical data. These methodologies are selected both to provide good

approximations to data and to be easy to replicate. Both approaches are based on principal

components estimated from return data.

The methodology are illustrated using returns across the government bond term structure

from seven countries. The country level data suggest that three to four principal components are

sufficient to capture most variation in individual country term structures. The first principal

components are somewhat correlated across countries while there is less evidence of correlation for

other components. Cross-country evidence suggests that correlations between components changed

from 1990-93 to 1994-96. GARCH (generalised autoregressive conditional heteroskedasticity) models

for the variance of these principal components are estimated for each country. In several country
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models asymmetric volatility responses to positive and negative return surprises are important for the

components.

2. Term structure shocks

This section describes a methodology for summarising historical movements in interest rates

across government term structures. The methodology could be used to construct scenarios of large

historical changes in term structures. These scenarios could be used both for computing the exposure

of a financial firm's trading book to term structure movements as well as for stress testing purposes.

The outputs from the scenarios could also be aggregated over market-making firms to analyse the

impact of large term structure shifts on aggregate profit & loss statements.

Introduction

Term structure research has established that much of the variability in government bond

returns can be summarised by movements in a few underlying factors.1 Further, if these factors have

high predictive power across maturities, the factors may also capture extreme historical movements in

the term structure.2 I suggest using principal components to extract these factors from government

zero coupon bond returns.3 I also discuss methods for using extrema in the observed principal

components to construct extreme historical scenarios for changes in rates across government term

structures.

One disadvantage of principal components is that they are identified by a statistical

procedure, and thus may be harder to interpret than factors defined by specific economic variables.

However, most evidence suggests that principal components can provide a useful summary of

variation across a term structure. Moreover, the principal components could also be used in modelling

volatility across the term structure.

Zero coupon rates are natural building blocks to describe interest rate movements in a

government securities market. Scenarios defined by changes in government zero coupon rates can

easily be converted into scenarios for prices of other non-callable government securities. Finally, zero

coupon rates can provide a dimension reduction if interpolation is used to give zero rates for

maturities between those in the scenario.

                                                  
1 See Kahn (1989) and Litterman and Scheinkman (1991) for an introduction to US evidence; Steeley (1990) for UK

evidence; and Murphy and Won (1995) and Chaumeton et al. (1996) for discussions of cross-country evidence.

2 Kambhu and Rodrigues (1997) present an example where excluding factors that account for variation across the term
structure can lead to scenarios that miss substantial variation in the value of trading books.

3 This methodology and factor analysis are used extensively in the term structure literature and in practice. See
Campbell et al. (1997) for a general introduction.
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Other methodologies that could be used to summarise term structure movements include a

variety of factor modelling approaches. While the principal components and factor approaches can

give very similar results when variances are constant,4 some form of time-varying variance model is

more plausible for most asset returns. Consequently, factor models incorporating time-varying

variances could give a more precise approximation to financial data than principal components

approaches. Moreover, an explicit factor model might provide powerful tests of whether factor

sensitivities are constant over time and whether an adequate number of factors has been specified to

account for cross-maturity correlations. However, a potential drawback to factor approaches is that

they must be estimated with computationally-intensive nonlinear optimisation and, thus, may be

somewhat hard to implement and to replicate. Largely for computational simplicity, the current

analysis uses a principal components approach.

Data

The analysis below uses data from 7 countries including Canada (CA), France (FR),

Germany (GE), Italy (IT), Japan (JP), the United Kingdom (UK), and the United States (US).

Individual country analyses use returns on zero coupon securities derived from J.P. Morgan daily zero

yields measured from January 1994 through September 1996 (see Murphy (1991) for a description of

the methodology). The zero coupon maturities are 1, 2, 3, 4, 5, 7, 10, 15 and 20 years for all countries.

In the recent period, the data include 25 and 30 year maturities for all countries but Japan and the

United Kingdom. I also use data from January 1990 through September 1996 to conduct an aggregate

analysis across countries. Maturities over 10 years are not available for Germany, Italy, and Japan in

1990-93.

There are two sources of measurement error in these returns: First, the zero coupon yields

are estimated from bond prices and, thus, are not measured exactly. This error arises both because the

estimated zero curve generally does not exactly fit all coupon bond prices and because some

government bonds may not be traded frequently so their quotes may not indicate current market

valuation. Second, the returns are computed from successive daily yields at the same maturity and,

thus, do not reflect the return on a specific zero coupon security.

Country results

The principal component results are presented in Table 1. Three general conclusions can be

drawn from the country data: First, all country term structures can be summarised by a small number

of principal components. Second, two or three components are not always sufficient if we wish to

describe close to 100% of term structure movements. Third, the natural ordering of principal

                                                  
4 Campbell et al. (1997) discuss similarities between principal components and factor analysis. Loretan (1996) outlines

conditions when principal component analysis might be expected to provide a valid summary of a multivariate
distribution.
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components does not always correspond to the most interesting economic order. Thus, some

judgement is required in selecting principal components.

The same statistics are presented for each country. The first matrix reports the percentage of

total variance of each maturity zero coupon return that is explained by a principal component. Each

column in the matrix corresponds to a principal component - the columns are ordered from left to

right; each row corresponds to the labelled maturity. The last row reports a measure of the overall

explanatory power of the component for returns.5 The second matrix for a country presents estimates

of the responses of the zero coupon yields to a one-standard deviation increase in a particular principal

component. As in the first matrix, columns correspond to principal components and rows correspond

to maturities.

Starting with Canada results, the first (leftmost) principal component explains a large

fraction of variance for each maturity, from a low of 46% up to 99% for the 25 year maturity. The

second principal component adds to the explanatory power particularly for shorter maturity zeros.

(Since the principal components are uncorrelated, these fractions can be added to determine the total

fraction of variance explained by a set of components.) Note that the third component also improves

explanatory power for short maturities but by less than the fourth component. The first, second, and

fourth component together could explain at least 82% of variance at every maturity. More components

would be required to cover 90% of variation in every maturity. The sensitivities at the bottom of the

page, along with similar sensitivities for returns, give a method to convert extreme values of the

principal components into extreme yield changes or returns. The sensitivities suggest that the first

component represents shifts in the term structure, that the second component represents term structure

steepening, and that the third component (and the fourth component except at 30 years) reflects

greater curvature in the term structure.

The other country results are somewhat similar. In every case the first component accounts

for considerable variance across the term structure and reflects a term structure shift. However,

interpretation of the other components is not always identical. Further, for several countries

(Germany, Italy, Japan, and the United Kingdom), four components are required to describe over 80%

of variation at all maturities. In order to account for most of the variation across the term structure,

this country-level analysis suggests that at least three or four principal components per country are

required.

Results of an analysis of standardised returns (defined as the return for each maturity divided

by its sample standard deviation) are shown in Table 2. The standardised returns lead to slightly

neater results: Over 90% of variation in most countries standardised returns at all maturities are

described by the first three components. As we observed in the analysis of unstandardised returns, the

components for each country are associated with similar movements in yields across the term

                                                  
5 The measure of overall or total explanatory power is the ratio of variance of the component to the trace of the

covariance matrix of returns. These values sum to one.
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structure. Specifically, the first component for each country's data seems to represent a shift in the

term structure while the second represents a twist and the third introduces greater curvature in the term

structure. Note that the sensitivity of yields at various maturities to the components derived from

standardised returns is often similar in size to sensitivities derived from unstandardised returns,

implying that scenarios derived from both approaches will be similar.

Aggregate results

Combining several country term structures offers the possibility of further dimension

reduction because there may be consistent, common influences across the markets. I consider two

approaches to measuring possible gains by combining countries: First, I investigate correlations

between principal components estimated for different countries. Second, I analyse combined data for

the seven countries described above. These approaches both suggest that some dimension reduction is

possible from combining data across countries - this reduction reflects correlations in returns across

countries.

Evidence from correlations between country-level principal components suggests that there

is some correlation between the first components extracted from different country bond return data.

There is less evidence for correlation between second and third components. Table 3 compares

correlations between first, second, or third principal components across countries over two time

periods (1990-93 and 1994-96). Generally speaking the first principal components exhibit the highest

correlations across countries with the second components less correlated and the third components

typically weakly correlated. There is some evidence that correlations changed after 1993, with

stronger correlations often observed between first principal components in 1994-96. Table 4 presents

the same comparison estimated from standardised returns. While correlations between components are

often more positive with the standardised returns, the standardised returns seem to give qualitatively

similar results to the unstandardised returns.

Combining country data gives a different perspective on correlations across country bond

returns. These calculations suggest that there are minor additional reductions in dimension from

combining data across countries. The major positive result is that relatively few (5) principal

components describe a large fraction of variance in the long ends of most country term structures.

Japan is an exception; movements in Japanese rates are described by components that are not highly

correlated with other country term structures. Moreover, term structure returns in the 1-5 year maturity

range are not well described by the first 5 components that account for variation at long maturities. In

fact, many principal components would be required to explain 1-5 year maturity variance across these

countries. Thus, if our goals are both to reduce the number of variables that define scenarios as well as

to choose variables that describe most of the movement in the term structures, joint modelling of term

structures in these countries may require almost as many principal components as would be required

for separate country models.
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Two views of the explanatory power of the principal components illustrate these results:

Table 5 presents the variance of each maturity's return explained by the first 5, 10, or 20 principal

components estimated over 1994-96. These principal components were computed jointly from the

covariances of all 73 returns. The first 5 principal components describe most of the variation in

returns of maturities over 10 years with the exceptions of the U.K. returns (where around 60% is

captured) and of the Japanese returns (where very little variation is captured). The first 10 principal

components explain longer maturities well but only account for 30-50% of the variation in short

maturities. Moving to the first 20 principal components helps but in five countries (Canada, Germany,

Italy, Japan, the United Kingdom) is not sufficient to describe 80% of variation in short rates.

However, analysis of the 1990-93 period suggests that the relatively high recent correlation

in returns may be exceptional. Table 6 reports the explanatory power of the first 5, 10, or 20 principal

components for each maturity's return in 90-93. Note that the 15-30 year maturities are not available

for Germany, Italy, and Japan in this earlier sample so the number of reported maturities is smaller for

those countries. While the first 5 principal components continue to describe long maturity returns well

in several countries, they capture less variation in German and Italian returns. Although the first 10

components describe variation in most country returns, the first 20 are required to also capture

variation in Japanese returns. This comparison of 1990-93 to 1994-96 suggests that the role of the

components changed somewhat from the first to the second period. These results are reinforced by a

graphical analysis.

A second, graphical illustration of association across countries provides additional insight

into return correlations across countries. Chart 1 is a contour plot for 1994-96 data that circles the

combinations of principal components and of securities where a component explains at least 10% of a

particular security's return variation. Thus, tight clusters of curves highlight components that account

for substantial return variation in particular securities. In contrast, areas in the grid without any

marking indicate components that do not describe those returns well. The chart illustrates that the first

five components describe return variation for all countries except Japan. Component 6 describes

several U.K. maturities while components 7 through 9 help explain the Japanese term structure. The

small marks for higher numbered components indicate components that account for particular country

shorter maturity returns. There is at least one unique "short-term" component for each country. An

analysis of the return variation matrix suggests that at least 10 principal components are required to

account for at least 90% of 1 year return variation in each country.

Chart 2 repeats this analysis for the 1990-93 data and illustrates that the correlations of

returns were somewhat different than in 1994-96. The first five components no longer seem as

important across countries with Japanese and Italian returns somewhat unrelated to other country

returns. As in the later period, shorter and longer maturities are occasionally related to different sets of

principal components.
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Constructing term structure scenarios

Having derived a set of principal components that account for most variation in term

structure returns, there are several approaches to deriving scenarios:6 The first approach involves

identifying large values of individual principal components and mapping those into a set of historical

scenarios. In this approach, the large values of the components could be defined either by tail

percentiles in the components' empirical distribution or, if the components are distributed

symmetrically, by multiples of the components' standard deviations. Each actual scenario would be

derived by multiplying the corresponding component value by the yield sensitivities reported earlier.

A second approach would combine movements in principal components to produce

scenarios that might correspond more closely to actual term structure movements. Specifically, the

approach involves creating a separate scenario for each possible combination of large increase, large

decrease, or no change in the principal components.7 Thus, with N principal components there would

be 3N-1 possible scenarios, illustrated below for a two component example:

Component 1

– 0 +

Component – Scenario 1 Scenario 2 Scenario 3

2 0 Scenario 4 Scenario 5

+ Scenario 6 Scenario 7 Scenario 8

The extreme outcomes for each principal component could be selected using either observed

values in the tails of the component's empirical distribution or multiples of the component's standard

deviation.

A third approach would identify specific historical episodes and use the observed component

shocks during those episodes to derive a scenario. An alternative to this approach would simply use

the observed term structure movements during these episodes as a scenario.

                                                  
6 The analysis in this section assumes an objective of measuring the change in trading book value induced by large

movements in term structures. A more detailed grid of scenarios would be required when the objective is measuring
how trading book value varies with changes in interest rates over the whole range of historically observed rate
movements.

7 This is a simplified version of the approach proposed by Jamshidian and Zhu (1996). A simpler alternative would
construct scenarios using just large increases and large decreases in the components. This would create 2N-1 possible
scenarios. Jamshidian and Zhu (1996) present evidence that division of the historical range of component outcomes
into several categories can lead to a set of scenarios that cover many likely term structure outcomes. The examples in
Kambhu and Rodrigues (1997) imply that these risk measures should be constructed using all components whose risk
is priced in the market. A separate analysis of portfolio sensitivity to shocks in sources of residual risk would also be
appropriate if exposure to some sources of residual risk might be large.
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Other topics

Several other issues need to be considered when constructing interest rate scenarios. These

include how to measure credit quality shocks, whether some scenarios should include shocks that data

suggest occurred over more than one day, and if the statistical models for returns are stable over the

sample.

The discussion above has focused on modelling government security term structures.

However, term structures for private sector debt with different credit quality are more relevant for

pricing many instruments including swaps and most forwards and futures. Furthermore, academic and

practitioner literature suggests that risky debt spreads over comparable government security yields

vary somewhat predictably with the business cycle and with the level of short rates.8 The limited data

on private sector rates for different credit quality borrowers suggests that some compromises are

necessary to model and generate scenarios for shocks to private sector rates. One approach would

generate shocks for private sector rates by applying typical credit spreads to the government term

structure shocks or by assuming that private sector rates retain their typical correlations with

government rates. A major drawback of this approach is that large asset price movements might also

lead to significant changes in credit spreads. A more realistic approach would use data on private

sector rates by country in an analysis like that carried out above for government term structures.

My analysis has focused on modelling daily returns. An extension of this analysis would

construct some scenarios from shocks over several days. While the results of applying this type of

scenario could be misleading (because firms adjust hedges during an event), they may also represent a

different type of stressful event from the single-day-shock. Another reason to consider multiple-day

returns is that measured correlations would be less affected by non-synchronous daily measurements

of yields.

Finally, a more detailed analysis of the stability of the principal components representations

used to construct the scenarios is necessary.9 If the models are not stable or if the models do not

describe most of return variance, the scenarios may fail to map out large historical events.

3. Volatility shocks

Financial firms that trade options or financial instruments with option components will have

typically have exposures both to asset prices and to volatility. Thus, analysis of their exposures

                                                  
8 See Duffee (1996), Knez, Litterman and Scheinkman (1994) or Litterman and Iben (1991) for examples.

9 The simplest test for stability, measuring whether the covariance matrix of returns is approximately constant over
extended samples, is problematic with asset prices because conditional volatility of returns typically varies over time.
However, it is possible that the responses of yields or returns to principal components or factors are stable. This could
arise if variation in the conditional volatility of the principal components is the source of variation in the conditional
volatility of returns.
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requires measuring changes in the value of their trading books as both volatility and underlying prices

and interest rates move.

There are several interpretations of changes in volatility: For example, a trader's view might

be a change in the quote sheet of implied volatilities for options on a particular underlying by strike

price and time-to-expiration. This is essentially equivalent to a change in the price of a group of

options; without further structure such a change could be associated with a change in the variance of

the underlying distributions of future prices or even with a change in the shape of underlying future

distributions.10

Although volatility changes could be derived from options price data, I focus on models of

the underlying variance of asset prices and specifically GARCH models. Such models provide

estimates of the volatility of the underlying asset price and have the advantage of being easy to

estimate.11 Other models, such as stochastic volatility models, also provide good descriptions of

movements in asset price volatilities.12

Introduction

This section outlines a fairly simple approach to measuring volatility movements, based on

GARCH models. Specifically, if the set of underlying asset prices are well-described by a factor

model, volatility models for the factors could describe most of the variation in volatility of the asset

returns.13 Volatility models for factors could provide a more parsimonious description of volatility

and would require estimating far fewer models than direct modelling of volatility for each asset price.

The empirical section below illustrates an approximation to a full factor model. Rather than

estimating a full factor model with GARCH volatilities, principal components are extracted from a set

of asset returns and GARCH models are estimated for the principal components. This approach is

easy to reproduce but would only provide consistent parameter estimates of the underlying factor

model under quite restrictive assumptions. Future work is required to compare these estimates with

factor model estimates to illustrate the size of estimation error arising from this approximation.

                                                  
10 There is a large literature proposing methods for extracting the implied distribution of the underlying price from a set

of options prices. For examples, see Bates (1991), Derman and Kani (1994), Malz (1996), Melick and Thomas (1994),
Neuhaus (1995), or Rubinstein (1994).

11 Andersen and Bollerslev (1997) suggest that evidence of poor volatility forecasts at high frequencies by ARCH class
models may reflect the noise in daily volatility estimators and that ARCH models provide good forecasts of
underlying volatility.

12 See Melino and Turnball (1991) or Campbell et al. (1997) for an introduction to stochastic volatility models. Nelson
(1992) and Nelson and Foster (1994) demonstrate that ARCH models provide an approximation to stochastic volatility
models. Jacquier et al. (1994) present a computationally attractive method of estimating stochastic volatility models.

13 This might correspond to the Factor ARCH model of Engle et al. (1990) or to a factor model with different volatility
models for each factor as in Harvey et al. (1992) or King et al. (1994). If the sources of idiosyncratic risk also display
time-varying volatility, then their volatilities must also be modelled.
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When a set of volatility models have been derived, there are several approaches for

developing scenarios for large historical changes in volatility: First, the models could be used directly

to generate predicted changes in volatility in-sample; the extreme values of these changes could be

used as scenarios. Second, scenarios for large factor movements could be combined with the GARCH

models to generate predicted changes in volatility that are consistent with the changes in underlying

prices. Finally, particular the predicted volatility changes during specific historical episodes could be

computed. I present examples below of the first type of scenario.

Models

To illustrate this methodology, I estimated GARCH models for the first three principal

components for government term structures of Canada, France, Germany, Italy, Japan, the United

Kingdom, and the United States. The principal component procedure is described in the previous

section. These models were estimated on daily J.P. Morgan zero coupon government bond return data

from January 1994 through September 1996. (See Table 7.) The estimated models were GARCH(1,1)

models with allowance for possible asymmetry in conditional variance (sometimes called the leverage

effect in the literature). That is, negative returns are allowed to imply different future predicted

volatility than positive returns. Results varied across term structure models but in many cases the

models implied slowly decaying volatility in the first (shift) component; some country models also

showed slow decay for the second (twist) and third (curvature) component. Leverage effects were

most often important for the third component but in some countries are also observed in volatility of

the first and second principal components.

Chart 3 displays several views of the predicted volatility across the term structures of each

of the seven countries. The mean and range of predicted volatility across the maturities is reported in

the top chart. As expected, volatility of returns typically rises with maturity. The volatility models

appear to capture much of the underlying term structure variance because the mean variance predicted

by the model is similar to an estimate of the mean unconditional variance. The middle and bottom

charts show the largest one and five day changes in volatilities. Note that in some countries the largest

five-day changes are slightly smaller than the one-day changes.

Scenarios

The predicted volatility changes provide one set of volatility scenarios. A full scenario

would include changes in volatility for forecast horizons up to several months in addition to the daily

changes exhibited in Chart 3. Another set of scenarios could be constructed from scenarios for the

principal components by conditioning on the principal component shocks when constructing volatility

scenarios. This second set of scenarios would be consistent with the scenarios for the term structure

and so may be preferable to the first method. A third set of scenarios could be constructed from

estimated conditional variance movements during specific historical episodes.
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Future work

One check on the realism of this approach would be to compare volatility shocks constructed

from GARCH models to movements in implied volatilities derived from options on the relevant asset.

Practitioners often report that implied volatility tends to be less variable than historical volatility.

Since GARCH estimates could be considered a type of historical volatility estimator, it is possible

that the GARCH models generate volatility changes that are too large.14

Future work should compare volatility model estimates derived from principal components

to factor model estimates. Such a comparison would provide an estimate of the likely size of

estimation error from using the simpler principal component procedure.

4. Conclusions

This paper presented methodologies for summarising large movements in term structures

and in volatilities. Empirical results suggest that several country government bond term structures can

be described by three or four principal components. The principal components appear to have simple

interpretations similar to those found by other researchers who have modelled the U.K. and U.S. term

structures. The first principal component, which accounts for a large fraction of return variance at

most maturities and which reflects roughly parallel shifts in the term structure, is more highly

correlated across countries than other principal components. However, the cross country correlations

seem to have shifted after 1993, suggesting that multiple country models are less stable than single

country models. A methodology is also presented for constructing term structure shocks for risk

measurement purposes.

The paper also proposes a standard GARCH methodology to derive conditional variances

for the principal components. These models capture some aspects of the data well. Large changes in

predicted variances from the GARCH models could be used to generate volatility scenarios.

                                                  
14 However, Andersen and Bollerslev (1997) present evidence that GARCH models may measure exchange rate

volatility well even though they are not highly correlated with high frequency historical estimators of instantaneous
volatility.
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Table 1a

Principal component analysis:
term structure returns in Canada (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 46% 23% 5% 13% 3% 7% 0% 1% 0% 0% 0%
2 58% 24% 6% 8% 1% 3% 0% 0% 0% 0% 0%
3 65% 23% 5% 6% 1% 0% 0% 0% 0% 0% 0%
4 71% 22% 4% 2% 0% 1% 0% 0% 0% 0% 0%
5 75% 21% 3% 1% 0% 1% 0% 0% 0% 0% 0%
7 82% 15% 2% 1% 0% 0% 0% 0% 0% 0% 0%
10 89% 7% 2% 2% 0% 0% 0% 0% 0% 0% 0%
15 91% 2% 6% 0% 0% 0% 0% 0% 0% 0% 0%
20 97% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0%
25 99% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
30 97% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0%
Total 95% 3% 2% 0% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 7.7 - 5.4 - 2.7 - 4.1 - 1.8 2.9 0.5 - 1.3 0.1 - 0.7 0.7
2 7.5 - 4.9 - 2.4 - 2.8 - 1.2 1.7 0.2 - 0.3 - 0.2 - 0.1 - 0.4
3 7.5 - 4.4 - 2.1 - 2.2 - 0.7 0.2 - 0.2 0.6 - 0.1 0.4 0.1
4 7.3 - 4.1 - 1.8 - 1.2 - 0.1 - 0.7 - 0.2 0.2 0.2 - 0.3 0.0
5 7.3 - 3.8 - 1.4 - 0.6 0.2 - 0.8 0.0 - 0.4 - 0.2 0.1 0.0
7 6.8 - 2.9 - 1.1 0.7 0.3 0.2 0.1 - 0.1 0.2 0.1 0.0
10 6.5 - 1.8 - 0.9 0.9 0.2 0.2 0.0 0.1 - 0.1 - 0.1 0.0
15 5.8 - 0.9 1.5 0.3 - 0.4 - 0.1 0.0 0.0 0.0 0.0 0.0
20 5.8 - 0.1 0.9 - 0.2 0.2 0.1 - 0.1 0.0 0.0 0.0 0.0
25 5.7 0.4 0.1 - 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0
30 5.6 0.8 - 0.5 0.1 - 0.1 0.0 0.0 0.0 0.0 0.0 0.0



Table 1b

Principal component analysis:
term structure returns in France (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 26% 25% 30% 2% 3% 0% 11% 3% 0% 0% 0%
2 55% 22% 14% 1% 2% 0% 5% 0% 0% 0% 0%
3 66% 20% 12% 1% 1% 0% 0% 0% 0% 0% 0%
4 73% 17% 9% 0% 0% 0% 0% 0% 0% 0% 0%
5 79% 14% 5% 0% 0% 0% 1% 0% 0% 0% 0%
7 92% 5% 0% 1% 1% 0% 0% 0% 0% 0% 0%
10 95% 4% 0% 1% 0% 0% 0% 0% 0% 0% 0%
15 97% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%
20 99% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
25 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
30 99% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Total 98% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 4.5 - 4.4 4.8 - 1.1 - 1.6 0.6 - 2.9 1.5 0.4 - 0.2 0.2
2 4.8 - 3.1 2.4 - 0.7 - 1.0 0.1 - 1.5 - 0.1 0.3 - 0.1 - 0.1
3 5.3 - 2.9 2.3 - 0.6 - 0.5 - 0.1 - 0.2 - 0.3 - 0.4 0.3 0.0
4 5.6 - 2.7 1.9 - 0.4 - 0.2 - 0.1 0.4 - 0.1 - 0.2 - 0.3 0.0
5 5.7 - 2.4 1.5 - 0.2 0.1 0.0 0.6 0.2 0.2 0.1 0.0
7 5.9 - 1.4 0.0 0.6 0.6 0.2 - 0.1 0.3 - 0.1 0.0 0.0
10 5.9 - 1.2 0.0 0.5 0.3 0.0 - 0.1 - 0.3 0.0 0.0 0.0
15 6.0 - 0.7 - 0.5 0.3 - 0.3 - 0.2 0.0 0.0 0.0 0.0 0.0
20 6.1 - 0.4 - 0.4 - 0.2 - 0.1 0.2 0.0 0.0 0.0 0.0 0.0
25 6.3 0.0 - 0.1 - 0.2 0.1 - 0.2 0.0 0.0 0.0 0.0 0.0
30 6.5 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Table 1c

Principal component analysis:
term structure returns in Germany (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 24% 0% 23% 22% 1% 16% 9% 1% 4% 0% 1%
2 44% 2% 35% 10% 0% 7% 1% 0% 1% 0% 0%
3 54% 2% 29% 12% 0% 2% 0% 0% 1% 0% 0%
4 65% 1% 26% 6% 0% 0% 1% 0% 0% 0% 0%
5 69% 2% 20% 7% 0% 1% 0% 0% 0% 0% 0%
7 79% 5% 15% 0% 2% 0% 0% 0% 0% 0% 0%
10 88% 0% 9% 2% 0% 0% 0% 0% 0% 0% 0%
15 92% 7% 1% 0% 0% 0% 0% 0% 0% 0% 0%
20 90% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0%
25 98% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0%
30 86% 14% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Total 90% 8% 2% 0% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 2.5 0.2 2.4 - 2.3 - 0.4 2.0 1.5 0.4 - 1.0 0.2 - 0.5
2 3.3 0.6 3.0 - 1.6 - 0.3 1.4 0.4 - 0.3 - 0.4 - 0.1 0.2
3 4.1 0.8 3.0 - 1.9 - 0.1 0.8 0.0 0.2 0.5 0.0 0.0
4 5.1 0.6 3.2 - 1.6 - 0.3 - 0.1 - 0.7 0.2 - 0.2 0.0 0.0
5 4.8 0.7 2.6 - 1.5 - 0.4 - 0.6 0.4 - 0.1 0.0 0.0 0.0
7 5.2 1.3 2.2 0.0 0.8 - 0.1 0.1 0.0 0.0 0.0 0.0
10 5.5 0.3 1.8 0.9 - 0.1 0.1 - 0.1 - 0.2 0.0 0.0 0.0
15 6.1 - 1.7 0.5 0.5 - 0.1 0.0 0.1 0.1 0.0 0.0 0.0
20 6.1 - 2.0 - 0.2 - 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 5.8 - 0.8 - 0.4 - 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 5.1 2.0 - 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Table 1d

Principal component analysis:
term structure returns in Italy (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 41% 11% 3% 22% 5% 13% 2% 2% 1% 0% 0%
2 53% 16% 9% 14% 2% 4% 2% 0% 0% 0% 0%
3 55% 16% 12% 12% 1% 1% 1% 2% 0% 0% 0%
4 61% 15% 12% 9% 1% 1% 0% 1% 0% 0% 0%
5 64% 15% 15% 4% 1% 1% 1% 0% 0% 0% 0%
7 50% 31% 16% 0% 2% 0% 0% 0% 0% 0% 0%
10 69% 12% 18% 1% 0% 0% 0% 0% 0% 0% 0%
15 93% 1% 7% 0% 0% 0% 0% 0% 0% 0% 0%
20 94% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0%
25 98% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0%
30 95% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0%
Total 92% 4% 3% 0% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 7.7 4.0 2.3 - 5.6 - 2.6 - 4.4 - 1.8 1.7 - 1.3 0.4 0.0
2 7.8 4.3 3.2 - 3.9 - 1.6 - 2.2 - 1.3 0.5 0.6 - 0.2 0.0
3 7.4 4.0 3.5 - 3.5 - 1.1 - 0.8 1.1 - 1.3 0.0 0.0 0.0
4 8.3 4.0 3.7 - 3.1 - 1.0 1.1 0.6 0.8 0.0 0.0 0.0
5 8.2 3.9 3.9 - 2.0 0.8 0.8 - 0.8 - 0.4 0.0 0.0 0.0
7 7.6 6.0 4.3 0.0 1.4 - 0.4 0.3 0.2 0.0 0.0 0.0
10 8.3 3.4 4.2 1.0 - 0.5 0.0 0.0 0.0 0.0 - 0.1 0.0
15 9.7 - 0.7 2.6 0.4 - 0.2 0.0 0.0 0.0 0.0 0.1 0.0
20 10.4 - 2.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 10.5 - 1.6 - 0.4 - 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
30 9.8 1.7 - 1.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Table 1e

Principal component analysis:
term structure returns in Japan (1994-96)

Component 1 2 3 4 5 6 7 8 9

Fraction of variance explained by component

1 40% 7% 13% 15% 19% 4% 0% 0% 0%
2 64% 12% 7% 10% 7% 1% 0% 0% 0%
3 72% 11% 7% 7% 1% 0% 0% 0% 0%
4 78% 11% 6% 5% 0% 0% 0% 0% 0%
5 82% 9% 5% 3% 1% 0% 0% 0% 0%
7 89% 5% 2% 4% 0% 0% 0% 0% 0%
10 93% 5% 1% 1% 0% 0% 0% 0% 0%
15 89% 0% 10% 1% 0% 0% 0% 0% 0%
20 91% 8% 1% 0% 0% 0% 0% 0% 0%
Total 89% 6% 4% 1% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 3.5 - 1.4 2.0 2.1 2.4 1.2 - 0.4 0.3 0.0
2 3.9 - 1.7 1.3 1.5 1.3 0.5 0.0 - 0.1 0.0
3 4.5 - 1.8 1.4 1.4 0.6 - 0.3 0.3 0.0 0.0
4 4.8 - 1.8 1.3 1.2 - 0.1 - 0.4 - 0.2 0.0 0.0
5 4.9 - 1.6 1.2 0.9 - 0.6 0.2 0.0 0.0 0.0
7 5.3 - 1.3 0.8 - 1.2 0.1 0.0 0.0 0.0 0.0
10 4.0 - 0.9 - 0.5 - 0.4 0.0 0.0 0.0 0.0 0.0
15 3.0 - 0.1 - 1.0 0.2 0.0 0.0 0.0 0.0 0.0
20 3.2 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0



Table 1f

Principal component analysis:
term structure returns in the United Kingdom (1994-96)

Component 1 2 3 4 5 6 7 8 9

Fraction of variance explained by component

1 32% 23% 17% 11% 11% 4% 2% 0% 0%
2 62% 23% 7% 5% 3% 1% 0% 0% 0%
3 72% 18% 6% 3% 1% 0% 0% 0% 0%
4 80% 15% 4% 1% 0% 0% 0% 0% 0%
5 85% 12% 3% 0% 1% 0% 0% 0% 0%
7 92% 7% 0% 0% 0% 0% 0% 0% 0%
10 96% 2% 0% 1% 0% 0% 0% 0% 0%
15 98% 0% 1% 0% 0% 0% 0% 0% 0%
20 97% 2% 0% 0% 0% 0% 0% 0% 0%
Total 96% 3% 1% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 3.9 - 3.3 2.8 - 2.2 - 2.3 1.3 - 0.9 - 0.4 0.3
2 5.2 - 3.2 1.8 - 1.4 - 1.2 0.5 - 0.3 0.0 - 0.2
3 5.8 - 2.9 1.7 - 1.2 - 0.6 - 0.2 0.4 0.3 0.0
4 6.4 - 2.7 1.4 - 0.6 0.2 - 0.3 0.2 - 0.3 0.0
5 6.6 - 2.5 1.1 - 0.2 0.6 - 0.2 - 0.3 0.1 0.0
7 7.2 - 1.9 0.0 0.5 0.2 0.4 0.1 0.0 0.0
10 7.4 - 1.1 - 0.5 0.6 - 0.2 - 0.2 0.0 0.0 0.0
15 6.5 0.1 - 0.8 - 0.4 0.0 0.0 0.0 0.0 0.0
20 6.1 1.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0



