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Introduction 

Most macroeconomic models that are used for forecasting and policy analysis require an 
estimate of potential output. For example, at the Bank of Canada, estimates of potential output are 
important inputs in different "Phillips curve" models and in the staffs Quarterly Projection Model, 
where the gap between actual and potential output is a key variable determining the evolution of 
prices and wages. A level of real GDP above potential (a positive output gap) will often be seen as a 
source of inflationary pressures and a signal that monetary authorities interested in avoiding an 
acceleration of inflation should tighten monetary conditions. A level of real GDP below potential (a 
negative output gap) will have the opposite implication. 

The output gap can thus be defined as the component of real output that is associated 
with changes in inflation.2 Note that gaps could be calculated in markets other than that for goods and 
services. For example, gaps in the labour market have frequently been calculated and authors such as 
Hendry (1995) present "money gaps." 

Unfortunately, measuring the output gap is not an easy task. Different sets of 
assumptions can be  used together with different econometric techniques to provide different measures 
of the output gap. One common assumption is that the output gap is some part of the transitory 
(cyclical) component of real output. The methods discussed in this paper make that assumption. 

The first group of methods we consider are those which simply use some (implicit or 
explicit) assumptions about the dynamics of real output to identify the output gap. For example, if one 
believed that real output was composed of a stationary component and a simple log-linear trend, the 
output gap could be measured as the residuals of a regression of log output on a linear time trend. 
Unfortunately, such a simple model does not adequately describe the behaviour of output, and 
measuring the temporary component in more complex models is problematic. 

In this paper, we  will assume that real output is 1(1); that is, that the level of output is 
subject to permanent shocks so there is no deterministic trend towards which output tends to revert.3 

1 The authors wish to thank Chantal Dupasquier, Paul Fenton, Gabriele Galati, Alain Guay, Seamus Hogan, Irene Ip, 
Robert Lafrance, René Lalonde, David Longworth, Tiff Macklem, John Murray and Brian O'Reilly for useful 
comments and discussions. They also thank Jennifer Page and Rebecca Szetto for their excellent research assistance. 
Of course, since the authors are solely responsible for the paper's content, none of the aforementioned are responsible 
for any remaining errors. The views expressed in this study are those of the authors and do not necessarily represent 
those of the Bank of Canada. 

2 To be more precise, we should take into account expected inflation, and therefore define the output gap with respect to 
changes in unexpected inflation. Some models also imply a relationship between the change in the gap and inflation. 

3 This is the most common assumption in modem applied macroeconomics and is consistent with the view that real 
output can be permanently affected by shocks, such as technological innovations. An alternative view is that output is 
stationary around a time trend, but that this time trend is subject to occasional random changes in its slope and 
intercept. Evidence for such a view is discussed by Perron (1989) and Weber (1995). As detecting changes in the slope 
or intercept near the end of a sample is quite difficult, such models imply that one cannot reliably measure the current 
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Many approaches have been proposed to identify the permanent and cyclical components of real 
output in such models, such as those proposed by Hodrick and Prescott (1997), Watson (1986) or by 
Beveridge-Nelson (1981). The problem is that the measured cyclical component may differ 
considerably from method to method. Quah (1992) argues that this is an intrinsic problem and that 
"...without additional ad hoc restrictions those (univariate) characterizations are completely 
uninformative..." 

These problems have not prevented the widespread use of Hodrick and Prescott's filter to 
identify the cyclical component of output.4 Arguments commonly made to justify its use are that: 

• it extracts the relevant business-cycle frequencies of output; 

• it closely approximates the cyclical component implied by reasonable time-series models of 
output. 

W e  examine these arguments in Sections 1.2 and 1.3. We also note that, unlike much of 
the literature on "detrending", the focus of the problem confronting policymakers is to estimate the 
deviation from trend at the end rather than the middle of a data sample.5 We conclude that such 
methods are unlikely to be suitable for use in a policy context, and we discuss economic factors which 
limit our ability to estimate the current output gap. 

An important class of alternatives to these univariate dynamic methods are those which 
combine their assumptions with information from assumed or "structural" relationships between the 
output gap and other economic variables, such as a Phillips Curve or Okun's Law. We examine some 
of these in Section 2. Among them are the multivariate HP filters (MHPF) proposed by Laxton and 
Tetlow (1992) an¿ Butler (1996), which is the general approach currently used in the staff economic 
projection of the Çanadian economy at the Bank of Canada. In Section 2, we  note that calibration of 
the MHPF methods has been problematic and that despite the inclusion of structural information, their 
estimates of the output gap have wide confidence intervals. Spectral analysis of the Canadian output 
gap resulting from the application of the MHPH method also gives the "disturbing" result that it 
includes a very lärge proportion of cycles much longer than what is usually defined as being business 
cycles. A reaction to these methods is the "Trivial Optimal Filter that may be Useful" (TOFU) 
approach suggested by van Norden (1995), which replaces the HP smoothing problem with the 
simpler restriction of a constant linear filter. The TOFU approach has yet to be  shown to be workable. 

The third and final class of methods we consider uses multivariate rather than univariate 
dynamic relationships, often in combination with structural relationships from economic theory, to 
estimate output gaps as a particular transitory component of real output. Some of these are examined 
in Section 3. One example is the decomposition method suggested by Cochrane (CO, 1994). This 
method is based on the permanent income hypothesis and uses consumption to define the permanent 
component of output which can then be used as a measure of potential output. Multivariate extensions 
of the Beveridge-Nelson decomposition method (MBN) have also been proposed to identify the 

deviations from trend. As we argue below that this is what policymakers wish to measure, adoption of the 
"breaking-trend" model per se is not a solution to the problems of measuring output gaps which we discuss below. 

4 We will henceforth refer to this method as the HP filter, although Hodrick and Prescott note that their method is due 
to Whittaker (1923) and Henderson (1924). Also, although the Hodrick and Prescott article is to be published in 1997, 
their working paper dates from 1981. 

5 This is an oversimplification. More accurately, policymakers will usually be most interested in expected future values 
of the output gap, particularly when these expectations are conditioned on specific policy actions. This is more 
demanding than simply estimating the output gap at the end of sample, so our discussion of the additional difficulties 
introduced by end-of-sample problems underestimates the true difficulty of the policy problem. For that reason, we 
think good end-of-sample performance is a necessary rather than a sufficient condition for reliable estimation of the 
deviation from trend. 
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permanent component of output (Evans and Reichlin, 1994). A major restriction, used by both the C O  
and the MBN methods, is that the permanent component of real output is a random walk. 

Section 3.1 of this paper, which draws heavily from Dupasquier, Guay and St-Amant 
(1996), discusses the CO and MBN methodologies and compares them with a structural vector 
autoregression methodology based on long-run restrictions imposed on output (LRRO.) This method 
was proposed by Blanchard and Quah (1989), Shapiro and Watson (1988), and King et al. (1991). 
One characteristic of the LRRO approach is that it does not impose restrictions on the dynamics of  the 
permanent component of output. Instead, it allows for a permanent component comprising an 
estimated diffusion process for permanent shocks that can differ from a random walk. The output gap 
then corresponds to the cyclical component of output excluding the diffusion process of permanent 
shocks which is instead assigned to potential output. Instead, it allows for a permanent component 
comprising an estimated diffusion process of permanent shocks which is instead assigned to potential 
output. Section 3.2 presents an application of the LRRO method to Canadian data. 

In Section 3.3 (which draws from Lalonde, Page and St-Amant (forthcoming)) we present 
another methodology based on long-run restrictions imposed on a VAR that associates restrictions 
imposed to real output and inflation. The output gap is then a part of the cyclical component of real 
output that is consistent with changes in the trend of inflation.6 

The final section concludes with some directions for future research. 

1. The HP filter 

In recent years, mechanical filters have frequently been used to identify permanent and 
cyclical components of time series. The most popular of these mechanical filters is that proposed by 
Hodrick and Prescott (1997). This section evaluates the basic Hodrick-Prescott (HP) filter's ability to 
provide a useful estimate of the output gap. Section 2 then discusses some extensions and alternatives 
to the basic HP filter that have recently been proposed. 

Guay and St-Amant (1996) show that the HP filter does a poor j ob  in terms of extracting 
business cycle frequencies from macroeconomic time series. As a consequence, it is not an adequate 
approach to estimating an output gap constrained to correspond to the business-cycle frequencies of 
real GDP. This is discussed in Section 1.2, where we further argue that constraining the output gap in 
that way is not very attractive in any case. Guay and St-Amant also show that the HP filter is likely to 
do a poor job  in terms of extracting an output gap assumed to correspond to the unobserved cyclical 
component of real GDP. This is discussed in Section 1.3. In Section 1.4, we  focus explicitly on the 
HP filter's end-of-sample problems and conclude that these raise further doubts about the 
appropriateness of using the HP filter to estimate the output gap. Finally, Section 1.5 investigates 
what economic theory has to say about the possible usefulness of filters for estimating output gaps at 
the end of sample. 

Most of the arguments in this section of the paper are drawn from Guay and St-Amant 
(1996) and van Norden (1995). Note that Guay and St-Amant show that the main conclusions that 
they reach concerning the HP filter also apply to the band-pass filter proposed by  Baxter and King 
(1995). 

1.1 The optimization problem 

The HP filter decomposes a time series yt into additive components, a cyclical 

Lalonde, Page and St-Amant also present a method associating the output gap with changes in the trend of inflation 
but which does not impose that the output gap is stationary. 
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component^/  and a growth component}/ ,  

yt=yf+n 0 )  

Applying the HP filter involves minimizing the variance of yt
c subject to a penalty for the 

variation in the second difference o f y f .  This is expressed in the following equation: 

/ l r + 1  T 
\y*] = arg min X 

¿ = 0 t=i 
L - y f t + ^ - y f ì A y f - y f j  (2) 

where X, the smoothness parameter, penalizes the variability in the growth component. The larger the 
value of X, the smoother the growth component. As  X approaches infinity, the growth component 
corresponds to a linear time trend. For quarterly data, Hodrick and Prescott propose setting X equal to 
1,600. King and Rebelo (1993) show that the HP  filter can render stationary any integrated process of 
up  to the fourth order. 