Table 1g

Principal component analysis:
term structure returns in the United States (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 52% 34% 0% 10% 1% 3% 0% 0% 0% 0% 0%
2 64% 30% 0% 4% 0% 1% 0% 0% 0% 0% 0%
3 71% 26% 0% 3% 0% 0% 0% 0% 0% 0% 0%
4 78% 21% 0% 1% 0% 0% 0% 0% 0% 0% 0%
5 81% 18% 0% 0% 0% 0% 0% 0% 0% 0% 0%
7 88% 12% 0% 0% 0% 0% 0% 0% 0% 0% 0%
10 93% 6% 0% 0% 0% 0% 0% 0% 0% 0% 0%
15 98% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 99% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%
25 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
30 99% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Total 98% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 4.7 3.8 - 0.1 2.0 0.5 1.2 0.3 - 0.4 - 0.1 - 0.1 0.1
2 5.3 3.6 - 0.1 1.4 0.3 0.6 0.2 - 0.1 - 0.1 0.0 - 0.1
3 5.7 3.4 - 0.2 1.1 0.2 0.1 0.0 0.2 0.1 0.1 0.0
4 5.9 3.1 - 0.2 0.7 0.0 - 0.2 - 0.1 0.0 0.0 - 0.1 0.0
5 6.0 2.8 - 0.2 0.4 0.0 - 0.3 - 0.1 - 0.1 0.0 0.0 0.0
7 6.1 2.2 - 0.3 - 0.3 - 0.2 0.1 0.0 0.0 0.1 0.0 0.0
10 5.9 1.5 - 0.3 - 0.3 - 0.1 0.1 0.0 0.0 0.0 0.0 0.0
15 5.7 0.6 0.3 - 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0
20 5.5 - 0.1 0.4 0.0 0.0 0.0 - 0.1 0.0 0.0 0.0 0.0
25 5.2 - 0.3 0.1 0.1 - 0.1 0.0 0.1 0.0 0.0 0.0 0.0
30 5.1 - 0.4 - 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Table 2a

Principal component analysis:
standardised term structure returns in Canada (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 73% 20% 6% 0% 1% 0% 0% 0% 0% 0% 0%
2 85% 14% 1% 0% 0% 0% 0% 0% 0% 0% 0%
3 90% 8% 0% 0% 1% 1% 0% 0% 0% 0% 0%
4 93% 4% 1% 0% 1% 0% 0% 0% 0% 0% 0%
5 95% 2% 3% 0% 0% 0% 0% 0% 0% 0% 0%
7 95% 0% 3% 0% 1% 0% 0% 0% 0% 0% 0%
10 95% 1% 2% 0% 1% 0% 0% 0% 0% 0% 0%
15 84% 10% 0% 6% 0% 0% 0% 0% 0% 0% 0%
20 85% 12% 1% 1% 0% 0% 0% 0% 0% 0% 0%
25 85% 13% 1% 0% 0% 0% 0% 0% 0% 0% 0%
30 81% 14% 1% 4% 0% 0% 0% 0% 0% 0% 0%
Total 87% 9% 2% 1% 1% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 9.7 - 5.1 - 2.8 - 0.3 - 0.9 0.6 0.2 0.2 - 0.2 0.0 0.0
2 9.1 - 3.7 - 1.1 0.0 - 0.2 - 0.4 - 0.2 - 0.3 0.3 0.0 0.0
3 8.8 - 2.7 0.1 0.1 0.9 - 0.7 - 0.1 0.0 - 0.3 0.0 0.0
4 8.4 - 1.7 1.0 0.2 0.9 0.2 0.2 0.3 0.2 0.0 0.0
5 8.2 - 1.1 1.4 0.0 0.5 0.6 0.0 - 0.4 - 0.1 0.0 0.0
7 7.3 0.0 1.4 0.1 - 0.8 0.0 - 0.1 0.1 - 0.1 - 0.2 0.0
10 6.7 0.7 1.0 0.4 - 0.8 - 0.2 0.0 0.0 0.0 0.2 0.0
15 5.5 1.9 - 0.1 - 1.5 - 0.1 - 0.1 0.3 - 0.1 0.0 0.0 0.0
20 5.4 2.0 - 0.6 - 0.5 0.2 0.1 - 0.3 0.1 0.0 0.1 - 0.1
25 5.2 2.0 - 0.6 0.4 0.2 0.1 - 0.1 0.0 0.0 0.0 0.1
30 5.1 2.1 - 0.7 1.1 0.0 0.0 0.2 - 0.1 0.0 0.0 - 0.1



Table 2b

Principal component analysis:
standardised term structure returns in France (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 51% 44% 3% 0% 0% 0% 0% 0% 0% 0% 0%
2 81% 18% 1% 0% 1% 0% 0% 0% 0% 0% 0%
3 89% 8% 1% 0% 0% 0% 0% 0% 0% 0% 0%
4 93% 4% 2% 0% 0% 0% 0% 0% 0% 0% 0%
5 96% 1% 3% 0% 0% 0% 0% 0% 0% 0% 0%
7 94% 3% 0% 2% 0% 0% 0% 0% 0% 0% 0%
10 95% 3% 0% 1% 0% 0% 0% 0% 0% 0% 0%
15 92% 7% 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 91% 8% 0% 0% 0% 0% 0% 0% 0% 0% 0%
25 90% 9% 1% 0% 0% 0% 0% 0% 0% 0% 0%
30 86% 10% 2% 1% 0% 0% 0% 0% 0% 0% 0%
Total 87% 10% 1% 1% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 6.3 - 5.9 - 1.6 0.3 0.6 - 0.2 - 0.1 0.1 0.0 0.0 0.0
2 5.8 - 2.7 - 0.5 0.1 - 0.6 0.1 0.2 - 0.2 0.0 0.0 0.0
3 6.2 - 1.9 0.6 - 0.4 - 0.3 0.3 - 0.4 0.1 0.1 0.0 0.0
4 6.3 - 1.2 1.0 - 0.5 0.1 - 0.1 0.1 0.1 - 0.3 0.0 0.0
5 6.3 - 0.6 1.0 - 0.2 0.4 - 0.3 0.2 - 0.1 0.2 0.0 0.0
7 6.0 1.0 0.4 0.9 0.4 0.1 - 0.1 0.0 0.0 0.0 0.0
10 5.9 1.1 0.2 0.5 - 0.1 0.3 0.1 - 0.1 0.0 0.0 0.0
15 5.8 1.6 - 0.1 0.3 - 0.4 - 0.3 0.1 0.4 0.0 0.0 0.0
20 5.9 1.7 - 0.4 - 0.1 - 0.2 - 0.3 - 0.2 - 0.2 0.0 0.2 0.0
25 6.0 1.9 - 0.6 - 0.4 0.0 0.0 - 0.1 - 0.2 0.0 - 0.2 0.0
30 6.1 2.1 - 0.9 - 0.7 0.4 0.3 0.1 0.2 0.0 0.1 0.0



Table 2c

Principal component analysis:
standardised term structure returns in Germany (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 51% 33% 10% 0% 0% 0% 0% 0% 0% 0% 0%
2 77% 21% 0% 1% 0% 0% 0% 0% 0% 0% 0%
3 85% 12% 0% 1% 1% 0% 0% 0% 0% 0% 0%
4 91% 4% 1% 1% 0% 0% 1% 0% 0% 0% 0%
5 92% 3% 1% 1% 2% 0% 0% 0% 0% 0% 0%
7 92% 0% 5% 1% 0% 1% 0% 0% 0% 0% 0%
10 91% 3% 1% 3% 0% 0% 0% 0% 0% 0% 0%
15 80% 14% 4% 0% 0% 0% 0% 0% 0% 0% 0%
20 74% 18% 8% 0% 0% 0% 0% 0% 0% 0% 0%
25 80% 17% 2% 1% 0% 0% 0% 0% 0% 0% 0%
30 76% 7% 9% 0% 0% 0% 0% 0% 0% 0% 0%
Total 81% 12% 4% 1% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 3.6 2.9 - 1.6 0.3 0.6 - 0.2 - 0.1 0.1 0.0 0.0 0.0
2 4.4 2.3 - 0.5 0.1 - 0.6 0.1 0.2 - 0.2 0.0 0.0 0.0
3 5.1 1.9 0.6 - 0.4 - 0.3 0.3 - 0.4 0.1 0.1 0.0 0.0
4 6.0 1.2 1.0 - 0.5 0.1 - 0.1 0.1 0.1 - 0.3 0.0 0.0
5 5.5 0.9 1.0 - 0.2 0.4 - 0.3 0.2 - 0.1 0.2 0.0 0.0
7 5.6 0.0 0.4 0.9 0.4 0.1 - 0.1 0.0 0.0 0.0 0.0
10 5.6 - 1.1 0.2 0.5 - 0.1 0.3 0.1 - 0.1 0.0 0.0 0.0
15 5.7 - 2.4 - 0.1 0.3 - 0.4 - 0.3 0.1 0.4 0.0 0.0 0.0
20 5.5 1.7 - 0.4 - 0.1 - 0.2 - 0.3 - 0.2 - 0.2 0.0 0.2 0.0
25 5.2 1.9 - 0.6 - 0.4 0.0 0.0 - 0.1 - 0.2 0.0 - 0.2 0.0
30 4.8 2.1 - 0.9 - 0.7 0.4 0.3 0.1 0.2 0.0 0.1 0.0



Table 2d

Principal component analysis:
standardised term structure returns in Italy (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 67% 11% 19% 0% 2% 0% 0% 0% 0% 0% 0%
2 85% 10% 4% 0% 0% 0% 0% 1% 0% 0% 0%
3 87% 8% 0% 0% 2% 2% 0% 0% 0% 0% 0%
4 91% 4% 0% 0% 2% 0% 1% 0% 0% 0% 0%
5 92% 3% 2% 0% 0% 1% 1% 0% 0% 0% 0%
7 80% 7% 10% 1% 1% 0% 0% 0% 0% 0% 0%
10 89% 0% 7% 0% 2% 0% 1% 0% 0% 0% 0%
15 85% 12% 0% 2% 0% 0% 0% 0% 0% 0% 0%
20 73% 24% 0% 1% 0% 0% 0% 0% 0% 0% 0%
25 74% 25% 1% 0% 0% 0% 0% 0% 0% 0% 0%
30 79% 11% 0% 9% 0% 0% 0% 0% 0% 0% 0%
Total 82% 10% 4% 1% 1% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 9.9 - 4.1 - 5.3 0.2 1.5 0.2 - 0.1 - 0.6 - 0.3 0.0 0.0
2 9.9 - 3.4 - 2.1 - 0.1 0.5 0.2 0.1 0.9 0.5 0.0 0.0
3 9.3 - 2.8 - 0.4 - 0.6 - 1.5 - 1.5 0.6 - 0.1 - 0.1 0.0 0.0
4 10.0 - 2.2 0.5 - 0.6 - 1.7 0.6 - 1.3 - 0.3 0.2 0.0 0.0
5 9.8 - 1.7 1.6 - 0.3 - 0.6 1.2 0.8 0.3 - 0.4 0.0 0.0
7 9.5 - 2.8 3.4 1.3 0.9 0.1 0.5 - 0.6 0.4 0.0 0.0
10 9.4 - 0.4 2.7 - 0.2 1.4 - 0.7 - 0.7 0.3 - 0.3 0.0 0.0
15 9.4 3.4 0.6 - 1.5 0.7 - 0.1 - 0.1 0.0 0.0 - 0.1 0.0
20 9.2 5.3 - 0.8 - 1.3 0.1 0.1 0.3 - 0.2 0.1 0.0 0.0
25 9.1 5.3 - 1.2 0.2 - 0.3 0.1 0.2 - 0.1 0.1 0.0 0.0
30 9.0 3.3 - 0.6 3.0 - 0.6 - 0.2 - 0.2 0.2 - 0.1 0.0 0.0



Table 2e

Principal component analysis:
standardised term structure returns in Japan (1994-96)

Component 1 2 3 4 5 6 7 8 9

Fraction of variance explained by component

1 65% 28% 5% 0% 1% 0% 0% 0% 0%
2 88% 11% 0% 0% 0% 0% 0% 0% 0%
3 93% 5% 1% 0% 1% 1% 0% 0% 0%
4 95% 1% 2% 0% 1% 0% 0% 0% 0%
5 95% 0% 2% 1% 1% 1% 0% 0% 0%
7 88% 4% 2% 1% 4% 0% 0% 0% 0%
10 88% 8% 1% 1% 1% 0% 0% 0% 0%
15 76% 16% 1% 7% 1% 0% 0% 0% 0%
20 73% 12% 10% 5% 0% 0% 0% 0% 0%
Total 85% 10% 3% 2% 1% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 4.4 - 2.9 - 1.2 - 0.3 0.5 - 0.2 0.1 - 0.1 0.0
2 4.6 - 1.6 - 0.2 - 0.3 0.1 0.0 - 0.1 0.2 0.0
3 5.1 - 1.1 0.4 0.1 - 0.4 0.5 - 0.1 - 0.1 0.0
4 5.3 - 0.6 0.8 0.3 - 0.6 0.1 0.3 0.1 0.0
5 5.3 - 0.2 0.8 0.4 - 0.6 - 0.6 - 0.1 - 0.1 0.0
7 5.3 1.1 0.8 0.7 1.2 0.1 0.0 0.0 0.0
10 3.9 1.2 0.4 - 0.5 0.4 0.0 0.0 0.0 0.0
15 2.7 1.2 - 0.3 - 0.8 - 0.2 0.0 0.0 0.0 0.0
20 2.8 1.2 - 1.0 0.7 - 0.2 0.0 0.0 0.0 0.0



Table 2f

Principal component analysis:
standardised term structure returns in the United Kingdom (1994-96)

Component 1 2 3 4 5 6 7 8 9

Fraction of variance explained by component

1 60% 36% 4% 0% 0% 0% 0% 0% 0%
2 88% 11% 0% 0% 0% 0% 0% 0% 0%
3 94% 4% 1% 1% 0% 0% 0% 0% 0%
4 97% 1% 2% 1% 0% 0% 0% 0% 0%
5 97% 0% 2% 0% 0% 0% 0% 0% 0%
7 95% 3% 1% 1% 0% 0% 0% 0% 0%
10 91% 7% 0% 1% 0% 0% 0% 0% 0%
15 85% 12% 1% 0% 1% 0% 0% 0% 0%
20 80% 14% 4% 1% 0% 0% 0% 0% 0%
Total 88% 10% 2% 1% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 5.3 - 4.1 - 1.3 - 0.3 - 0.2 - 0.1 0.0 - 0.1 0.1
2 6.3 - 2.3 - 0.1 - 0.2 0.2 0.0 0.0 0.1 - 0.2
3 6.6 - 1.4 0.5 0.5 0.5 0.3 - 0.1 0.1 0.1
4 7.0 - 0.5 0.9 0.5 0.0 - 0.1 0.1 - 0.3 - 0.1
5 7.1 0.0 1.0 0.3 - 0.4 - 0.4 0.1 0.2 0.1
7 7.3 1.3 0.7 - 0.7 - 0.4 0.1 - 0.3 - 0.1 0.0
10 7.2 2.0 0.2 - 0.8 - 0.1 0.3 0.3 0.0 0.0
15 6.1 2.3 - 0.7 - 0.3 0.6 - 0.4 0.0 0.0 0.0
20 5.5 2.3 - 1.3 0.7 - 0.3 0.1 0.0 0.0 0.0



Table 2g

Principal component analysis:
standardised term structure returns in the United States (1994-96)

Component 1 2 3 4 5 6 7 8 9 10 11

Fraction of variance explained by component

1 78% 19% 3% 0% 0% 0% 0% 0% 0% 0% 0%
2 88% 11% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3 93% 7% 0% 0% 0% 0% 0% 0% 0% 0% 0%
4 96% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0%
5 97% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0%
7 98% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0%
10 98% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%
15 95% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 89% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0%
25 87% 12% 1% 0% 0% 0% 0% 0% 0% 0% 0%
30 86% 13% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Total 91% 7% 1% 0% 0% 0% 0% 0% 0% 0% 0%

Sensitivity to component (basis points)

1 5.8 - 2.9 - 1.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0
2 6.2 - 2.2 - 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
3 6.5 - 1.7 0.1 - 0.2 - 0.2 - 0.2 0.1 0.0 0.0 0.0 0.0
4 6.6 - 1.2 0.5 - 0.3 - 0.2 0.1 0.0 0.0 - 0.1 0.0 0.0
5 6.6 - 0.8 0.6 - 0.2 - 0.2 0.2 - 0.1 0.0 0.0 0.0 0.0
7 6.5 - 0.1 0.8 0.3 0.2 0.0 0.1 0.0 0.0 0.0 0.0
10 6.0 0.5 0.6 0.3 0.1 0.0 0.0 0.0 0.0 - 0.1 0.0
15 5.6 1.2 0.0 - 0.2 0.3 - 0.1 - 0.2 0.0 0.0 0.0 0.0
20 5.2 1.7 - 0.4 - 0.3 0.2 0.1 0.1 - 0.1 0.0 0.0 0.0
25 4.8 1.8 - 0.4 0.0 - 0.1 0.0 0.1 0.1 0.0 0.0 0.0
30 4.7 1.9 - 0.3 0.2 - 0.3 0.0 - 0.1 0.0 0.0 0.0 0.0



Table 3

Correlation between principal components
(derived from returns)

Correlations between first principal components (1990-93) Correlations between first principal components (1994-96)

USA CA FR GE IT JP UK USA CA FR GE IT JP UK

USA 1.00 0.63 0.20 -0.14 -0.09 -0.16 -0.21 USA 1.00 0.72 0.30 0.30 0.19 -0.02 0.39
CA 0.63 1.00 0.19 -0.16 -0.10 -0.20 -0.16 CA 0.72 1.00 0.30 0.29 0.24 0.02 0.38
FR 0.20 0.19 1.00 -0.44 -0.24 -0.18 -0.28 FR 0.30 0.30 1.00 0.60 0.40 0.09 0.65
GE -0.14 -0.16 -0.44 1.00 0.16 0.26 0.13 GE 0.30 0.29 0.60 1.00 0.39 0.11 0.54
IT -0.09 -0.10 -0.24 0.16 1.00 0.08 0.23 IT 0.19 0.24 0.40 0.39 1.00 -0.03 0.38
JP -0.16 -0.20 -0.18 0.26 0.08 1.00 0.13 JP -0.02 0.02 0.09 0.11 -0.03 1.00 0.02
UK -0.21 -0.16 -0.28 0.13 0.23 0.13 1.00 UK 0.39 0.38 0.65 0.54 0.38 0.02 1.00

Correlations between second principal components (1990-93) Correlations between second principal components (1994-96)

USA 1.00 0.27 0.01 -0.04 -0.01 0.07 0.06 USA 1.00 -0.23 -0.06 0.06 0.03 -0.05 -0.16
CA 0.27 1.00 -0.05 0.02 0.03 0.00 0.10 CA -0.23 1.00 0.15 0.00 -0.04 0.01 0.11
FR 0.01 -0.05 1.00 -0.07 -0.08 0.01 -0.13 FR -0.06 0.15 1.00 0.07 -0.05 0.09 0.19
GE -0.04 0.02 -0.07 1.00 0.05 0.09 0.14 GE 0.06 0.00 0.07 1.00 -0.14 -0.08 0.07
IT -0.01 0.03 -0.08 0.05 1.00 -0.01 0.25 IT 0.03 -0.04 -0.05 -0.14 1.00 -0.03 -0.05
JP 0.07 0.00 0.01 0.09 -0.01 1.00 -0.01 JP -0.05 0.01 0.09 -0.08 -0.03 1.00 0.10
UK 0.06 0.10 -0.13 0.14 0.25 -0.01 1.00 UK -0.16 0.11 0.19 0.07 -0.05 0.10 1.00

Correlations between third principal components (1990-93) Correlations between third principal components (1994-96)

USA 1.00 -0.03 -0.02 -0.11 -0.16 -0.11 -0.01 USA 1.00 0.14 0.09 -0.03 0.00 0.00 0.09
CA 0.08 1.00 -0.05 -0.01 -0.01 -0.02 0.01 CA 0.14 1.00 0.14 -0.08 0.03 0.00 0.00
FR 0.02 -0.05 1.00 -0.02 -0.04 0.06 0.02 FR 0.09 0.14 1.00 0.03 -0.04 0.03 0.05
GE -0.09 -0.01 -0.02 1.00 -0.09 -0.01 -0.02 GE -0.03 -0.08 0.03 1.00 -0.10 -0.10 0.03
IT 0.01 -0.01 -0.04 -0.09 1.00 0.07 0.11 IT 0.00 0.03 -0.04 -0.10 1.00 0.00 0.07
JP -0.01 -0.02 0.06 -0.01 0.07 1.00 -0.05 JP 0.00 0.00 0.03 -0.10 0.00 1.00 0.07
UK -0.02 0.01 0.02 -0.02 0.11 -0.05 1.00 UK 0.09 0.01 0.05 0.03 0.07 0.07 1.00

Note: The table reports correlations between the first, second and third principal components derived from each country's government security zero coupon returns.



Table 4

Correlation between principal components
(derived from standardised returns)

Correlations between first principal components (1990-93) Correlations between first principal components (1994-96)

USA CA FR GE IT JP UK USA CA FR GE IT JP UK

USA 1.00 0.62 0.21 0.07 0.06 0.14 0.18 USA 1.00 0.76 0.30 0.35 0.20 0.01 0.42
CA 0.62 1.00 0.20 0.11 0.07 0.14 0.16 CA 0.76 1.00 0.33 0.37 0.30 0.03 0.41
FR 0.21 0.20 1.00 0.44 0.31 0.16 0.33 FR 0.30 0.33 1.00 0.64 0.54 0.13 0.66
GE 0.07 0.11 0.44 1.00 0.22 0.16 0.20 GE 0.35 0.37 0.64 1.00 0.49 0.15 0.60
IT 0.06 0.07 0.31 0.22 1.00 0.07 0.30 IT 0.20 0.30 0.54 0.49 1.00 -0.01 0.48
JP 0.14 0.14 0.16 0.16 0.07 1.00 0.14 JP 0.01 0.03 0.13 0.15 -0.01 1.00 0.05
UK 0.18 0.16 0.33 0.20 0.30 0.14 1.00 UK 0.42 0.41 0.66 0.60 0.48 0.05 1.00

Correlations between second principal components (1990-93) Correlations between second principal components (1994-96)

USA 1.00 0.30 0.04 -0.06 -0.03 -0.08 0.10 USA 1.00 0.35 0.13 -0.14 0.05 0.02 0.22
CA 0.30 1.00 0.08 -0.09 -0.10 -0.07 0.12 CA 0.35 1.00 0.13 -0.09 0.06 0.01 0.12
FR 0.04 0.08 1.00 -0.22 -0.01 -0.04 0.12 FR 0.13 0.13 1.00 -0.24 0.05 0.01 0.27
GE -0.06 -0.09 -0.22 1.00 0.01 0.17 -0.17 GE -0.14 -0.09 -0.24 1.00 0.06 0.04 -0.05
IT -0.03 -0.10 -0.01 0.01 1.00 0.01 -0.35 IT 0.05 0.06 0.05 0.06 1.00 0.08 0.03
JP -0.08 -0.07 -0.04 0.17 0.01 1.00 -0.01 JP 0.02 0.01 0.01 0.04 0.08 1.00 0.00
UK 0.10 0.12 0.12 -0.17 -0.35 -0.01 1.00 UK 0.22 0.12 0.27 -0.05 0.03 0.00 1.00

Correlations between third principal components (1990-93) Correlations between third principal components (1994-96)

USA 1.00 0.08 0.02 -0.09 0.01 -0.01 -0.02 USA 1.00 0.14 0.09 -0.03 0.00 0.00 0.09
CA 0.08 1.00 -0.05 -0.01 -0.01 -0.02 0.01 CA 0.14 1.00 0.14 -0.08 0.03 0.00 0.01
FR 0.02 -0.05 1.00 -0.02 -0.04 0.06 0.02 FR 0.09 0.14 1.00 0.03 -0.04 0.03 0.05
GE -0.09 -0.01 -0.02 1.00 -0.09 -0.01 -0.02 GE -0.03 -0.08 0.03 1.00 -0.10 -0.10 0.03
IT 0.01 -0.01 -0.04 -0.09 1.00 0.07 0.11 IT 0.00 0.03 -0.04 -0.10 1.00 0.00 0.07
JP -0.01 -0.02 0.06 -0.01 0.07 1.00 -0.05 JP 0.00 0.00 0.03 -0.10 0.00 1.00 0.07
UK -0.02 0.01 0.02 -0.02 0.11 -0.05 1.00 UK 0.09 0.01 0.05 0.03 0.07 0.07 1.00

Note: The table reports correlations between the first, second and third principal components derived from each country's standardised government security zero coupon returns.



Table 5

Explanatory power of principal components (1994-96)
(percent of variance explained)

Country First 5 First 10 First 20 Country First 5 First 10 First 20 Country First 5 First 10 First 20

Canada 1 47% 48% 79% Italy 1 43% 56% 78% UK 1 27% 39% 65%
2 59% 59% 89% 2 57% 78% 92% 2 45% 65% 87%
3 67% 67% 94% 3 61% 83% 95% 3 51% 74% 91%
4 74% 74% 98% 4 68% 89% 97% 4 57% 82% 95%
5 77% 78% 98% 5 69% 95% 98% 5 60% 86% 97%
7 84% 84% 99% 7 59% 98% 98% 7 64% 93% 99%

10 91% 91% 99% 10 75% 99% 100% 10 64% 97% 99%
15 90% 91% 99% 15 94% 100% 100% 15 60% 99% 99%
20 97% 97% 100% 20 95% 100% 100% 20 58% 97% 100%
25 99% 100% 100% 25 98% 100% 100%
30 97% 98% 100% 30 95% 100% 100% US 1 52% 53% 87%

France 1 29% 31% 81% Japan 1 4% 44% 63% 3 72% 73% 97%
2 56% 57% 91% 2 5% 68% 85% 4 78% 79% 99%
3 66% 67% 97% 3 5% 76% 92% 5 82% 82% 99%
4 74% 75% 98% 4 5% 82% 96% 7 88% 88% 100%
5 80% 81% 98% 5 5% 85% 97% 10 93% 94% 99%
7 92% 93% 98% 7 4% 90% 96% 15 97% 98% 100%

10 94% 95% 99% 10 4% 95% 99% 20 98% 99% 99%
15 96% 97% 99% 15 3% 89% 98% 25 98% 100% 100%
20 97% 99% 100% 20 4% 91% 100% 30 98% 99% 100%
25 98% 100% 100%
30 97% 99% 100%

Germany 1 26% 27% 54%
2 45% 48% 83%
3 56% 59% 87%
4 66% 67% 93%
5 71% 73% 92%
7 79% 84% 98%

10 88% 88% 98%
15 91% 99% 100%
20 90% 100% 100%
25 98% 99% 100%
30 85% 100% 100%

Note: The table reports the percent of total variance of returns for government zero coupon bonds of the specified country and maturity explained by either the first 5, first 10, or the
first 20 principal components derived from returns for all the securities.



Table 6

Explanatory power of principal components (1994-96)
(percent of variance explained)

Country First 5 First 10 First 20 Country First 5 First 10 First 20 Country First 5 First 10 First 20

Canada 1 14% 57% 76% Italy 1 15% 80% 82% UK 1 11% 66% 90%
2 25% 80% 90% 2 27% 88% 90% 2 19% 80% 95%
3 33% 88% 95% 3 42% 89% 93% 3 26% 84% 99%
4 42% 93% 98% 4 62% 91% 93% 4 33% 88% 99%
5 46% 94% 98% 5 77% 90% 92% 5 41% 90% 99%
7 56% 95% 99% 7 87% 89% 100% 7 61% 93% 98%

10 71% 95% 100% 10 80% 99% 100% 10 78% 89% 100%
15 89% 93% 100% 15 81% 86% 100%

20 98% 98% 100% Japan 1 2% 16% 43% 20 93% 99% 100%
25 99% 100% 100% 2 3% 35% 63%
30 97% 100% 100% 3 5% 47% 72% US 1 28% 39% 72%

4 5% 64% 83% 2 39% 50% 86%
France 1 21% 37% 68% 5 6% 75% 87% 3 48% 57% 92%

2 34% 60% 88% 7 7% 94% 97% 4 56% 64% 96%
3 40% 66% 91% 10 7% 94% 98% 5 62% 69% 97%
4 47% 72% 94% 7 73% 77% 99%
5 50% 75% 96% 10 86% 88% 99%
7 61% 82% 95% 15 94% 95% 98%

10 74% 88% 97% 20 99% 99% 99%
15 85% 90% 99% 25 99% 100% 100%
20 94% 95% 99% 30 99% 99% 100%
25 98% 98% 100%
30 97% 98% 100%

Germany 1 5% 18% 58%
2 8% 26% 70%
3 10% 32% 78%
4 13% 40% 85%
5 15% 43% 87%
7 20% 53% 94%

10 22% 55% 98%

Note: The table reports the percent of total variance of returns for government zero coupon bonds of the specified country and maturity explained by either the first 5, first 10, or the
first 20 principal components derived from returns for all the securities.



Table 7:  Garch Models
(Maximum Likelihood Estimates, January 1994 to September 1996)*

       Lagged Conditioning Variables
Country Principal Constant Squared Variance Squared Error

Component Error (Error < 0)

Canada 1 0.206 0.556 -0.091*
2 0.296 0.285 -0.026*
3 0.129 0.194* -0.135

France 1 0.214 0.750 -0.067*
2 -0.014* 0.178* 0.219
3 0.071 0.125 0.405

Germany ** 1 0.400 0.476 0.261
2 0.264 0.710 0.573
3 0.212 0.417 0.342

Italy 1 0.135 0.880 -0.012*
2 0.411 0.790 -0.205
3 0.235 0.757 -0.068*

Japan 1 0.228 0.705 0.139
2 0.375 0.359 0.059*
3 0.162 0.555 0.111

United Kingdom 1 0.249 0.621 -0.160
2 0.368 0.299 -0.017*
3 0.214 0.693 0.074*

United States 1 -0.001* -0.495 -0.104
2 0.284 -0.051* -0.034*
3

0.326
0.488
0.875

0.105
0.713
0.620

0.190
0.003
0.302

0.023
0.003
0.094

0.085
0.285
0.260

0.238
0.369
0.111

1.560
0.814
0.131 -0.012* 0.774 0.296

*   significant at the 5% level
** Germany's coefficients are estimated from March 1994 to September 1996.
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Canada Zero Return Volatilities (1994 to 1996)
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Chart 3a:  Volatility Predictions, Canada
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France Zero Return Volatilities (1994 to 1996)
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Chart 3b:  Volatility Predictions, France
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Germany Zero Return Volatilities (1994 to 1996)
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Chart 3c:  Volatility Predictions, Germany
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Italy Zero Return Volatilities (1994 to 1996)
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Chart 3d:  Volatility Predictions, Italy
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Japan Zero Return Volatilities (1994 to 1996)
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Chart 3e:  Volatility Predictions, Japan
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U.K. Zero Return Volatilities (1994 to 1996)
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Chart 3f:  Volatility Predictions, United Kingdom
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Chart 3g:  Volatility Predictions, United States
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Abstract

When changes in portfolio values must be calculated over asset price shocks of different

sizes such as in stress tests over a variety of scenarios, constraints imposed by computation speed as

well as database structure sometimes lead analysts to use approximations to portfolio values instead of

exact portfolio revaluations. This paper examines the effect of time to maturity and moneyness of an

option on the magnitude of the approximation error. In addition, the approximation error is also

examined in a portfolio consisting of the outstanding stock of options on Eurodollar interest rate

futures on the Chicago Mercantile Exchange.

                                                  
* The views expressed in this paper are the authors' and do not necessarily reflect the positions of the Federal Reserve

Bank of New York, the Federal Reserve System, the Bank for International Settlements, or the Eurocurrency Standing
Committee.
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Approximation of changes in options values and hedge ratios:
how large are the errors?

When changes in portfolio values must be calculated over asset price shocks of different

sizes such as in stress tests over a variety of scenarios, constraints imposed by computation speed as

well as database structure sometimes lead analysts to use approximations to portfolio values instead of

exact portfolio revaluations (see Gibson 1997). Given this tradeoff between computation and database

costs and accuracy, this paper examines the magnitude of the approximation error in the most

common approximation methods. Other papers that provide insight on this issue would include papers

by Estrella (1996), Pritsker (1996), Robinson (1996), and Rouvinez (1997).

The paper examines first and second order Taylor series approximations of option values

and hedge ratios. For option values, the second order approximation is the option's delta plus gamma,

and for the hedge ratio, the second order approximation is the gamma plus the third derivative of the

option value. The approximations in the paper are estimates around a single price (the initial price).

Better approximations can be obtained by means of piecewise approximations over a number of

different "initial" prices. However, such approaches would be more demanding in computation time

and might undercut one principal motivation for approximations: computation speed.

In Section 1, the effect of time to maturity and moneyness on the approximation error are

examined. To consider the practical significance of the maturity and moneyness effects, the magnitude

of the approximation error in a market portfolio is addressed in Section 2. Using the open interest of

options on Eurodollar interest rate futures on the Chicago Mercantile Exchange, some insight to the

size of the approximation error in practice can be obtained. In both sections, the option parameters of

interest are the value of the option and the hedge ratio. The hedge ratio and its change may be of

interest to analysts or risk managers who need to anticipate the volume of hedge transactions required

after a sharp change in the price of the underlying asset.

The options examined are interest rate options, and the approximation error is examined for

interest rate changes equal to a largest one day change and a 99th percentile two-week change. In both

cases, movements in 3-month Eurodollar rates over the period 1/91 through 12/95 were expressed in

percentage changes, and the largest and 99th percentile changes were applied to the initial interest

rate. The option valuation function used was Black's forward interest rate option model (Hull 1993).
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1. Effects of maturity and moneyness

Change in option value

As expected, a first order approximation (delta only) leads to large approximation errors

across a wide range of maturities and strike prices. Errors relative to the true change are above 35%

across a wide range (Figure 1, left panel).

Second order approximations (delta and gamma) produce relatively small approximation

errors across a wide range of strikes and maturities. The error relative to the true change, however, are

large in the case of deep out-of-the money options with short maturities (Figure 1, right panel). For a

three month option with a strike 80 bp out-of-the money, the error is 10% of the true change, while

for a six month option the error is less than 5%.

Figure 2 shows that in absolute terms, without adjusting for relative size, the largest

approximation errors occur in options that are close-to-the-money.

Change in hedge

Relative to the true change in the hedge ratio, the approximation error is large across a wide

range of maturity and strike price combinations -- for both the first order (gamma only) and second

order (gamma and third derivative) approximations (Figure 3). In the case of the gamma only

approximation, for a three month option with a strike 80 bp in the money (strike=0.052), the error is

100% of the true change in hedge, and for a six month option the error is 50%.

Relative to the initial hedge, the approximation error is large for deep out-of-the money

options with short maturities (Figure 4). In the case of the gamma only approximation, for a two

month option with a strike 80 bp out of the money (strike=0.068), the approximation error is 160% of

the initial hedge position, while for a six month option the error falls to 15%.

Figure 5 shows that in absolute terms, without adjusting for relative size effects, the largest

approximation errors occur in options that are close-to-the-money.

2. Portfolio effects

This section examines the approximation error for a portfolio consisting of the

outstanding stock of options on Eurodollar interest rate futures traded on the Chicago Mercantile

Exchange. The data for each option consists of: the strike price, the option maturity, the amount

outstanding (open interest), and the market value of the option. Table 1 lists some features of this

option portfolio. This portfolio does not include contracts whose open interest was very small relative

to other contracts.
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Estimation

For each option, the implied volatility that returns the observed market price was estimated

using Black's forward interest rate option model (Hull 1993). Given this estimated implied volatility,

the approximations to the change in each option's value and the change in its hedge ratio were

calculated. Finally, the value of each option was weighted by its amount outstanding, and summed to

produce a portfolio value. For the option value, this weighted sum is the value of the option portfolio,

for the hedge ratio, the weighted sum is the weighted average of the hedge ratios of each option.

Table 1

Portfolio of interest Rate Caps
(Puts on Eurodollar Futures)

Maturity Number of Strikes Range of Strikes At-the-money Rate

2 months 10 4% - 6.25% 5.65%

5 months 14 4% - 7.5% 5.72%

8 months 19 3.5% - 8.25% 5.87%

11 months 18 4.5% - 9% 6%

14 months 18 4.5% - 9.25% 6.17%

17 months 12 4.25% - 9% 6.24%

Data as of October 14, 1996

Change in portfolio value

In the case of second order approximations (delta and gamma), approximation errors relative

to the true values of interest rate caps are large for decreases in interest rates (Table 2). A similar, but

opposite, relationship holds for interest rate floors because of the reversal of the moneyness

relationship between puts and calls. While approximation errors would be the same for puts and calls

with the same strike because of put call parity, the cap and floor portfolios have different strike

distributions.

Table 2

Relative Approximation Errors of Portfolio Value
Interest Rate Cap Portfolio

99th percentile two-week change in rates

Fall in rates Rise in rates

Relative to change in value 22% 2%

Relative to initial portfolio value 16% 4%
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In comparison to the figure in Table 2, the largest one-day change in rates produces an error

of 6% relative to both the change and level of portfolio value, in the case of a fall in rates.

Change in portfolio hedge

For first order approximations (gamma only) to the change in the portfolio hedge ratio,

approximation errors relative to true values are large for interest rate decreases (Table 3).

Table 3

Relative Approximation Errors of the Portfolio Hedge
Interest Rate Cap Portfolio

99th percentile two-week change in rates

Fall in rates Rise in rates

Relative to hedge adjustment 58.1% 2.0%

Relative to initial hedge position 39.1% 2.1%

For comparison with the figures in Table 3, the largest one-day change in rates produces an

approximation error of 30% relative to the hedge adjustment and 14% relative to the initial hedge in

the case of a fall in rates. The approximation error in hedge adjustments is not monotonically

increasing in the size of the shock, because the sign of gamma changes at the at-the-money strike, and

the delta function is bounded from above.
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Change in option value:  Approximation error relative to true change (%)
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                       FIGURE 2
Option value:  Approximation error
     Maturity and strike variations
                         IR Caps
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                                                     FIGURE 3
Change in hedge:  Approximation error relative to change in hedge (%)
                                    Maturity and strike variations
                                                       IR Caps
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                                             FIGURE 4
Change in hedge:  Error relative to (old) hedge position (%)  
                           Maturity and strike variations
                                              IR Caps
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                          FIGURE 5
Change in hedge:  Approximation error
          Maturity and strike variations
                            IR Caps
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Abstract

Risk management information systems are designed to overcome the problem of aggregating

data across diverse trading units. The design of an information system depends on the risk

measurement methodology that a firm chooses. Inherent in the design of both a risk management

information system and a risk measurement methodology is a tradeoff between the accuracy of the

resulting measures of risk and the burden of computing them. Technical progress will make this

tradeoff more favorable over time, leading firms to implement more accurate methodologies, such as

full revaluation of nonlinear positions. The current and likely future improvements in risk

management information systems make feasible new ways of collecting aggregate data on firms'

risk-taking activities.
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1. Introduction

To lay a foundation for a discussion of the role of information systems in risk management,

we must first define the business needs that drive financial firms to implement risk management

functions. We see three such needs:

1. To better understand the risks it is taking, a firm wants to measure them. Risks that lend

themselves to quantification, which are the only risks discussed in this paper, include market

risk (the sensitivity of a firm's value to financial market variables like interest rates,

exchange rates, volatilities, etc.) and credit risk (the sensitivity of a firm's value to default by

its counterparties).1

2. To provide better incentives to its business units and to individual employees, a firm wants

to reward good risk-adjusted performance. The firm must measure its risk before it can

adjust performance for risk.

3. To provide its shareholders with a consistent and optimal risk-return tradeoff over time, a

firm wants to accurately match the amount of capital it employs with the risks it takes.

To meet these needs, firms have developed sophisticated risk measurement methodologies

and have made substantial investments in risk management information systems.

Managers expect a risk management information system to provide them with the data they

need to meet the above three business needs.  Currently, most managers want four things from their

risk management information system:

1. calculate Value at Risk;

2. perform scenario analyses;

3. measure current and future exposure to each counterparty;

4. do all three of the above at varying levels of aggregation, across various groupings of risks,

across product types, and across subsets of counterparties.

With these four goals met, a manager can measure risk at the firmwide level, which is the

level of aggregation that shareholders care about, and at the individual desk, product, or trader level,

where decisions on risk positions and risk-adjusted compensation are taken.

This paper describes what a risk management information system must do to meet these four

goals2. In section 2, we use two simple examples to frame the problem as one of aggregation. We go

                                                  

  1 Risks which are less easily quantified, such as legal risk (the sensitivity of a firm's value to legal judgements) and
operational risk (the sensitivity of a firm's value to the performance of operational tasks), are outside the scope of this
paper.

  2 Most large financial firms are moving toward firmwide risk measurement, but many are not there yet. Accordingly,
some of the descriptions of risk management information systems in this paper apply not to current practice but to the
information systems we expect to see 3 to 5 years hence.
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into some detail of two approaches to calculating Value at Risk to see what is required of information

systems under each approach. In section 3, we discuss several problems or choices that have to be

addressed along the way. We highlight the interdependence between risk measurement approach and

information system architecture in these two sections. In section 4, we discuss measuring aggregate

market risk and the potential limitations that risk management information systems might impose.

Section 5 concludes.

As an aside, we note that the risk management information systems processing requirements

of a typical large financial trading firm are not huge compared with information systems that large

firms in other industries have already implemented. Banks with large trading operations maintain

large databases of transaction data, but phone company MCI has a three-terabyte customer database,

growing at 100 gigabytes a month.3 The Frontier risk management system of Canadian bank CIBC

gathers data from 160 organizational units worldwide daily to produce risk management reports, but

retailer Wal-Mart, in its Arkansas headquarters, accesses weekend sales data from each of its 3,017

stores on Monday morning.4 Large trading banks maintain trading floors with dozens (or hundreds) of

trader workstations, but each Wal-Mart store has dozens of cash registers, each of whose software is

updated on average 24 times a year.5 Each trader may do dozens of trades a day, but Wal-Mart does

65 million transactions each week.6 However, financial trading firms may face an organizational (not

technological) hurdle from their traditionally decentralized structure that makes it difficult to convince

disparate trading units why a central risk management function needs their data.

2. Information systems requirements and risk measurement methodologies

The problem of designing an information system for risk management is a problem of

aggregation. Data from each of a firm's trading locations worldwide must be aggregated to calculate

Value at Risk or to perform a scenario analysis on the firm's worldwide portfolio. Different

methodologies for calculating Value at Risk will require different slices of each trading unit's portfolio

data to be aggregated across trading units, imposing different requirements on the risk management

information system. In this section, we discuss some interactions between risk measurement

methodology and information systems requirements.

                                                  

  3 "Towering Terabytes," Information Week, 30th September, 1996. (One terabyte = 1,000 gigabytes = 1 million
magabytes).

  4 "Wal-Mart Ups the Pace," Information Week, 9th December, 1996.

  5 Ibid.

  6 Ibid.
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Table 1

Two simple examples

Example 1 Example 2

Question to be answered How many financial instruments
does the firm have on its books?

How many counterparties does the
firm currently have?

Information required from each
trading unit

Number of financial instruments the
trading unit has on its books

List of the trading unit's
counterparties, identified uniformly
across trading units

Calculation required to compute
firmwide answer

Sum across trading units Sum across trading units with
duplicate counterparties removed

To clarify what we mean by aggregation, consider two simple examples, summarized in

Table 1. In the first example, a firm wants to count the number of financial instruments in its

firmwide portfolio. The centralized information system can take the number of financial instruments

in each trading unit's portfolio and do a simple sum to get the firmwide answer. There are two ways

the centralized information system can get the number of financial instruments in each trading unit's

portfolio: either the trading unit can compute the number and provide it, or the centralized information

system can use the trading unit's position data to do the count itself. Which way is chosen will depend

on how flexible the trading unit's systems are and how easy it is for the centralized system to access

the trading unit's data.

In the second example, the firm wants to count the number of counterparties to which it has

current or potential future exposure. For this slightly more complicated question, the centralized

information system needs a list of counterparties from each trading unit, and the counterparty

identification scheme must be uniform across trading units. Again there are two ways the centralized

information system can get the trading unit-level information: either the trading unit can provide it or

the centralized information system can use the trading unit's position data to get the information itself.

Again the choice will depend on the relative flexibility of the trading unit's systems and accessing its

data.

In both examples, the centralized and decentralized approaches can give identical, correct

answers to the question of interest. While we are reluctant to make absolute statements about how a

particular firm would make these choices, we are comfortable making two relative claims about the

tradeoff between the flexibility of trading units' systems and the ability of a central risk management

function to access position data.

1. Comparing a simple query (Example 1) with a more complicated query (Example 2), the

second example's more specific information needs make a centralized solution more likely

than in the first example. Producing a list of counterparties with a uniform counterparty

identification scheme requires more flexibility from the trading unit's systems than simply

counting the number of financial instruments on the books.
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2. A centralized solution can handle different queries with the same data, while a decentralized

solution requires each trading unit to provide different data for different queries. In other

words, a centralized solution is more open-ended.

2.1 Aggregation and Value at Risk

Computing Value at Risk on a firmwide basis is also an exercise in aggregation, though

more complicated than the simple examples presented above. The data on portfolio composition that

the risk management information system needs to access and the types of calculations it has to

perform will depend on the methodology chosen to calculate Value at Risk.

Many methodologies exist to calculate Value at Risk, defined as a portfolio's maximum loss

over a given time period with a given probability. Each methodology combines an assumption on the

future distribution of market risk factors and current data on portfolio positions to approximate the

distribution of the change in portfolio value. Certain methodologies can severely test the ability of the

risk management information system to gather the necessary data and do the necessary calculations in

the time frame required. Consequently, firms often trade off accuracy and computational demands

when computing Value at Risk.7 We discuss two Value at Risk methodologies: delta-normal and full

revaluation Monte Carlo.

2.2 Delta-normal

The delta-normal methodology (also called the J.P. Morgan RiskMetricsTM methodology)

stipulates that (1) the future distribution of changes in market risk factors is assumed to be

multivariate normal; (2) portfolio positions are summarized by the "deltas" of each position with

respect to each market risk factor, where "delta" is the change in the position's value for a one-unit

change in the market risk factor; and (3) the distribution of the change in portfolio value is

approximated linearly by the sum of the products of the firmwide delta for each market risk factor and

the assumed distribution of that market risk factor.

Any Value at Risk methodology must make some assumption on the future distribution of

changes in market risk factors. Possible assumptions include multivariate normality, another

multivariate distribution, or using the historical distribution of changes to proxy for the future

distribution. If a parametric distribution is used, the parameters must be estimated from some

combination of historical data and current data such as futures, forwards and options. One important

burden on the risk management information system is to maintain a database of historical time series

on the relevant market risk factors to be used to estimate the covariance matrix of future changes.

                                                  

  7 See Pritsker (1997) for an evaluation of the tradeoff.
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Because this burden does not vary significantly with the choice of methodology, and because it can

easily be contracted out,8 it will not be discussed in what follows.

For each trading unit, "deltas" must be computed for each market risk factor. The

RiskMetricsTM way to compute these deltas is to decompose each instrument into a sum of positions

in some subset of the market risk factors. (This is equivalent to taking a linear approximation or a

first-order Taylor expansion.) For example, if the set of market risk factors includes zero coupon

bonds but not coupon bonds, a coupon bond would be decomposed into a set of zero coupon bonds of

different maturities. An option on a stock market index would be decomposed into a position in the

index itself. Deltas for each instrument in the trading unit's portfolio are summed to give the trading

unit's deltas; these are summed across trading units to yield the portfolio's deltas. One advantage of

the delta-normal method is that deltas can be easily aggregated. Finally, estimating Value at Risk

requires taking the square root of a weighted sum of variances and covariances of market risk factors,

where the weights are simple functions of the portfolio's deltas.

Calculating a trading unit's "deltas" requires access to the cash flows of each instrument in

the trading unit's portfolio. As in the two simplified examples given above, there are two ways this

can be done. If the trading unit calculates its own deltas, it must do so using a uniform set of market

risk factors so the results can be aggregated at the firmwide level. For a system with N market risk

factors this would involve computing and passing N "deltas" for each trading unit. However, any task

that involves specifying new computations to be performed by each trading unit's systems will be

more difficult to carry out the more diverse those systems are. If the centralized risk management

information system calculates the deltas, accessing the portfolio data of each trading unit becomes a

burdensome requirement of the delta-normal method; the difficulties of accessing transaction data

stored in disparate systems often lead firms to duplicate their transaction data and store it centrally.

While the location of the computation would differ, the estimated Value at Risk would be unaffected

by the choice of centralized or decentralized processing.

The normality assumption and the delta (i.e., linear) approximation together imply that the

distribution of the change in portfolio value is easy to compute. It will be normally distributed, and its

variance will be a weighted sum of the variances and covariances of the market risk factors on which

its value depends, with the weights depending on the "deltas" of the portfolio's positions. Since the

probability percentiles of the normal distribution are well known, once the variance of the change in

portfolio value is known the Value at Risk can be computed immediately.

To summarize, the delta-normal method requires that the risk management information

system know the "deltas" of each trading unit's portfolio, which requires access to a large amount of

                                                  

  8 Currently J.P. Morgan does this for free, providing a covariance matrix each day on its Internet site
(http://www.jpmorgan.com/RiskMeasurement/RiskMetrics/RiskMetrics.html). Olsen and Associates also provides a
covariance matrix via the Internet (http://www.olsen.ch/cgi-bin/w3risk-menu).
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data - the cash flows of each instrument in the portfolio. The computational burden is relatively light,

requiring a large number of simple calculations to be performed.

2.3 Full revaluation Monte Carlo

When using the full revaluation Monte Carlo methodology to calculate Value at Risk, the

future distribution of market risk factors need not be assumed to be multivariate normal. Some

parametric distribution must be chosen, and its parameters estimated, but because normality is not

required in this methodology an alternate distribution that better captures the statistical features of

financial time series can be used.9 Two examples of such distributions are Student's t distribution and

a mixture of multivariate normal distributions. The distribution of changes in portfolio value is

approximated by taking a large number of draws from the assumed distribution of changes in market

risk factors and revaluing the portfolio for each draw. For N draws, the 5 percent Value at Risk would

be the (.05N)th largest loss.10 Value at Risk can be computed in the same way, using the same N

draws, for an individual trader, individual desk, or firmwide.11

Each trading unit's portfolio must be revalued for each of the N Monte Carlo draws. These

revaluations will be computationally burdensome for some instruments. In particular, complex

derivatives that cannot be valued analytically are typically solved by computation-intensive numerical

methods. Valuing such a derivative for, say, N=10,000 Monte Carlo draws would require a significant

amount of computing power, much more than the linear approximation of the delta-normal

methodology. On the other hand, two factors mitigate the computational burden of full revaluation

Monte Carlo and one factor makes it easier to deal with. First, firms have an important business need

to speed up the valuation of complex derivatives, for trading purposes as well as for risk management.

There is no reason to think that research into faster numerical option pricing methods will not

continue to be fruitful.12 Second, as discussed in section 3.4 below, "smart" valuation techniques,

such as using an analytic approximation to value a complex option, could significantly reduce

computational burden with only a small or no reduction in accuracy. Finally, parallel processing

techniques will not reduce the computational burden of multiple portfolio revaluations, but such a

burden would be relatively easy to divide across many processors and thus reduce computational time

at the expense of additional computer hardware.

                                                  

  9 The high dimensionality of the set of market risk factors rules out a nonparametric approach in nearly all
circumstances. An alternative methodology, not discussed in this paper, takes a nonparametric approach by using
historical data to represent the future distribution of market risk factors.

10 Pritsker (1997) shows that an advantage of full revaluation Monte Carlo over delta-normal is that a confidence
interval on the estimate of Value at Risk can be computed at no additional computational cost.

11 This may not be the most useful way to measure the marginal market risk of a trading unit, since it does not account
for diversification across trading units.

12 To give one example of such research, Carverhill and Clewlow (1994) describe how to speed up Monte Carlo
valuation of options by a factor of 70 with a martingale variance reduction technique.
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The calculations needed to revalue the trading unit's portfolio can be done either at the

trading unit or at the central risk management function.  If the trading unit revalues its portfolio for

each Monte Carlo draw, the only burden on the central risk management function is to ensure that

each trading unit uses the same N Monte Carlo draws to revalue its portfolio.  Each trading unit would

then simply pass N numbers, representing the changes in the value of its portfolio under the N Monte

Carlo draws, to the central risk management function for aggregation.  If the central risk management

function does the revaluation of each trading unit's portfolio, it will again require complete position

data from each trading unit along with a valuation model for each instrument.  This last requirement is

nontrivial for some complex derivatives, for which no "market standard" valuation technique exists.13

Again, the choice between centralized and decentralized processing need not affect the estimate of

Value at Risk.

Once the change in portfolio value for each of the N Monte Carlo draws has been calculated,

these N changes in portfolio value will approximate the distribution of the change in portfolio value

and can be treated as an empirical distribution function. The Value at Risk at confidence level a can be

read off the ordered list of N changes in portfolio value as the aNth largest loss.

The full revaluation Monte Carlo methodology makes greater demands on the risk

management information system than the delta-normal. Randomly drawing a large number of changes

in market risk factors from a multivariate distribution can be done easily and quickly,14 but computing

the change in portfolio value by revaluing each trading unit's portfolio for each draw from the

assumed distribution of changes in market risk factors will be computationally burdensome for some

instruments.

2.4 Choosing a risk measurement methodology

In choosing between a delta-normal or full revaluation Monte Carlo methodology to

measure Value at Risk, a firm will trade off the accuracy of its Value at Risk estimates with the

computational burden required to compute the estimates. The tradeoff can be represented as a curve,

as shown in Figure 1. The delta-normal method would be a point like A, with relatively low accuracy

and low computational burden. The full revaluation Monte Carlo methodology would be a point like

                                                  
13 See Bernardo and Cornell (1997) for an example of an auction of mortgage-backed securities and the diverse

valuations of large broker dealers and institutional investors. Pierides (1996) shows that the price of interest rate
derivatives can be sensitive to the stochastic process chosen to model the short-term interest rate.

14 Drawing large numbers of random vectors from a high-dimensional space presents its own computational problems.
Press et al (1992, p. 277) point out that typical computer random number generators cannot fill up a high-dimensional
space. A discussion of random number generation is beyond the scope of this paper, but we conjecture that drawing
truly random points in a high-dimensional space will require some thought at the time of system design but not a
significantly increased number of calculations.
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B, with relatively high accuracy and high computational burden. Each firm's choice will depend on

the relative importance of the two factors for that firm.15

Accuracy

Computational
burden

Figure 1

A

B

While we cannot predict where an individual firm will choose to be on the tradeoff curve in

Figure 1, we do feel comfortable predicting how the curve will shift over time. Technical progress -

including faster option price techniques, cheaper computer hardware, and advances in computer

networking - will cause the curve to shift out, making the tradeoff more favorable. Such a shift is

shown in Figure 2.

In addition, we can predict what the shift of the tradeoff curve will look like, as Figure 2

shows. Financial theorists will likely continue to produce faster option pricing models, and faster

computer hardware will make a large number of Monte Carlo draws less burdensome to handle.

Because the delta-normal methodology is already quite simplified, neither of these advances would

reduce its computational burden by much. On the other hand, the scope for reductions in the

computational burden of the full revaluation Monte Carlo methodology from these advances is large.

For this reason, we predict that the reduction in computational burden, holding accuracy constant, will

be greatest for those methodologies that achieve high accuracy, producing a twist in the tradeoff curve

as shown in Figure 2. As this twist occurs over time, firms are likely to switch away from a

                                                  
15 We know that this tradeoff captures a meaningful choice, since there are firms using each of the two methodologies.
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low-accuracy delta-normal methodology to a high-accuracy full revaluation Monte Carlo

methodology.

Accuracy

Computational
burden

A

B

C

The likely types of 
technical progress would
tend to produce a twist, 
not an even shift out, 
of the tradeoff curve

Figure 2

3. Other issues to be addressed

Our discussion of the information systems requirements of the two Value at Risk

methodologies has touched on some interactions between methodology and information systems

design. In this section, we discuss some problems or choices that any firm setting up a risk

management information system must confront.

3.1 Centralized or decentralized?

A basic decision that must be made when designing a risk management information system

is whether to choose a centralized model or decentralized model. As the discussion above of two

simple examples and two Value at Risk methodologies should make clear, either model can estimate

Value at Risk or do scenario analysis. The two models will give identical answers if given identical

data. The difference lies in where the most burdensome calculations are done. Which model is chosen

will depend on several factors: the flexibility of trading units' systems, the degree of uniformity

among trading units' systems, the availability of a large central database to hold position data, and the
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ability of the central risk management function to handle and revalue all instruments traded by all

trading units.

The centralized model has several strong points. The risk management function can more

easily monitor that the risk calculations (computing "deltas" or doing revaluations) are being done

properly if they are being done centrally. In particular, if risk measurement calculations are being used

in risk-adjusted compensation calculations, the centralized model avoids moral hazard. It is easier to

"upgrade" to a more rigorous risk measurement methodology (from delta-normal to full revaluation

Monte Carlo, for example) if a centralized model has already been adopted so that position data is

already being accessed centrally.  Finally, the centralized model is more open-ended, and a firm may

find other uses for a centralized database of position information beyond risk measurement.

A decentralized model also has advantages. There is no need for position data and the

analytics needed for revaluation to be duplicated at the central risk management function. The

analytics for complex derivatives may be particularly costly to duplicate. Because there is no need to

access position data or do revaluation in the central risk management function, there is no obstacle to

introducing new products. For example, a data architecture that provides one field to identify the

underlying security for an option would have a hard time handling a compound option whose value

depends on two or more underlyings. If the analytics behind a compound option are new and

complicated, it may be costly to duplicate them at the trading unit and central risk management level.

3.2 Mapping

Choosing a set of market risk factors on which to base a risk measurement methodology is

an important decision. A firm making the common choice to use the RiskMetricsTM set of market risk

factors or the default set of market risk factors in the risk management software it has purchased is

likely not recognizing the importance of this decision. The choice of the set of market risk factors is

equivalent to defining the "market risk" to be measured; risk left unmeasured, which can be termed

"basis risk," is not guaranteed to be small and depends on how the set of market risk factors is chosen.

Consider a firm that has some exposure to the NLG/USD and DEM/USD exchange rates. If

the firm's set of market risk factors includes both exchange rates, it will be able to measure its

exposure to all possible combinations of moves in the two exchange rates, including moves in

opposite directions.  If the firm's set of market risk factors includes only the DEM/USD exchange rate

and NLG/USD exchange rate risks are mapped into DEM/USD exposures for risk measurement

purposes using the historical correlation between the two exchange rates, no market risk measurement

technique will be able to reflect the possibility that the correlation could (with low probability)

change. That possibility will fall under basis risk, not market risk, in the second case. Delta-normal

Value at Risk will still be measured correctly, since with that methodology the correlation is held to

be constant over the time period during which Value at Risk is calculated. However, the output of

both stress tests and sensitivity analysis with respect to individual market risk factors, two commonly
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used supplements to Value at Risk, will depend on the mapping. Two firms with identical positions

but different sets of market risk factors will get different stress test or sensitivity outcomes.

A firm chooses the set of market risk factors on which to base its risk management

methodology with several considerations in mind. If fewer market risk factors are chosen, the

methodology will be easier to work with, to understand, and to explain, and fewer computing

resources will be needed. If more market risk factors are chosen, the approximation error involved in

mapping a position onto a limited number of market risk factors can be reduced.16 If more market risk

factors are chosen, (unmeasured) basis risk can be reduced and (measured) market risk expanded. A

firm will be able to minimize basis risk if it includes in its set of market risk factors every market risk

factor to which it has exposure. Of course, exposures change over time, while it may be costly to

update information systems to expand the set of market risk factors, so it is unlikely that basis risk can

be eliminated as a concern.

3.3 Legacy systems

Another problem to be addressed when building a risk management information system is

that of legacy systems. The term "legacy system" here refers to a trading unit's information system

that cannot be easily integrated with a central risk management system. Although the typical legacy

system is an old system that lacks features that have only recently been invented, the problem of

legacy systems can include newer software as well, if that software cannot easily be set up to interface

with a central risk management system. For example, if the pricing model for a complex option exists

only in a trader's spreadsheet, it may be impossible for the central risk management system to request

that the option be repriced for N Monte Carlo draws, as a full revaluation Monte Carlo Value at Risk

calculation might require.

While the problems of legacy systems are serious, they should not significantly hamper a

firm's ability to do firmwide risk management. Because legacy systems are so widespread, not just in

financial services but in all industries, solutions to legacy systems problems are common. Many

consulting firms exist solely to provide these solutions. One common solution is to write a "wrapper"

program that acts as a mediator between the central risk management function and the trading unit's

legacy system. For example, a "wrapper" could translate the legacy system's position data into a

format that can be sent to and understood by the central risk management function. A financial firm

with many legacy systems may face a higher cost of implementing a firmwide risk management

function, because of the need for specialized "wrappers" for each legacy system, but the task is not

impossible.

                                                  
16 The magnitude of the approximation error involved in Value at Risk and stress test calculations based on mapping

actual portfolio instruments onto a limited set of market risk factors could be large. For example, the error of mapping
a 10-year bond with semiannual coupons onto a set of zero coupon bonds (say, 1, 2, 3, 5, 7, 9 and 10-year zeros) will
vary with the shapes of the term structures of interest rates and volatility and the accuracy of the interpolations that
must be made. As far as I am aware, this error has not been quantified in the risk measurement literature.
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Many firms choose to replace their legacy systems rather than work around their limitations.

A need to manage risks on a firmwide basis leads firms to insist that trading units have software that

can interface smoothly with a central risk management function. Since many legacy systems lack this

ability, many firms choose to replace them.17 As discussed briefly below, the European Union's

Capital Adequacy Directive's requirements for firmwide measurement of market and credit risk have

also led many firms to replace legacy systems.

3.4 "Smart" data structures

The use of "smart" data structures can significantly improve the cost-benefit tradeoff in

favor of a rigorous (i.e., full revaluation Monte Carlo) risk measurement system. A "smart" data

structure for storing financial transactions would have some or all of the following characteristics:

1. the financial instrument knows to which market risk factors its value is sensitive;

2. the financial instrument knows both a "more exact" and a "less exact" valuation method for

itself;

3. the financial instrument knows what error is introduced at different times by its different

valuation methods.

Exploiting such a "smart" data structure could significantly reduce the computational burden of

revaluing each instrument in a portfolio N times to calculate a Monte Carlo Value at Risk.

If a financial instrument knows to which market risk factors its value is sensitive, it can

avoid recalculating its value for some of the N Monte Carlo draws. If a DEM/USD currency swap is

asked to revalue itself for several draws in which all market risk factors that would affect its value

(presumably USD and DEM interest rates and the DEM/USD exchange rate) are identical, the value

will be the same for all such draws and the computational burden can be reduced accordingly.

Many derivatives are typically valued using numerical methods. A simple example would be

an American option, which could be priced exactly using a lattice as in Cox, Ross, and

Rubenstein (1979). For risk measurement purposes, if there are many American options in the

portfolio, it may be too time-consuming to value each American option on a lattice. Barone-Adesi and

Whaley (1987) give an approximate analytic valuation method for an American option. A "smart"

American option would know both valuation methods and would know how much error is introduced

by the approximation at different times. This last feature would allow the risk management

application to track how much uncertainty has been added to the estimate of firmwide Value at Risk

by using "less exact" valuation techniques, as well as to set up a threshold for approximation error that

would force the use of a "more exact" technique if a "less exact" technique gave a particularly bad

                                                  
17 The information systems demands of risk management are driving thirty percent of UK banks to replace legacy

systems, according to a recent survey. "Risk Management is Driving Banks to Replace Legacy Systems," Risk
Management Operations, 16th December, 1996.
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approximation for a certain set of changes in market risk factors.18 Our impression is that firms have

begun to adopt "smart" techniques on an ad hoc basis, but their use has not yet become standard

practice.

3.5 Credit risk measurement

There is no single measurement concept for credit risk, unlike Value at Risk for market risk,

which has become widely accepted in the market. The current view of "best practice" for credit risk,

as expressed in the Group of Thirty's (1993) report, is to measure both current exposure and potential

future exposure, the latter calculated using statistical analysis of the future credit exposure and a broad

confidence interval (two standard deviations). There are many ways to measure credit risk; current

market practice can be divided into two groups: transaction methods and portfolio methods.19

Transaction methods compute a potential exposure for each transaction as notional principal

times a multiplier that reflects the transaction's form (option, swap, etc.), maturity, and the inherent

riskiness of the transaction's underlying market risk factor(s). The multipliers are calculated in

advance for all combinations of transaction form, maturity, and riskiness of underlying to which the

firm anticipates having exposures. The information systems requirements of transactions methods are

small; to measure potential exposure, each transaction's multiplier must be looked up in the tables of

multipliers that have been calculated in advance. Total credit risk with a counterparty is simply the

sum of current and potential exposure of each transaction with the counterparty in the firm's portfolio.

Portfolio methods compute the potential exposure of all the firm's transactions with a

counterparty at once, considering correlations between potential exposures of multiple transactions

with the counterparty as well as netting arrangements. Portfolio methods of measuring potential credit

risk exposure are conceptually close to methods of calculating Value at Risk to measure market risk,

with the additional complication of identifying each transaction's counterparty and netting status. The

information systems requirements would be similar to those for calculating Value at Risk. In

particular, a similar choice of methodology (delta-normal or full revaluation Monte Carlo) exists for

credit risk measurement, and the choice will have a strong influence on information systems

requirements just as it does for market risk.