1.2 How well does the HP filter extract business cycle frequencies? 

Authors such as Singleton (1988) have shown that the HP filter can provide an adequate 
approximation of a high-pass filter when it is applied to stationaiy time series. Here we  need to 
introduce some elements of spectral analysis. A zero-mean stationary process has a Cramer 
representation such as: 

y t = i y m d z { œ )  (3) 

where dz((o) is a complex value of orthogonal increments, i is the imaginary number {-\)Vl and co is 
frequency measured in radians, i.e. -7r<to<Ji (see Priestley (1981), chapter 4). In turn, filtered time 
series can be expressed as: 

y ^  = J7t^a(co)eii0'ife(co), with (4) 

<*(»>)= ì . a . e - " *  (5) 
h=-k 

Equation (5) is the frequency response (Fourier transform) of the filter. That is, oc(co) 
indicates the extent to which yf responds to yt at frequency co and can be seen as the weight attached 
to the periodic component eiœtdz((û). In the case of symmetric filters, the Fourier transform is also 
called the gain of the filter. 

An ideal high-pass filter would remove low-frequency, or long-cycle, components and 
allow high-frequency, or short-cycle, components to pass through so that a((û)=0 for |(o| < o f ,  where 
(if has some predetermined value and a(co)=l for |(ö| > o f .  Figure 1 shows the squared gain of the HP 
filter. Very high frequencies are left aside because we want to focus on business-cycle frequencies as 
defined by NBER researchers since Bums and Mitchell (1946); i.e. cycles lasting no  less than 6 and 
no  more than 32 quarters. We see that the squared gain is 0 at zero frequency and is close to 1 from 
around frequency 7i/10 (6 quarters) and up. On the basis of Figure 1, the HP filter would appear to be 
and adequate approximation of a high-pass filter in that it removes most low frequencies and passes 
through most higher frequencies including business-cycle frequencies. 
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One could associate the output gap with business cycle frequency plus higher frequency 
volatility in the data. Figure 1 would then suggest that the HP filter is an adequate measure of the 
output gap. One problem with this is that most macroeconomic time series are either integrated or 
highly persistent processes. In their study, Guay and St-Amant (1996) conduct a systematic 
investigation of the HP filter's ability to capture business-cycle frequencies; i.e. the area delimited by 
the spectrum of an original series at frequencies between 6 and 32 quarters. Their main finding is that, 
when the peak of a series is at zero frequency and the bulk of the variance is located in low 
frequencies, which is the shape described by Granger as typical for macroeconomic time series, the 
HP filter cannot capture business cycle frequencies adequately. This is illustrated by  Figure 2, which 
shows the spectrum of an autoregressive process having its peak at zero frequency and that of the 
cyclical component resulting from the application of the HP  filter. 

In Figure 2, the spectrum of the cyclical component resulting from the application of the 
HP filter is very different from that of the original series. This comes as no surprise since the filter is 
designed to extract low frequencies from the data. However, we can see that business cycle 
frequencies are not left intact. In particular, the HP  filter induces a peak inside business-cycle 
frequencies even though it is absent from the original series. Moreover, it fails to capture a significant 
fraction of the variance contained in business-cycle frequencies but captures some variance originating 
outside these frequencies. Guay and St-Amant (1996) show that this is typical of time series having 
the typical Granger shape; i.e. most macroeconomic series. Indeed, the unfiltered spectrum shown in 
Figure 2 is a parametric estimate of the spectrum of US  real GDP. 

The intuition behind this result is simple. Figure 1 shows that the gain of the HP filter at 
low business-cycle frequencies is smaller than that of the ideal filter. Indeed, the squared gain of the 
HP filter is 0.49 at frequencies corresponding to 32-quarter cycles and does not reach 0.95 before 
frequency ji/8 (cycles of 16 quarters). Note also that the squared gain does not fall immediately to 
zero at lower frequencies. The problem is that a large fraction of the power of typical macroeconomic 
time series is concentrated in the band where the squared gain of the HP filter differs from that of an 
ideal filter. Also, the shape of the squared gain of the HP filter is such that when it is applied to 
typical macroeconomic time series a peak in the spectrum of the cyclical component is induced. In 
short, applying the HP filter to series dominated by  low frequencies results in the extraction of a 
cyclical component that does not capture an important fraction of the variance contained in 
business-cycle frequencies of the original series captures an important part of  the variance situated at 
lower frequencies than business-cycle frequencies but induces spurious dynamic properties. 

A n  additional problem is that associating the output gap with the business-cycle 
frequencies in the data might not be a good idea in the first place. Note in particular that part of the 
variance associated with business-cycle frequencies could reflect the dynamics of shocks to potential 
output. As  noted by  King et al. (1991), "productivity shocks set off transitional dynamics, as capital is 
accumulated and the economy moves towards a new steady-state". To the extent that such dynamics 
reflect the evolution of potential output itself, one might prefer to use a different approach to identify 
potential output and the output gap. Section 3 of the paper provides a more detailed discussion of this 
point. 

1.3 How well does the HP filter extract the cyclical component? 

In the previous section, we have seen that the HP filter does not have spectral properties 
good enough to be  able to isolate accurately the component of a series due to fluctuations at business 
cycle frequencies. As  discussed by King and Rebelo (1993), another justification for the use of the HP 
filter is that in some cases it will be the optimal filter for identifying the cyclical component of a 
series. However, (King and Rebelo op. cit., and Harvey and Jaeger (1993)) these are cases when, in 
particular, the series is 1(2), there are identical propagation mechanisms for innovations in the growth 
rate and in the cycle (or the transitory component is white noise), and the smoothing parameter X is 
known. These conditions are rarely met in practice. 
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Of course, the fact that the HP filter is not an optimal filter does not necessarily mean 
that it will not be a good approximation of the optimal filter. We therefore turn to consider whether 
the HP  filter can reliably isolate the cyclical component of a variety of time series. 

It is often argued that macroeconomic time series are really comprised of a permanent 
component and a cyclical component. The permanent component could be  driven by an 1(1) 
technological process with drift, while monetary shocks, among others, could generate the cyclical 
component. In order to assess the HP filter's ability to extract such a cyclical component, consider the 
following DGP: 

yt = \i.t + ct, where (6) 

= Hi-i + e
f  ( 7 )  

c, = + (t)2c/_2 + Ti, and (8) 

e ,  ~ md(o, C g ) ,  n, ~ Mro(o,0í) (9) 

Equation (6) defines yt as the sum of a permanent component, |iY, which in this case 
corresponds to a random walk, and a cyclical component, ct? The dynamics of the cyclical component 
are specified as a second order autoregressive process so that the peak of the spectrum could be at zero 
frequency or at business-cycle frequencies. W e  assume that z t and r|,  are uncorrelated. 

Data are generated from equation (6) with <))! set at 1.2 and different values for (])2 to 
control the location of the peak in the spectrum of the cyclical component. We also vary the 
standard-error ratio for the disturbances Gp/o^ to change the relative importance of each component. 
We follow the standard practice of giving the value 1,600 to À, the HP filter smoothness parameter. 
We also follow Baxter and King's (1995) suggestion of dropping 12 observations at the beginning and 
at the end of the sample which should favour the filter considerably by abstracting partly from its 
end-of-sample problems (see Section 1.4). The resulting series contains 150 observations, a standard 
size for quarterly macroeconomic data. The number of replications is 500. 

The performance of the HP  filter is assessed by comparing the autocorrelation function of  
the cyclical component of the true process with that obtained from the filtered data. W e  also calculate 
the correlation between the true cyclical component and the filtered cyclical component and report 

their relative standard deviations ( ô c  / G c ) .  Table 1 presents the results and illustrates that the HP  

filter performs particularly poorly when there is an important permanent component. Indeed, in most 
cases, for high Gg/Ori ratios, the correlation between the true and the filtered components is not 
significantly different from zero. The estimated autocorrelation function is invariant to the change in 
the cyclical component in these cases (the values of the true autocorrelation functions are given in 
parentheses.) When the ratio Og/G  ̂ is equal to 0.5 or 1 and the peak of the cyclical component is 
located at zero frequency (<|>2 < -0.43), the dynamic properties of the true and the filtered cyclical 
components are significantly different, as indicated by  the estimated parameter values. In general, the 
HP filter adequately characterizes the series' dynamics when the peak of the spectrum is at 
business-cycle frequencies and the ratio Og/Gr, is small. However, even when the ratio of standard 
deviations is equal to 0.01 (i.e. the permanent component is almost absent), the filter performs poorly 
when the peak of the spectrum of the cyclical component is at zero frequency. Indeed, for  <|>2 = -0.25, 
the dynamic properties of the filtered component differ significantly from those of the true cyclical 
component, the correlation is only equal to 0.66, and the standard deviation of the filtered cyclical 
component is half that of the true cyclical component. 

7 This is Watson's (1986) specification for real GDP in the United States. 
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Table 1 
Simulation results for the H P  filter 

GDP Estimated values 

Autocorrelations 
( V a n  <t>i <t>2 1 2 3 correlation (Ôc

/G
c) 

10 0 0 0.71[0] 0.46[0] 0.26[0] 0.08 12.96 
(0.59, 0.80) (0.30, 0.60) (0.08, 0.43) (-0.07,0.21) 10.57,15.90) 

10 1.2 -0.25 0.71 [0.96] 0.47[0.90] 0.27[0.84] 0.08 4.19 
(0.61,0.80) (0.31,0.61) (0.08, 0.44) (-0.11,0.28) (2.77, 6.01) 

10 1.2 -0.40 0.71 [0.86] 0.46[0.63] 0.26[0.41] 0.13 6.34 
(0.60, 0.80) (0.30, 0.60) (0.08, 0.44) (-0.12, 0.36) (4.82, 8.07) 

10 1.2 -0.55 0.71[0.77] 0.46[0.38] 0.26[0.03] 0.14 6.93 
(0.60, 0.80) (0.29, 0.60) (0.06, 0.43) (-0.08, 0.33) (5.36, 8.70) 

10 1.2 -0.75 0.71 [0.69] 0.46[0.27] 0.25[-0.19] 0.15 6.37 
(0.60, 0.78) (0.30, 0.59) (0.07, 0.41) (-0.01,0.31) (4.79, 7.95) 

5 0 0 0.69[0] 0.45[0] 0.26[0] 0.15 6.5 
(0.58, 0.78) (0.30, 0.58) (0.09, 0.41) (0.02, 0.27) (5.28, 7.85) 