Portfolio methods are superior to transactions methods because they incorporate the

correlation of credit risk exposure among all transactions with a counterparty and netting arrangement

that serve to reduce credit risk exposure. Firms pursuing "industry best practice" either have adopted

or hope to adopt a portfolio approach to measuring credit risk. Since the information systems

                                                  
18 For example, if an at-the-money American option close to expiration were subject to unacceptably high approximation

error, the numerical method would be used.

19 This discussion is based on two articles describing Citibank's credit risk measurement system: Picoult (1996) and
Lawrence (1995).
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requirements of such an approach are similar to the requirement for calculating Value at Risk, firms

may enjoy a synergy if they can design a single information system to meet both needs.

4. Information systems and measuring aggregate market risk

To measure aggregate market risk, a central bank would be faced with many of the same

problems vis-a-vis individual firms that firms are faced with vis-a-vis trading units when setting up a

central firmwide risk management function. Since a central bank will presumably not be interested in

a "centralized" solution, we must look to the decentralized solutions already discussed to explore this

analogy further.

Compare the "decentralized" solutions for computing delta-normal and full revaluation

Monte Carlo Value at Risk.  In the former, each trading unit must supply information on its "deltas"

with respect to a uniform set of market risk factors. To use this methodology to measure aggregate

market risk, a central bank would have to specify a common set of market risk factors for all firms to

use. Specifying a common set of market risk factors presents several problems. For those firms that

use a delta-normal methodology to calculate Value at Risk, their set of market risk factors is likely to

be different from the common set, requiring reprogramming of the mapping procedure. Those firms

using a different methodology, one that does not require mapping, would have to devote information

systems resources to devising a mapping scheme that is irrelevant for their own business needs.

In full revaluation Monte Carlo Value at Risk, each trading unit computes the change in

portfolio value for each Monte Carlo draw. To use this methodology to calculate aggregate market

risk, a central bank would have to specify a set of Monte Carlo draws for all firms to use. Firms using

a full revaluation Monte Carlo methodology, whether centralized or decentralized, could compute

their change in portfolio value for each Monte Carlo draw in the same fashion as they compute it

when measuring Value at Risk with their own Monte Carlo draws. Firms using another methodology,

such as delta-normal, will also be able to calculate their portfolio's change in value if they are able to

do stress tests or scenario analyses. The common set of Monte Carlo draws could be processed as

"stress scenarios" by such firms. A potential problem with this approach to measuring aggregate

market risk is the burden of computing a large number of scenarios, on top of the calculations need to

compute a firm's own risk measures.

4.1 Heterogeneous mappings and aggregate market risk

In section 3.2 above, we discussed the problem a firm faces in choosing a set of market risk

factors to summarize its position data for computing Value at Risk and conducting stress tests and

sensitivity analyses. Additional problems arise when combining the output of individual firms' risk

management information systems to measure aggregate market risk.
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If two firms use different mappings for the same position, they implicitly have different

definitions of market risk and basis risk, making aggregation of market risk across firms problematic.

For example, suppose two firms each have made a contract for delivery of NLG for USD at a certain

exchange rate in 30 days. One firm has the appropriate NLG/USD risk factor in its set of market risk

factors, so no mapping is required. The other firm, with little NLG/USD exposure, chooses to map its

exposure onto a DEM/USD risk factor, implicitly categorizing changes in the correlation between

NLG/USD and DEM/USD exchange rates as basis risk. Suppose a range of scenarios of exchange rate

changes are provided to both firms, and a portfolio revaluation is requested for each scenario. Given

the limitations of its risk management information system, the second firm will use only the

DEM/USD exchange rate to evaluate the NLG/USD forward contract. The two firms will likely give

different answers to the question "How much does the value of the forward contract change under

each scenario?" because their mappings are different. The variance in the answers will be greatest for

those scenarios that incorporate moves in the NLG/USD and DEM/USD exchange rates that are

farthest from their historical correlation.

Similar problems would arise when using individual firm "deltas" with respect to particular

market risk factors as a basis for measuring aggregate market risk. A firm's sensitivity to DEM/USD

risk may incorporate other exchange rate risks that have been mapped onto the DEM/USD risk factor;

if each firm has a different mapping, each firm's sensitivity will be measuring a different concept,

again making aggregation problematic.

Different firms' business needs may lead them to choose different sets of market risk factors

to build into their risk management information systems. This variation across firms creates a problem

for aggregating measures of market risk across firms, since different sets of market risk factors imply

different definitions of what is encompassed by "market risk." Investigation of how serious a problem,

in practice, this variation across firms would create for measuring aggregate market risk and how to

get around the problem is left as an exercise for further research.

4.2 Data on counterparty type

Depending on the use to which the data is to be put, data on aggregate market risk may need

to be computed by counterparty type. An information system designed solely to measure market risk

will not necessarily be able to produce a breakdown by counterparty of either cashflow mappings or

changes in portfolio value from a Monte Carlo draw. However, an information system designed to

jointly measure market and credit risk could track counterparty type. The merits of such systems have

been discussed in industry trade journals, but it is unclear how many firms are implementing such

systems.20

                                                  
20 See "Risk Where Credit's Due", Risk 9:6 (June 1996) and "Together They Stand", Risk Firmwide Risk Management

Supplement (July 1996).
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5. Conclusion

To measure risk, a financial firm needs sophisticated information systems. The information

systems must combine data from disparate trading units in a structured way to estimate the aggregate

risk of the firm. In this paper we have outlined some of the issues firms face when setting up such

systems. We have described two of the many risk management methodologies currently in use in the

market, and shown how methodology and information system design interact.

Efforts by firms to construct information systems that measure their risk on a firmwide basis

have enable us to consider the possibility of aggregating risk data across firms in a meaningful, timely

way. If the many hurdles could be overcome, this could represent a revolutionary new way to

construct market oversight information. To measure aggregate market risk, risk data must be

combined across firms. Any such effort would face many of the same issues of information systems

capabilities faced by firmwide risk management in an individual firm.  While the issues are similar,

the limited ability to impose coordination across firms raises new problems.  How to overcome these

problems is left as a task for future research.
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Abstract

When risk managers develop firm-wide measures of risk, the efforts can impose substantial

costs both of developing information systems and, on an ongoing basis, of computation and

aggregation. These costs can lead risk managers to base risk measures on a set of risk factors

(including asset prices) of lower dimension than the dimension of underlying sources of risk. Such

truncation of the set of risk factors, however, could cause risk measures to systematically

underestimate a portfolio's risk. This paper presents examples where risk aversion leads a firm to

hedge risk factors that have high explanatory power for many asset returns; however, the firm may

remain exposed to other, less-important risk factors if their market price of risk is sufficiently high.

Statistical techniques for identifying sources of risk that choose risk factors based on the variability of

asset prices without taking account of the market price of risk could systematically underestimate

portfolio risks.

                                                  
* We thank Henri Pages for helpful comments and suggestions. The views expressed in this paper are the authors' and

do not necessarily reflect positions of the Federal Reserve Bank of New York, the Federal Reserve System, the
Euro-Currency Standing Committee, or the Bank for International Settlements.
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Residual risk factors, portfolio composition
and risk measurement

1. Introduction

Two questions regarding measures of portfolio risk that are not equivalent are:

− What price shocks would lead to large losses?

− What losses would be caused by the class of price shocks that have occurred with

sufficient regularity in historical data to be identified by statistical techniques?

The price shocks identified by the first question may be different from the price shocks

used in the second question. At least two reasons for the difference can be mentioned.

− Selection bias: dealers' trading and hedging strategies may be conditioned on the same

statistical regularities identified by the designers of stress tests. The dependence of

observed statistical regularities on the sample period could cause stress tests to fail to

identify the shock in the first question. See, Mahoney, 1996.1

− Portfolio composition and aggregation of shocks to risk factors.

This note addresses the last point, how portfolio composition determines the aggregation

of shocks to the risk factors that drive asset price volatility. Computation burden and the

information-system costs of firm-wide aggregation of risk can cause risk managers to construct risk

measures that parsimoniously reduce the number of risk factors to a smaller dimension than the

dimension of asset prices. Such truncation of the set of risk factors, however, could cause risk

measures to systematically underestimate a portfolio's risk. This underestimate can occur even when

the exercises uses the full dimensionality of the portfolio's sensitivity to asset prices (i.e. the

sensitivity to every asset price is accounted for).

If a firm's risk aversion causes it to hedge risk factors that have high explanatory power in the

variability of asset returns, smaller risk factors that appear to be less consequential may remain

unhedged if those factors have a market price of risk. Statistical techniques that summarise the

variability of asset prices without taking into account the sizes of market prices of risk could then

systematically underestimate portfolio risks if the techniques ignore some factors with a market price

of risk. While this claim should not be surprising, its implications in the measurement of portfolio risk

should not be overlooked by designers of risk measures who may need to reduce the dimensionality of

the measurement exercise due to constraints of data availability or computation burden. The following

two examples illustrate this claim.

                                                  
1 "Empirical-based versus model-based approaches to value-at-risk: An examination of foreign exchange and global

equity portfolios", James Mahoney; in Risk measurement and systemic risk: Proceedings of a joint central bank
research conference. Board of Governors of the Federal Reserve System (1996).
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2. An example with financing constraints

Our first example considers portfolio risks in a setting where the portfolio manager faces

financing constraints.

Asset prices

Consider a portfolio that contains the four assets, whose returns are described by four

independent random risk factors, fj , j=1,..,4,

c1 = r* + (λ1 + f1)

c2 = r* + a1(λ1 + f1) + (λ2 + f2)

y1 = r* + (λ1 + f1) + a2(λ2 + f2) + (λ3 + f3)

y2 = r* + b1 (λ1 +f1) + (λ2 + f2) + a3(λ3 +f3) + (λ4 +f4)

where the remaining terms are constants. The constant terms λj are the market price of risk of the risk

factors, fj, and r* is the riskless interest rate. Each asset return is influenced by its "own" risk factor,

and some are also influenced by other assets' risk factors as well. The market price of risk of each risk

factor is assumed to be determined by its volatility and correlation with the return of a market

portfolio consisting of equal amounts of all four assets.

Assume that the risk factors f1 and f2 explain more than 90% of the variability of each of

the four asset prices, as is the case with the following parameter values: a1 = 0.5, a2 = 0.25, a3 = 0.25,

b1 = 0.75, σ1 = 0.01, σ2 = 0.01, σ3 = 0.0033, and σ4 = 0.004, where σi is the standard deviation of

the risk factor fi , E(fi ) = 0, and Cov(fi,fj) = 0.

With the assumed parameter values, the two risk factors f1 and f2 would explain more

than 90% of the variability of y1 and more than 90% of the variability of y2, while explaining 100%

of the variability of c1 and c2 (see Table 1). In other words, the variability of all asset returns can be

very well described by only two risk factors.2 With this excellent explanatory power of only two risk

factors, an analyst might be tempted to dismiss the remaining risk factors as unimportant residual

terms. Can such residual risks be ignored in considering specific risk?

Table 1

Explanatory power of risk factors in asset returns

c1 c2 y1 y2

Variance of asset returns ......................... 0.01 0.0112 0.0108 0.0131

Proportion of variance explained by: f1
and f2 ...................................................... 1 1 0.91 0.90

Proportion of variance explained by: f1
and f3 ....................................................... 1 0.2 0.95 0.33

Proportion of variance explained by: f1,
f2, and f3 .................................................. 1 1 1 0.91

                                                  
2 The correlations between the asset prices are, corr(c1, y1) = 0.93, corr(c1, y2) = 0.76, corr(c1, c2) = 0.45 and

corr(c2, y2) = 0.94.
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Portfolio allocation

The risk factors f1 and f2 can be interpreted as market risk factors, since they have a large

influence on all asset prices. The other risk factors represent spread risk. Consider the portfolio return

described by,

y   =   [y1 A + y2(1-A) - c1 B - c2(1-B)] N, (1)

where A and B are choice variables that determine portfolio composition, 0≤A≤1 and 0≤B≤1, and N is

the portfolio size. This profit function has the following interpretations.

Interpretation 1: A bank can invest and fund its positions in different markets (countries).

yj is the investment return in market j, and cj is the funding cost in market j, for j = 1,2.

In contrast to the model in section 3, here the bank does not have access to funding at the

risk-free rate. Hence, its portfolio must earn a return above the risk-free rate with the

corresponding risk.

Interpretation 2: A bank takes long positions in two assets with returns yj, j=1,2, and

short positions in two assets with returns cj, j=1,2.

Variance of portfolio return

Depending on portfolio composition, the risk factors that appear to have high explanatory

power in asset returns can have much smaller explanatory power in portfolio returns. Table 2

compares portfolio risk and estimates of that risk based on an incomplete model (with the portfolio

size variable N=100). Panel A shows results in terms of portfolio variance for contrast with Table 1,

while Panel B shows results in terms of portfolio standard deviation. The portfolio weights in Table 2,

are optimal portfolios corresponding to different values of the risk aversion parameter (ρ) in the utility

function,

U = E(y(A, B, f1, f2, f3, f4))  -  
ρ
2

V(y(A, B, f1, f2, f3, f4)) (2)

where E and V denote expected value and variance, and y is portfolio returns as defined in (1), where

portfolio size is held constant.

While the first two risk factors explain more than 90% of the variability of all asset

prices, their ability to describe the risks in portfolio returns can be much smaller. In the case of the

portfolio chosen by a moderately risk averse firm, the first two risk factors explain only 31% of the

variance of portfolio returns (56% in terms of portfolio standard deviation). Moreover, adding the

third risk factor would increase the explanatory power to only 47% of the variance of portfolio returns

(69% in terms of portfolio standard deviation).
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Table 2

Explanatory power of risk factors in portfolio returns

Panel A: Variance of portfolio returns

Risk
neutrality:

A=0 B=1

Slightly risk
averse:

A=0 B=0.4

Moderate risk
aversion:

A=0.3 B=0.4

Extreme risk
aversion:

A=0.7 B=0.6

Portfolio variance .................................... 1.23 0.33 0.15 0.10

Proportion of variance explained by: f1
and f2 ......................................................

0.86 0.49 0.31 0.21

Proportion of variance explained by: f1,
f2, and f3 .................................................

0.87 0.51 0.47 0.85

Panel B: Standard deviation of portfolio returns

Risk
neutrality:

A=0 B=1

Slightly risk
averse:

A=0 B=0.4

Moderate risk
aversion:

A=0.3 B=0.4

Extreme risk
aversion:

A=0.7 B=0.6

Portfolio Standard Deviation, σ(y) ...........
1.11 0.57 0.39 0.31

Proportion of σ(y) explained by: f1
and f2 ......................................................

0.93 0.70 0.56 0.46

Proportion of σ(y) explained by: f1, f2,

and f3 ......................................................

0.93 0.72 0.69 0.92

Another feature of these results is that the amount of risk left unaccounted for does not

always decline as portfolio risk decreases. Table 3 shows the amount of portfolio risk (as measured by

portfolio standard deviation), as well as modelled risk (using f1 and f2 only) and the amount of risk

left unmeasured. The last row of Table 3 shows that the amount of risk left unaccounted for need not

decrease as portfolio becomes risk becomes smaller.

Table 3

The effect of neglected risk factors: portfolio risk left unmeasured

Risk
neutrality:

A=0 B=1

Slightly risk
averse:

A=0 B=0.4

Moderate risk
aversion:

A=0.3 B=0.4

Extreme risk
aversion:

A=0.7 B=0.6

Portfolio Standard Deviation, σ(y) ...........
1.11 0.57 0.39 0.31

Modelled Standard Deviation using f1
and f2 ......................................................

1.03 0.40 0.22 0.14

Risk left unmeasured ...............................
0.08 0.17 0.17 0.17
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Stress test results

As with the variance of portfolio returns, risk factors that have high explanatory power in

asset prices can have much smaller explanatory power in stress tests of portfolio returns. The results

in Table 4 apply to the moderately risk averse portfolio (A=0.3, B=0.4).

Table 4

The effect of neglected risk factors: stress tests of portfolio returns

Actual shock in risk factors Stress test specification Proportion of actual change
predicted by the stress test

fi  =  σi,  i = 1 to 4 fi  =  σi ,  i = 1,2

fj  =  0,    j = 3,4

0.41

Same as above fi  =  σi ,  i = 1,2,3

f4  =  0

0.62

In contrast to their higher explanatory power in the space of asset prices, the truncated set

of risk factors has much weaker explanatory power in stress tests of portfolio returns. For example,

while the first two risk factors account for 79% of the change in y1 and 78% of the change in y2 due

to a one standard deviation shock to all risk factors, they account for only 41% of the actual change in

portfolio value.3 Adding the third risk factor to the stress test, would account for all the change in y1

and 82% of the change in y2, but yet account for only 62% of the true change in portfolio value.

3. Portfolio risk

Like the first example, our second example investigates sources of portfolio risk when

market returns follow the restrictions of linear arbitrage pricing theory and the portfolio is selected by

a risk averse portfolio manager. The difference between the two examples is the unconstrained choice

in the second example, where the portfolio manager can choose a portfolio with the risk-free return.

We demonstrate that portfolio risk will likely be mismeasured by risk-management methodologies

that do not include all sources of non-diversifiable risk in asset returns. Specifically, the example

suggests that an analysis of portfolio risk that uses only factors accounting for a large fraction of

return variance or that leaves out factors with high expected returns will often understate portfolio

risk.

                                                  
3 The first two risk factors account for 100% if the variability of c1 and c2.
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Asset returns

We assume that returns on the n risky assets follow a k factor model:

r = re + βf + ε

where returns above the risk-free rate (r), expected excess returns (re) above the risk-free rate, and

idiosyncratic errors (ε) are n x 1 vectors; the factors (f) are a k x 1 vector; and the matrix of factor

loadings (β) is a n x k matrix. The expected value of the factors and idiosyncratic errors is zero. For

convenience, we assume that the factors are uncorrelated both with each other and with the

idiosyncratic errors, that the factors are normalised so β′β = Ik (the k dimension identity matrix), and

that the variances of the idiosyncratic errors are equal so Var n( )ε σε= 2 I  (i.e. proportional to the n x n

identity matrix).

Thus, the variance of excess returns is given by:

Var(r) = β Var(f) β′ + Var(ε) = β Var(f) β′ + εσ2
nI

where Var(f) is a diagonal matrix. The normalisation assumption on β and the correlation assumptions

for f imply that β is the matrix of eigenvectors of β Var(f) β′ corresponding to the (positive)

eigenvalues on the diagonal of Var(f). The full decomposition is given by:

β β β β β β βVar f
Var f

( ) % ( ) %′ =
L
NM

O
QP

0

0 0
 and β β

β
β

β
β

β β%
% %

%′
′

L
NM

O
QP

=
′
′

L
NM

O
QP

= nI

where %β  is the n x (n-k) matrix of eigenvectors corresponding to the zero eigenvalues of β βVar f( ) ′ .

With these assumptions, the variance matrix of returns can be expressed as:

Var r j j

n

j( ) ( )= ′ +∑β β σ σε
1

2 2

where σ j
jVar f j k

j k
2

0
=

≤

>
RST

( ) ,

,
, either the variance of the j-th factor or 0, and βj is the j-th eigenvector

of Var(r), a column of either β or %β .4 The inverse of the variance matrix of returns is:

Var r j j

n

j
− −= ′ +∑1

1

2 2 1( ) ( )β β σ σε

A portfolio is defined by the shares (ω) held in the n risky assets. Returns on a portfolio

are:

ω′(r + r0i) + r0(1-ω′i) = ω′r + r0

where r0 is the risk-free rate and i is a n x 1 vector of ones. Expected portfolio returns and the variance

of returns are:

E(ω′r + r0) = ω′re + r0 and

Var r r Var f( ) ( ( )′ + = ′ ′ + ′ω ω β β ω σ ω ωε
0 2 .

Arbitrage profits could be obtained with these assets unless riskless portfolios earn the

risk-free rate of interest (i.e., have a zero expected excess return). When the number of risky assets is

large, idiosyncratic risk can be largely eliminated by diversification. For example, a portfolio whose

                                                  
4 The decompositions of A and A + bI are closely related, where A is a n x n matrix, b is a number, and I is the n x n

identity matrix. It can be shown that the eigenvalues of A + bI equal b plus the eigenvalues of A while the
eigenvectors of the two matrices are identical.
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weights are % % / ( )ω β= −i n k  has variance σε
2 / ( )n k−  and will have little risk when the number of

assets, n, is large. Thus, portfolios whose risk arises only from idiosyncratic risk will have a return

equal to the risk-free rate.5 A portfolio whose risk arises from idiosyncratic risk has weights on risky

assets satisfying ω′β = 0, with not all weights equal to zero. If these portfolios have zero expected

excess return then ω′re = 0. These conditions imply that the vector of expected excess returns, re,

must be a linear combination of the columns of β. Thus, absence of arbitrage opportunities implies

that expected returns satisfy:

re = βλ
where the elements of λ represent the marginal expected excess return from additional investments in

portfolios reproducing particular factors.

Portfolio choice

To investigate the possible implications of choosing too few factors to describe returns and

the risk of a portfolio, we consider portfolios formed by mean-variance optimisation. Mean-variance

optimises generally choose portfolios to reduce risk unless the returns to bearing risk are sufficiently

attractive. We use mean-variance optimisation to illustrate possible tradeoffs that might occur in real

portfolio choices.

We assume that the portfolio manager selects the portfolio weights on risky assets, ω, to

maximise an objective function that rewards expected return and penalises variance of returns:

E r r Var r r( ) . ( )′ + − ′ +ω ρ ω0 00 5 .

In this objective function, the coefficient ρ describes risk aversion; managers with higher values of ρ

are more risk averse. The optimising portfolio weights are:

ω ρOPT eVar r r= −( ( )) 1 .

This well-known result shows that the portfolio manager tends to give higher weights to assets with

high expected excess returns and lower weights to assets with high variances. This portfolio has

realised return equal to:

r re e+ −ρ 1 ′Var r r re e( )− −+1 1ρ ′Var r f( ) ( )− +1 β ε

with variance:

ρ−2re ′ Var r re( )−1 .

If all market participants are mean-variance optimisers and if there are a large number of

assets (none of which is a large part of the market portfolio), then in market equilibrium:

r Var r Var fe avg market market avg= ≈ ′ =( ( )) ( )ρ ω β β ω ρ β λ

                                                  
5 As the discussion suggests, this property holds exactly only in a limiting case as the number of assets grows. See

J. Ingersoll, Theory of financial decision making, (Rowman & Littlefield, 1987), Chapter 7 for a more detailed
discussion. We assume that the result holds exactly here to simplify the algebra that follows.
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where ωmarket represents the portfolio weights in the market portfolio and ρavg is a wealth-weighted

average of market participants’ risk aversion.6 It follows that the elements of λ are proportional to the

factor variances, or λ σ κl l l= 2 , where the constant of proportionality, κl, will be large either if the

factor has large β for many assets or if the large elements of β correspond to assets with large shares

in the market portfolio. This second condition could occur if the relative factor loadings corresponded

closely to the shares in the market portfolio.

Factor contributions to return and portfolio variance

We can combine these results to compare factor contributions to the variance of returns or to

the variance of the portfolio. These contributions will suggest when a factor is more important to

return or portfolio variances.

One measure of the contribution of a factor to a set of returns is the share of summed

return variances that can be attributed to the factor. With the structure assumed above, this calculation

is very easy because each factor is uncorrelated with the other sources of risk. Specifically, the

fraction of total return variances contributed by factor l is given by:
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where tr represents the trace of a matrix - the sum of the diagonal elements.

Turning to portfolio returns, the variance of realised returns contributed by factor l is:
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This expression can be simplified considerably by using the expression for the inverse of
Var(r) derived above, the property that β βj l j l= ≠0 , , and the arbitrage-free value of re to obtain:

ρ σ
λ

σ σε

− ⋅ ⋅
+

2 2

2 2 2l
l

le j
where λl is marginal expected excess return for factor l.

The contribution of factor l to portfolio variance can be compared to the overall variance

of the portfolio. Recall that the variance of the optimising portfolio is:

ρ−2 re ′ Var r re( )−1

Substituting for the inverse of Var(r) and for the arbitrage-free value of re gives the following

expression for the portfolio variance:

ρ β λ β β σ σ β λ ρ λ σ σε ε
−
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− − −

=

⋅ ⋅ ′ ⋅ ′ + ⋅ ⋅ = ⋅ +∑ ∑2

1
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j

n

d i d i

where λl = 0,l>k

                                                  
6 Specifically, ρavg = (∑ ρi

-1 Wi/W)-1 where ρi and Wi are risk aversion and wealth, respectively, of participant i and W

is total wealth of all market participants.
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Thus, the fraction of portfolio variance that is attributable to a factor is:
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Note that the fractions do not add up to one because the idiosyncratic, asset specific, sources of risk

also contribute some risk to a portfolio.

Contributions to portfolio and return variances

A factor will contribute substantially to portfolio variance either if κl is large or if σl
2  is

large. Note that the first case, when κl is large, is one where the factor may account for a larger share

of portfolio variance than of overall return variance. (This is most likely when κl is large and σl
2  is

small.) The second case highlights that factors with large variance will contribute usually substantially

to both portfolio variance and to the variance of returns, σ σ σεl j
j

n
2 2 2

1

/ +
=

∑d i.

4. Conclusion

This paper presents two simple but somewhat realistic examples of portfolio exposure to the

sources of risk in the underlying assets. Both examples suggest that all factors with priced risk should

be included in risk measurement systems.

The first example considers a risk-averse portfolio manager who optimises subject to

some financing constraints. The example shows that the resulting portfolio will include investments

with high market prices of risk; these investments may generate exposure to factors that do not

account for a substantial part of asset return variance.

The second example also models a risk-averse portfolio manager selecting a portfolio,

but without financing constraints. The model shows that the market risk of a portfolio may be

determined by factors that contribute fairly little to asset return variance. Thus risk measurement

methodologies that do not include all sources of priced risk could substantially understate the risk

faced by some participants.



145

Liquidity risk and positive feedback

by

Matthew Pritsker*

Federal Reserve Board

April 1997

Abstract

This paper reviews some of the literature on market liquidity and feedback trading in the

context of a simple multi-asset rational expectations general equilibrium model. The determinants of

market liquidity and feedback trading are discussed, and the effect of feedback trading on price

volatility and on market liquidity is examined in the context of the model.
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1. Introduction

This paper provides a brief summary of some of the relevant issues raised in the literature on

feedback and market liquidity for our research on market stress. Rather than presenting an extensive

review of all of the literature on this topic, I provide a static model which contains what I believe are

the most important features of models of liquidity and feedback. I discuss the relevant literature and

the issues that are raised in the context of the model. A bibliography provides a more extensive list of

readings than is discussed in this summary.1 Finally, the last section of this summary discusses areas

for further research.

2. A basic model

In this section of the paper we model how the prices of assets in an economy are determined

by the trading strategies of its market participants, and by the informational structure of the market.

Specifically, we will consider an economy endowed with a fixed supply of N fundamental assets

A1,...AN, where P and V denote Nx1 vectors of their prices and long run fundamental values. The

economy also contains derivative securities that are in zero net supply; the value of these securities is

determined by the prices of the underlying fundamental assets.

Although derivative securities are in zero net supply, we will assume that some participants

buy and hold derivative securities while others hedge the risk associated with their derivatives

position. I will make the simplifying assumption that derivatives dealers hedge their net derivatives

exposures, while other participants do not. H(P) denotes the value of dealers' net derivative securities

positions as a function of underlying asset prices.

There are three types of participants in the markets for the underlying assets: noise traders,

derivatives dealers and value investors. The trades of noise traders are uncorrelated with other

participants objectives. We will denote their net trades by e, and make the additional simplifying

assumption that

ε ~N O,Σεb g. (1)

The second type of traders are derivatives dealers. Derivatives dealers maintain positions in

the underlying assets to hedge their net positions in the derivatives market. For simplicity we will

maintain the assumption that derivatives dealers choose their positions in the underlying assets to

remain delta-neutral overall. To derive the implications of this assumption for derivative dealers net

asset demands, let XDD denote the net position of derivatives dealers in the underlying assets at time t.

                                                  
1 The article by Hebner (1996) provides a good review of the market microstructure liquidity literature. Damodaran and

Subrahmanyam (1992) provide a summary of the literature on the effects of introducing options and futures markets.
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The value of the derivatives dealers positions in the fundamental assets and the derivative securities is

given by

X P H PD D
1 + b g.

If the current time is time period 0, and P is initially P0  but changes to P1 at time 1, then the

change in the value of the derivative dealers position is approximately:

X H P P PDD P+ -0 1 0b g b g .

To minimise the change in the value of the derivatives dealers position, XDD should be

chosen so that XDD = −H PP0
b g . As P goes from P0  to P1, the hedges will have to be readjusted to

maintain delta neutrality. In this case, dynamic hedging requires that

∆ X H P P PDD P P= − −, 0 1 0b gb g . (2)

The third type of traders are value investors. Value investors are modelled as long-term

players in the securities markets who are willing to take positions to exploit deviations of price P from

long run fundamental value V. More specifically, we assume that the net position of value investors in

the underlying assets can be described by the equation:

X X K V PVI VI= + −( ) ( )*0

where XVI  is the value investors net position, XVI 0b g  is the desired position conditional on

V P V= 0 , *  is the E(V\P,I) based on the observed price P and the information set (I) of the value

investors. As E(V\P,I) and as P changes, the desired position of value investors also changes. The

equation for the change is

∆ X K V V P PVI = − − −1 0 1 0
* * d ie j. (3)

Finally, assume that the change in fundamental value V conditional on P is distributed

normally as follows:

V V1 0
* *− ~ N v( , )0 Σ .

Equilibrium prices in the model are those prices which make the net changes in all three

participants positions sum to 0, i.e. the equilibrium condition requires that:

D XVI + D XDD + =ε 0 .
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Solving for P P1 0−  yields:

P P H P K K V VPP1 0 0
1

1 0− = + − +−b g b g ε . (4)

This implies that ΣP  the variance of P is given by:

Σ Σ ΣP PP V PP oH P K K K H P K= + + +
− −

0

1 1 1b g c h b gε
' . (5)

The liquidity of the market is measured by its ability to accommodate liquidity shocks

without prices being driven far away from fundamentals. One measure of the deviation of prices from

fundamentals is the variance of price relative to the variance of fundamentals. It is useful to illuminate

what determines this variance since it is these same variables that need to be and to some extent have

been modelled on papers on liquidity.

The above model is very simple and stylised. Its main contribution is that it contains

important features of feedback and liquidity models that appear in the academic literature. The next

sections discuss the liquidity and feedback aspects of the model in more detail.

3. Liquidity

Aspects of market liquidity include the time involved in acquiring or liquidating a position

and the price impact of this action. Beyond these aspects market liquidity is difficult to define in

practice. However, it is sensible to talk about it in the confines of specific models.

Liquidity of the derivatives market

Many OTC derivatives markets are not highly liquid which is part of why dealers in these

markets make profits. In markets which are not highly liquid, the main determinants of liquidity are

dealers' willingness to bear risk, and their ability to hedge risk. This latter ability depends on the

liquidity of the underlying markets which is the focus of most of our analysis.

Liquidity of the underlying markets

There are two main sources of liquidity in the underlying markets. The first source of

liquidity is the liquidity provided by market-makers. Market-makers quote prices at which they are

willing to buy and sell fixed, typically small quantities of underlying assets. The spread between these

prices (Bid-Ask spread), or the price impact associated with making a trade (often denoted l) with a

market-maker is an appropriate measure of liquidity in normal market conditions. However, it is

probably not reasonable in abnormal conditions.
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I make this distinction between normal and abnormal conditions because I view

market-makers as providers of immediacy; i.e. market-makers provide immediate temporary liquidity

to the market to absorb short-term order imbalances which they believe will disappear when the other

side of the market eventually (relatively soon) emerges. In abnormal market conditions, this other side

of the market may be small or non-existent; in these abnormal circumstances market-makers will

provide very little liquidity to the market. More importantly, any analysis of liquidity that is based on

market-makers ability and willingness to absorb volume in normal markets will undoubtedly generate

erroneous implications about market liquidity in abnormal market conditions.

The most important determinant of market liquidity in the event of abnormal market

conditions is not market-makers, but value investors who will presumably be willing to eventually

take the other side of the positions that market-makers hold temporarily. Value investors willingness

to provide liquidity is represented by the matrix K in our stylised model because K measures the

propensity of value based investors to push prices back towards what they perceive as fundamental

values when prices appear to deviate from fundamentals. Equation (5) shows that as K goes to

infinity, the variance of asset prices goes to ΣV , i.e. asset prices do not deviate from fundamentals as

K becomes large. This corresponds to the case of infinitely liquid markets.

As K becomes small, there is a distinct absence of value investors. In this case, variations in

price are due to noise traders and derivatives dealers, but are not due to long-run fundamentals. This

creates a scenario where prices could wander far from long-run asset value.

Determinants of K

In noisy rational expectations models, the standard functional form for K is

K = t∏(V \I P, )

where ∏(V \I P V, ) (= −Σ 1 \ I P, ).

∏(V \I P, ) is known as the precision of value investors estimates of V given their

information set I and observed asset prices P, and t is the average value of value investors coefficient

of risk tolerance. The formula for K shows that markets will be more liquid the greater is value

investors tolerance for risk or the more precise are value investors estimates of V.

The precision of value investors information is partially determined ex-ante and partially

determined ex-post. From an ex-ante perspective, value investors have an incentive to expend effort

learning about V because this will be useful in exploiting differences between realised securities

prices and value investors estimates of V.

The desire to learn about V also depends on the amount of ex-ante expected dynamic

hedging in the market by dealers, and on the ex-ante expected amount of noise trading. The larger are

these latter two, the greater is the incentive to learn about V to exploit potential mispricing. However,

if value investors do not ex-ante know the amount of dynamic hedging interest in a market, or set of
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markets, then they will choose their amount of information gathering based on the unconditional

average amount of dynamic hedging that takes place in a market. This means they will gather too little

information in some markets and too much information in others. This may lead to suboptimal

risk-sharing and too much price volatility. Grossman (1988) makes a similar argument (mine is based

on his) to illustrate the distinction between exchange traded and OTC options. The open interest in

exchange traded options is publicly known which implies that demands for dynamic hedging are

known as well. This generates the right incentives to engage in liquidity provision. By contrast, if an

option is OTC, then the amount outstanding is not known, and thus incentives for liquidity provision

may be suboptimal.

In a framework with asymmetric information, K could potentially be determined by ex-post

as well as ex-ante factors, although modelling this is very difficult. For example, suppose there are

two types of value investors. One type only has public information about V and the other has private

information. Under these circumstances, if a value investor with public information observes a change

in P, he knows it could be because of dynamic hedging, noise traders, or news about V that other

value investors received. Under these circumstances, a large change in P may cause the value investor

to revise downward the precision of his assessment of V.

Determinants of E(V\I, P)

The other important determinant of liquidity demand is E(V\I, P). For value investors with

only public information, if E(V\I, P) declines for sufficiently large decreases in P, then these value

investors will tend to buy less as prices decline. Moreover, their beliefs may place them in a position

where once price declines are steep enough, it looks better to sell into a decline than to buy. This is

the scenario for the crash in Gennotte and Leland (1990).

Put slightly differently, after a large decrease in P, value investors with public information

may be very hesitant to purchase stock because they do not know whether the change in P is due to a

change in V or not. If it is due to a downward move in V, they should not want to purchase, and may

want to sell. But, if it is due to a liquidity shock, they should want to purchase.

The determinants of E(V\I, P) depend on the signal extraction problem solved by publicly

informed value investors. If publicly informed value investors are not aware of liquidity trades, or

hedging trades by derivatives dealers, they may mistakenly attribute these price movements to

information. The key to avoiding this particular problem is the ability of value investors to distinguish

to some extent among various reasons for trade. This will be discussed more below.
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4. Feedback and liquidity demand

Liquidity demand comes from two sources, noise traders and derivatives dealers. The

demands from noise traders, as modelled here, are not price sensitive which means they represent

liquidity demand, but they do not have potential feedback effects on prices. By contrast, derivatives

dealers hedging trades are contingent on price. Thus, they have a feedback effect into the market. The
strength of this feedback is measured by H PPP 0b g . Roughly speaking, this is the slope of dynamic

hedgers excess demand curve for the underlying assets. If the diagonal elements of HPP  are negative

this would imply that the dynamic hedgers (on net) positive feedback trade by selling as prices go

down and buying as prices go up. Alternatively, if the diagonal elements are positive, then the
dynamic hedgers (on net) sell as prices rise and buy as prices fall. K + H PPP 0b g  is the slope of the

excess demand curve for dynamic hedgers and value investors together. Since value investors tend to

buy if the asset is underpriced, it is probably safe to assume that the elements of K (or at least its

diagonals) are positive. This implies that those markets which are the most illiquid, i.e. those with the
greatest amount of price volatility will be those with K + H PPP 0b g  close to zero; i.e. it will be those

where there is negative feedback trading. If this negative feedback trading is so severe that the slope

of the excess demand curve approaches 0, then a shock from noise traders or a shock from liquidity

traders will generate price volatility that is nearly infinite.

Sunshine trading

Dynamic hedgers (derivative dealers) and value investors have much to gain by trade with

each other since value investors are generally liquidity providers and (derivatives dealers) are liquidity

demanders. One way that hedgers can minimise their own price impact is by taking steps to increase

K. This can be done by making some aspect of their trades or trading intentions known to the market

in advance. They can also indicate that the trades are not informationally motivated. This practice is

known as Sunshine Trading and is discussed extensively in Admati and Pfleiderer (1991). The

advantage of preannouncing planned large trades is twofold. First, it gives value investors some time

to investigate market conditions (acquire information) before they provide liquidity. Second, since the

trades are informationless, preannouncing the trades reduces the chance that the ensuing price

movement will be misconstrued as information, potentially triggering a very large price move.

Admati and Pfleiderer (1991) show that preannouncing trades can have an important effect in

reducing price volatility. Gennotte and Leland (1990) take this reasoning a step further. They show

that in a rational expectations model, with asymmetric information, if some participants are not aware

of the presence of hedging trades, then very large price drops may be misconstrued as information.

This can cause prices to drop much further, i.e. this can cause the market to crash. Furthermore, they

show fairly convincingly that this type of reasoning is probably needed to explain the crashes of 1929

and 1987.
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Simulation results on liquidity and feedback

To gain a better understanding of the model presented in section II and expanded upon in the

appendix, two types of model simulations were conducted. In the first we assumed that there is only

one type of value investor in the market, that these represent a fixed proportion of market participants,

and that these value investors have a common private signal of the asset's underlying value. We refer

to this as the symmetric information case since all value investors have the same information. We

then examined how varying the intensity of dynamic hedging (as measured by HPP  or Derivatives

Dealers Net Gamma) affected price volatility in the underlying asset market (shown in Figure 1), and

how it affected the sensitivity of asset prices to liquidity trades (shown in Figure 2).2 In the second

type of simulation we kept the same number of value investors, but divided them into two types,

informed value investors who observe a common signal about v, and publicly informed value

investors who base their decisions on the information about v revealed by market price. We refer to

this as the asymmetric information case since value investors do not have the same information. The

result for the second type of simulation is also contained in figures 1 and 2.

The vertical axes in figures 1 and 2 are the natural logarithm of the variance of price and the

natural logarithm of liquidity sensitivity respectively. This scaling was chosen because when gamma

becomes negative enough, the market's excess demand curve becomes nearly vertical leading to near

price indeterminancy and major price volatility which is too large to appear in a graph on a different

scale. That said, Figures 1 and 2 display two striking features. The first is that when gamma becomes

negative enough price volatility increases very sharply. For example Figure 1 shows that in the

symmetric information case, when net gamma is near -2200, a small decrease in gamma increases

price volatility by a factor of about e8, which is a 3000-fold increase in price volatility. The same

feature appears for the asymmetric information case, but it occurs much earlier, i.e. in the asymmetric

information case price volatility increases far faster as gamma increases. This occurs for two reasons,

first, value investors with lower quality information are more hesitant to provide liquidity to the

market, i.e. they are less willing to provide an offset to liquidity trades. Secondly, and more

importantly, publicly informed value investors are making inferences about value from prices, thus

when prices go down, they are more likely not to purchase because it may indicate a decline in assets

underlying value and not a good time to buy underpriced assets. Figure 2 shows essentially the same

story as measured by the sensitivity of price to noise traders demands. The figure shows this

sensitivity is increasing as derivative dealers gamma positions become more negative and also as we

move from the symmetric to asymmetric information cases.

A single-asset static model lacks the richness associated with multi-asset models. Figure 3

illustrates some of the richness of the multi-asset setting. Specifically, in Figure 3 we examine a six

asset economy in which derivative dealers net gamma position in one of the assets (asset one)

becomes progressively negative. This has implications for the price volatility of asset 1, but also has

                                                  
2 Sensitivity is measured as the change in asset price due to a change in noise trading (ε).
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major general equilibrium spillover effects that occur as value investors adjust their entire portfolios

to accommodate the large amounts of dynamic hedging that take place in asset 1. More specifically,

the Figure shows that as derivative dealers net gammas become more negative in asset 1, the volatility

of the other assets (shown in markets 2 through 6) rise as well. This effect appears to be more

pronounced the greater is the asymmetric information in the market, as shown by the dashed line.

A feature of Figure 3 that is puzzling at first is that price volatility appears to begin falling

again as derivative dealers net gamma becomes sufficiently negative. This is because the economy's

excess demand curve for these assets goes from near vertical to backward sloping as gamma becomes

negative enough. This is a very perverse case which I do not believe should be taken seriously but

does illustrate some of the weaknesses involved in using a Walrasian model.3

5. Items for further study

Many important details have been left out of this broad-brush treatment. The purpose of this

section is to highlight additional areas for further research.

The first important item is further study of hedging behaviour. While one of our primary

feedback concerns is dynamic hedging by dealers, little is known about how this hedging is actually

done in practice. This is very important for our analysis on liquidity. I think this can be studied in two

ways. First, as part of this effort some of us should go to dealers and ask them details about how and

where they hedge their risk, the frequency with which hedges are adjusted, etc. Second, our

simulations exercises should impose a variety of assumptions about hedging behaviour. Then we can

test the sensitivity of our results to these assumptions.

A second important area for more research involves an examination of the role of risk

sharing among dealers. The basic model that I have presented is based on net aggregate positions of

all derivative dealers. However, the distribution of these positions across the dealer community is

probably very important for determining hedging needs. For example, if derivative dealers net

position is equivalent to one position in a put option with a huge open interest, then if this is

distributed evenly across derivatives dealers, the need for each dealer to dynamically hedge may be

very small. However, if the net position is concentrated with one or a very small number of dealers,

the needs for dynamic hedging become larger. We need to inquire more about how these risks are

shared.

A third area for study involves transparency of option positions. More specifically, most of

the papers that I have discussed make the point that knowledge of the amount of liquidity motivated

trade (or trades for hedging purposes) may reduce price volatility. To some extent, market forces

                                                  
3 To illustrate the perversity, in this case the market's response to a liquidity induced purchase requires asset prices to

fall so that derivative dealers will sell enough assets to clear the market. This is probably an unrealistic representation
of how the market clears.
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already provide this transparency via sunshine trading. We should study: what determines the

prevalence of sunshine trading, and why do not we observe it more often? Second, even without

sunshine trading, knowledge of open interest in options may provide some information on hedging

demands. This may explain why the introduction of option markets does not tend to increase volatility

in the underlying assets. The role of information in option open interest can be studied empirically.

This should be an intermediate goal of this project. Finally, we should study the role of disclosure of

some aggregates of risk exposure. In particular, we should study the extent to which this potential

disclosure substitutes for knowledge of open interest or other hedging demand proxies in OTC

markets. We also need to study the potential for a moral hazard problem if it is perceived that the

government will monitor market liquidity and take steps to maintain it.

A fourth area for additional effort involves studying the behaviour of value investors. Two

tasks need to be carried out. First, we need to figure out who these investors are. My guess is they are

pension funds, life insurers, and others (?). Second, we should get additional information on their

demands. Part of this could involve studying which investors are perceived to have long horizons. A

small, so-so, literature exists on this subject.

Last, but not least, the relationship between market stress and market liquidity should be

studied more. With disclosures about stress in various scenarios, central banks will have better

measures of markets in stress even if the markets themselves have not broken down. However, we do

not know how conventional measures of liquidity and market function are related to these measures of

stress. Acquiring the data on stress, but not releasing it, may provide an avenue to study these

relationships further.
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Appendix

The purpose of this appendix is to further extend the model presented in the text and to

provide additional details on the model's derivation and results.

1. An extended model

The assets

Assume there are N financial assets indexed A AN1 ,... , represented by the Nx1 vector A. The

net supply of the assets is represented by the Nx1 vector XT . The price of the assets is represented by

the vector P, and the price of the assets last period is denoted P0 . The liquidation value of the assets is

represented by the random vector

%v = %θ + %u

where:

%θ  ~N( , )θ θΣ  and %u  ~ N u0,Σb g.

Market participants

There are four types of participants in the market, noise traders, derivatives dealers,

informed value investors, and uninformed value investors. Noise traders objectives are uncorrelated

with other participants objectives. We will denote their net trades by %ε  and make the assumption that:

%ε ~ N 0,Σεb g.
The second type of traders are derivatives dealers. Derivatives dealers are assumed to choose

their net positions XDD in the underlying assets so as to remain delta-neutral. It is assumed that they

were delta-neutral in the previous period at P P= 0 , with net asset holdings represented by the vector

XDD(P0 ) and with a delta of the net derivatives portfolio of H PP 0b g. Therefore, their position in the

underlying market must change as P changes in order to maintain delta-neutrality. In particular, to a

linear approximation their desired position as function of P is:

XDD = XDD(P0 ) - H P P PP P, 0 0b gb g− .

The third type of traders are informed value investors. Informed value investors are

"informed" because they know the realisation of %θ . We assume that the mass of informed traders is µI

("I" denotes informed), that each informed trader has CARA utility with risk tolerance parameter t,

and initial wealth W0 . Borrowing and lending take place without constraint at the riskless rate of

interest, which is normalised to 0. This allows each informed trader to choose his portfolio positions

X P1 ,%θd i to maximise:
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E
W

−
F
HG

I
KJ

−
exp %

%

τ θ

such that % %'W W X V PI= + −0 d i.
It is well known that the optimal X PI ,%θd i  satisfies:

X PI ,%θd i  = τ θ θVar v E v P% % % %e j e je j− −1

 = τ θΣu P− −1 %d i .

The fourth type of participant is uninformed value investors. The mass of these investors is

µUI  ("UI" denotes uninformed). They have the same utility function as informed value investors but

choose their positions X PUI b g  without knowledge of %θ . They do, however, know the structure of the

model, and they observe P (which reveals some of the information of the informed) and condition
their choices on P. In particular, the uninformed choose X PUI b g  to maximise:

E P
W

−
F
HG

I
KJ

−
exp

%

τ

such that % %'W W X v PU= + −0 b g.
It is well known that the optimal XU  satisfies:

X PUI b g  = τVar v P E v P P% %c h c hd i− −1 .

However, the optimal X PUI b g  depends on Var v P%c h and E v P%c h. Both of these depend on

the informativeness of P for %v . This needs to be solved for as part of the overall general equilibrium

of the model. We do this below. More specifically, the exposition that follows is designed to

accomplish four goals: 1. Relate P to the private information; 2. Solve for E v P%c h; 3. Solve for

Var v P%c h; and 4. Solve for P and do various comparative statics exercises.

Information about %v  revealed by P

Solving for the information revealed by P is a two-step procedure. First, we will solve for

the information revealed by P as a function of E v P%c h and Var v P%c h. Second, given the information

revealed by P, we will solve for E v P%c h and Var v P%c h. This section is only concerned with the first

of these steps.

The market clearing condition in these markets requires that prices be set so that supply

equals demand. This implies:

X X P X P X PT UI UI I I DD= + + +µ µ θ ε( ) ( % , ) ( )
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= −−µ τUI Var v P E v P P% %c h c hd i1 + − + − − +−µ τ θ εI u DD P PP X P H P P PΣ 1
0 0 0

%
,d i b g b gb g .

Rearranging the above equation shows that a nonlinear function of P and other known

parameters is equal to %θ  plus a function of "noise". More specifically, rearrangement produces:

S P u

I

b g= +%θ ε
µ
Σ

where:

S P
I

b g= −1

µ µΣ [µ τUI Var v P E v P P% %c h c hd i− −1 − + − − −−µ τI u DD P P TP X P H P P P XΣ 1
0 0 0b g b gb g, ]

Since S(P) is a function of P and publicly known variables, the above equation shows that

knowledge of P is equivalent to having a noisy signal of %θ , the information of the informed value

investors. Uninformed value investors can condition on this information. In particular, since %v , %θ  and

%ε  are normally distributed, we know that:

E v P E v S P% %c h b gd i=

= + −
−

% , %v Cov S P v Var S P S P S Pb g b gc h b g b g1

= + +
L
NM

O
QP

−
−

θ
µ

θθ θ
εΣ Σ Σ Σ Σu u

I

S P
2

1

b g .
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We also know:

Var v P%c h =Var v S P% b gd i

= −
−

Σv Cov v S P Var S P Cov v S P% , % , 'b gc h b gc h b gc h1

= + − +
L
NM

O
QP

−

Σ Σ Σ Σ Σ Σ Σ Σθ θ θ
ε

θµu
u u

I
2

1

' .

At this point we have solved for Var v P%c h, and we have solved for E v P%c h  as a function of

S(P); however, we have not fully solved for E v P%c h  since S(P) depends on E v P%c h . The next section

presents the complete solution for E v P%c h .

Complete solution for E v P%c h

The complete solution is complicated, because it is derived in a general equilibrium setting.

That said, the answer is:

E v P%c h = + +M M v M P0 1 2

where:

M I Cov S P v Var S P Var v PUI

I
u= +

L
NM

O
QP

− −b gc h b gc h c h, % %
1 1τµ

µ
Σ

M M Cov S P v Var S P X P X H P Pu

I
DD T PP0

1
1

0 0 0= − + −
F
HG

I
KJ

− −b gc h b gc h b g b g, %
Σ
µ

M M I Cov S P v Var S P1
1

1
= −L

NM
O
QP

F
H

I
K

− −b gc h b gc h, %

M M Cov S P v Var S P Var v P H Pu

I
UI I u P P2

1
1 1

1
0= + +L

NM
O
QP

F
HG

I
KJ

− − − −b gc h b gc h c h b g, % % ,

Σ
µ

µ τ τµ σ .

The basic form of the above answer is that E v P%c h  is a linear combination of P and the

unconditional expectation v . This is a standard result in the rational expectations literature.

Finally, given solutions for E v P%c h  and Var v P%c h, it is possible to solve for P. We do this

in the next section.

The solution for P

The solution for P is found by substituting the expressions for E v P%c h  and Var v P%c h into

the market clearing condition, and then solving for P. This yields the following expression:

P X Var v P M M v X P H P
T UI I u DD P P

= ∏ − − + − − −− − −1 1

0 1

1

0 0
ε τµ τµ θ% %

,
c h c h c h c he jΣ
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where ∏ = − − −
− −τµ τµ

UI I u P P
Var v P M I H Pc h c h c h1

2

1

0
Σ

,
.

Similarly, we can solve for the unconditional variance of P. This yields:

Var P
u u

( )= ∏ + ∏− − − −1 2

1

2 1 1 1Σ Σ Σ Σε θτ µ .
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Abstract

The goal of this study is to illustrate a viable way to explore macro risk in markets, not only

from a static viewpoint but also from a dynamic one. In this paper, I focus mainly on the feedback

effect caused by a market stress and try to present a possible analytical framework to incorporate the

effect into a macro stress exercise. I discuss how to take into account feedback effects employing two

approaches to the estimation of market participants' behaviors in response to a stress. One approach

assumes typical portfolio rebalancing of each agent based on the available information, including the

agent's trading strategy and its loss cutting rules, etc. The other approach involves the extraction of a

pattern of portfolio rebalancing of each agent based on the historical data on its portfolio profile, such

as sensitivity to risk factors, by utilizing a neural network. A dynamic stress exercise taking into

account any feedback effect will provide us with more useful and vivid information on the macro

market risk profile under stress and enable us to prepare for stress in a more efficient and effective

way.

                                                  
* I am indebted to Mr. Shigeru Yoshifuji of the Institute for Monetary and Economic Studies of the Bank of Japan for

his providing trading data for the simulations. The views expressed in the paper are those of the author and do not
necessarily represent those of the Bank of Japan, the Institute for Monetary and Economic Studies or the
Euro-Currency Standing Comittee. Although the paper benefited from comments by the staff of the Institute, the
author is solely responsible for any  remaining errors.
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1. Introduction

1.1 Framework of Macro Stress Exercise

The inputs for the Macro Stress Exercise which will be a possible tool for market

perticipants to comprehend the macro market risk profile: a stress scenario provided by central banks

and portfolio sensitivity data for reporting institutions (Figure 1). The output is an aggregate risk

measure covering the institutions. There could be two approaches to aggregating micro risk figures

into a macro risk measure. One can be called as the "Revaluation Approach," in which firms are

expected to report expected loss amounts in a given stress scenario. The other can be called as the

"Sensitivity Approach," in which firms are expected to report summary data on their sensitivity to

market risk factors.

My research goal is to illustrate a viable way to explore macro risk in markets, not only from

a static viewpoint but also from a dynamic one. In this paper, I focus mainly on the feedback effect

caused by a market stress and try to present a possible analytical framework to incorporate the effect

into the exercise. I discuss how to take into account feedback effects basically employing the

Sensitivity Approach, which provides us with more flexibility in aggregating risk. The Revaluation

Approach, however, could be dealt with by constructing the actual stress scenario obtained by

employing an initial stress scenario via the feedback effect.

1.2 Issues to be discussed under Dynamic Stress Exercise

There are various factors to be considered when aggregating micro risk figures into a macro

risk measure. Especially when conducting a macro stress exercise, we have to take into account not

only static risk profiles in individual institutions but also the dynamic effects caused in them by those

institutions' reactions against an initial shock. Feedback effect and liquidity effect are the key issues to

be discussed in this context.

In a static world, if Bank-i's expected loss amount is R
i
 under a stress scenario, R

i∑ could

be an aggregate risk measure. However, once initial stress occurs in a market, traders in each bank

begin to rebalance their portfolios or hedge their positions to minimize future losses. Along the way,

the initial stress scenario could be either exacerbated or alleviated by such reactions. Feedback effect

is defined as the impact on market price caused by traders' trading behaviors towards market price

movements, which are realized as a result of traders' trading strategies and traders' needs for portfolio

rebalancing. Liquidity effect including market impact caused by position liquidation behaviors is

another important issue to be explored in order to capture a dynamic picture of macro risk under a

stress. In the following chapters, I mainly focus on feedback effect, by presenting a viable analytical

framework and discussing the implications of a dynamic macro stress exercise which takes into

account the feedback effect.
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2. Analytical Framework

2.1. Expanding a Framework of Static Stress Exercise

We need to expand the static framework in two dimensions in order to take the feedback

effect into consideration. The first dimension is time horizon. I employ a sequential framework to

conduct a dynamic stress exercise. My purpose in this study is not to aggregate micro risk figures at a

static point, but to construct a model through which we can comprehend the dynamics of a macro risk

profile that is affected by institutions' reactions at intervals (a multiperiod model). There are many

impressive studies employing a multiperiod model in market microstructure. The Glosten and

Milgrom model (GM model) [1985] employs multiperiod models to analyze the dynamic features of

market impacts.

Secondly, we need to expand our model to correspond with a variety of agents. Each agent's

behavior varies, depending on its portfolio mix and trading strategy. Glosten and Milgrom assume

that there are three types of agents in a market, namely, informed trader, uninformed trader, and

market maker. They analyze the decision-making process of a market maker by modeling price

mechanisms in a market. The Gennottee and Leland model (GL model) [1990] is another example

which takes the variety of agents' behaviors into consideration. The GL model takes into account the

factor of supply from hedge traders who employ a portfolio insurance strategy. The model allows

them to review a market meltdown mechanism caused by the hedging behaviors of a significant

proportion of market participants, as was the case on Black Monday in 1987.

In the following chapters, I examine two approaches to the estimation of various behaviors

of agents. One approach assumes that each agent employs a typical trading strategy and that we know

it a priori. In the other approach, I derive the trading pattern of each agent from historical data on

market movements and individual portfolio profiles.

2.2 Multiperiod Model

I develop a multiperiod model in order to take the feedback effect into account when I

conduct the stress exercise described in this chapter. Bank-i's expected loss under a provided stress

scenario is R
i
 at time t+1. Each agent reacts against the shock at t+2, and we finally obtain an

aggregate macro risk measure after considering the feedback effect at t+3 (Figure 2). When we

employ the Sensitivity Approach, we can estimate the aggregate risk measure at t+3 by assuming

agents' reactions and calculating the risk amount based on sensitivity. Using finally realized prices to

construct an actual stress scenario, we can take the feedback effect into account, even if we adopt the

Revaluation Approach, by applying this scenario to reporting institutions.
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2.2.1 Framework of Multiperiod Model

The portfolio value of the i-th agent at time t is expressed by F
it

. F
it

 is a function of the

portfolio mix f
it

 and risk factor prices x
t
. Here, we need to consider sequential movements not only

in risk factor prices but also in the portfolio mix.

F f x
it it t

= ( )

When an initial stress scenario (ISS, S
0

) is provided, the portfolio value at t+1 can be

shown as below. I assume that there is only one risk factor x
t
 and that f

it
 is consistent from t to t+1.

S dx
0

=

F f x f x dx
it it t it t+ + += = +

1 1 1
( ) ( )

We can obtain static aggregate risk R
s

R R dF
f

x
dx

s i i

i= = =∑∑ ∑ ∂
∂

Then, I take into account the i-th agent's portfolio rebalancing ( f f
it it+ +→

1 2
). Portfolio

value at t+2 is

F f x dx
it it t+ += +

2 2
( )

Assume that there are n banks in our model and that they react to the ISS individually.

Kawahara [1996] argues that the market impact on the risk factor price (dx ′ ) caused by an agent's

trading can be expressed as a function of the macro trade imbalance, i.e., net supply in the market.

dx G
dF

xi

i

n

′ =
=









∑

1

The actual stress scenario (ASS, S
1
) is provided as follows.

S dx dx dX
1

= + ′ =

Dynamic aggregate risk including feedback effect R
d

 is
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2.3 Considering the variety of agents' behaviors

The multiperiod model described in Chapter 2.2 includes agents' portfolio rebalancing

behaviors towards ISS, which depend on each agent's portfolio mix at time t and its trading strategy.

We can take the variety of their behaviors into consideration by providing various types of 
∂
∂
f

t
dti  in

equation (1) corresponding to agents' types. In this chapter, I examine two alternatives:

1) assuming typical portfolio rebalancing of each agent based on the available information

including its trading strategy and loss cutting rules, etc.

2) extracting a pattern of portfolio rebalancing of each agent based on the historical data on

its portfolio profile - sensitivity to risk factors.

2.3.1 Assuming Typical Portfolio Rebalancing

I present a simple example to show how we obtain R
d

, taking into account the feedback

effect . Assume that there are three agents in a market where only one tradable risk factor, x, exists

and that each agent has the portfolio mix described as follows:

Agent 1 : holding a
t
 units of asset x  at t. a a

t
= constant

Agent 2 : holding b
t
 units of asset x  at t. db b x

t t
= /  b  is constant.

Agent 3 : holding c
t
 units of asset x  at t. dc c dx

t t
= ×  c  is constant.

Each agent has the trading strategy described below:

Agent 1 never trades

Agent 2 buys a constant amount (b  dollars) of x  every period. This strategy is the so-called

"dollar-cost-average strategy".

Agent 3 buys x  after x  has risen or sells after it has fallen. The trading amount depends on

the magnitude of the change in x  in the previous period. If an agent employs a portfolio insurance
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strategy involving dynamic hedging, we can observe trading behavior which is the same as that of

Agent 3.

I can explore dynamic aggregate risk based on the multiperiod model including the three

agents described above. Each agent has 100 units of x at time t.

x
t

= 100

S
0

6 5= − .

x
t + =
1

93 5.

F f x x
it it t t

= = × = × =( ) 100 100 100 10000

F f x x
it it t t+ + + += = × = × =

1 1 1 1
100 100 93 5 9350( ) .

Static aggregate risk R
s
 can be calculated as

R R dF
s i

i
= = =∑∑ 1950

Then, I consider agents' reactions against ISS.

F f x x
t t t t2 2

100 100 100 10000= = × = × =( )

b = 2000

( ) ( )F f x b x x
t t t t t2 1 2 1 1 1 1

100 100 2000 93 5 93 5 11350+ + + + += = + × = + × =( ) / / . .

Here, Agent 2 is assumed to buy 
dF

x
t

2

1

21
+

= + units of x .

F f x x
t t t t3 3

100 100 100 10000= = × = × =( )

c = 5

( ) { }F f x c dx x
t t t t3 1 3 1 1 1

100 100 5 6 5 93 5 6311+ + + += = + × × = + × − × =( ) ( . ) .

Here, Agent 3 is assumed to sell 
dF

x
t

3

1

32 5
+

= − .  units of x .

Assume that the market impact caused by three agents' reactions can be obtained as a linear

function of the trade imbalance. I can get ASS;
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If we assume k=0.2

S dx dx
1

6 5 2 3 8 8= + ′ = − − = −. . .

Dynamic aggregate risk R
d

 is calculated as follows;
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2
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880 1065 544

2539

Dynamic aggregate risk is 1.3 times static aggregate risk. We also observe that ISS will

cause a further price decline in x. This information that we obtain via a dynamic stress exercise is

more useful than that from a static exercise. However, we should be careful about the probability and

accuracy of the behavioral assumptions that I employ in the model and further study is necessary.

2.3.2 Extracting a trading pattern of portfolio rebalancing of each agent

I present another approach assuming more realistic trading behavior in this chapter. Utilizing

a neural network system, it would be possible to extract trading patterns of agents from historical risk

factor price data and corresponding changes in their portfolio profiles (see Appendix).

First of all, we have to decide on a set of data to be used as inputs and outputs to and from

the neural network. Since my purpose is to estimate the probable reaction of an agent against risk

factor price movements, inputs must be factors which affect a trader's decisions and outputs are some

indicators of its trading behavior. Candidates for inputs would be;

1) the agent's portfolio mix at time t,

2) business circumstances surrounding the agents, such as profit/loss conditions and

adequacy of risk capital, and

3) risk factor price movements.
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The portfolio rebalancing behaviors that I am trying to estimate can be expressed as

movements in agents' portfolio mixes, in other words, agents' positions. Since it does not seem

possible for us to gather historical data on agents' portfolio mixes, I have to regard changes in

portfolio sensitivity to major risk factors or actual profit and loss figures as proxies for portfolio

rebalancing behaviors and select them as outputs of neural network analysis.

Inputs to a neural network can vary because of the flexibility of the neural network system.

At this stage I use data on risk factor price movements and news as inputs for the analysis. Other

economic or financial measurements could be candidates for analytical inputs, and I will continue to

explore the selection of suitable and effective inputs and outputs.

I conduct a set of simulations using historical market data and trading data during a certain

period. Trading data is obtained by letting one of the staff of the Institute, who has nine years

experience as a bond trader in a bank, simulate daily trading based on market data during a set

historical period. Details of simulations are described below.

Risk factors

Yen interest rates are selected as risk factors in our simulation. Three points on a yield

curve, 3-year, 5-year, and 10-year swap rates, are regarded as factors of yen interest rate risk.

Simulation period

It is essential to provide learning data which include stress periods for neural networks in

order to make networks capable of estimating agents' behaviors under stress. I chose the period from

October 1993 to March 1994 as a learning period which includes market stress. As shown in Figure 3,

we experienced several sudden rises of yen interest rates at the beginning of 1994. After the strong

downward trend in interest rates toward the end of 1993, both futures and cash JGB markets faced

significant short trading triggered by the MOF's operation of selling JGB of 14th January 1994. I have

also conducted out-of-sample simulations using market and trading data from April to

September 1994.

Characteristics of agents

There are three agents in the simulation. They trade JGB in three maturities: 3-year, 5-year

and 10-year. They decide their trading volume and direction based on their own trading strategies, and

their portfolio sensitivity to the three risk factors and actual P/L are assumed to be available for us.

Each agent has its own typical trading pattern shown in Table 1. Then, we observe daily interest rate

data, news of economic and financial events, their realized P/L, and sensitivity to the risk factors.

Reported data on sensitivity are converted to the equivalent positions of 10-year JGB. Each agent has
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its own target level of profit, position limit, and loss cutting rules. If the level of accumulated loss

reaches the targeted profit level, the agent has to close his/her position at once.

Inputs for learning

I adjust the data mix of learning inputs in the following sequence.

First I provide a set of daily returns for four risk factors and interest rate volatility to a

network as inputs for learning. In this case, the level of estimation accuracy of network which has

learned agent 1's trading pattern is only 71.67% (see Figure 4-1).

Second, I include realized P/L data among the inputs, since each agent's appetite for trading

is constrained by its accumulated P/L condition. The estimation power thus increases to 76.67%. from

71.67% (see Figure 4-2). However it still cannot follow the movements in actual data during the

periods particularly when it changes in an accelerating fashion, such as around the 20th, 45th, and

103rd sample data.

Finally, I include three days recent market movements and news of financial and economic

events among the inputs in order to improve the estimation power of networks (see Figure 4-3,

Figure 5). Among the market movements and news, I put more weight on the more recent

information. This adjustment improves the network's estimation level to 85.42%. Regarding Agent 3,

an effective way of improving the network's estimation power further is to add input data on a market

trend over a longer horizon, since he/she has a view of longer horizon than the other agents (See

Figure 6). Table 2 shows the process of improving the estimation power regarding each agent by

adjusting the inputs.