5 1.2 -0.25 0.71 [0.96] 0.46[0.90] 0.26[0.84] 0.16 2.11 
(0.61,0.80) (0.32, 0.61) (0.08, 0.43) (-0.01,0.36) (1.43,3.04) 

5 1.2 -0.40 0.72[0.86] 0.46[0.63] 0.25[0.41] 0.23 3.26 
(0.61,0.80) (0.31,0.60) (0.08, 0.42) (-0.01,0.45) (2.47, 4.15) 

5 1.2 -0.55 0.71[0.77] 0.46[0.38] 0.24[0.03] 0.24 3.60 
(0.61,0.80) (0.30, 0.59) (0.06, 0.41) (0.01,0.44) (2.83,4.52) 

5 1.2 -0.75 0.70[0.69] 0.43[0.27] 0.20[-0.19] 0.29 3.3 
(0.61,0.79) (0.26, 0.57) (0.00, 0.38) (0.11,0.44) (2.53,4.17) 

1 0 0 0.43 [0] 0.28[0] 0.20[0] 0.59 1.61 
(0.27, 0.57) (0.11,0.42) (-0.02, 0.31) (0.49, 0.70) (1.41, 1.85) 

1 1.2 -0.25 0.76[0.96] 0.51[0.90] 0.29[0.84] 0.51 0.66 
(0.67, 0.83) (0.37, 0.62) (0.11,0.44) (0.33, 0.68) (0.44, 0.91) 

1 1.2 -0.40 0.75[0.86] 0.44[0.63] 0.16[0.41] 0.71 1.02 
(0.67, 0.81) (0.28, 0.55) (-0.03,0.33) (0.56, 0.82) (0.83, 1.22) 

1 1.2 -0.55 0.72[0.77] 0.34[0.38] 0.01[0.03] 0.76 1.15 
(0.66, 0.78) (0.21,0.47) (-0.17,0.19) (0.56, 0.82) (0.83, 1.22) 

1 1.2 -0.75 0.68[0.69] 0.15[0.27] -0.27[-0.19] 0.83 1.16 
(0.63, 0.72) (0.04, 0.27) (-0.44,0.10) (0.75, 0.89) (1.04, 1.29) 

0.5 0 0 0.16[0] 0.10[0] 0.04[0] 0.82 1.16 
(0.01,0.32) (-0.04, 0.24) (-0.10, 0.18) (0.75, 0.88) (1.07, 1.27) 

0.5 1.2 -0.25 0.79[0.96] 0.53[0.90] 0.30[0.84] 0.61 0.55 
(0.71,0.85) (0.38, 0.65) (0.11,0.46) (0.41,0.79) (0.37, 0.76) 

0.5 1.2 -0.40 0.77[0.86] 0.43[0.63] 0.13[0.41] 0.84 0.87 
(0.69, 0.81) (0.29, 0.54) (-0.05, 0.29) (0.73, 0.92) (0.74, 0.99) 

0.5 1.2 -0.55 0.72[0.77] 0.28[0.38] -0.10[0.03] 0.89 0.98 
(0.67, 0.78) (0.17, 0.39) (-0.25,0.06) (0.83, 0.94) (0.89, 1.07) 

0.5 1.2 -0.75 0.67[0.69] 0.07[0.27] -0.42[-0.19] 0.94 1.02 
(0.63,0.71) (-0.03,0.18) (-0.57, -0.27) (0.90, 0.96) (0.97, 1.08) 

0.01 0 0 -0.08[0] -0.06[0] -0.06[0] 0.98 0.97 
(-0.21,0.06) (-0.21,0.06) (-0.19, 0.06) (0.96, 0.99) (0.94, 0.99) 

0.01 1.2 -0.25 0.80[0.96] 0.54[0.90] 0.30[0.84] 0.66 0.51 
(0.72, 0.86) (0.38, 0.67) (0.11,0.48) (0.45, 0.83) (0.34, 0.69) 

0.01 1.2 -0.40 0.78[0.86] 0.43[0.63] 12[0.41] 0.90 0.81 
(0.72, 0.83) (0.30, 0.55) (-0.05, 0.28) (0.82, 0.96) (0.71,0.90) 

0.01 1.2 -0.55 0.73[0.77] 0.26[0.38] -0.14[0.03] 0.96 0.92 
(0.67, 0.77) (0.15,0.37) (-0.30, 0.01) (0.91,0.99) (0.86, 0.96) 

0.01 1.2 -0.75 0.67[0.69] 0.02[0.27] -0.50[-0.19] 0.99 0.97 
(0.62, 0.71) (-0.08, 0.13) (-0.61, -0.35) (0.97, 1.0) (0.95, 0.99) 
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It is interesting to note that the HP filter does relatively well when the ratio Og/G  ̂ is equal 
to 1, 0.5, or 0.01 and the spectrum of the original series has a peak at zero frequency and at 
business-cycle frequencies (i.e. the latter frequencies contain a significant part of the variance of the 
series). Consequently, the conditions required to adequately identify the cyclical component with the 
HP filter can be expressed in the following way: the spectrum of the original series must have a peak 
located at business-cycle frequencies, which must account for an important part of the variance of the 
series. If the variance of the series is dominated by low frequencies, which is the case for most 
macroeconomic series in levels, including real output, the HP filter does a poor job  of extracting an 
output gap associated with the cyclical component of real output. 

1.4 The HP filter at the end of samples 

In examining the performance of the HP filter in the last two sections, we have looked at 
how well it isolates particular business cycle frequencies or the cyclical component of the series. Both 
cases implicitly looked at the performance of the HP filter over the available sample of data as a 
whole. However, it is useful to remember that the focus for policy advice is on estimating the current 
output gap. This is a more difficult task since future information will presumably be  useful in 
determining whether recent changes in output are persistent or transitory. We should therefore 
consider how the conclusions from the two previous sections might be altered by this added 
complication.8 

To understand how the HP  filter behaves at the end of sample, recall that the optimization 
problem it solves trades off the size of deviations from trend with the smoothness of that trend. In the 
face of a transitory shock, the filter is therefore reluctant to change the trend very much since this 
implies raising the trend before the shock and lowering it afterwards. However, the latter penalty is 
absent, implying that the optimal trend will be more responsive to transitory shocks than in 
mid-sample. 

We can show this difference in several ways. Figure 3 shows the HP filter trend 
expressed as a moving average of the unfiltered data. The weights in this moving average change as 
w e  move from the mid-sample towards the end of sample. The former gives us a smooth 2-sided 
average in which no observation receives more than 6% of the weight. However, the latter gives a 
1-sided average where the last observation alone accounts for 20% of the weight. Not surprisingly, 
this makes the HP trend more variable at the end of sample. Figure 4 shows that the deviations from 
the HP trend result in different frequency responses. In particular, the 1-sided, or end-of-sample, 
filtered deviations from trend capture less of the variation at business cycle frequencies (indicated by 
the dotted vertical lines).9 

Figure 5 and Figure 6 show how the deviations from the HP  trend differ depending on 
whether we  are at the end-of-sample or mid-sample. The solid line in Figure 5 shows the usual 
deviation from the HP trend for Canadian GDP. The dashed line then shows the estimate we  get from 
the same if we only use data available up  to that point in time (i.e. the corresponding end-of-sample 
estimate). Although the two series tend to move together, there are some important differences in size 
and timing. Comparing Figure 5 with Figure 6, we  see that while deviations from trend are usually 
less than 3% of GDP, the difference between its mid-sample and end-of-sample estimates is often as 
large as 2% of GDP. If we accept that the difference between these two measures is just one 

This problem has been mentioned in other studies as well. Much of the analysis we present can also be found in Butler 
(1996). 

9 The squared-gains of the two HP trends also look quite different. At the frequency corresponding to cycles of 32 
quarters, the end-of-sample filter has a squared-gain of about 1 while the mid-sample filter has a squared-gain of 
about 0.1. This is precisely the frequency at which an optimal filter would have a gain of zero. 
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Figure 3 

M A  representation of the H P  filter as a function of sample position (128 observations, X = 1,600) 

CM 
CN 

Ò 

OO 
O 

End —of —Sample 
End — 3 
End - 7 
Mid —Sample 

o c O) 
o 

M -  O 
»4— a) o O 
o 

< •  \ 
- o  

CM 
o 
Ö 

CM 
O 

? - 3 0  - 2 0  - 1 0  20 3 0  

Lags 

Figure 4 

Squared gain of  the H P  filter (128 observations, X = 1,600) 
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Figure 5 

H P  detrended real GDP (Canada, X = 1,600) 
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Figure 6 

HP detrended real GDP mid-sample - end-of-sample (Canada, X = 1,600) 
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Figure 7 

Spectrum of series with typical Granger shape (128 observations, X = 1,600) 
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component of the measurement error of end-of-sample estimates, then the measurement errors of the 
latter must be roughly as large as the estimates themselves.10 Hence, end-of-sample estimates cannot 
be very reliable estimates of deviations from trend. 

Figure 7 applies the HP filter to the "typical Granger Shape" series we considered 
previously. At the end-of-sample, even less of the variance of the deviations from the HP trend is due 
to variations at business cycle frequencies and more is due to "leakage" from lower frequencies. This 
suggests that the results we obtained in Section 1.2 probably overstate the reliability of the HP filter 
for identiiying an output gap associated with business cycle frequencies. This is consistent with the 
results of Laxton and Tetlow (1992) and Butler (1996), who note that related filters also seem to 
perform worse at the end of samples. W e  turn to these related filters in Section 2. 

1.5 Limits to 1-sided filtering 

Part of the end-of-sample problem discussed in Section 1.4 reflects the fact that the HP 
filter behaves differently at the end-of-sample and at mid-sample, as shown in Figure 3. This suggests 
that other univariate filters might be able to measure output gaps more reliably. In this section, we  
consider one intrinsic limit to the ability of univariate filters to measure the current output gap, and 
show how this in turn will relate to beliefs about the economic relationships between actual and 
potential output. W e  show that models in which potential output is exogenous with respect to actual 

1 0  We reach the same conclusion if we look at the range of the series, or at their standard deviations. The range 
(maximum - minimum) of the 1-sided estimate is 8.7% of GDP while the range of the difference between the 1 and 
2-sided estimates is 7.5%; the comparable standard errors are 1.8% and 1.8%. These comparisons are only 
approximate; small sample problems in the 1-sided estimate at the beginning of the sample may make their difference 
appear excessively volatile, while constraining the two estimates to be identical at the end of the sample will tend to 
understate the volatility of their difference. 
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output and the output gap imply that univariate filters will never be able to give much information 
about contemporaneous output gaps.11 

Suppose that potential output can be expressed as a linear filter of actual output, so that: 

qt = A(L).yt + Et ( 1 0 )  

where qt is (the log of) potential output, yt is (the log of)  actual output, £, is an innovations process 
that is uncorrelated with yt at all leads and lags, a n d ^ ( ¿ )  is a two-sided polynomial in the lag operator 
(i.e. it takes a weighted sum of leads, lags and contemporaneous values of  yt). A sufficient but not 
necessary condition for such a representation to exist is that output yt has a unit root and that the 
output gap qt -y, is stationary. 