I conduct out-of-sample simulations using the networks which have learned the trading

patterns of the agents. According to the simulation results, it seems relatively easy to follow the

trading patterns of Agent 1 and Agent 2 (see Figure 7-1 and Figure 7-2). However, the network cannot

follow Agent 3 very well (see Figure 7-3). The reason why the network fails in the case of Agent 3 is

the difference in trading patterns between a dealer-type of agent and an investor-type of agent. During

the former sub-period, Agent 3 has almost fixed its position to the long side because of market trend

shows the interest rate falling. Since the market trend has drastically changed in the latter sub-period,

it is very difficult for the network, which has only learned the agent's trading pattern in the period

when the market trend was only moving in one direction, to predict position changes from short to

long during a period which includes fluctuating market trends.

Stress scenario

I pick up the largest daily change in both upward and downward directions in each risk

factor during the period and construct stress scenarios by combining these figures. In Figure 3, we can

see which days are picked up as a stress on each risk factor. Regarding 3-year and 10-year swap rates,
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the largest changes in both directions occurred in March 1994. The period from the end of

November 1993 to the middle of January 1994 was selected as a stress period for 5-year swap rates.

The magnitude of these market changes are shown in Figure 8-1 to Figure 8-3 and Table 3.

A pair of parallel lines in each figure show 2 standard deviations during the period.

By combining these figures, I provide 4 types of stress scenario: parallel shift of the yield

curve; stress at the shorter end of maturity; the middle zone of the yield curve; and the longer end of

maturity. Each type of scenario has two directions, upward and downward. We therefore obtain

altogether eight stress scenarios (see Table 4). In each scenario, volatility level is also set as the level

equivalent to its largest change during the period.

Feedback effect

According to the simulation results (see Table 5), the downward stress in the yield curve

cause larger changes in the agents' positions (scenario 2, 4, and 8) than the upward one. Directions in

total demand/supply differ between a stress at the shorter end and a stress in the longer end.

Downward stress at the shorter end of maturity causes a fair amount of supply to the JGB market,

which can produce negative feedback, offsetting the initial stress. On the other hand, a downward

stress at the longer end of maturity causes a fair amount of demand to the market, and it would

produce positive feedback to the initial stress.

In order to determine the magnitude of the feedback effect, I regard total demand/supply, a

figure summed up all agents' delta changes as a measurement. The average of daily total

demand/supply during the period is - 0.2 billion yen, and its standard deviation is 12 billion yen (see

Figure 9).

Parallel shift scenario (scenarios 1 and 2)

Regarding the directions of the feedback effects under the scenarios, both of them would

cause negative feedback and offset the initial stress. Upward parallel shift pushes Agent 2 into buying

a relatively large amount of its position, 26 billion yen. Total supply to the market, however, is only

12 billion, which is equivalent to the standard deviation of total demand/supply changes during the

simulation period, and the direction of the feedback effect would be negative. Although downward

parallel shift would cause a fair amount of selling of JGB, it also produces negative feedback to the

stress under this stress scenario. These results could be interpreted to mean that a parallel-shift type of

yield curve stress is less harmful from the view point of the macro feedback effect.
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Stress at the shorter end of maturity (scenarios 3 and 4)

Simulation results show that upward stress at the shorter end of maturity causes a fair

amount of demand for JGBs. On the other hand, downward stress causes a significant supply of such

bonds. As same as the results in the parallel shift scenarios, stress at the shorter end of maturity would

also cause negative feedback effect to the yield curve.

Stress in the middle zone of the yield curve (scenarios 5 and 6)

Stress in the middle zone causes a smaller magnitude of change in total demand/supply than

the other stress scenarios. The direction of the feedback effect cause by upward stress in the zone,

however, would be positive. It means that if we face upward stress in the middle zone, the longer

maturity interest rate (10-year JGB price) is expected to increase (fall) further as a consequence of

stress.

Stress at the longer end of maturity (scenarios 7 and 8)

Downward stress causes a more significant effect than does a downward one. Increase in the

JGB price causes a fair amount of demand for JGB. It means that there could be positive feedback

effect under this scenario.

Risk profiles of the agents

Assume that the magnitude of the feedback effect on JGB prices depends on the total

demand/supply volume which is realized by agents' response to a stress. If market price changes can

be described as a linear function of total demand/supply volume as follows, we can estimate the level

of loss each agent will face because of the feedback effect. Estimated risk profiles of each agent are

shown in Table 6. Figures in Table 6 show agents' loss amounts determined by the additional market

price change as a result of feedback effect and delta position after the feedback trading. Further

discussion on the definition of estimated loss caused by feedback effect will be necessary, particularly

whether implicit profit/loss of feedback trading is taken into account.

∆P
p

= ⋅ασ β

∆P  : JGB price change

α  : (total D/S) / (standard deviation of total D/S during the period)

σ
p

 : standard deviation of JGB price changes during the period

β  : ratio of price change caused by market demand and supply conditions (in this

simulation, β = 1 )
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Among the eight scenarios, scenario 2, the downward parallel-shift type of stress, has the

potential to cause the most severe feedback effect in relation to the level of the macro risk. According

to the simulation result, I can say that all of these scenarios would have low potential to produce a

severe feedback effect, because each agent would not face a loss which exceeds VaR at time t, just

before stress. I can explore which kind of stress scenarios can produce severe feedback effect and

which type of agents play a critical role in stress by analyzing the results of a simulation, as we have

shown in this chapter.

I am improving the estimation power of the network by umbundling the output, delta, into

direction and volume in its changes. The prediction on whether an agent increses or decreases its delta

is essential to estimate the direction of feedback effect. The predicton on tradeing volume is necessary

to capture the magnitude of feedback effcet. The unbundlled outputs will provide us with more

accurate approximations of the feedback effect. The tentative results of the simulation with new

outputs give better estimation of both agent's trade direction and its volume. Figure 10-1 shows the

estimation results of trade direction, where if agent increases/decreases its delta, the parameter is set

+0.5/-0.5. The network fails to predict agent's trade direction only twice out of 120 data. Figure 10-2

shows the estimation results of trading volume. Comparing to Figure 10-3, which shows the results

obtained via the simulation with the former output, i.e. delta itself, the estimation error is reduced to

44 from 78.

I also attempt to explore the effect of the variation in stress scenario. As I show in this

chapter, the stress scenario provided here do not produce severe impact on macro risk profiles. I am

now conducting a stress simulation, which assumes a stress not only in the yield curve but also with

news. The tentative results of the simulation show that if agents face a stress with news which

exacerbate the stress, the feedback effect becomes greater than that in a stress without any news.

3. Implication for implementing Dynamic Stress Exercise

3.1 Necessary data for Macro Stress Exercise

Under the Revaluation Approach, each institution reports an expected loss amount under a

provided stress scenario. The Sensitivity Approach requires institutions to report summary data on

their sensitivity to market risk factors.

If we try to conduct a dynamic macro stress exercise as described in this note, no matter

which approach we employ, risk profile data on sensitivity will be necessary. Even under the

Revaluation Approach, data which show reactions against an initial shock will be required to

construct an ASS.

As I pointed out in 2.3.2, historical data on institutions' risk profiles need to be provided to

networks so that they can learn those institutions' portfolio rebalancing patterns. Further study on the
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candidates for inputs will be necessary in order to estimate their trading behavior more effectively.

Historical P/L data would be another candidate as an output of network simulation, since P/L data

seems to be more available than data on sensitivity.

It is true that the availability of these data, such as daily sensitivity and P/L, is not full

enough for us to be able to ask that they be reported at this moment. However, since those data

constitute fundamental information for internal risk management in financial institutions, banks which

actively conduct trading business will in the near future come to use these kind of data more

frequently as a tool for daily risk management.

3.2 How can exercise results be utilised?

Information we obtain via a stress exercise will vary according to the choice of approach

employed at every stage, such as the Revaluation Approach or the Sensitivity Approach, and

according to whether a neural network is used or whether assumptions on trading behavior are made.

The information which obtained from static and dynamic exercises are listed as follows:

1) Static Stress Exercise : ISS and static aggregate risk

2) Dynamic Stress Exercise : ISS, static aggregate risk, institutions' reaction against ISS,

ASS, and dynamic aggregate risk

The difference between the Revaluation Approach involving a stress scenario, and the

Sensitivity Approach is the flexibility of scenario used for calculating the aggregate risk measure. The

choice of assumptions concerning institutions' reactions also affects the informational content of

exercise results. If we compare the two alternatives for estimating traders' behavior examined in this

note, it is safe to point out that the approach which uses an AI system for learning the trade pattern

can provide the exercise results with a more realistic shape.

Great attention must be paid to the way that stress exercise results are used. A dynamic

exercise taking into account any feedback effect will provide us with more useful and vivid

information on the macro market risk profile under stress. If we obtain the information listed above

via a dynamic stress exercise, we can prepare for stress in a more efficient and effective way. The

information that most institutions will begin to sell the asset in reaction to the initial crash makes us

more secure than in the case when we don't have any idea what their reaction might be. For example,

as the simulation results in this note show, if we know that the upward parallel shift of the yen yield

curve has a higher possibility of causing a positive feedback effect which could trigger systemic risk

than the other stress scenarios, we should pay more attention to yield curve movements in this

direction in our daily market monitoring. On the other hand, the prediction of a negative feedback

effect under a stress at the shorter end of maturity affords us more room for making the political

decision to conduct a necessary operation, such as supplying liquidity to a market, when we face a

sudden crash of the short term interest rate.
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When we expand the time horizon of the exercise, its result will have useful implications for

the framework of financial or trading systems. For example, we can discuss in which situations a

circuit breaker system works well or not from the point of view of systemic risk. My model can be a

tool to simulate systemic meltdown in markets by expanding its time horizon and examining cases

where price equilibrium disappears.
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APPENDIX

Macro dynamic simulation using neural networks

1. Inducing information on a firm's behavioural pattern

X x yt t t= ( , )

Firm's portfolio value at t f Xt t: ( )➞Sensitivity data at t: 
∂

∂
∂

∂
f X

x
f X

y
t t t t( )

,
( )

, . . .

Firm's portfolio value at t f Xt t+ + +1 1 1: ( )➞
∂

∂
∂

∂
f X

x
f X

y
t t t t+ + + +1 1 1 1( )

,
( )

, . . .

If we have daily data on a firm's sensitivity and risk factor price movements, we could

estimate how each firm rebalances its portfolio in response to market movements. Daily change in a

firm's sensitivity data is caused by

(a)  risk factor price movements 
∂

∂
f X

x
t t( )

➞
∂

∂
f X

x
t t( )+1 , and

(b)  portfolio rebalancing 
∂

∂
f X

x
t t( )+1 ➞

∂
∂

f X
x

t t+ +1 1( )
.

When we exclude (a) the effect of risk factor price movements from changes in sensitivity, we could

obtain information on (b), the effect of the firm's portfolio rebalancing, ft ➞ft+1.
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Using neural networks, which can learn changing patterns of non-linear functions, we

could make quasi firms by providing each network with the corresponding firm's portfolio rebalancing

information based on the data set of daily changes in the firm's sensitivity and risk factor price

movements.

2. Simulating a feedback effect of the rebalancing of portfolios by firms

Network A

Network B

Network C

Prive Movements

sell 

Feedback Effect

∆ X

buy

sell

∆

∆

X

X

a

b

c

Each network which learns a corresponding firm's portfolio rebalancing pattern functions

as a quasi firm in our simulation. When we provide an initial price movement of asset X to networks,

they decide whether and how much to buy/sell X based on the trading pattern they have learned. Their

trade orders are aggregated and a new equilibrium found in the quasi market. If the price at the new

equilibrium is significantly below/above the initial price, we can say that negative/positive feedback

could be caused by the price movement. Furthermore, using this quasi market model, we could

simulate a market price movement taking into account a feedback effect without incurring any

reporting burden on firms.
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Figure 1

Stress Exercise Structure

Initial Stress Scenario

Micro risk profile
(sensitivity data)

Inputs Aggregation Output

Macro risk profile

1 Revaluation approach

2 Sensitivity approach

Figure 2

Multiperiod Model

i-th bank's risk profile
R it

Period t Period t+1

R it+1

Period t+2

Rit+2

Period t+3

R it+3

Initial Stress Scenario
S0

Portfolio Rebalance

∆R i

Actual Stress Scenario
S 1
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Table 1

Characteristics of the agents

Key for trading Fortrend/contrarian Other
characteristics

Targeted profit
(loss limit),

Position limit

Agent 1 Charts of market
movements

(chartist)

Fortrend Positive correlation
b/w P/L condition

and trading volume

3 billion yen/half
year, delta limit:±

100 billion

Agent 2 Charts of market
movements

(chartist)

Contrarian Frequent writer of
options

3 billion yen/half
year, delta limit:±

100 billion

Agent 3 Fundamental events
(fundamentalist)

Trading horizon is
longer than the
others (more an
investor-type of

trader than a dealer)

2 billion yen/half
year, delta limit:±

70 billion

Table 2

Steps for inputs adjustments

Inputs Agent 1 Agent 2 Agent 3

A: Market data
(change on a trading
day)

71.67% 82.08% 80.00%

B: A + accumulated
P/L

76.67 82.08 82.92

C: B + recent market
movements + news

85.42 87.92 (Figure 5) 87.92

D: C + market trend
over a longer horizon
(Agent 3)

90.83 (Figure 6)
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Table 3

The magnitude of largest daily change

Upward change Downward change

3-year swap rate 3.01s -3.43s

5-year swap rate 2.96s -2.59s

10-year swap rate 3.46s -2.54s

Table 4

Stress scenarios

3y 5y 10y

Period t 3.33% 3.98% 4.49%

Scenario 1 3.59% 4.22% 4.72%

Scenario 2 3.05% 3.78% 4.33%

Scenario 3 3.59% 3.98% 4.49%

Scenario 4 3.05% 3.98% 4.49%

Scenario 5 3.33% 4.22% 4.49%

Scenario 6 3.33% 3.78% 4.49%

Scenario 7 3.33% 3.98% 4.72%

Scenario 8 3.33% 3.98% 4.33%
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Table 5

Changes of each agent’s delta under scenarios

(in billions of yen)

Agent 1 Agent 2 Agent 3 Total D/S

Scenario 1 -8 26 -6 12

Scenario 2 -15 -9 -10 -34

Scenario 3 -3 33 -6 20

Scenario 4 -43 -3 9 -37

Scenario 5 -42 27 30 -15

Scenario 6 4 1 -4 1

Scenario 7 -4 14 -4 6

Scenario 8 21 20 31 72

Standard
deviation

12

Table 6

Risk profiles of each agent

(in billions of yen)

Agent 1 Agent 2 Agent 3 Total

Scenario 1 0.20 0.09 -0.03 0.26

Scenario 2 -0.51 0.18 0.13 -0.28

Scenario 3 0.45 0.25 -0.05 0.65

Scenario 4 -0.16 0.10 -0.12 -0.18

Scenario 5 0.08 0.13 0.18 0.39

Scenario 6 0.04 -0.00 -0.00 0.03

Scenario 7 0.11 0.02 -0.01 0.13

Scenario 8 1.98 0.40 0.80 3.18

VaR(t) 0.58 0.05 0.22*

* Agent 3’s VaR figure is measured at period t-1, since its position at period t is square.

190



References

Camargo, F.A. (1990): "Learning Algorithms in Neural Networks", Working Paper, The DCC
Laboratory, Computer Science Department, Columbia University.

Glosten, L. and P. Milgrom (1985): "Bid, Ask, and Transaction Prices in a Specialist Market with
Heterogeneously Informed Traders", Journal of Financial Economics, 13, p.71-100.

Gennottee, G. and H. Leland (1990): "Market Liquidity, Hedges and Crashes", American Economic
Review 80, p.999-1021.

Kawahara, J. (1996): "Credibility of Market Price and Market Impact", Working Paper, The Japanese
Finance Association.

O’hara, M. (1995): "Market Microstructure Theory", Blackwell Publishers.

Shimizu, T. and T. Yamashita (1995): "Dynamic Micro and Macro Stress Simulation", Discussion
Paper, 96-E-4, IMES, Bank of Japan.

191



193

Measurement of liquidity risk
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Abstract

This paper aims at shedding light on liquidity risk, which has been left behind in the pursuit

of more sophisticated market risk measurements both by market practitioners and by central banks.

We first define liquidity risk and show that it can be divided into execution cost and opportunity cost.

In the light of stylized facts regarding tick-by-tick dynamics of market liquidity and price/spread

movements, which have been documented previously by finance literature, we propose several

modified market risk measures reflecting intraday liquidity patterns and price movements. We then

demonstrate, by applying those risk measures to the Japanese equity market, to what extent the

quantified liquidity effects could effect conventional measurement of market risk represented by VaR.

                                                  
* The views expressed in the paper are those of the authors and do not necessarily reflect those of the Bank of Japan, the

Institute for Monetary and Economic Studies or the Euro-currency Standing Committee. Although the paper benefited
from comments by central bank economists participating in the research project on the aggregation of market risk, the
authors are solely responsible for any remaining errors.
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I. Introduction

The quantification of market risk has been a major issue for financial institutions as well as

central banks over the past few years. Considerable technical efforts have been made to measure

market risk as accurately as possible.1

One of the areas which has attracted a great deal of attention is how one can appropriately

make assumptions about future movements in market risk factors. One direction of such research is

studying the characteristics of daily price changes more carefully. Mori, Ohsawa, and Shimizu

(1996), for instance, proposed techniques for explicitly taking account of fat-tail distributions of

market prices and correlation breakdown between various risk factors to see to what extent these

characteristics of market prices affect value-at-risk (VaR) calculations. Another type of research

[e.g. Fallon (1996) and Alexander (1996)] evaluates the effectiveness of various types of volatility

models such as the moving average method, GARCH, and implied volatility, for improving the

accuracy of the VaR model.

Another potential direction of research on future price movements used as an input for

market risk calculation, which we follow in this paper, is to analyze intraday price changes more

carefully, since the prices at which one can trade are not necessarily end-of-day trade prices or

mid-prices – as assumed in the ordinary framework for market risk calculation, but, as a matter of

fact, reflect bid or ask prices which fluctuate during the day. As quite a few pieces of academic

literature after Black Monday documented, the key to understanding second-by-second price changes

is the investigation of a relationship between trading activity and price changes. In other words this is

the price impact of trading activity, which can be labeled "liquidation or liquidity risk".

Although it is generally recognized among market practitioners that liquidity risk is a very

serious concern for firms, especially in a stressful market situation, quantitative techniques measuring

liquidity risk both in normal and stressful situations appear to be very premature.2 In marking to

market positions, the current standard practice is to use mid-rates (or the latest trade prices, which

tend to be determined somewhere within bid-ask spreads); a more realistic and conservative method,

i.e. using bid and ask prices for long and short positions respectively, does not in practice prevail.

Even if bid/ask prices are used, the decision regarding which bid/ask prices should be used is usually

left to individual traders and is not centrally monitored and controlled by middle offices. With regard

to the quantification of liquidity risk in the context of daily risk management, the effort to incorporate

the liquidity effect into market risk and a stress test is still at an embryonic stage.

                                                  
1 Two recent additions to the literature by private and central bank communities, which provide a comprehensive

review of the measurement of market risk, are Wilson (1996) and Session 4 of Part II in Board of Governors of the
Federal Reserve System ed. (1996), respectively.

2 The following description is based on informal interviews with several leading Japanese and U.S. trading houses
conducted in the summer of 1996.
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Recently, however, we observe some advancement in this direction. In order to take account

implicitly of the abrupt leaps in observed market prices which often occur in less liquid markets

(e.g. emerging markets), a few firms use worst-case scenarios in which worst historical price

movements over relatively longer periods such as 5-10 days are assumed.3 Some firms are considering

the adjustment of holding periods of their positions in value-at-risk calculations based on the

liquidities of individual products. Certain firms regularly check the difference between the necessary

liquidation time for less liquid positions forecast by traders and the actual time needed to close the

positions. The more complex part of measuring liquidity risk is how to measure the impact of trading

volume on price. Currently, no firms appear to take this effect into account in daily risk management.

However, the prevailing use of computer-driven asset management and the growing interest in

evaluating the performance of pension funds more accurately tend to increase the need to quantify the

price impact.

The objective of this paper is to propose several measures for quantifying liquidity risk,

based on intraday price and trading data, which can be of some value for more accurate market risk

quantification. First, Section 2 of this paper defines the scope of liquidity risk in our discussion,

making clear distinction between execution and opportunity cost components of liquidity risk.

Section 3 surveys stylized facts regarding intraday price and bid-ask spread movements and the price

impact of trading activity, which are documented in finance literature. In light of the stylized facts

Section 4 proposes several different modified market risk measures reflecting intraday liquidity

patterns and price movements and demonstrates to what extent the quantified liquidity effects could

affect measurement of market risk - represented by VaR - for the Japanese equity market. Section 5

discusses areas for future research.

II. Definition of liquidity risk

Liquidity risk in this paper is defined as the risk of being unable to liquidate a position in a

timely manner at a reasonable price.4 Theoretically, liquidity risk in this sense can be divided into the

variability of execution cost (the cost of immediacy) and that of opportunity cost (the cost of

waiting). As Chart 1 shows, the execution costs, comprising (1) "bid-ask spreads" representing

transaction cost and (2) the "price impact of trading activity" (hereafter called "market impact"), both

of which are sometimes not easily separable from each other, decrease with the time needed to

                                                  
3 The difficulty deriving historical volatility in illiquid markets lies in the fact that effective quotations of the bid/ask

prices at which one can actually trade disappear and cannot be observed for quite a long period (which sometimes
lasts for several days). If we calculate daily historical volatility by extrapolating effective quotes from the data
obtained before the trade halt, it is highly likely that we will end up with an underestimation of underlying market
volatility.

4 One might imagine funding risk from the term "liquidity risk". As a matter of fact, funding risk could trigger a rise in
market rates, in particular under the assumption of there being no lender of last resort, which could lead to losses in
trading positions. However, the scope of our analysis in this paper does not include the measurement of funding risk.



196

complete an intended transaction. In contrast, opportunity cost, i.e. the cost of being forced to

postpone trading, tends to increase with execution time. What traders need to do is to strike a balance

between these two costs so as to minimize liquidity risk. Chart 1 shows that the sum of both costs is

usually regarded as liquidity risk, which traders implicitly try to minimize in their daily trading

activity.

As a number of pieces of market microstructure literature show [e.g. Glosten and Harris

(1988)], the bid-ask spread, which is an important component of the execution costs faced by

investors, is divided into (1) order-processing cost and (2) adverse selection cost. The adverse

selection component exists because a market maker may trade with investors who possess superior

information. This component is believed to represent the market maker's profits from uninformed

traders who compensate him for the expected losses to informed traders [Glosten and Milgrom

(1985)]. An empirical study by George, Kaul, and Nimalendran (1991) using daily and weekly data of

both AMEX/NYSE and NASDAQ stocks found out that the predominant component of quoted spread

is order-processing cost, while the adverse selection component comprises only 8-13% of quoted

spreads.

With regard to the opportunity cost component of liquidity risk, the only theoretical effort

worth noting here seems to be the work by Longstaff (1995). Since liquidity premium is basically

determined by price changes during the period of restricted trade, the maximum value of the liquidity

premium is derived in his model as a premium for a lookback option, the underlying asset price path

of which is determined by the optimal price path calculated under conditions of perfect foresight of

the future price path and market timing, and the strike price of which is determined by a

Black-Scholes stochastic process. In practice, however, it is not at all easy to take explicit account of

the variability of opportunity cost in market risk calculation. As mentioned in the Introduction to this

paper, certain firms consider the arbitrary adjustment of holding periods of particular positions in

order to reflect the opportunity cost component of liquidity risk, though there exist no objective and

scientific ways to determine what is the appropriate holding period. Hence in the following analysis

we focus mainly on the execution cost element of liquidity risk. This implies, however, that, as

Chart 1 shows schematically, our measurement of liquidity risk tends to be understated, especially in

a stressful situation in which shortage of liquidity prevents virtually all transactions for quite a long

time period.

III. Stylized facts regarding liquidity effects documented by previous
academic literature

This section reviews stylized facts regarding the relationship between trading activity

(market liquidity) and bid/ask price changes as well as spread changes in different markets and time

periods as well as theoretical explanations for them, based on previously published academic

literature. Here we do not intend to conduct a comprehensive survey but rather focus on stylized facts
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which should be kept in mind in measuring liquidity risk in the context of market risk calculation in

the ensuing chapter.

1. Volatility of intraday price movements

A first well-known fact documented by Amihud and Mendelson (1987) with regard to

NYSE stocks' intraday price movement is that open-to-open return volatility is higher than

close-to-close return volatility in the markets applying the call-clearing procedure at the opening

session. There seem to be two streams of theoretical explanation about what causes this phenomenon.

Stoll and Whaley (1990) argue that the wider bid-ask spreads caused by specialists using their

monopoly position at the opening call makes prices more volatile, since transaction prices tend to

bounce between bid and ask prices. In contrast Lee and Lin (1995) postulate that the specialist

encourages trading by putting a smaller cost on immediacy in order to reveal more private information

 - accumulated during the overnight trading halt, which reduces the adverse-selection problem

specialists face and makes subsequent trades in the continuous market more profitable. In any case

this could have important implications for market risk management, since almost all the firms use

closing price data in their firm-wide market risk calculation.

Another stylized fact documented also by Amihud and Mendelson (1987) is the greater

deviation of opening returns from the normal distribution - with fatter tails - than closing returns,

which could also be worth noting in quantifying market risk.

2. Determinants of bid-ask spreads

A rather trivial fact about bid-ask spreads is that infrequently traded stocks are

characterized by large bid-ask spreads. There are several conjectured explanations for these large

spreads.5 The first explanation involves inventory and liquidity effects. A second reason is

monopolistic market power exercised by a single market maker providing liquidity for inactive stocks.

A third explanation is that the large spreads arise as the natural consequence of the greater risk of

informed trading in illiquid stocks which market makers incur.

Another stylized fact about bid-ask spreads is the turn-of-the-year seasonal movement of

bidask spreads: A significant decline in the spreads of NYSE stocks from the end of December to the

end of the following January, which is believed to cause excess January returns - since this tendency

is pronounced especially for small or low-priced stocks, this seasonal anomaly is sometimes labeled

"size-related anomaly". For instance, Clark, McConnell and Singh (1992) detects such a decline at the

turn of the year by observing 1982-1987 NYSE stock price data. Ritter and Chopra (1989) attribute

the January excess returns to portfolio rebalancing strategy – i.e. investment in riskier stocks – taken

                                                  
5 The following summary is from Easley, Kiefer, O'Hara, and Paperman (1996).
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by those who sold losers at year end for various reasons ranging from tax-loss selling, portfolio

window dressing and parking-the-proceeds.

In the Japanese stock market, which has two sessions a day, bid-ask spreads exhibit a

W-shape pattern, where they peak at the opening, just before and after lunch time, and during the

closing session. This is in parallel with the W-shape of transaction volume and volatility movement

during a day. This contrasts with U-shape movement of U.S. stock market, where there is only one

session in a day. What Bollerslev and Melvin (1994) found for foreign exchange markets is that the

size of bid-ask spreads in the foreign exchange market (DM/$ rates) is positively related to the

underlying exchange rate (conditional) volatility, by using ordered probit regression to cope with

discreteness in the spreads data.

In contrast, however, Bollerslev and Domowitz (1993) suggest that quotation activity of

foreign exchange does not influence bid-ask spread changes - seemingly contradicting the fact

derived from stock markets – while spreads have a positive effect on return volatility. Glassman

(1987) concluded that trading volume in foreign exchange markets is rather negatively correlated with

bid-ask spreads. In fact, spreads widen a significant amount prior to weekends and holidays. Locke

and Sarkar (1996) also show that bid-ask spreads at several futures markets do not increase even on

higher volatility days. These results might suggest that there is a certain difference in the readiness of

liquidity supply between the stock and forex/futures market.

3. Market impact

The stylized facts which are most important for dynamic liquidity analysis involve the

characteristics of market impact, defined as the slope (sensitivity) of the bid or ask price schedule

(hereafter called λ ) to trading volume or order flow. The following features of l for U.S. stock

markets are identified by the numerous additions to the empirical literature which emerged after Black

Monday [see a survey by Hebner (1996)]:

a. λ > 0, which is supported almost unanimously.

b. λ is concave in transaction size (Effects of stealth trading and more intensive brokerage

search for larger transaction). However, if the ratio of informed/uninformed trading

increases with transaction size, l should be convex in transaction size.

c. λ is lower for more active securities.

d. λ is asymmetrical between buyer - and seller - initiated transactions. However, which of

the two is larger varies from study to study.

Watanabe (1996), who analyzes intraday data of Japanese Government Bond Futures, finds

that a significant causality from volume to volatility exists, while many other studies in this area

either focus on contemporaneous relationships or find no strong causality.
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IV. Modified market risk measures reflecting intraday liquidity pattern and
price movements

Keeping the aforementioned stylized facts with respect to intraday price movement and

trading activity in mind, we now propose several liquidity risk measures which could be useful for

achieving more accurate market risk quantification. The market to which we will apply the proposed

risk measures is the Tokyo Stock Exchange (TSE), tick-by-tick trade data of which have kindly been

provided by Nikko Securities for the purpose of this research.6 Although we have to confine ourselves

to focusing on the Japanese equity market because of the data availability constraint, the following

measures are, in principle, applicable to other markets in other countries. Simulations based on a

hypothetical portfolio of stocks listed in the TSE will demonstrate to what extent those quantified

liquidity risks could affect measurement of market risk obtained in the form of VaR.

The first modified measure for market risk we propose takes into account intraday

tick-by-tick price movement which reflects intraday liquidity patterns. As a first attempt in this

direction we will check whether opening sessions of the TSE, where actual trading is at its most active

and significant quantities of trades of less liquid equities take place, also exhibit higher volatility and

kurtosis, as evidenced for the NYSE. Second, in order to relate intraday price fluctuations to the

intraday trading pattern more precisely and quantify "execution timing risk" during the day, we

introduce the notion of "trade volume-weighted average prices (VWAP)" and construct a market risk

measure reflecting the daily volatility of VWAP and intraday histograms of actual trade prices which

clearly display the risk of deviating from average trade execution performance during a single day.

The second modification we will propose in obtaining a more accurate measure for market risk is the

explicit incorporation of intraday variability of bid-ask spreads into the price risk calculation. Finally

we propose a market liquidity measure based on l,which represents the market impact of trading

activity, and the historical distribution of which could potentially be used for augmenting market risk

calculation.

1. Modified market risk measure reflecting intraday price movement

Since many less liquid stocks on the TSE are traded mostly in the opening clearing process,

it is important to take a close look at the volatility and distribution of opening prices in order to

measure market risk more accurately. Using the daily data, we will check whether a stylized fact of

higher volatility and kurtosis of opening sessions than closing sessions is also applicable to the

Japanese equity market. Since there are two (morning and afternoon) sessions a day in the TSE, we

compute two opening and closing volatility indices, respectively. The result presented in Chart 2

shows, in contrast with our conjecture, that there is no significant difference in volatility and kurtosis

on average between opening sessions and closing sessions in the TSE, although 237 and 230 stocks

                                                  
6 The data are on quoted bid and ask prices as well as trade prices and volumes of over 1200 stocks listed in the first

section of the TSE and the data observation period ranges from 2nd October 1995 to 30th September 1996.
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out of 500 samples exhibit higher open-to-open volatility and kurtosis, respectively (the average

open-to-open volatility and kurtosis of these equities are higher by 5.9% and 29.4%). This result

clearly contrasts with the stylized fact observed in the NYSE. This could be partly because the TSE's

closing sessions follow the exactly same call-clearing procedure as in the morning sessions, while in

the case of the NYSE the closing sessions are characterized by "market-on-close (MOC) order"7

which tends to prevent prices from moving by wider margins. In the next part of this section,

therefore, we will take a more careful look at the tick-by-tick intraday price movement of the

TSE-listed equities in order to reflect liquidity effects on market risk measurement.

Transaction prices move widely during a day, as shown in Chart 3 which shows a histogram

of trade prices of a particular stock in our sample. The execution timing risk during one day can be

defined as the risk of deviating from the average transaction cost for the day and ending up by trading

at unfavorable prices compared with other participants in the market. Although the execution timing

cost could arise simply from an inappropriate trading strategy, liquidity constraint prevalent in the

market could also force traders to execute transactions with bad timing, particularly in stressful

situations. In this sense the execution timing risk can be interpreted as also including opportunity cost.

Judging from Chart 3, the distribution of daily trading prices which are accumulated over the

observation time period and standardized by daily volume-weighted average price (VWAP) can be

roughly assumed to be a normal distribution. Assuming that the daily movement of VWAP follows a

lognormal stochastic process, we now conduct a two-step Monte Carlo simulation (100,000 times)

based on two normal distributions of daily VWAP changes and daily trade prices.8 The

                                                  
7 A market-on-close order is guaranteed execution at the closing price according to prescribed pricing and order entry

procedures. When there is an imbalance of MOC orders, the imbalance is executed against the prevailing bid or offer
on the Exchange at the close of trading, thus setting the closing price. An excess of buy orders is executed against the
offer and an excess of sell orders is executed against the bid. The remaining buy and sell MOC orders are then paired
off at the price at which the imbalance was executed. When the aggregate size of the buy MOC orders equal the
aggregate size of the sell MOC orders, the buy and sell orders are paired off at the price of the previous NYSE trade.
The result of these pricing procedures is that all executed MOC orders receive the same closing price.

8 This simulation process can be mathematically expressed as follows:

( )P P tex VWAP VWAP a H b= +0
exp σ ε σ ε

Pex : expected execution price at the end of the holding period

PVWAP
0

: VWAP on the risk evaluation day (Sep 1996)

σ VWAP : historical volatility of VWAP over the observation period

σ H : SE of distribution of daily trade prices accumulated over the observation period

(Oct. 1995-Sept. 1996) and standardized by each-day VWAP

t : holding period (one day in this simulation)

ε εa b, : standard normal random numbers
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simulation result (Chart 4) based on a hypothetical portfolio comprising of five stocks chosen

randomly from the sample (basic statistics of the portfolio are summarized in Chart 5) shows that VaR

taking into consideration execution timing risk is significantly higher than both VWAP-based VaR

and ordinary VaR using end-of-day mid-prices.

2. Modified market risk measure taking account of intraday variability of bid-ask

spreads

As past market microstructure literature indicates, the bid-ask spreads of Japanese equities

fluctuate widely even during a single day (Chart 6). By analogy with the simulation with respect to

execution timing risk described above, we quantify the risk involved in the intraday variability of

bid-ask spreads, by using the same portfolio introduced in the preceding section. We again assume a

lognormal stochastic process for end-of-day mid-prices. Ask and bid prices are defined as mid-price

plus and minus ( 1

2
*bid-ask spreads) respectively, where the probability density function of bid-ask

spreads is based on a historical (non-parametric) simulation using the data covering the one-year

observation period.9 The result of the simulation for bid prices is presented in Chart 7. First, we note

that the expected value of the distribution is lower than that of mid-prices. Moreover, the modified

market risk measure represented by 99 percentile VaR turns out to be higher than ordinary VaR,

which underscores the importance of bid-ask spreads in market risk calculation.10

                                                  
9 The simulation process can be formally described as follows:

( )P P t f u
bid m m

= −0 1

2
exp ( )σ ε

( )P P t f u
ask m m

= +0 1

2
exp ( )σ ε

P
bid

: bid price at the end of the holding period

P
ask

: ask price at the end of the holding period

P
m

0
: end-of-day mid-price on the risk evaluation day

t : holding period (one day in this simulation)

σ
m

: volatility of mid-prices

f( )• : probability density function of bid-ask spreads

ε : standard normal random numbers

u : uniform random numbers

10 In conducting the historical simulation for bid-ask spreads we arbitrarily excluded equities, the spread distribution of
which looks like Chart 8. The tail events in this case simply reflect the fact that either quoted bid or ask price
disappear from the market. Although it is desirable for these illiquid market conditions to be investigated more
carefully and incorporated into liquidity risk calculation, we do not deal with the issue in this paper. This might
contribute to a spuriously small difference between ordinary and modified VaR.
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3. Risk in l for securities with different liquidity

As we saw in the preceding chapter, the market impact often defined by l (sensitivity of bid

or ask prices to trading volume) has attracted greater attention in market microstructure literature.

While most of the previous literature focuses on characteristics of l in a deterministic sense as

described in Chapter 3, we try to proceed one step further and investigate the statistical distribution of 

l in order to determine the implications of market impact for market risk calculation.

First we construct l as a ratio of price impact to adjacent trading volume standardized by

normal market size. Normal market size is approximated by a daily average of trading volumes per

transaction, which is assumed to be constant during one day.11 Price impact is measured by a change

from before-trade quoted bid or ask price to after-trade quoted bid or ask price. If there is a difference

between a change in ask price and that in bid price, we take the larger price change - if bid (ask) price

change is larger, then we can interpret it as seller (buyer)-initiated market impact.12 Charts 9 and 10

show that expected value of l and 90 percentile point of l distribution of are negatively correlated

with the level of liquidity for securities. In obtaining l we pool both seller-initiated and

buyer-initiated transaction data, though there might be an asymmetry between two transactions, as

documented by previous studies.

Chart 11 clearly demonstrates that market impact represented by l cannot be neglected in

market risk calculation. Hence, we conduct VaR simulation to show how l affects ordinary market

risk measurement. We again assume a lognormal stochastic process for mid-prices. In quantifying

market impact, we additionally assume that our trader having the same hypothetical portfolio used for

the previous simulations liquidates his position not all at once but only gradually. In this simulation

he divides his position into a piece of transactions, each of which is assumed to be equal to the

average trading amount per transaction of the evaluation date. This assumption means that a trader has

to execute at least a few transactions before he liquidates his entire positions, each transaction of

                                                  
11 Normal market size might be better represented by time-varying orders in the market, which are not available in our

data set.

12 A conventional method of classifying trades compares the trading price to the quote prices in effect at the time of the
trade. However, it should be pointed out that there are several shortcomings in this method. Another method relies
solely on trading prices, avoiding data quality problems with quote prices. Lee and Ready (1991) provide a succinct
review of this issue.
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which causes downward price pressure. The simulation result is shown in Chart 12.13 It is clear that

the market risk measurement taking account of l ("l-augmented VaR") is much larger than the

ordinary VaR. It is also notable that the distribution of the l-augmented VaR is of fat-tail feature

which gives rise to unproportionately large 99-percentile risk compared with 95-percentile risk.

Another characteristic of this market risk measurement is that as the initial holding position increases

in size, the respective risk amounts increase in an unproportionate fashion. For instance, if we double

the initial position, the risk amount almost triples.

However, we should interpret this simulation result with caution. First, our l is derived

under the assumption of deterministic normal market size, though, as a matter of fact, normal market

size seems to follow a definite stochastic process which should be incorporated into risk

measurement. In stressful situations, in particular, outstanding orders (normal market size) could

easily diminish, resulting in higher market impact. Secondly, although our l is certainly a departure

from a static risk calculation in the sense that it takes account of first-round price impacts of

individual trades, it does not capture second-round price effects which would, for instance, arise from

the herding behavior of other participants. If aggregated sensitivity data for the market as a whole is

available, one possible way of capturing this kind of second-round effect is first to estimate future

trading patterns from information on aggregated market sensitivities under certain scenarios about

future price movements, the procedure of which is exemplified by Shimizu (1997), and then derive

                                                  
13 The simulation process can be mathematically expressed as follows:
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NM : normal market size (a daily average of trading volumes per transaction  assumed constant in this

simulation).
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the price impact by using l. Although this issue is worth pursuing, it is beyond the scope of this

paper.

V. Summary and areas for future research

This paper aims to shed light on liquidity risk, which has been left behind in the pursuit of

more sophisticated market risk measurements both by market practitioners and by central banks. We

first defined liquidity risk and showed that it can be divided into execution cost and opportunity cost.

In the light of stylized facts regarding dynamics of liquidity and price/spread movements, which have

been documented previously by finance literature, we proposed several modified market risk measures

reflecting intraday liquidity patterns and price movements. We then demonstrated, by applying the

measures to the Japanese equity market, to what extent the quantified liquidity effects affect

conventional measurement of market risk represented by VaR.

Although our proposed market risk measures clearly reflect liquidity risk, we did not analyze

the time-varying properties of market liquidity and the dynamic interaction between trading activity

and price/spread movements. A possible next step would be to investigate the dynamics of market

impact by applying time-series modeling. Furthermore, the market impact of trading on prices might

not be one-time, as implicitly assumed in our measurement, but could trigger second-round effects,

which might need to be analyzed in an experimental simulation as formulated by Shimizu (1997).

Since the driving forces behind tick-by-tick price movements are not only trading activity but also the

arrival of new information, identification of these two factors would be the key to understanding

intraday price movements in a dynamic context.
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Chart 1

Components of liquidity risk
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Chart 2

Volatility and kurtosis of daily return

AM Open AM Close PM Open PM Close

Volatility 0.02000 0.01930 0.01896 0.01999

Kurtosis 6.5503 6.7363 7.2008 6.5145



Chart 3
Histogram of Trade Prices
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<Chart 4>  Market Risk Considering Execution Timing Risk
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Chart 5

Basic statistics of the portfolio

Stock A Stock B Stock C Stock D Stock E

Position (units of stocks) ...................... + 1,000 + 1,000 + 1,000 + 1,000 + 1,000

Mid-price on the day of risk evaluation
(Yen) ................................................. 2,275 5,730 1,580 2,355 1,985

HV of mid-price (%) ............................ 1.957 1.420 1.886 2.167 1.863

VWAP on the day of risk evaluation (Yen) 2,256 5,718 1,524 2,335 2,010

HV of VWAP (%) ................................ 1.749 1.314 1.567 1.867 1.683

Standard deviation of VWAP (Yen) ....... 25.72 43.43 13.60 33.89 20.84

Average bid-ask spread (Yen) ................ 22.62 45.90 17.33 25.60 21.76

Daily average of trading volumes per
transaction .......................................... 608 386 500 950 375

Chart 6

Histogram of bid-ask spread
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<Chart 7>  Market Risk Considering Intraday Variability of Bid-ask Spreads
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Chart 8

Tail events of bid-ask spreads
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Chart 9

Relationship between l and turnovers    

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70

Turnovers per Day

 

90-percentile of  

Average  

Chart 10

Relationship between l and trading volume
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Chart 11

Histogram of l
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< Chart 12>  Market Risk Considering Variability of ƒÉ
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Information collection and disclosure

by

M. Matthew Adachi, Bank of Japan

and

Patricia Jackson, Bank of England*

Abstract

This paper examines the issues related to the public disclosure of information on aggregate

market risk. While such disclosure might be expected to enhance market transparency, problems

inherent in the proposed methods to construct such information and time delays in disclosing it would

in fact reduce its informational value. Meanwhile, the direct cost of disclosure is identified as possible

behavioural distortions through market participants misinterpreting the data or even an attempt to

avoid regulatory reaction. Overall, the cost of collecting and disseminating the information would

outweigh the potential benefit.

                                                  
* The views expressed in this paper are the authors' and do not necessarily reflect the position of the Bank of England,

the Bank of Japan or the Euro-currency Standing Committee.
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Introduction

This paper examines the issues related to the public disclosure of information on aggregate

market exposures. Such disclosure might be expected to enhance market transparency to the extent

that the information disseminated revealed anything about market dynamics and the robustness of the

financial markets to shocks. We first ask whether the proposed methods such as those based on

principal component analysis would succeed in capturing the important elements of market risk and

whether it would convey information on robustness of markets. Furthermore, time delays in collecting

and disseminating the information cannot be avoided. These and other problems would reduce the

informational value of such aggregate information considerably whether or not it is disclosed to the

market. On the other hand, when it is disclosed, the direct cost of disclosure could be various

behavioural distortions. We discuss the conceivable measures to minimise market distortions, which

might include the central banks’ commitment to the data generation process. Even if commitment

were possible, our overall assessment is that the cost entailed in collecting and disseminating

aggregate market exposures would outweigh the potential benefit.
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In this paper we look at the possible value which information on aggregate market exposures

might have for the central banks and whether the market participants and market users would derive

benefits if the data were published.

The data

This section looks at the issues which would arise if the central banks collected information

from market participants on a periodic (but not frequent) basis on the following:

- The exposure of each firm to market moves given a number of scenarios covering the main

markets (probably concentrating on market risk rather than spread or basis risk ). The

scenarios could either represent statistically significant changes in prices across a number of

markets or could be, for example, sizeable moves seen in the past - eg October 1987. The

third option would be for the central banks to specify forward looking stress tests.

- Alternatively the central banks could collect information on the sensitivities of the

individual portfolios held by the firms to changes in prices. The effects of particular

scenarios could then be calculated by the central banks.

The information which would be disclosed to the market would probably be the aggregate

exposure of all entities operating in a particular market to a particular set of price shocks. One issue is

whether the full details of the scenarios should be published. Another issue is whether some indication

of the distribution regarding the results across individual firms should be published.

Usefulness to the central banks

One question is how useful this data would be to the central banks themselves. One area

where it might possibly be helpful would be in giving a better indication over time of the behaviour of

the market participants in terms of the quantum of risk being run and the exposure to particular types

of scenario. In order to provide this time series, the scenarios would have to be consistent over time or

at least calculated on a consistent basis. One danger would be that the level of risk being run could be

understated and shifts in the type of risk being run could go unnoticed if the scenarios did not, as they

almost certainly would not, cover spread risk and different types of basis risk at all or in a sufficiently

complex way. In other words the scenarios would not be sufficiently sophisticated to highlight the

exposures given the type of risk management we are now seeing. It might however be possible to

specify more elaborate scenarios, in terms of the effect on a range of instruments in a particular

market, by using past examples.

Another issue is whether the data would tell the central banks anything about the

robustness of the markets to particular shocks. Because the central banks would have the information

on the effect of shocks firm by firm it would be possible to look at the results in terms of the quantum

of capital at risk and likelihood of particular players failing. The information would be a starting point
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but clearly would not encompass second or third round effects which in a crisis would determine the

eventual outcome-for example the effect on clearing houses, or gridlock in markets. Conversely it

could exaggerate the risk because exposures are constantly being altered in the light of market

conditions. The scenarios would be independent of current conditions and therefore the books being

held could be quite different from those which might be held preceding a market break of the type

assumed in the scenario.

In terms of understanding the likely dynamics , the information on exposures would only be

partial covering only the players at the centre of the market not the large investing institutions whose

flows would dominate the market in a market break .

It is important to note that reporting burdens have been reaching the limit of tolerance at

each institution and the central banks are expected to offer benefits for the markets as well as

convincing reasons for carrying out such an exercise.

Disclosure to market participants

This section looks at the benefits to market participants (ie the trading firms) of the

disclosure of such information.

The objective of disclosing the aggregate risk measures would be to help individual market

participants and market users make more efficient decisions by reducing uncertainty and incomplete

information. One issue is whether the disclosed information would provide useful material regarding

the robustness of the financial markets, to the players and users-ie, whether it would contribute to

mitigating the problem of asymmetric information. Clearly given the delay in releasing the

information it would not improve the understanding of the current exposures in the market nor would

aggregate information probably provide much illumination on the question of exposures of individual

players. But knowledge of the past patterns of exposures, as well as the effect of given shocks (in

aggregate on all participants) on those exposures, could possibly enhance participants’ and users

understanding of market dynamics thereby affecting expectations about the effects of future crisis.

If the aggregate data did convey information of this kind then the measures (if disclosed by

currency, market segment and reporting institutions’ nationality) might influence the allocation of

economic capital between markets or at least the way in which a firm chose to deploy its capital in a

particular market, in terms of the positions the firm was willing to run. For example, indicators of the

aggregate exposures in a certain region could possibly help individual institutions to improve their

strategy. However, this should not be overstressed given the snapshot nature of the data. In order for

firms to make any use of the data the scenarios would have to be disclosed .It is probably desirable

also to disclose the way in which they are generated (see below).

However, the aggregate data could be disclosing profitable strategies being run by some

market participants, undermining their ability to continue to run those strategies. Although for this to

be the case the market would have to be quite concentrated and the strategies would be quite long

lived.
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It is also possible that the disclosure of such aggregate information could distort the

behaviour of market participants. Distortions could have multiple causes. Uncertainty about the

procedures the central banks followed in deriving aggregate risk measures, variations in the disclosure

schemes over time and so on could lead market participants to react in an inappropriate way. In other

words the firms could read into the data messages which were not correct and adjust their behaviour

inappropriately.

There could also be a danger that the market participants might misinterpret the implications

of the data. For example, if players believed that the outcome of the stress scenarios showed that the

authorities would have to provide support to the market or firms in certain circumstances (although it

is not clear that they could be interpreted in this way) then some players might not make adequate

efforts to avoid such an event by curtailing their risk exposures (moral hazard).It is not clear how real

a danger this is nor, if it is real, whether it can be overcome.

In order to reduce adverse behavioural effects in terms of misjudging (or even judging all

too accurately the intentions of the authorities) it might be necessary to fix the methodology used for

the scenarios. The danger with changing the methodology would be that a change could be interpreted

(quite possibly wrongly) as a signal from the central banks regarding their current concerns or

inherent rate policy intentions, which would be potentially distortionary. This would clearly be

exacerbated even further if the central bank set forward looking scenarios or specific ad-hoc scenarios

which could become self fulfilling.

It would also have to be accepted that snapshot data of this kind might not always be

immune from understatement which could create distortions. Some firms in some markets might be

tempted to run lower exposures over reporting dates. But in terms of aggregate disclosure (across the

whole market) a firm would have to regard itself as extremely large and atypical in order to fear that

the aggregate information would convey unwanted information to the market and encourage other

firms to counter-adjust their positions.

If the figures for any market revealed very large aggregate exposures to particular stress

scenarios, then all the firms in that market could be viewed as equally risk taking. Firms would have

to be able to signal their own internal position -ie publish what their own exposure was to that

scenario. In order to do this they would have to know what the scenarios were.

Disclosure to market users

A separate question is whether investors would benefit from access to information on

aggregate exposures of players in the market to particular scenarios.

They would clearly have an interest in the robustness of the players with whom they were

dealing but the same arguments apply as for the market participants-that disclosure of aggregate

statistics would provide little information on this outside very concentrated markets.

They also have an interest in information on likely market dynamics in stress periods if

these dynamics could be construed from the aggregate data.
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Some investors might also be interested in any information which revealed profitable trading

strategies of the market players which could be imitated.

Evaluation of the two approaches

The critical task in the design of disclosure is to balance the two conflicting forces:

enhancement of market transparency on the one hand and the danger of market distortion on the other.

Price sensitivity approach

Under this approach, the scenarios are not revealed to reporting institutions at the time of

data collection. But when the aggregate measures were disclosed the decision would have to be taken

whether to publish information on the scenarios or not.

For reasons of transparency and to reduce the likelihood of inappropriate behaviour

adjustments it would be necessary to disclose the scenarios. There would also be reason (as set out

above) to keep the scenarios, or at least the methodologies, fixed over time.

However, the incentives for market participants to fine-tune their exposures are probably

reduced where the scenarios are unknown at the time of data reporting.

Theoretically, it might be possible to circumvent the problem of revealed scenarios by

preparing multiple sets of scenarios to be used in the calculation and by randomising over the set. For

example, suppose there are five sets of scenarios in the hands of the central banks. When the reporting

institutions are required to submit their sensitivity data they are not informed about which set of

scenarios is to be used in the current calculation of the aggregate risk measures. One of the sets of

scenarios is chosen and the aggregate measures are calculated by the central banks using that set and

the results are revealed to the market with the scenarios.

This may, however, not discourage firms from simply reducing all exposures to a very low

level to reduce the results whatever the scenario.

Portfolio revaluations

Under this approach each reporting institution is given a set of scenarios on which to base

their calculations of the change in value of their portfolio. As discussed above the scenarios should be

common across institutions and should be fixed or at least the methodology should be fixed.

First thing to note is that the danger of fine-tuning exposures is greater under this approach.

Provision to reporting institutions of fixed and detailed scenarios before they calculate (and hence

report) the risk amounts will leave scope for them to fine tune their books. Although it seems

impossible to tackle this point directly, we can still try to reduce this possible distortion by adopting

multiple sets of scenarios and choosing randomly among the sets with regard to disclosure - ie, a

number of scenarios would be calculated but only a sub-set would be released in the aggregate

information. In this way, the incentive to manipulate behaviour could be weakened.
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Further Issues

Commitment

One issue is therefore that of commitment by the central banks - to disclosure schemes,

reporting requirements, the way regulation is implemented and so on. It is sometimes argued that if

central banks do not make a commitment, the fear of their opportunistic behaviour would undermine

the positive effects of enhanced information and resulting efficiency. Furthermore, discretionary

changes in the procedures for the exercise may aggravate market uncertainty. It is not at all clear

though that the central banks could make any commitment regarding the use to which they would put

the data nor any regulatory action that might be triggered.

Unless the central banks’ commitment is guaranteed, however, the distortion issues we have

discussed so far remain significant. In particular, if the central banks chose to disclose the aggregate

exposure in any way, the lack of commitment may even aggravate the market distortion. We therefore

need to balance carefully the practical difficulty of making commitment and the possible distortionary

consequences of it. Needless to say, commitment must be credible. It may therefore be helpful to

investigate how we can design an optimal mechanism to make commitment credible, should we

decide to proceed in this direction.

Timing of disclosure

Time delays in collecting data, calculating risk measures and disseminating them seem

inevitable In highly competitive markets like financial markets, each participant can carry out a

variety of transactions in varying volumes instantaneously and with little cost. Given this any delays

in disseminating the results would reduce substantially the information content. Although this in turn

could be helpful in encouraging reporting firms not to window dress.

More importantly, delayed dissemination gives rise to a risk that some market participants

might erroneously interpret the results. Although improvements in the technology to process

efficiently a huge amount of data could eventually mitigate this problem, delays are probably

fundamental.

Global aggregation

One issue regarding global aggregation is the consistency of data among institutions. Data

collected from reporting institutions - either sensitivity data or calculated exposures to stress scenarios

- must be on the same basis and comparable across institutions and countries. Either measure could be

fundamentally affected by assumptions made by particular firms - for example, the volatilities used.

Without putting these assumptions on the same basis or at least having a consistent methodology

across countries, the data thus obtained could show a distorted picture between markets. In sum, a
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consistent definition of sensitivity data and calculation of stress scenarios across countries could be

indispensable if the exercise was to be meaningful.

Another issue though is that this common treatment across market could in itself be

misleading. This is because a particular scenario could exactly highlight the risks being run in one

market while completely missing the risks being run in another given the range of possible types of

exposure - outright market exposure, basis risk, spread risk and so on.

Partial disclosure

One issue is whether there is a case for disclosing the aggregate measures only to central

banks - both participating and non-participating. If the benefit of enhanced transparency (to the market

in general) is outweighed by market distortions then partial disclosure (only among the central banks)

could be an alternative with a commitment that the information would not be released more widely

and also a commitment to limit the use to which the data would be put.

It would also be important to encourage non-participating central banks to participate in the

exercise. This is because information disclosure can confer positive externalities.
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Abstract

The potential for the dynamic hedging of written options to lead to positive feedback in

asset price dynamics has received repeated attention in the literature on financial derivatives. Using

data on OTC interest rate options from a recent survey of global derivatives markets, this paper

addresses the question whether that potential for positive feedback is likely to be realised. With the

possible exception of the medium term segment of the term structure, transaction volume in available

hedging instruments is sufficiently large to absorb the demands resulting from the dynamic hedging of

US dollar interest rate options even in response to large interest rate shocks.

                                                  
* I am grateful for helpful comments and suggestions of Young Ho Eom, James Mahoney, and participants in

workshops at the Bank for International Settlements and the Federal Reserve Bank of New York. The views expressed
in this paper are the authors' and do not necessarily reflect the positions of the Federal Reserve Bank of New York, the
Federal Reserve System, the Bank for International Settlements, or the Euro-currency Standing Committee.
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The size of hedge adjustments of derivatives dealers'
US dollar interest rate options

Dealers' hedging transactions in underlying fixed income markets required for the

management of the price risks of their options' business raises two questions. First, might dealers'

hedging demands be so large as to disrupt the markets in the available hedging products? Second, is

the dynamic hedging of dealers' residual exposures sufficiently large to justify a concern about

positive feedback in price dynamics in the fixed income market?

The potential for dynamic hedging of written options positions to introduce positive

feedback in asset price dynamics has received repeated attention in the literature on financial

derivatives. A short and incomplete list would include, Grossman (1988), Gennotte and Leland

(1990), Fernald, Keane and Mosser (1994), Bank for International Settlements (1986, 1995), and

Pritsker (1997). Using data on OTC US dollar interest rate options from a survey of global derivatives

markets, this paper assesses the likelihood of such positive feedback caused by dynamic hedging of

options. The OTC interest rate options market is an interesting place to explore the positive feedback

issue because dealers are net writers of these options (see Annex Table A2).

The estimates in this paper suggest that, with the possible exception of the medium term

segment of the term structure, transaction volume in available hedging instruments is sufficiently

large to absorb the demands resulting from the dynamic hedging of US dollar interest rate options.

While a definitive answer to the positive feedback question would require data on investors' demand

for interest rate products in addition to dealers' hedging demand arising from dynamic hedging of

options (see Pritsker 1997), comparing potential hedging demand with transaction volume in typical

hedging instruments might give a provisional assessment of the likelihood of positive feedback.

1. Introduction

The data in this paper are global market data for US Dollar OTC interest rate options from

the April 1995 Central Bank Survey of Derivatives Markets (Bank for International Settlements,

1996). Using data on notional amounts and market values, strike prices were estimated such that when

applied to the notional amounts, the strike prices generate the observed market values of the options.

In particular, given maturity data (from the Survey) and market growth data (from ISDA1), estimates

were generated of the notional amount of options by maturity and origination date (going back 10

years). Strike prices, based on historical interest rate data, were then assigned to the options originated

at each point in time, such that the strike prices produced option values equal to those observed in the

survey.

                                                  
1 International Swaps and Derivatives Association.
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With the estimated strike prices and a postulated interest rate shock, we ask what would be

the change in dealers' hedge positions that would restore the net delta of a (hedged) option portfolio to

its initial level? This estimated hedge adjustment is the incremental net demand of dealers for hedge

instruments, given the assumed interest rate shock. The estimated demand for hedge instruments

might give some indication of the potential for positive feedback effects attributable to derivatives

dealers' hedging of their OTC options portfolios.

2. Price sensitivity of the global dealer portfolio

Figure 1 shows the estimated price sensitivity of the global dealers' portfolio. The value at

the prevailing forward rates is the amount reported in the Survey, and the values at the indicated

changes in interest rates are estimated values. While dealers have sold more options than they have

purchased, at the prevailing forward rates the bought options had higher market values and the net

value of the global portfolio was positive (see Annex Tables A1 and A2). This relationship between

the notional amounts and market values of bought and sold options implies that the options sold to

customers had a lower degree of "moneyness" than options purchased from customers. The estimated

strike prices are consistent with this relationship, as relative to swap rates at origination, sold options

were found to be out-of-the money while options purchased from customers were estimated to be

in-the-money.

Since dealers were net sellers of options, large interest rate shocks that drive the sold options

into-the-money will cause the value of the sold options to dominate the portfolio value. Hence, the

aggregate dealers' portfolio value becomes negative at interest rate shocks of more than 100 basis

points. Figure 1 shows, however, that if the portfolio is hedged (but the hedge not dynamically

adjusted) the value of the hedged portfolio would turn negative only after an extremely large interest

rate shock. A rise of interest rates of almost 200 basis points would be required before the hedged

portfolio value turns negative. Dynamically adjusting the hedge position as interest rates change

would make such an adverse outcome even less likely.

The curverture of the option value function implies that the hedge position must be adjusted

after an interest rate shock because the option values decrease at an increasing rate as interest rates

rise. Without the hedge adjustment, the gain in value of the initial hedge position would no longer be

sufficient to compensate for the declining option values. This need to dynamically adjust the hedge

position as interest rates change introduces a potential for positive feedback. Since the required hedge

is a short position in fixed income securities, the hedge adjustment would introduce additional sales

into the market on top of the initial selling pressure that accompanied the initial interest rate shock.

Another feature of the aggregate dealer position is its exposure to rising interest rates: the

negative slope of the option value curve at the prevailing forward rates in Figure 1. The conventional

view of financial institutions' interest rate risk profile holds that these firms have a structural long
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position in the fixed income market. Namely, exposure to rising rates. Thus Figure 1 implies that, in

the aggregate, dealers as a group can not hedge their net option exposures with offsetting structural

exposures from other business lines. While some dealers may have offsetting exposures elsewhere in

their firms that hedge their options position, Figure 1 suggests that not all dealers can fully hedge

internally.

3. Dynamic hedging estimates

Dealers' options positions, especially of longer maturities, are most likely hedged with a

variety of interest rate instruments. The market for US dollar interest rate products is sufficiently large

and diverse that options dealers can choose from a wide range of hedging instruments, such as futures

contracts, FRAs, interest rate swaps, Treasury securities, and interbank loans. While these instruments

are not perfect substitutes because of differences in credit risks, transactions costs, and liquidity,

economies of scale and diversification help dealers manage and intermediate these risks. If dealers

have sufficient time to hedge a position or replace a hedge with a cheaper alternative, they are unlikely

to encounter difficulty meeting their hedging needs. For immediate hedge adjustments in large

volume, however, their alternatives may be more limited. Across the range of maturities that need to

be hedged, the most liquid instruments available are Eurodollar futures, Treasury securities, and

Treasury futures.

Eurodollar futures

The Eurodollar futures market appears to have transaction volume sufficiently large to

accommodate the estimated hedge adjustments for small interest rate shocks. At shorter maturities, the

Eurodollar futures market is more than large enough to accommodate dealers' hedging demands, even

for large interest rate shocks. For hedging of longer maturity exposures, however, the Eurodollar

futures market appears to be able to accommodate only the hedging of residual exposures (after the

use of other hedging instruments) and marginal adjustments to hedge positions.

The largest daily turnover volume of Eurodollar futures contracts exceeds the estimated

hedge adjustments: out to 10 year maturities, for a 10 basis point change in forward rates; out to 4 to 5

years, and also between 8 and 10 year maturities for a 25 basis point change in forward rates (Table

1); and, out to only 2 year maturities, for a 75 bp change in forward rates (Table 2). To put these

figures in perspective, a 25 basis point change is slightly less than the largest daily change, and a 75

basis point change is slightly less than the largest two-week change, in forward rates in the 4 to 7 year

segment of the yield curve (during the period 1991 to 1995).

The estimated hedge adjustments are smaller than the stock of outstanding futures contracts

at all maturities. Even in the case of hedge adjustments to a 75 basis point change in forward rates,
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except for contracts between 7 and 8 years maturity, the estimated hedge adjustment in most cases is

much less than half of outstanding futures contracts (Table 3.)

With respect to the estimated hedge position, rather than adjustments to the hedge position,

for longer maturity exposures the Eurodollar futures market is not large enough to accommodate the

entire hedge demands that would be generated by a fully delta neutral hedging strategy, especially for

exposures beyond 4 or 5 years (Table 3.)

Treasury securities

To hedge exposures to forward rates between 5 and 10 years maturity, a possible hedge

position in Treasury securities consists of a short position (sale of a borrowed security) in the 10 year

note, and a long position in the 5 year note.

For adjustments to hedge positions, the on-the-run security turnover volume exceeds

estimated dealers' dynamic hedging demands (Table 4, Panel A). For an extremely large shock to

forward interest rates, however, such as a 75 basis point shock to forward rates beyond 5 years out,

the estimated hedge adjustment in the 5 and 10 year note would be approximately half of average

daily turnover.

With regard to the hedge position, the on-the-run issue volume appears to be too small to

accommodate hedging demand if a fully delta neutral hedging strategy were attempted exclusively in

the cash market in Treasury securities. For example, if dealers fully hedged their exposures beyond 5

years with 5 and 10 year on-the-run issues, the required hedge position would be approximately equal

to the outstanding amount of the on-the-run 5 and 10 year notes (Table 4, Panel A).

Two means by which the Treasury market may accommodate this hedging demand exist.

First, the existence of a large repo (collateralized security lending) market in Treasury securities

allows a fixed stock of on-the-run Treasury securities to meet trading demands that exceed the size of

the on-the-run issue. Through the repo market, a trader that establishes a short position enables

another trader to establish a long position in the security. Hence, the size of market participants' long

position in the security can be larger than the outstanding stock of the security. Second, off-the-run

issues when available can also be used, further enlarging the pool of available hedging instruments.

Futures on Treasury securities

In addition to the cash market in Treasury securities, dealers can also hedge with futures

contracts on Treasuries. As seen in Panel B of Table 4, open interest and turnover volume in the

Treasury futures market exceeds estimated dealers' hedging demand.

While outstandings and turnover volume in the cash and futures markets in Treasury

securities exceeds estimated dealers' hedging demands, that demand could be significant relative to

the size of the market. For example, the estimated hedge adjustment to a 75 basis point shock could
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be large as 25% of the combined average daily turnover in both markets, while the estimated hedge

position could be as large as a third of total outstanding in both markets (see Table 4, Panels A and

B).

Interest rate term structure models

If dealers are willing to accept model risk (correlation risk), they could also hedge exposures

beyond 5 years by spreading their hedging demands across a wider maturity range of securities than

only the 5 and 10 year notes. For example, with the use of a two (or more) factor interest rate term

structure model, a dealer could construct a hedge of exposures between 5 and 10 years using a

position in one year bills and 30 year bonds that replicate the exposure to the term structure factors

that drive forward rates between 5 and 10 years. Such hedges, however, would be vulnerable to

atypical price shocks that the term structure model does not account for.

Conclusions

The estimated size of dealers' hedge positions of longer maturity exposures, suggests that

dealers' hedges, especially of exposures beyond 4 years maturity, are distributed over a range of fixed

income instruments. While outstanding Eurodollar futures contract volume is smaller than the

estimated size of the hedge position beyond 5 years, the large size of the US dollar fixed income

market suggests that the hedge positions can still be absorbed by the markets in other fixed income

instruments. With regard to an immediate dynamic hedge adjustments to an interest rate shock,

however, the ideal hedging instrument is one that is liquid and has low transactions costs, such as

Eurodollar futures, on-the-run Treasury securities, or Treasury futures.