We  typically think of yt as being non-stationary in mean, since it tends to  drift upwards 
over time. To ensure that qt and yt move together in the long run (so that the gap is stationary), we  
will further assume that: 

4 l )  = 1 (11) 
which simply means that the weights in A(L) must sum to one. This in turn implies that: 

A{L) - 1 = ( l  - Z,). À{L), and therefore that: (12) 

(It - yt = Â(L). Ay, + et (13) 
Therefore, we  should be able to express the output gap as the weighted sum of past, 

present and future output growth. The difference between equation (13) and the HP filter 

representation of the output gap is that the HP filter implies a particular set of restrictions on Â(L) 
that vary with the position in the sample. Let: 

- yt\Hy) = Ä{L).Ayt and (14) 

V{{qt - yt) - E{qt-yt\Hy)) = a 2  (15) 

where Hy is the set of all past, present and future values of  yt. 

So far, we  have assumed that Â(L) is two-sided, whereas its use for policy purposes 

requires that it be  one-sided. To understand how such a restriction on A(L) will affect the accuracy of 
our estimate, note that the law of iterated expectations and equation (14) imply: 

E[qt-yt\H;) = ^ ( ^ ( ^  - ^ | ^  | ) ^ ;  ) = e{~A{l). Ay, | / / ;  ) (16) 

where H~ is the set of all past values of  yt. If we  define: 

Â(L) = Ä-{L) + À+{L) (17) 

where À" ( l )  has only positive powers of  L and A+ ( L )  only non-positive powers, then equation (16) 
implies: 

E{qt-yt\H-y) = e(ä- {h). Ay,\h; ) + e(a+ ( i ) .  Ay, | / / ;  ) (18) 

= Â~~ ( I ) .  Ay, + H;) = Ä(L). Ay, 
J=I 

11  This section draws heavily on van Norden (1995). 
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where a j  is simply the coefficient on L 3 in Â+ (L). Similarly, we can show that 

v{qt-yt\H-y) = v{qt-yt\Hy) + v{~A{L).Ayt\H-y) = a 2  + v(~A+ {i). Ayt | / f ;  ) (19) 

where v(x\il) is the variance of the error in forecasting X given the information set Q .  

Equations (18) and (19) have an intuitive interpretation. The extent to which the 1-sided 

filter A ( I )  is less informative than Â{L) will depend on the weight which A{L) puts on current and 

future values of òy, and the extent to which those future values can be  predicted from current and past 
values. The former will in turn depend on the Granger causal relationship between q t - y t  and Ay,, 
while the latter will depend on the degree to which output growth is serially correlated. 

For most industrialized nations, 12 lags of quarterly output growth predicts only 20-40% 
of the variance of current output growth and much of this explanatory power seems to come from the 
first few lags. This suggest that since predictability can be low, the extent of Granger-causality will 
play an important role in determining how accurately the one-sided univariate filter can estimate the 
current output gap. For simplicity, we will discuss the role Granger-causality plays under the 
assumption that the past history of output growth is of no use in predicting present and future output 
growth. 

From equation (18) we can see that A ( l )  will tell us as much about the output gap as 

Â{L) when A+(L) = 0, which in turn implies that qt - y, does not Granger-cause Ay,. Van Norden 
(1995) shows that the latter condition in turn implies that qt does not Granger-cause yt. If y, and q, are 
cointegrated, this would imply that there is unidirectional causality from  yt to qt. In other words, 
exogenous shocks to potential output would have no subsequent effect on actual output, but persistent 
shocks to actual output would eventually be  followed by a similar change in potential. Such behaviour 
could describe a particularly severe form of hysteresis; one where output has no tendency to return to 
potential and, instead, potential output is driven in the long run only by previous variations in actual 
output. In this kind of world, univariate filters can hope to be as effective in estimating the current 
output gap as they are in estimating past output gaps. 

The latter will not be the case when q, - yt Granger-causes Ay,. Therefore, so long as 
output growth appears to respond to some degree to past changes in the output gap, then univariate 
methods will estimate the current output gap less accurately than past output gaps. The intuition 
behind this result should be clear. Since future output growth will reflect the influence of the current 
output gap, one can gain information about the current gap by observing future growth. 

Univariate methods will be of no use in estimating the current output gap when Ay, not 
Granger cause q t - y t - n  In other words, if faster, or slower, than normal output growth tends to have 
no subsequent effect on the size of the output gap, then time series estimates of the current gap will be 
as uninformative as possible. The intuition is similar to that above. Past output growth is the only 
information about the gap that we have; if it tells us  nothing about the current gap, then our estimates 
will be unilluminating. 

It is more difficult to say what kind of economic model will generate this kind of result 
since Granger-causality from Ay, to q, - yt does not directly correspond to any statement about 

1 2  Again, this conclusion assumes that past output growth is of no use in predicting future variations in output growth. 
As was mentioned earlier, the data show that there is some serial correlation in output growth, so time series methods 
would still have some explanatory power even in this case. 
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Granger-causality between y, and ¡7,.13 However, it is possible to give examples in which this result 
would hold. One simple case would be where: 

Ay, = u{yt-\ - <7,-1 ) + Uf and qt = qt_x + vt (20) 

Potential output follows a random walk that is independent of the behaviour of output. 
Actual output in turn is generated by a simple error-correction model, which ensures that actual and 
potential output move together in the long run. Such a model precisely satisfies the condition for no 
Granger causality from Ay, to q, - yt. 

Clearly, there is a range of models in which univariate time-series methods will be of 
little use at the end of sample. Furthermore, it is the short-run dynamics of potential and actual output 
which are critical in determining whether models belong to this class. This is not an empirically 
testable question since we cannot directly observe potential. However, we  can try to ensure that our 
views on the determination of potential are consistent with the methods we  use to measure it. 

2. Extensions of the HP filter 

The Bank of Canada has used various extensions of the HP filter to obtain measures of 
the output gap and help guide policy. These "hybrid" methods were developed in the 1990s to try to 
balance strengths and weakness of "structural" and "astructural" approaches to measuring the output 
gap for policy makers. The key papers explaining the justification and implementation of this 
approach are Laxton and Tetlow (1992) and Butler (1996). Work in a similar spirit has been pursued 
both at some of the Federal Reserve Banks (such as Kuttner (1994)) and at the OECD (see Giomo et 
al. (1995)). 

To understand the contribution of these methods, one needs to appreciate the problems 
that these authors were trying to avoid. Laxton and Tetlow argue that there is insufficient knowledge 
about the true structural determinants of the supply side of the economy to make the purely structural 
approach practicable. At the same time, for policy purposes we need to distinguish between 
movements in output caused by supply shocks and those caused by  demand shocks, whereas most 
astructural (time-series) models attempt to distinguish permanent and transitory components of 
output. As an alternative, they suggest a way of combining the two approaches which we refer to as 
the multivariate HP  filter.14 

As we explain in Section 2.1, this methodology consists of adding the residuals of a 
structural economic relationship to the minimization problem that the HP filter is seeking to solve. 
Section 2.2 discusses the production function variant of this methodology. In Section 2.3, we  examine 
additional modifications introduced to the filter to improve its performance at the end of the sample. 
Section 2.4 looks at these approaches from a different perspective and relates them to both the 
methods of Section 1 and other methods that use additional structural relationships. 

1 3  See van Norden (1995). 

1 4  Laxton and Tetlow refer to their specific filter as "The Multivariate Filter (MVF)" and Butler refers to  his as "The 
Extended Multivariate Filter (EMVF)". In this paper, we broadly refer to all multivariate extensions of the univariate 
Hodrick-Prescott filter as Multivariate HP Filters (MHPF), which include the MVF and EMVF as special cases. The 
method currently used to estimate Canadian potential output for the Bank's staff projection will also be referred to as 
the EMVF. The latter differs somewhat from the implementation described in Butler (1996), but is conceptually the 
same. 
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2.1 A multivariate H P  filter 

As noted previously, the original H P  filter chooses the trend as the solution to: 

2 
{ y f } T

f l  \ = argmin £ {yt - y f )  + ?i(A2yf+1)2 (21) 
f - u i = 1  

where A 2 ^ j  = A. A.y f + 1  and Ay; = >>, - y (_1 .  The HP filter adds a term, 

2 
{ y f }  T

t 1,! = argmin X ( yt - yf ) + M ^ i )2 + M? (22) 
r - u f=i 

where et = zt- flyt
g, xt). zt is some other economic variable of interest, and /i.) models z, as a function 

of both some explanatory variables xt and the unobserved trend yt
g. The new term in e,2 has the effect 

of choosing the trend to simultaneously minimize deviations of output from trend, minimize changes 
in the trend's growth rate, and maximize the ability of the trend to fit some structural economic 
relationship f^.). Xg and reflect the relative weights of these different objectives. 

The key to implementing the multivariate HP filter for the purpose of estimating potential 
output (or an output gap) is to specify (zt,flyt

g, xt)) in such a way as to capture some structural 
relationship that depends on either potential output or the output gap. For example, one could specify 
a Phillips curve equation that relates observed inflation to a measure of inflation expectations, the 
output gap, and perhaps additional explanatory variables (such as oil prices). z t  would then be the 
residual from this Phillips curve equation and trend output would be chosen in part to improve the 
explanatory power of the output gap for inflation. Alternatively, one could use an Okun's Law 
relationship to link the rate of unemployment to the output gap and various structural variables 
determining the natural rate of unemployment. The trend of output would then be influenced by the 
evolution of the unemployment rate and its structural determinants. 

Of course, there is no reason for restricting ourselves to a single structural relationship. 
Equation (22) can be generalized to include an arbitrary number n of structural relationships with a 
common trendy^,  giving 

{yf h 1 o = ^ min ¿ (yt - yf ) + K ( AV+i f + ¿ M 
' - U t=\ \i=l 

(23) 

The original Laxton and Tetlow (1992) paper used information from both a Phillips curve 
and an Okun's Law relationship and Butler (1996) also uses multiple structural relationships 
simultaneously. 

The usefulness of the multivariate HP  filter depends on several factors. Obviously, the 
extent to which it improves upon the original HP  filter will depend on the reliability and information 
content of  the structural relationship(s) with which it is combined. These potentially offer a way of 
mitigating the problems of HP filters noted in Section 1. However, given the importance of obtaining 
good end-of-sample estimates of output gaps, we  require structural relationships that can give good 
contemporaneous information.15 

For the particular DGP they examine, Laxton and Tetlow find that the degree to which 
their filter does better than the univariate HP filter at estimating the output gap increases with the 
relative importance of demand shocks to supply shocks. While the improvement produced by the 

1 5  In that respect, there may be limitations to the information we can expect to gain from Phillips curve relationships if 
we believe that inflation responds to output gaps with a lag. 
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MHPF can b e  large, they find that there is still substantial uncertainty in their point estimates of the 
output gap and that this uncertainty is larger at the end of sample. In their base case, they find that the 
95% confidence interval for the output gap at the end of sample is about 4%, which implies that 
policymakers would rarely observe statistically significant output gaps. 

Another factor of key importance to the success of the multivariate H P  filter is 
calibration. Instead of having a single X parameter with a consensus value of 1,600, we  now have 

vectors of parameters  e without a clear guide as to their appropriate values. In addition, w e  also 

need to  estimate the form of the structural relationships involving potential output or the output gap. If 
we  attempt to do this before calculating {yt

g}, then w e  will be estimating a structural relationship 
which may be  inconsistent with the values of { j / }  the MHPF produces. Furthermore, theory will 
often not be a sufficient guide to allow us  to tightly calibrate such a relationship. The approach used 
by Laxton and Tetlow (1992) and Butler (1996) is to experiment with alternative weightings to see 
which produce reasonable results and how sensitive the outcomes are to these choices. 

Figure 8 

Comparison of 3 different measures of  the Canadian output gap 
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A n  alternative explored by Harvey and Jaeger (1993) and Côté and Hostland (1994) is to 

estimate the structural relationship simultaneously with { y f }  and { X g ,  Ä,e}via maximum likelihood 

methods.16 Côté and Hostland found that the results can be sensitive to the specification of the 

1 6  Butler (1996) mentions that a direct maximum likelihood estimation was attempted, but that this did not produce 
reasonable results for the Vs. 
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structural relationships,17 that the usefulness of the structural information vanishes when one 
considers only end-of-sample performance,18 that the structural parameters cannot be estimated with 
much accuracy, and that maximization of the likelihood function was problematic. 

To give some idea of how such filters perform in practice, Figure 8 compares three 
different estimates of the output (GDP) gap. The first is that produced by the Butler (1996) filter 
(labelled EMVF).19 The others are those produced by a 1-sided HP (1600) filter and by the LRRO 
filter (which we introduce below, in Section 3). We can see from that figure that all three methods 
produce gaps of roughly the same amplitude, and that there is a tendency for the three series to rise 
and fall at similar times. While all three series show negative output gaps (i.e. excess supply) in the 
early 1990s, the LRRO and the HP show the economy returning to potential after a few years, while 
the EMVF shows large output gaps remaining through the end of the sample (1996Q3.) However, as 
we see in the next section, this last difference is more a reflection of the differences in the structural 
information used. 

2.2 The production function approach 

Another important feature of the EMVF filter is that rather than directly filtering output, 
output is decomposed into a number of components which are then individually filtered. This allows 
for a more direct link to sources of structural information as well as for an easier interpretation of the 
source of changes in the gap or potential. 

The decomposition is based on an aggregate Cobb-Douglas constant-retums-to-scale 
production function: 

Y = Q^K1-® (24) 

where Q is total factor productivity, N is labour, K the capital stock, and a is the labour-output 
elasticity (as well as labour's share of  income). With some algebra, we can show that: 

\li = dYldN = aY IN ^>y = n + \ i - a  (25) 

where lower-cases letter are the logs of the upper-case counterparts. This means that to estimating the 
trend in output, we  instead estimate the trends in employment, the marginal product of labour and the 
labour-output elasticity and then sum them. One nice feature of the decomposition in equation (25) 
rather than equation (24) is that it allows us to avoid the problem of trying to estimate reliably the 
capital stock. We can then use the further decomposition that the log of  total employment n is given 
by: 

n = Pop + p + log( l  - u) (26) 

where Pop is the log of the working-age population, p is the log of the participation rate and u is the 
rate of unemployment. 

1 7  They find that specifying the dynamic relationship in levels or first differences has a large effect on the estimated 
values of X e .  

1 8  Côté and Hostland approximate the behaviour of the 1-sided filter by using only the lags from the mid-sample 
representation of the HP filter. They also obtain much more useful results when they apply the 2-sided filter at the 
end-of-sample using forecast values for the required leads in the filter. 

1 9  The details of the filter used for the Bank's staff projection of the Canadian economy evolve over time in response to 
ongoing research and may therefore, as noted in footnote 14, differ slightly from the exposition in Butler (1996). The 
EMVF gaps shown in the figure reflect the specification used in the staffs December 1996 Economic Projection. 
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Within this framework, the level of potential output is defined to be the level of output 
consistent with existing population, trend rates of unemployment and participation and trend levels of 
the marginal product of labour and the output share of labour. In practice, the trend levels of the 
participation rate and the output share of labour are determined by a combination of judgement, 
demographic factors and univariate HP smoothing. Separate MHPF systems are then used to identify 
trend levels of the marginal product of labour and unemployment. The trend rate for unemployment is 
estimated with the help of a long-run structural equation due to Côté and Hostland (1996) as well as a 
price-unemployment Phillips Curve described in Laxton, Rose and Tetlow (1993). Perhaps more 
novel is the use of a long-run relationship between the marginal product of labour and producer wages 
as well as an Okun's Law relationship to identify the trend income share of labour. 

Analysis of the performance of the EMVF in Butler (1996) shows that this method has its 
own strengths and weaknesses. On the one hand, he notes that the rolling and full-sample estimates of 
the NAIRU and the equilibrium marginal product of labour are quite similar, and that the labour 
market gaps are highly correlated with inflation. On the other hand, he also notes that there is 
significant correlation in the errors across structural equations, suggesting that there may be further 
efficiency gains to be had. 

Figure 9 

Decomposition of the EMVF output gap 
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To understand the source of the persistent output gap the EMVF produces in the 1990s, 
we can decompose the output gap into its three components, as shown by the dotted lines in Figure 9. 
This shows that the filter gives an unemployment rate gap and a marginal product of labour gap that 
are roughly zero at the start of 1996. Instead, the aggregate output gap largely reflects a deviation of 
the participation rate from its structural trend level. (Again, note that the participation rate gap is not 
filtered before it is added to the other components.) However, it would be wrong to attribute the 
aggregate gap entirely to structural information, as we can see by comparing the filtered output gap 
(top-right comer, dotted line) with its unfiltered, or "raw", counterpart (same graph, solid line). This 
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shows that the effects of filtering over the most recent period has tended to increase the estimated size 
of the output gap by  1-2% of GDP. Since the filtered unemployment rate gap is very close to its 
unfiltered counterpart, this implies that most of the difference between the filtered and unfiltered 
output gap is due to the effects of the filter on the marginal product of labour gap. 

2.3 The end-of-sample problem 

Having seen that both the filter and the structural information play important roles in the 
EMVF's estimate of recent output gaps, nothing discussed to this point address the end-of-sample 
problems of HP filters noted in Section 1.4. However, the EMVF contains two novel features intended 
to modify its end-of-sample behaviour. 

First, the EMVF contains an additional growth-rate restriction. If we temporarily ignore 
the structural information for expositional simplicity, the modified filter solves the problem: 

{ y f }  T + 1 
t = 0 

Cr 
arg min X (yt - y f )  + xg(A2yf+i) + ¿ KÀ^t - n«) 

V/=i y t=T-j 
(27) 

where |J.VV is a constant equal to the steady-state growth rate of potential output and XSS is the weight 
put on the growth rate restriction. The key feature is that Xss only penalizes deviations from the 
steady-state growth rate in the last j periods of the sample, effectively "stiffening" the filter. This 
restriction assumes that the growth rate of potential reverts toward a constant, whereas the theoretical 
justification for HP filters as optimal filters (noted in Section 1) assumes that this growth rate contains 
a stochastic trend and therefore will not show any such reversion. Whether such a restriction leads to 
more accurate estimates of the output gap depends on the accuracy with which one can determine the 
appropriate value of |XM. 

The second novel feature of the EMVF's treatment of end-of-sample problems is the 
introduction of a recursive updating restriction. This simply adds an additional term to equation (27), 
giving: 

f T , v, , v-A 
{ y f }  ^ J" q = ai8 m i n  f S U - yf f + K ( A V + i  )2 ) +  V (yf-pryf f + S K 

t = T - j  

(28) 

where  pryf is the rth element of {yt
s} _(V This means that filter is restricted to choose { y f }  while 

vv'=i y 

p r j , t  ^ ^ ^ W* L/f } ^Q-

minimizing the degree to which new observations modify estimates of y? based on shorter spans of 
observations. Perhaps not surprisingly, Butler (1996) shows that this gives a 1-sided estimate of the 
output gap that behaves more like the subsequent 2-sided estimate. While this makes estimates of the 
output gap behave in a more "orderly" fashion at the end of sample, the net effect on the accuracy of 
the estimated output gap is unclear. 

One way to better understand the effects of these two changes at the end of samples is to 
compare the resulting 1-sided filter to the 1- and 2-sided HP filters examined in section I .2 0  As shown 
in Figure 10, these modifications cause the EMVF to put much less weight on the last few 
observations of the sample than the 1-sided HP filter, and overall make its weights more closely 
resemble those of the 2-sided HP filter. If we look in the frequency domain, however, we see that this 
change causes the 1-sided EMVF to pass more of the undesired low-frequency or "trend" components 
than either of the HP  filters. In fact, Figure 11 shows that the squared-gain of the filter is greater than 
0.2 for all frequencies. 