Impact on transaction volume

The Eurodollar futures, on-the-run Treasury securities, and Treasury futures markets

together can easily absorb hedge adjustments to shocks to the forward curve as large as 25 basis

points along the entire term structure (Tables 1 and 4). For example, the estimated hedge adjustment

for 5 to 10 year exposures to a 25 basis point shock is approximately 10% of the combined turnover in

the Treasury on-the-run cash and futures markets.

For an extremely large interest rate shock, however, such as a 75 basis point shock to

forward rates, dealers' dynamic hedge adjustments would generate significant demand relative to

turnover and outstanding in these hedging instruments (see Tables 2 and 4). In this case, by bearing

the price risk of a partially hedged position and spreading the hedge adjustment over more than one

day, the hedge adjustment could be broken into smaller pieces that would be small relative to daily

turnover. The terms of this trade-off between price risk and the cost of immediacy or liquidity of

course would depend on the volatility of interest rates, and volatility may rise at the same time that

liquidity is most impaired.
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These results suggest that dealers' inter mediation of price risks through market making in

interest rate options is supported by liquidity in underlying markets that allow them to manage their

residual price risks. Transaction volume in the standard hedging instruments appear to be large

enough to accommodate dealers' hedge adjustments in all but the most extreme periods of interest rate

volatility.

Price impact

With regard to the price impact of dynamic hedging our results are less clear. For a definite

answer an analysis of demands of other market participants would be required (see Pritsker, 1997).

For example, investors whose demands are driven by "fundamentals" could be expected to undertake

transactions in the opposite direction of dealer's dynamic hedging flows if those transactions drove

interest rates to levels that appeared unreasonable to the "fundamentals" investors." If these investors

constitute a sufficiently large part of the market, then their transactions would stabilise prices and

keep positive feedback dynamics in check. However, such stabilising investors are not the only other

market participants. Other participants include traders who follow short term market trends either

because of "technical trading" strategies or because they interpret short term changes to be driven by

transactions of better informed "fundamentals" investors. The trades by these investors could amplify

the price impact of dealers dynamic hedging. Thus, the ultimate impact of dealers' dynamic hedging

would depend on the relative sizes of these types of market participants, as described in Pritsker

(1997).

At shorter maturities, transaction volume and open interest of the most liquid trading

instruments are so much larger than dealers' dynamic hedging flows that positive feedback driven by

dealers' dynamic hedging seems unlikely, even with very large interest rate shocks. However, at

longer maturities around 5 to 10 years, dynamic hedging in response to an extremely large interest

rate shock could be of significant volume relative to total transaction volume and open interest in the

most liquid trading instruments. Hence, at this segment of the yield curve, the positive feedback

hypotheses in the case of a very large interest rate shock can not be dismissed. The dynamic hedging

volume in response to an unusually large interest rate shock could be large enough to have a

significant impact on order flows in the medium term segment of the yield curve-maturities between 5

and 10 years. Such order flows might have a transitory impact on this segment of the yield curve.

4. The data and estimation

Option characteristics

Option type

All options were assumed to be caps and floors on a 6-month interest rate. A cap payoff at

period t is,
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where ft is the interest rate at period t, x is the strike rate, n is the notional amount, and M is the

maturity of the cap. The payoff on the 6-month rate between periods t and t+1 is paid at the beginning

of period t.

Counterparty type

The Survey data has three counterparty types, and options are either inter dealer options,

options bought from customers, or options sold to customers. Dealers are net writers of options, as

they have sold significantly more options to customers than they have bought (see Annex Table A2).

Maturities

Options are assumed to have maturities up to 10 years, in 6 month increments. The first

caplet in any cap has a maturity of 3 months (mid-point of the first 6-month maturity band): a

3-month option on the 6-month rate that applies between 3 months and 9 months. The last caplet in

any cap has a maturity 6 months shorter than the maturity of the cap: an option on the 6-month rate

that applies for the last 6 months of the cap's term.

Origination dates

Options are assumed to have been originated up to 10 years earlier.

Strike prices

Strike prices are derived from historical term structure data. For example, a 5 year cap

originated at period p will have a strike proportional to the 5 year swap rate at period p. Thus, two

caps originated at the same time may have different strikes if their maturities differ. The distinction

between bought and sold options also implies that two caps with the same remaining maturity and

origination date may have different strikes if one is a sold option and the other is a bought option -

given that the options are not inter-dealer.

Maturity distribution

The maturity distribution of options originated at any date is assumed to be described by a

quadratic function. The notional amount of options with t periods remaining maturity, originated p

periods in the past is
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where t is remaining maturity, t < 10 years; p is the origination date (periods earlier), p < 10

years; t+p is the original maturity, t+p < 10 years; gj is the market growth term at period j, where

g =
1

1 + r , and r is the growth rate from period j-1 to period j. The growth rates r are growth rates

of notional amounts outstanding of US dollar interest rate options obtained from ISDA's surveys. The

restriction in (1) forces caps and floors to have maturities of at least one-year when originated.

(Regardless of this restriction, the first caplet (option) in any cap or floor has a maturity of 3 months

(the midpoint of the first 6-month time band). Estimates without this restriction are shown in

Section 5.

The maturity distribution is found by solving for the parameters (a,b,c) of the quadratic

function in:
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where Nm are notional amounts in the survey's three maturity categories (see Annex Table A3), and

the function n(.) is as defined in equation (1).

Separate maturity distributions were estimated for interdealer options, options purchased

from customers, and options sold to customers. The maturity data, however, were available only for

all sold options and all bought options, where interdealer options were included in the maturity data of

both bought and sold options. The maturity distribution of interdealer options was assumed to be the

average of the bought and sold options' maturity distribution. Most outstanding contracts were of less

than five years remaining maturity and were estimated to have been originated within three years of

the survey date.

Option price function

The options are valued using Black's forward interest rate option model (see Hull 1993). The

value of the period t payoff of a cap (floor) with strike rate x and notional amount n is
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and l is the length of the period for which the reference interest rate applies (6-months), ft is

the period t interest rate, st is its volatility, and N(.) is the standard normal distribution function. The

value of a cap (floor) with maturity m is,

c
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The valuation used the term structure of forward rates and the term structure of implied

volatilities at end-of-March 1995 (Derivatives Week, 1996)2.The section at the end of the paper

presents estimates using alternative implied volatility structures.

Strike prices

Strike prices were derived from historical yield curves. Because separate market values were

not available for caps and floors, a relationship between the strikes of caps and floors was required in

the estimation. The structure was chosen on the assumption that buyers (sellers) of caps and floors had

similar preferences regarding their options' moneyness. Thus, if buyers of caps desired out-of-the

money options because of their cheaper premia, then buyers of floors would also. This structure

regarding the options' moneyness was implemented in three different ways. These implementations

gave similar results as shown in Table 5.

First, a proportional displacement of the strike price from the swap rate. The strikes of caps

and floors are,

cap

x t p A h t p p A, , ,b g b g= + (3.1a)

fir

x t p A
h t p p

A
, ,

,b g b g
=

+
(3.1b)

where, t is the remaining maturity of the cap, p is the origination period (periods earlier), t+p is the

cap's original maturity, h(m,p) is the historical swap rate of p periods earlier for a m period maturity

swap, and A is a scaling factor.3

                                                  
2 The Derivatives Week forward rates and implied volatility data are consistent with those implied by Eurodollar

futures prices and Eurodollar future options prices.

3 A complete 10 year time series for swap rates could not be found (data were available only from 1988). To complete
the time series the missing values were assumed to equal the corresponding Treasury rate plus the last available swap
spread.
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Second, a cap and floor are assumed to have equal premia at origination,

v n t h t p A v n t h t p Acap cap fir fir, , , , , , ,b gd i b gd i= (3.2a)

where the option values are evaluated at the term structures prevailing at origination, the strikes are

defined as,

x t p A h t p A and x t p A h t p Acap cap fir fir, , , , , , , , ,b g b g b g b g= = (3.2b)

and Acap and Afir  are separate scaling factors for caps and floors.

Third, caps and floors are assumed to have equal deltas at origination,

∆ ∆v n t h t p A v n t h t p Acap cap fir fir, , , , , , ,b ge j b ge j= (3.3)

where ∆ vcapand ∆ v fir  are the deltas of a cap and floor (evaluated at the term structures prevailing at

origination), and the strikes are defined as in (3.2b).

The scaling factors (A) are chosen so that the option values at the resulting strike prices

equal the observed market values in the Survey. In each of the above specifications, the restrictions

are applied to bought and sold options separately, with different scaling factors (A) for bought and

sold options. In these strike price specifications, a cap will be out-of-the-money when a floor is out-

of-the-money. Alternative strike price specifications are presented in Section 5.

Estimated strike prices and option values

Given the strike prices defined in (3), total values for bought and sold customer options, and

interdealer options can be defined as functions of the scaling factors (A),

V A v B t p t x t p A v B t p t x t p Ab
b c c c b

pt

f f f b

pt

d i b g d ie j b g d ie j= +∑∑ ∑∑, , , , , , , , , , (4a)

V A v S t p t x t p A v S t p t x t p As
s c c c s

pt

f f f s

pt

d i b g d ie j b g d ie j= +∑∑ ∑∑, , , , , , , , , , (4b)

V A v D t p t x t p A v D t p t x t p AD
D c c c D

pt

f f f D

pt

d i b g d ie j b g d ie j= +∑∑ ∑∑, , , , , , , , , (4c)

where B and S are notional amounts for bought and sold customer options, D is notional amount of

interdealer options; and v(n,t,x) is the value of a cap (floor) with notional amount n, maturity t, and

strike price x. The index t represents remaining maturity, the index p is the origination date, where t+p

< 10 years, and the superscripts c and f denote caps and floors.

On the basis of ISDA data we assume that caps amount to 73% of the options with the

remainder being floors.  The notional amounts of bought and sold options are derived from equations

(1) and (2), and assigned to the caps and floors using the 73% ratio from the ISDA data. A small
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proportion of interest rate options are swaptions (19% at year-end 1994 in the ISDA data). However,

for simplicity, we treat all options as either caps or floors.4

The value of each group of options in (4) is determined by the scaling factors in the strike

rates - the parameter A in the strike price equations (3) and the value equations (4). The estimation is

to find values of Ab, As, and AD, such that:

V A V A Vb
b

D
D

bd i d i+ = (5a)

V A V A Vs
s

D
D

sd i d i+ = (5b)

subject to the restriction in (3.1, 3.2, or 3.3), where vb (and vs) is the observed market value of all US

dollar options bought (and sold) by dealers including interdealer options.

Given the value of interdealer options (see below), in the case of the strike price structure

(3.1), the estimation for bought options consists of solving for the single parameter Ab in equation

(5a).  In the strike price structure (3.2), however, the estimation for bought options consists of solving

for the two parameters A Acap flr,  in the two equations (3.2a) and (5a).

Interdealer options

Separate market values of interdealer US dollar options are unavailable. (The interdealer

market values is available only in aggregate across all currencies, see Annex Table A1). For that

reason, the problem in (5) is solved using four alternative assumptions: (1) inter-dealer options have

strikes equal to the reference rate, AD =1, in (3.1), (at-the-money strikes, relative to the swap term

structure); (2) inter-dealer options have the same strikes as options bought from customers, A AD b= ;

(3) inter-dealer options have the same strikes as options sold to customers, A AD s= , and; (4) estimate

the value of US Dollar interdealer options from the data in Annex Tables A1 and A2. The last

estimation method (4) distributes the market value of interdealer options in Annex Table A1 between

US dollar and other currencies so as to minimise the error in the ratios of market value to notional

amounts relative to the margin ratios of the totals in Annex Tables A1 and A2.

The first and last alternatives produce comparable values for interdealer options. The

at-the-money assumption (1) produces a value of interdealer options of $11.3 billion, while the

                                                  
4 This assumption is not likely to alter the paper's conclusions. For example, if a one year option on a five year swap

were reported as a one year option, then the swaptions would appear as shorter maturity options in the data. Hence, the
true exposures of shorter maturity would be less than assumed in the estimation, with the result that hedging demand
for shorter maturity instruments would be smaller than estimated. This effect would only strengthen the conclusion
that shorter maturity hedging volumes are small relative to transaction volume in Eurodollar futures. On the other
hand, however, the swaptions would add to the estimated hedging demand at longer maturities  Nevertheless, since
swaptions are only 19% of the market, the net increment to estimated hedging demand would not significantly change
the conclusions. The effect would be to strengthen the conclusions that longer maturity hedging demand could be
significant relative to order flows in longer maturity hedge instruments but not so much larger as to overwhelm the
market.
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estimation in (4) results in a value of interdealer options of $10.9 billion. Table 7 shows the

comparability of the hedge estimates with assumptions (1) and (4). Results using the other

assumptions (2 and 3) were also similar to those in (1) and (4). The results reported in Sections 2 and

3 were derived using assumption (4).

An implication of the comparability of methods (1) and (4) is that inter-dealer options have

strikes closer to at-the-money than customer options. This result is plausible, since dealers who use

the interdealer market to hedge their net short volatility (negative gamma) position would obtain more

hedging benefit from at-the-money options since such options have larger gamma.

Options sold to customers

In the strike rate equation (3), the value of the scaling factor that solves the sold options

value equation (5b) is As = 1.18. Thus, for caps sold to customers, strike prices consistent with the

observed market values are 18% higher than swap rates of comparable maturity at origination. These

estimated strikes for sold options are predominantly deep out-of-the money (relative to swap rates of

comparable maturity) at origination.

Options bought from customers

A solution to the bought options value equation (5a) requires a scaling factor in the strike

rate equation (3) of, Ab = 0.94. For caps bought from customers, strike prices consistent with the

observed market values are 6% smaller than swap rates of comparable maturity at origination. Thus,

bought options are predominantly in-the-money (relative to swap rates of comparable maturity) at

origination. In addition, strike rates for floors in this solution are higher than strike rates for caps. This

relationship is the opposite of the relationship found for options sold to customers.

While this result might appear counterintuitive and could point to a problem in the

estimation, it is consistent with market commentary in the early 1990s. An implication of this result is

that customers looking for "yield-enhancement" during the low-interest rate regime of the early '90s,

acquired "higher" yield by selling interest rate caps to dealers that were in-the-money relative to the

swap term structure. While this "higher yield" is the market price or compensation for the expected

pay out of the option, investors speculating on the path of interest rates would obtain higher

investment returns (or losses) by selling in-the-money options. In addition, investors who believed

that the forward curve was an overestimate of the future path of spot rates would sell options that were

in-the-money relative to the forward curve. In retrospect, for positions that were not leveraged, the

risks appear to have been moderate.
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Assumptions regarding hedging

The analysis of dealers' hedging behaviour relies on the following assumptions.

(a1) Customers do not hedge their options positions.

Customers who have sold or bought options are assumed not to hedge, because doing so

would negate what ever hedging or investment objective the options were used for. Customers who

have sold options to dealers presumably did so for speculative "yield enhancement" or intertemporal

income shifting. In which case, the costs of delta hedging the options would negate that investment

objective. On the other hand, customers who have bought options from dealers for hedging purposes

would not hedge the option since doing so would expose the underlying position the option was

hedging.

If customers were to hedge their options, perhaps due to a reassessment of risks, then the

market impact of dealers hedge adjustments would be smaller because they would be offset by

customers' hedging. Since the predominance of our results support the claim that the market impact of

dealers' hedging is small relative to the size of the market, dropping assumption (a1) would only

strengthen the results.

(a2) Dealers restore the net delta of their position after an interest rate shock to its initial level.

Regardless of whatever hedge ratio they had initially, subsequent to an interest rate shock

dealers are assumed to adjust their hedge position to bring the net delta of the portfolio back to its

initial level. Dealers may or may not fully hedge the initial delta of the options book, and whatever

hedging is initially done may be accomplished either internally with offsetting positions in the firm or

with external hedging transactions. These initial offsetting positions, either internal or external, are

assumed to have small gamma so that a change in the options' delta requires additional hedging

transactions to return the portfolio's net delta to its original level.

(a3) An option exposure to a period t interest rate is hedged with an instrument that also has

exposure to the period t interest rate - no basis risk in hedged positions.

With this assumption, a separate hedge ratio was calculated for each maturity's exposure.

Estimated hedge

The delta and the change in delta of the global dealers' portfolio was calculated given the

notional amounts (from equation (2)) and estimated strike prices (from equation (5)). The estimated

delta is the net hedge position of all dealers' (if they fully hedged) and the change in delta given an

assumed interest rate shock is the change in the dealers' net hedge position. In response to an interest

rate shock, if dealers are assumed to restore the net delta of their portfolios to their initial levels, then

the change in delta of the global portfolio is the net dealer demand for hedge instruments. If hedging

is executed with futures contracts, the estimated hedge adjustments are shown in Tables 1 and 2, and
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the hedge position (assuming complete hedging) is shown in Table 3. Table 4 shows the hedge

adjustment and hedge position, if hedging of 5 to 10 year exposures is done with Treasury securities

and futures on treasuries. These results are described in Section 3.

5. How robust are the results?

The results shown in Tables 1 to 4 are the results with the basic assumptions described

above with the strike price restriction (3.1). To explore whether these results were sensitive to the

assumptions, estimates were also performed using a variety of assumptions regarding the structure of

strike prices, implied volatility, and other restrictions. The estimated hedge position and its change

due to interest rate shocks were comparable across these different specifications and do not alter the

conclusions. The results with these alternative assumptions are shows in Tables 5 through 8. The first

column in these tables is the result under the basic assumptions, and the other columns are the results

with the alternative assumptions.

Strike price variations

Distribution of strike prices

Instead of assuming that all options of a given maturity and origination date had the same

strike rate, these options were distributed over two different strike prices, with the larger strike 22%

higher than the smaller (10% above and below the reference rate for that option). Instead of equation

(3), the strike prices were estimated using the following restrictions,

x t p A h t p p Acap

high
, , ,b g b g b g= + +1 α (6a.i)

x t p A h t p p Acap
low

, , ,b g b g b g= − +1 α (6a.ii)

x t p A
h t p p

A
fir

high
, ,

,b g b g b g
= +

+
1 α (6b.i)

x t p A
h t p p

A
fir

low
, ,

,b g b g b g
= −

+
1 α (6b.ii)

where α =0 1. , and h(m,p) is the historical swap rate of p periods earlier for a m period maturity swap.

(The size of ∀ was chosen from inspection of the range of strike prices over which the bulk of

Eurodollar futures options were distributed.)

Maturity variation in strike prices

For options bought from customers, instead of the strike price restriction in equation (3), the

options' "moneyness" was assumed to vary with original maturity. In the first variation, the deviation
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of the strike from the swap reference rate decreased with maturity, and in the second the deviation

increased with maturity.

Identical strike prices for caps and floors

Instead of the strike price structure in (3) for bought options, caps and floors were assumed

to have identical strikes. This alternative specification produced in-the-money caps and out-of-the

money floors. Applying a similar restriction for sold options was not meaningful, as it produced

option values that exceeded the observed values. This result supports the use of equation (3) for sold

options.

Implied volatility variations

Cap and floor implied volatilities

Instead of using a common implied volatility for both caps and floors, different implied

volatilities were used. Caps were estimated using the Derivatives Week implied volatility data as in

the basic assumptions, but implied volatilities for floors were adjustment upwards to conform with the

difference between cap and floor implied volatility in DRI data.  (The DRI implied volatility data are

available only from January, 1996; while the Derivatives Week implied volatility data are derived

from caps only).

Volatility smile

As an alternative to a common implied volatility across all degrees of "moneyness," results

were also estimated using a volatility smile. A volatility smile consistent with Eurodollar futures

options prices was constructed, and extrapolated across all maturities using the base volatility term

structure as the at-the-money volatility.

Other variations

Options on 3-month interest rates

Instead of assuming that all options were on the 6-month interest rate, results were also

derived on the assumption that the options were 3-month interest rate options. This variation doubles

the number of individual options in a cap (floor).

Growth rate assumption in maturity distribution

The ISDA market size data for interest rate options contained a number of anomalous

growth rates between certain dates. On the possibility that these growth rates were due to survey

problems at those dates, alternative smoothed growth rates were derived by ignoring the market
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volumes at the anomalous dates. The notional amounts from the Central Bank Survey were then

distributed across maturities and origination dates using these alternative growth rates in equations (1)

and (2).

Unrestricted maturity distribution

As an alternative to the assumption that all caps (floors) have a maturity of at least one year

when originated, the distribution of notional amounts across maturities and origination dates in (1)

and (2) was estimated without the restriction in the maturity distribution (1).

Simultaneous volatility and interest rate shock

The results in Section 2 were estimated under the assumption that the volatility of interest

rates remained constant while interest rates changed. In contrast, the hedge adjustments in Table 8

were estimated assuming simultaneous volatility and interest rate shocks. Interest rate volatility was

assumed to increase by 25% relative to initial volatility levels, while the forward curve was assumed

to increase by 75 basis points. While the estimated hedge adjustment is larger, the difference does not

appreciably change the conclusions.
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Annex: Data

Table A1

Market values of OTC interest rate options

Billions of US dollars

Bought Sold

USD Other Total USD Other Total

Dealer
Customer

Total 20.9 16.7

22.4
15.2

37.6 19.4 16.8

21.6
14.6

36.2

Table A2

National amounts of OTC interest rate options

Billions of US dollars

Bought Sold

USD Other Total USD Other Total

Dealer
Customer

Total

529.4
432.7

961.1

726.5
340.6

1067.1

1255.9
772.2

2028.1

576.1
690.4

1266.5

681.9
398.1

1080.0

1258.1
1088.4

2346.5

Table A3

Maturity distribution of US dollars interest rate options

Bought options Sold options

Up to one year 30% 28%

Over one and up to five years 58% 56%

Over five years 12% 15%
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Table 1

Change in required hedge position compared to daily volume
of Eurodollar futures 25 BP change in forward curve

Maturity Change in
Largest volume Average volume

(years) hedge position Volume of 1st
contract

Volume of 2nd
contract

Volume of 1st
contract

Volume of 2nd
contract

0.5 - 6.3 374.0 334.1 115.73 148.36
1.0 - 9.2 260.9 135.2 92.05 35.81
1.5 - 7.7 55.1 39.7 19.99 14.00
2.0 - 5.7 26.9 18.9 9.40 5.96
2.5 - 4.6 9.2 7.5 4.02 3.26
3.0 - 3.7 7.3 4.5 2.69 1.94
3.5 - 3.1 3.9 2.6 1.52 1.32
4.0 - 2.6 2.7 3.3 1.20 1.09
4.5 - 2.1 2.4 2.3 0.89 0.79
5.0 - 1.9 2.0 1.4 0.75 0.46
5.5 - 1.6 1.3 2.4 0.20 0.23
6.0 - 1.4 1.3 1.3 0.22 0.20
6.5 - 1.2 1.0 1.2 0.17 0.15
7.0 - 1.0 3.3 0.7 0.20 0.12
7.5 - 0.9 0.6 1.2 0.07 0.09
8.0 - 0.6 0.8 3.7 0.07 0.11
8.5 - 0.4 1.2 1.2 0.11 0.09
9.0 - 0.3 1.2 1.7 0.08 0.08
9.5 - 0.1 1.0 0.7 0.07 0.06

10.0 1.2 1.0 0.06 0.04

Notes:  (1) Billions of USD. Hedge estimates based on data at end of March 1995.  (2) The second column is the change
in hedged position by maturity exposure.  (3) The middle columns are the largest daily volume of futures contracts (by
maturity of contract) in the first half of 1995.  (4) The right most columns are the average daily volume (by maturity) in
the first half of 1995.  (5) The first and second futures contracts in the futures volume columns represent the two back to
back contracts on 3-month interest rates required to hedge a six month exposure.  (6) Bold indicates contract volume in
excess of change in hedge position.  (7) Negative values indicate an increase in a short position.
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Table 2

Change in required hedge position compared to daily volume
of Eurodollar futures 75 BP change in forward curve

Maturity Change in
Largest volume Average volume

(years) hedge position Volume of 1st
contract

Volume of 2nd
contract

Volume of 1st
contract

Volume of 2nd
contract

0.5 - 31.9 374.0 334.1 115.73 148.36
1.0 - 31.2 260.9 135.2 92.05 35.81
1.5 - 23.7 55.1 39.7 19.99 14.00
2.0 - 17.2 26.9 18.9 9.40 5.96
2.5 - 13.6 9.2 7.5 4.02 3.26
3.0 - 11.0 7.3 4.5 2.69 1.94
3.5 - 9.0 3.9 2.6 1.52 1.32
4.0 - 7.6 2.7 3.3 1.20 1.09
4.5 - 6.2 2.4 2.3 0.89 0.79
5.0 - 5.5 2.0 1.4 0.75 0.46
5.5 - 4.7 1.3 2.4 0.20 0.23
6.0 - 4.1 1.3 1.3 0.22 0.20
6.5 - 3.5 1.0 1.2 0.17 0.15
7.0 - 3.0 3.3 0.7 0.20 0.12
7.5 - 2.4 0.6 1.2 0.07 0.09
8.0 - 1.9 0.8 3.7 0.07 0.11
8.5 - 1.3 1.2 1.2 0.11 0.09
9.0 - 0.7 1.2 1.7 0.08 0.08
9.5 - 0.3 1.0 0.7 0.07 0.06

10.0 1.2 1.0 0.06 0.04

See notes to Table 1.
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Table 3

Required hedge position in Eurodollar futures contracts
compared to contracts outstanding

Maturity
(years)

Hedge position
Open interest
1st contract

Open interest
2nd contract

Change in
hedge position
(75 BP Chg)

0.5 38.3 561.9 366.4 - 31.9
1.0 23.9 279.7 222.0 - 31.2
1.5 2.8 174.0 145.4 - 23.7
2.0 - 4.0 114.2 96.3 - 17.2
2.5 - 9.8 84.9 68.6 - 13.6
3.0 - 13.4 60.3 54.8 - 11.0
3.5 - 16.4 49.5 38.8 - 9.0
4.0 - 17.9 34.4 27.2 - 7.6
4.5 - 20.2 22.6 14.5 - 6.2
5.0 - 18.9 12.9 9.5 - 5.5
5.5 - 18.8 7.5 7.7 - 4.7
6.0 - 18.4 6.2 5.9 - 4.1
6.5 - 17.5 6.7 6.8 - 3.5
7.0 - 15.1 6.8 4.5 - 3.0
7.5 - 12.6 3.8 2.5 - 2.4
8.0 - 9.6 1.6 2.2 - 1.9
8.5 - 6.2 1.8 1.8 - 1.3
9.0 - 3.4 1.7 2.0 - 0.7
9.5 - 1.4 0.8 0.9 - 0.3

10.0 0.8 0.0

Notes:  (1) Billions of USD. Hedge estimates and open interest at end of March 1995.  (2) The second column is the hedge
position by maturity of exposure.  (3) The middle columns are the outstanding volume of futures contracts at end of
March 1995.  (4) The first and second futures contracts in the futures volume columns represent the two back to back
contracts on 3-month interest rates required to hedge a six month exposure.  (5) Bold indicates contract volume in excess
of hedge position.  (6) Negative values indicate a short position or an increase in a short position.
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Table 4

Hedge position in bonds using 5 and 10 year securities

Panel A: Treasury securities

Hedge Chg hedge Chg hedge Chg hedge
On-the-run treasury

position (10 BP) (25 BP) (75 BP) Outstanding Daily volume

5 year 13.0 0.4 1.0 2.9 13.2 6.0
10 year - 13.0 - 0.4 - 1.1 - 3.3 13.8 4.0

Panel B: Treasury futures

Hedge Chg hedge Chg hedge Chg hedge
Treasury futures

position  (10 BP) (25 BP) (75 BP) Open
interest

Large daily
volume

Av. daily
volume

5 year 13.0 0.4 1.0 2.9 19.7 12.3 5.1
10 year - 13.0 - 0.4 - 1.1 - 3.3 25.8 24.4 9.2

Notes:  (1) Billions of USD. Hedge estimates based on data at end of March 1995.  (2) Treasuries outstanding at end of
March 1995; daily volume is from GovPx only (Fleming, 1997).  (3) Treasury futures are the 5 and 10 year note contracts.
Open interest as of end of March 1995, and volume is over first half of 1995.  (4) Negative values indicate a short position
or an increase in a short position.

Table 5

Strike price variations:
change in required hedge position due to 75 BP change in forward curve

Maturity
(years)

Base
Equal

premia
Equal
delta

Strike
distr.

Maturity
vrtn. 1

Maturity
vrtn. 2

Identical
caps/floors

Change in futures hedge

0.5 - 31.9 - 38.3 - 33.3 - 34.9 - 38.5 - 24.8 - 55.8
1.0 - 31.2 - 32.9 - 30.5 - 27.1 - 33.3 - 29.6 - 42.2
1.5 - 23.7 - 24.2 - 22.8 - 21.3 - 24.3 - 23.4 - 29.3
2.0 - 17.2 - 17.3 - 16.6 - 15.9 - 17.4 - 17.2 - 20.1
2.5 - 13.6 - 13.6 - 13.2 - 12.7 - 13.6 - 13.7 - 15.4
3.0 - 11.0 - 10.9 - 10.7 - 10.4 - 10.9 - 11.1 - 12.1
3.5 - 9.0 - 8.9 - 8.8 - 8.6 - 8.9 - 9.2 - 9.8
4.0 - 7.6 - 7.5 - 7.4 - 7.2 - 7.5 - 7.7 - 8.1
4.5 - 6.2 - 6.2 - 6.1 - 6.0 - 6.2 - 6.4 - 6.6

Change in bond hedge

5 year 2.9 2.9 2.9 2.8 2.9 3.0 3.1
10 year - 3.3 - 3.2 - 3.2 - 3.2 - 3.2 - 3.3 - 3.4

Notes:  (1) Billions of USD. Hedge estimates based on data at end of March 1995.  (2) Column headings indicate the
assumption as described in the text.  (3) Negative values indicate an increase in a short position.
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Table 6

Volatility variations:
change in required hedge position due to 75 BP change in forward curve

Maturity (years) Base Cap/floor volatility Volatility smile Cap/floor and smile

Change in futures hedge

0.5 - 31.9 - 31.5 - 27.2 - 26.8
1.0 - 31.2 - 31.2 - 27.8 - 27.7
1.5 - 23.7 - 23.7 - 21.1 - 21.0
2.0 - 17.2 - 17.2 - 14.6 - 14.5
2.5 - 13.6 - 13.6 - 11.4 - 11.3
3.0 - 11.0 - 10.9 - 9.1 - 9.0
3.5 - 9.0 - 9.0 - 7.4 - 7.4
4.0 - 7.6 - 7.5 - 6.2 - 6.2
4.5 - 6.2 - 6.2 - 5.3 - 5.3

Change in bond hedge

5 year 2.9 2.9 2.6 2.6
10 year - 3.3 - 3.3 - 2.9 - 2.9

See notes to Table 5.

Table 7

Other variations:
change in required hedge position due to 75 BP change in forward curve

Maturity (years) Base
Dir. option
at-the-m

Options on
3-month rate

Growth rate
Unrestr.

mtry dstr.

Change in futures hedge

0.5 - 31.9 - 25.2 - 32.5 - 38.6 - 35.9
1.0 - 31.2 - 28.6 - 30.4 - 32.2 - 30.9
1.5 - 23.7 - 22.6 - 23.4 - 25.5 - 24.4
2.0 - 17.2 - 16.6 - 17.0 - 19.2 - 18.1
2.5 - 13.6 - 13.2 - 13.5 - 15.4 - 14.5
3.0 - 11.0 - 10.7 - 10.9 - 12.5 - 11.7
3.5 - 9.0 - 8.9 - 9.0 - 10.2 - 9.6
4.0 - 7.6 - 7.5 - 7.5 - 8.3 - 7.9
4.5 - 6.2 - 6.2 - 6.2 - 6.6 - 6.4

Change in bond hedge

5 year 2.9 2.9 2.9 2.4 2.8
10 year - 3.3 - 3.3 - 3.3 - 2.7 - 3.1

See notes to Table 5.
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Table 8

Change in required hedge position due to simultaneous volatility and forward rate shocks

Maturity (years) I.R. shock only Volt. shock only I.R. and volt. shock

Change in futures hedge

0.5 - 31.9 - 6.0 - 40.7
1.0 - 31.2 - 9.7 - 38.7
1.5 - 23.7 - 8.7 - 29.4
2.0 - 17.2 - 7.7 - 22.6
2.5 - 13.6 - 6.2 - 17.9
3.0 - 11.0 - 4.9 - 14.4
3.5 - 9.0 - 3.9 - 11.6
4.0 - 7.6 - 3.0 - 9.5
4.5 - 6.2 - 2.2 - 7.5

Change in bond hedge

5 year 2.9 0.8 3.4
10 year - 3.3 - 0.8 - 3.8

Notes:  (1) Billions of USD. Hedge estimates based on data at end of March 1995.  (2) Forward rates increase by 75 basis
points, and volatility increases by 25% relative to initial volatility levels at short maturities, and by 8% at 10 years.
(3) Negative values indicate an increase in a short position.
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