2 0  The remainder of this section expands the analysis of the EMVF filter properties presented in Butler (1996) to include 
the effects of the recursive updating restriction. 
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Figure 10 

M A  representation of the EMV & H P  (À, = 1,600) filters (as a function of  sample position) 
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Figure 11 

Squared gain of the E M V  & H P  (k = 1,600) filters 
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Figure 12 

Spectrum of the EMVF gap and its components (Ar (3) fit for 1954Q4 - 1996Q4) 
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Figure 13 

Phase shift of the E M V  & H P  (^ = 1,600) filters 
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The result of this is clearly shown in Figure 12, where we  see that both the EMVF output 
gap and each of its three components appear to be dominated by low-frequency movements not 
normally associated with business cycles. Compared with Figure 7, it appears that the end-of-sample 
modifications of the EMVF make the filter much less able to isolate fluctuations at business-cycle 
frequencies than its simple HP filter counterpart. One way to quantify this effect is to use the 
estimated spectrum to calculate the correlation of the "measured" EMVF gap with that of an "ideally 
filtered" gap which perfectly isolated the business cycle frequencies. The result is that the measured 
EMVF output gap has a correlation with the "ideally filtered" gap of 31.4%, while its two filtered 
components have correlations of 24.9% (employment gap) and 44.0% (labour productivity gap). 

Another implication of the differences in weights between the 1 -sided HP and the 1 -sided 
EMVF filter is that, since relatively more of its weight comes from observations with greater lags, the 
EMVF must have a greater phase shift than the HP filter at the end of sample. This in turn implies 
that the measured EMVF output gap will tend to lag the true output gap by more than the measured 
HP output gap. The extent of this difference depends on the frequency of the data series as shown in 
Figure 13. For all but the lowest of the business-cycle and the sub-business-cycle frequencies, the 
difference between the two is small and is roughly constant at a lag of about 2 quarters. For lower 
frequencies, however, the phase shift of HP falls to zero and then becomes negative, while that of the 
EMVF reaches 5 quarters by the lower bound of the business cycle frequencies and increases rapidly 
thereafter. If we weight these different phase shift by the relative importance of the different 
frequencies in measured output gaps, we obtain a weighted average measure of the overall phase lag 
for these different measures. This gives an overall phase lag of roughly 0 for the 1-sided HP filter, 
compared to a lag of 3.3 quarters for the EMVF output gap, 3.8 for the EMVF employment rate gap 
and 2.1 for the EMVF labour productivity gap. 

2.4 TOFU 

In Section 1, we looked at how well a time-series method (in this case, the HP filter) 
measured output gaps, and we concluded that by  itself it did not produce very reliable estimates for 
policy makers. In Section 2 so far, we have looked at how adding sources of structural information to 
HP and related filters could improve the situation. One of the strengths of the MHPF approach is that 
it clearly states the problem which the resulting estimate of the output gap solves. However, some 
components of that optimization problem may be easier to accept than others. It seems reasonable to 
us that the estimated output gap be as consistent as possible with one or more structural economic 
relationships. The justification for the smoothing portion of the filter is more difficult, as was noted in 
Section 1, and it is unclear how helpful the particular assumptions of the HP filter are in identifying 
output gaps in the presence of structural information. Furthermore, as the complexity of the filter 
increases, the question of how to choose the parameters controlling the filter's behaviour becomes 
more difficult. While it is conceptually straightforward to estimate the filter parameters jointly with 
the structural relationships (as in Côté and Hostland (1994)) this can be  quite difficult to implement. 
Accordingly, it would be useful to restate the optimization problem in a way that allows for easier 
estimation and has a filtering interpretation that is easier to justify.21 This leads to an alternative to the 
HP filter which we refer to as TOFU. 

From equation (13) we see that we can estimate the output gap in terms of the observable 

variable Ayt if we  can identify À(L). Presumably, if we  know of an economic relationship that 

involves the output gap, we could use this to define an optimal estimate of À(L), call it A(L). For 
example, we might consider a Phillips curve of the form: 

2 1  This section draws heavily on van Norden ( 1995). 



rc, = e c o  + Y(qt - yt ) + B{L). t c , . ,  + C{L). zt + e, (29) 

where zt is a vector of additional observable variables, et is an i.i.d. mean zero error term and B(L), 
C(L) are one-sided polynomials in non-negative powers of L. We could substitute equation (13) into 
equation (29) to get: 

it, = «o  + y(2{L).Ayl) + 5 ( 1 ) .  t i , . !  + C{L).zt + ët (30) 

where ë, = et + yet. Equation (30) can now be  estimated by conventional methods to obtain optimal 

estimates of  À(L), since it is now specified entirely in terms of observable variables. This would 

allow us to estimate A{L). Ayt and use equation (13) to estimate the output gap.22 

We refer to this estimator of the output gap as TOFU; a Trivial Optimal Filter that may 
be Useful. It is optimal in the sense that estimation by maximum likelihood is straightforward, so our 

estimates of A(L) will be efficient. The estimator imposes quite general assumptions on the time 
series properties of the series involved, so the restrictions are hopefully reasonable. It incorporates a 
simple structural relationship in order to identify the output gap. Furthermore, if we wished to 

estimate the output gap at the end-of-sample, we  can simply replace A(L) with A ( L) (i.e. use only 
lagged values of Ajj). This estimator therefore potentially avoids some of the problem mentioned at 
the outset of this section. 

Of course, the TOFU estimate of the output gap is related to the estimate which would be 
obtained by "inverting" the structural relationships. The difference is simply that inversion calculates 
the implicit value of the output gap which would exactly fit the structural relationship. TOFU is 
therefore a half-way house between such methods and the MHPF methods of Section 2.1. The HP 
methods are optimal filters only for quite special cases whereas the TOFU methods gives us the 
optimal linear filter estimate of the output. TOFU offers less smoothing than MHPF methods but 
more than simple inversion of the structural equations. 

Unfortunately, the information gained from structural relationships is contaminated by  
considerable "noise". Inversion of structural equations is therefore rarely used as a guide to policy, 
since the resulting estimates of the output gap are usually considered to be  too volatile to be of 
practical use. Whether estimated TOFU filters can reduce this noise enough to be a useful tool for 
policymakers remains to be seen. If so, they may offer a tractable alternative to the MHPF methods. If 
not, it suggests that MHPF estimates may be dominated by the arbitrary assumptions they impose on 
the dynamics of the output gap rather than on the information coming from structural relationships. 
This suggests looking for other sources of information on these dynamics, which we turn to in the 
next section. 

2 2  We should note two minor caveats. First, equation (30) identifies Â(L).Ayt only up to the scaling factor y. Strictly 

speaking, therefore, we only recover an index of the output gap. This should be reasonable for the purpose of, say, 
deciding whether interest rates should be higher or lower to achieve a given target, since the current value of the index 
can be readily compared to its historical values. Second, consistent estimation of this relationship requires an implicit 

assumption. OLS estimation requires cov(e i ,Ay t_j)  = 0 V/ for consistency. If this condition is not satisfied, then 

instruments for Ay will be required for estimation. Consistent IV estimation in turn will depend on the assumption 
that the chosen instruments are valid. This estimator can be extended in a number of ways. If the output gap were to 
enter the structural equation in a non-linear fashion, we could estimate the system via GMM rather than least-squares 
techniques. If we had a series of structural equations involving the output gap, we could estimate them simultaneously 

subject to cross-equation restriction on the coefficients of Ayt. 
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3. Using long-run restrictions to estimate the output gap 

In this section, w e  discuss approaches based on  long-run restrictions imposed on a VAR.  
These approaches allow the identification of  structural shocks and structural components on the basis 
of  a limited number of  economic restrictions imposed on  an estimated VAR. The chosen restrictions 
can be  ones that are widely agreed upon in the literature. N o  arbitrary mechanical filter has t o  be  
imposed on the data. Other characteristics distinguishing the methods discussed in this section from 
those based on mechanical filters are that they do  not suffer from obvious end-of-sample problems 
and that they provide forecasted values of  the output gap. 

In Section 3.1, w e  discuss the method based on  long-run restrictions imposed on  output 
(LRRO) put forward b y  Blanchard and Quah (1989), Shapiro and Watson (1988), and King et al. 
(1991). This method is compared with two VAR-based alternatives: the multivariate 
Beveridge-Nelson method (MBN) and Cochrane's (1994) method (CO). W e  argue that one important 
advantage of  the LRRO approach over the M B N  and C O  approaches is that it allows for the diffusion 
process of  shocks to potential output to be estimated. Section 3.2 considers an application o f  the 
LRRO methodology to Canadian data. Many of  the arguments used in Sections 3.1 and 3.2 are drawn 
from Dupasquier, Guay and St-Amant (1997). 

In Section 3.3, we  present a method involving restrictions imposed on  real output and 
inflation (LRROI) giving an output gap corresponding to  that part of  the cyclical component of  real 
output which is associated with the trend of  inflation. This should be  of  interest for  policymakers 
concerned about an output gap associated with movements in that trend as opposed to cyclical 
movements of output unrelated with that trend. This method is discussed in more detail b y  Lalonde, 
Page and St-Amant (forthcoming). 

3.1 The LRRO, C O  and M B N  methodologies23  

Let  Zt be a n x 1 stationary vector including a nx -vector of 1(1) variables and a « 2 - v e c t o r  

of 1(0) variables such that Zt = ^AZ l f  , Xlt j . B y  the Wold decomposition theorem, Zt can b e  

expressed as the following reduced form: 

Zt=b{t) + C{L)zt (31) 

where S(¿) is deterministic, C{L) = is a matrix of  polynomial lags, C 0  = In is  the identity 

matrix, the vector zt is the one-step-ahead forecast errors in  Zt given information on  lagged values o f  

Zt, e{Z1 ) = 0 and  E^zte.t j = Q with Q positive definite. W e  suppose that the determinantal 

polynomial | c ( l ) |  has all its roots on or outside the unit circle, which rules out the non-fundamental 

representations emphasized by  Lippi and Reichlin (1993). 

Beveridge and Nelson (1981) show that equation (31) can b e  decomposed into a long-run 
component and a transitory component: 

Z ,  = S ( i )  + C ( l ) e f  +C{L)ET ( 3 2 )  

with C(l )  = X ~ 0 C i  and C [L) = CIL) - C( l ) .  W e  define Cj ( l)  as the long-run multiplier of  the 

2 ^  See Cogley (1996) for another comparison of the MBN and C O  methodologies. 
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vector Xìt. If the rank of C, (l) is less than there exists at least one linear combination of the 

elements in Xit that is 1(0). In other words, there exists at least one cointegration relationship between 
these variables. 

The LRRO approach assumes that Zt has the following structural representation: 

Z f = 8 ( i )  + r(L)Tif (33) 

with r| (  an «-vector of structural shocks, E{r\t ) = 0,  and £'^Ti(rii j = / n  (a simple normalization). We 

can retrieve the structural form (equation (33)) from the estimated reduced form by using the 

following relationships: roro = Q ,  ef = r o r | ( ,  and C(L) = r(Z,)ro
 1. 

The long-run covariance matrix of the reduced form is equal to C(l)QC(l) . From 
equations (31) and (33) we have: 

c{i)cic{i) =r{i)r(\) (34) 

This relation suggests that we can identify the matrix r o  with an appropriate number of 
restrictions on the long-run covariance matrix of the structural form. Blanchard and Quah (1989) and 

Shapiro and Watson (1988) use long-run restrictions to identify shocks with C(l) having full rank. 

King et al. (1991) work in a context where the rank of C(l) is less then n] and use cointegration 
restrictions. 

Let us assume that the log of real output is the first variable in the vector Zt. It is then 
equal to 

A v ^ ^  + r / ' W r i f +  r 1
c ( L K  ( 3 5 )  

where r f i  is the vector of permanent shocks affecting output, is the vector of shocks having only 

transitory effects on output, and reflect the dynamic effects of these shocks. Potential 

output growth based on the LRRO method can then be defined as: 

(36) 

Thus, "potential output" corresponds to the permanent component of output. The part of 
output due to purely transitory shocks is defined as the "output gap." 

The MBN decomposition defines potential output as the level of real output that is 
reached after all transitory dynamics have worked themselves out. With reference to equation (32), 

where real output is the first element of Zt, we write the following 

decomposition: Ayf = (J,̂  + + Cx ( ¿ ) e ;  (37) 

Potential output can be defined as the first two terms on the right-hand side of 
equation (37): 
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Ayf = ^ + C 1 ( l ) e ,  (38) 

It is thus simply a random walk with drift. 

Note that the MBN approach gives an output gap that is sensitive to the choice of 
variables included in the VAR. In general, the more information that is brought into the VAR, the 
more important the transitory component will be. This is not the case with the LRRO approach. 
Adding additional information may or may not add to the importance of the cyclical component. 

Cochrane (1994) uses a two-variable VAR including GNP and consumption to identify 
the permanent and transitory components of GNP. The bivariate representation is augmented with lags 
of the ratio of consumption to GNP. The permanent income theory implies that consumption is a 
random walk (for a constant real interest rate). In addition, if we  assume that GNP and consumption 
are cointegrated, then fluctuations in GNP with consumption unchanged must be perceived as 
transitory. It is on that basis that Cochrane decomposes real GNP into permanent and transitory 
components. To extract potential output, the errors of the VAR are orthogonalized so that 
consumption does not respond contemporaneously to GNP shocks. 

Cochrane shows that, if GNP and consumption are cointegrated and consumption is a 
random walk, identification based on the LRRO method and conventional orthogonalization (i.e. a 
Choleski decomposition) amount to the same thing. Moreover, if consumption is a pure random walk, 
Cochrane's decomposition corresponds exactly to the Beveridge-Nelson decomposition based on 
output and consumption. 

In order to better compare the LRRO approach with the CO and MBN approaches, let us 
first write the structural form (equation (33)) in terms of the log of real GDP  (yt) and the log of real 
consumption (ct) decomposed between permanent and transitory shocks (we assume that y, and c, are 
cointegrated): 

Ay, = » y  + r ; ( i ) T i f  + r f  U ) n f  + r ; U ) <  (39) 

A c ^ ^  + r f d K + r r W  + r J d K  (40) 

where F 1 ' ( l )  is the long-run multiplier of permanent shocks and F ' '  (Z,) = rp(L) - F ^ l )  is their 
transitory component. The MBN method considers only the first component of the permanent shocks 

plus the drift term, i.e. p, + ( l ) r | f .  The LRRO approach is different in that it also includes the 

dynamics of permanent shocks to real output ( r f  ( i ) )  in potential output. 

With the CO approach, potential output is constrained to be a random walk to the extent 
that consumption is a random walk. Indeed, the validity of the permanent income hypothesis would 

imply that the last two terms of equation (39) are equal to zero and that f f  (l) = r f  ( l) .  It is not clear 

what the CO decomposition would correspond to if consumption is not a random walk.24 

As pointed out by Lippi and Reichlin (1994), modelling the trend in real output as a 
random walk is inconsistent with most economists' interpretation of productivity growth. Indeed, it is 

2 4  Stochastic growth models - such as in King et al. (1988) or King et al. (1991) - imply that the ratio of the log of GNP 
to the log of consumption is stationary but that consumption is not a random walk because the real interest rate is not 
constant. In these models, the transitory component of permanent shocks to consumption is not equal to zero. The 
LRRO decomposition is compatible with the predictions of these models. 
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generally believed that technology shocks are absorbed gradually by the economy. Adjustment costs 
for capital and labour, learning and diffusion processes, habit formation, and time to build imply 
richer dynamics than a random walk for these shocks. Again, a decisive advantage of the LRRO 
approach is that it lets the data determine the shape of the diffusion process of permanent shocks.25 

One implication of defining potential output as a random walk with drift is that, when the 
contemporary effect of a positive permanent shock is smaller (greater) than its long-run effect, the 
output gap, defined as observed output minus potential, is negative (positive). For example, a positive 
technological shock whose short-term impact is smaller than its long-term impact will cause a 
transitory negative output gap. Many researchers and/or policymakers will find that this feature of the 
MBN and CO approaches (in the latter case under the assumption that consumption is a random walk) 
reduces their attractiveness. It will often appear preferable to include the diffusion process associated 
with permanent shocks in potential output since the economy is likely to remain on its production 
possibility frontier as adjustments unfold. There should be no reason for the trend of inflation to 
change during that adjustment process. 

3.2 An application of the LRRO approach to Canadian data 

For our applications of the LRRO methodology to Canadian data, we  assume that the 
growth rate of real output (Ay,) follows a stationary stochastic process responding to two types of 
structural shocks: permanent (Ep) and transitory (£7). Also included in the estimated VARs are the first 
differences of, respectively, inflation (An), the unemployment rate (AM) and the real interest rate 
(Ar). W e  assume that these series are 1(0) and that there is no cointegration involved.26 

Adding money or the exchange rate to the estimated VARs would have little impact on 
the results. In selecting the variables, one hopes to include in the VAR the information necessary to 
identify the structural components of interest. Of course, there is a cost in adding information in terms 
of  lost degrees of freedom and less precise estimates. 

It is important to note that the assumptions made on the level of integration of the series 
could be changed and that they are not part of the LRRO methodology per se (except for real output 
which has to be I(l)).27  Changing these assumptions could have a significant impact on the results. 

Our objective is to illustrate the methodology. A practitioner interested in using the 
approach to estimate the output gap might well choose to use additional information and be able to 
obtain a better estimate of the output gap. 

The structural shocks and the variables used in the VAR can be expressed in the 
following vector form: 

Tl< 

Ep 

and Zt = 

Ay 
An 
Au 
Ar 

(41) 

2 5  Kuttner (1994) proposes a method based on the univariate unobserved stochastic trend decomposition of Watson 
(1986) augmented with a Phillips curve equation. As with the Beveridge-Nelson decomposition, Kuttner's approach 
constrains potential output to follow a random walk process. 

2 6  Unit root tests support these assumptions. Results are available on request. 

2 7  Indeed, DeSerres, Guay and St-Amant (1995) assume that money growth is 1(0). 
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We use quarterly data on real GDP. Our measure of inflation is the total CPI. The real 
interest rate is proxied by the overnight rate (see Armour et al. (1996) for a discussion of that series) 
minus inflation (quarterly growth rate). Our sample extends from the first quarter of 1970 to the fourth 
quarter of 1996 so that we  focus on the flexible exchange rate period. The estimation of the output gap 
based on the LRRO methodology is fairly robust to the choice of the sample period, however. 

The autoregressive reduced-form of the model is first estimated: 

= X + e t  (42) 
i=\ 

with q the number of  lags and et a vector of estimated residuals with E(elet ) = X. 

It is crucial that the estimated VARs include enough lags. Indeed, Monte Carlo 
simulations by  DeSerres and Guay (1995) show that using a too parsimonious lag structure can 
significantly bias the estimation of the structural components. We decided to use 8 lags. However, we  
verified that using 6 or 10 lags had little impact on the results. 

The LRRO approach involves the identification of structural shocks (£,) from 
reduced-form shocks (e,) and their variance. For this, we  need to provide enough identifying 

restrictions to evaluate the 16 elements in r o .  Given that £ is symmetric, we  need to impose 6 
additional restrictions. The matrix of long-run effects of reduced-form shocks, C(l) ,  is related to the 

equivalent matrix of structural shocks, r ( l )  , as follows: 

r(i) = c(i)r0 (43) 
where the matrix C( l )  is calculated from the estimated VAR. To identify the system w e  simply 

impose the condition that r ( l )  is triangular, i.e. three shocks have no long-run effect on real output 
and two have no long-run effect on inflation. There are then three transitory components of real output 
which we do not need to identify separately. 

Figure 14 presents the impulse response of real output to a one standard deviation 
permanent output shock. (Blanchard and Quah suggest interpreting this as an aggregate supply shock.) 
The horizontal axis represents the number of years. Confidence intervals were generated using Monte 
Carlo simulations in RATS with 1,000 replications. 

The important message of Figure 14 is that permanent shocks are characterized by  
statistically significant dynamics, i.e., potential output has richer dynamics than a simple random 
walk.28 As mentioned above, this could be due to factors such as adjustment costs on capital and 
labour, learning, habit formation, or time to build. One implication of the rejection of the random 
walk assumption is that methods which do not take the diffusion process of permanent shocks into 
account could miss an important part of potential output. Indeed, Dupasquier, Guay and St-Amant 
(1997) show that the correlation between the output gaps calculated on the basis of the LRRO, C O  
and MBN approaches applied to US data is relatively small. Part of this can be attributed to the 
different treatments of the diffusion process of permanent shocks 

Figure 15 shows the output gaps calculated on the basis of the LRRO methodology as it 
is applied in this paper, together with 90 and 67% confidence intervals. 

2 8  Dupasquier, Guay and St-Amant (1997), Blanchard and Quah (1989) and Gali (1993), among others, report similar 
results for the US economy. 
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Figure 14 

Response of real GDP to a permanent output shock 
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Figure 15 

LRRO-based Canadian output gap 
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One important message of Figure 15 is that there is a high degree of  uncertainty 
surrounding the estimation of the output gap. Dupasquier, Guay and St-Amant (1997) reach the same 
conclusion using US data. Staiger, Stock and Watson (1996), using a different methodology, arrive at 
a similar conclusion concerning the estimation of the NAIRU for the United States. Some of that 
uncertainty is attributable to the large number of lags that have to be included in the estimated VARs. 
As  mentioned above, DeSerres and Guay (1995) show that many lags have to be used to provide an 
unbiased decomposition into permanent and transitory components with structural VARs. To a large 
extent, the purpose of these lags is to approximate the moving-average part of the underlying DGP. 
Preliminary results obtained at the Bank of Canada suggest that the estimation of VARMAs instead of 
VARs could reduce parameter uncertainty by  allowing the use of more parsimonious models. 

Still, there are episodes of significant output gaps at either the 90% level or the 67% 
level. These output gaps appear reasonable in that positive output gaps are associated with episodes of 
accelerating inflation while negative output gaps correspond to episodes of decelerating inflation. 
Interestingly, we  find that the Canadian economy was either at potential or in slight excess demand in 
the mid-1990s. 

It should be of interest to see whether the structural shocks used to calculate the output 
gap account for an important part of the variance of inflation at different horizons. That information is 
presented in Table 2. 

Table 2 

Variance decomposition of Canada's inflation (LRRO method) 
Relative contribution of the different types of shocks, in percentage points 

Horizon (quarters) Permanent output shock Transitory output shock 
1 11 89 

(0-43)* (57-100) 
4 8 92 

(2-36) (64-98) 
8 6 94 

(4-30) (69-97) 
16 13 87 

(5-49) (51-95) 
32 23 77 

(5-66) 34-95) 
long-term 37 63 

(3-84) (16-97) 

* 90% confidence interval. 

We can see that transitory shocks affecting real output account for a large part of the 
variance of Canadian inflation. This result suggests that the component of output that we  identify 
includes much of the information one would want to include in the output gap. Note however that 
there appears to be  some additional information related to permanent shocks, especially at longer 
horizons. Lalonde, Page and St-Amant (forthcoming) discuss this and propose another approach 
which does not impose that the output gap is part of the cyclical component of  output. 

Instead, in this paper we keep our focus on methods imposing that the output gap is 
stationary. Although Table 2 suggests that the output gap based on the LRRO approach accounts for a 
large fraction of fluctuations in the trend of inflation, it may also be that a part of that gap is unrelated 
to the trend. For example, it might include very-high-frequency cycles having little to do with the 
trend. This leads us  to another method which involves imposing restrictions on both real output and 
inflation in order to produce an output gap that is constrained to be associated with movements in the 
trend of inflation. 
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3.3 The LRROI approach 

It is possible, with the four-variables system presented in Section 3.2, to identify shocks 
that have no  long-run effects on real output but affect the trend of inflation. Real output was indeed 
decomposed in the following way: 

A* =n, + r;(ihf  + T?{LX + r ; w  ̂ c
y

c m c  (44) 
with certain shocks having no long-run effect on real output but changing the trend of inflation 
(r\t

cp), certain shocks having no long-run effect on real output and inflation (tl " ) , 2 9  and certain shocks 
having long-run effects on real output but whose effect on inflation is left unconstrained 

(tj/'). The component T ^  {L)r\t
P could be used as a measure of the output gap. This is what we call 

the LRROI method. In Section 3.2 we were not interested in distinguishing TCy{L)x\t
P from 

cc / \ cc Fy so that we  simply added these components to form one component that was the LRRO 

output gap. 

The LRROI method gives a measure of the output gap that is more constrained than the 
LRRO method in that it combines restrictions on real output and inflation. While the LRRO approach 
only requires that real output is 1(1), the additional assumption that inflation is better characterized as 
being 1(1) over the sample is a necessary feature of the LRROI approach. Of course, that assumption 
is not uncontroversial. However, we think it is reasonable. Assuming that inflation is 1(0) is in some 
sense equivalent to assuming that, whatever the actions of the monetary authorities, it has to go back 
to a constant mean. We do not think this is realistic. At least, inflation has to be modelled as a 
process, the mean of which changes through time. One way to do it is to assume that it is 1(1). 

The LRROI method proposes a measure of the output gap that should be attractive for 
policymakers who focus on that part of the cyclical component of real output that is associated with 
movements in the trend of inflation as opposed to short-run fluctuations of that series. Instead, the 
LRRO method provides a measure of the output gap including cyclical movements that may not be of 
interest to such policymakers. In some sense, the LRROI method could provide policymakers with a 
less "noisy" indicator of changes in the trend of inflation. Short-run fluctuations of inflation could be 
caused by factors such as transitory fluctuations in the exchange rate or changes of indirect taxes 
which may not require any change in the policy stance. A caveat to this is of course that there might 
be instances when policymakers will be interested in reacting to fluctuations of output associated with 
transitory changes of inflation. Unlike the LRRO gap, the LRROI gap would not include the effect of 
such shocks. 

Figure 16 presents the LRROI output gap calculated on the basis of the Canadian data 
used in Section 3.3. Figure 17 compares that output gap with the one resulting from the LRRO 
approach to the gap from the one-sided HP  filter. Table 3 presents the variance decomposition of 
inflation corresponding to the LRROI decomposition. 

We can see in Figure 16 that there is as much uncertainty surrounding the estimation of  
the LRROI output gap as there is with the LRRO gap. We also see that the LRROI gaps are generally 
smaller than those produced by  the LRRO method. This indicates that some cycles included in the 
LRRO gap are not related to the trend of inflation. Finally, the variance decomposition of inflation 
suggests that the LRROI approach includes most of the information related to the cyclical component 
of  output that is relevant for monitoring or forecasting medium-and-long-term inflation. However, the 

Since there are two shocks which have no long-run impact on the trend of output or inflation (the last two of equation 
(44)), we simply consider their sum. 
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Figure 16 

LRROI-based Canadian output gap 
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Figure 17 
LRRO, LRROI and one-sided HP-based Canadian output gaps 
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Table 3 

Variance decomposition of Canada's inflation (LRROI method) 
Relative contribution of the different types of shocks, in percentage points 

Horizon (quarters) Permanent output Transitory output Transitory output 
shock shocks affecting the shocks that do  not 

trend of  inflation affect the trend of 
inflation 

1 11 54  35  
(0-43)* (6-88) (3-81) 

4 8 63 2 9  
(2-36) (18-85) (7-68) 

8 6 70  24  
(4-30) (33-80) (11-53) 

16 13 72 15 
(5-49) (34-80) (8-35) 

32  23 68 9 
(5-66) (27-83) (4-23) 

long-term 37 61 1 
(3-84) (16-95) (0-4) 

* 90% confidence interval. 

LRRO gap appears to include non-negligible information about movements of  inflation lasting as 
much as a couple of years. 

To conclude this section we would like to emphasize the fact that the LRRO and LRROI 
methods are two variants of a more general VAR-based approach. Other variants could be  considered. 
For example, one might want to take into account possible non-linearities in the relationship between 
output and inflation (e.g. Pillion and Léonard (1997)). Evans (1992) proposes a time-varying method 
allowing for such non-linearities. One might also want to include different sets of restrictions, 
including cointegration and bayesian types of restrictions, to ensure that the estimated gap is 
compatible with some specific macroeconomic model. 

Summary 

Much research has gone into measuring output gaps and much still remains to be done. 
On the basis of the results discussed, we think that there are three main lessons to be learned. 

1. Univariate time-series methods, such as the H P  filter, are not a reliable way to 
measure the output gap 

Univariate methods rely on an arbitrary decomposition of a series into a trend and a 
cyclical component. However, changing the decomposition method can make large differences to the 
measured output gap, and economic theory usually has little or nothing to say about which method 
should be favoured. In addition, the causal relationship between potential and the gap can limit the 
information we can hope to gain about the current gap, and some popular economic models imply that 
univariate filters will never be able to give much information. 

In the particular case of the HP filter, although this filter is thought to be close to an ideal 
high-pass filter, it does not accurately measure the components from business-cycle frequencies when 
series have the typical Granger shape. Although the HP filter can also be justified as an optimal filter 
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for particular cases, these cases do not appear to be realistic approximations of output and the filter is 
generally not a reliable way to estimate the "cyclical" component. HP filters also behave very 
differently at the end of the sample, which is what policymakers care most about, and little is known 
about the trade-off between phase shift and smoothness at the end of sample. 

2. Existing hybrid methods that combine univariate dynamic methods and structural 
relationships are not a panacea 

In practical terms, existing hybrid methods have proved to be hard to estimate. Moreover, 
they may not be robust to alternative reasonable calibrations and it is difficult to calculate their 
appropriate confidence intervals. In the case of the EMVF, which is the filter used to estimate the 
output gap in the Bank of Canada's staff projections, its ability to isolate business cycle frequencies is 
worse than that of the HP filter and its estimates lag the true output gap by  just under a year. These 
problems seem to be the result of features which were introduced to improve the filter's estimate of 
current and recent output gaps. 

More generally, the "hybrid" approach is not only driven by a desire to include structural 
relationships, but also by a pragmatic desire for "smooth" estimates of the output gap. However, if the 
structural relationships are very informative then the "smoothing" assumptions may be  unnecessary. 
Otherwise, it is hard to argue that these assumptions will be innocuous, for the reasons we mentioned 
above in the context of univariate methods. For that reason, and because they can incorporate the 
same sources of structural information, further investigation of TOFU methods may provide a good 
benchmark for hybrid methods. If TOFU estimates of the output gap are useful, then the strict (or ad 
hoc) filters used in existing hybrid methods are not required. If TOFU methods are not useful, then 
structural information alone is not sufficient to identify the output gap. Relying instead on ad hoc 
dynamic assumptions for identification raises questions about the reliability and significance of the 
resulting estimated output gaps. 

3. Methods combining estimated dynamics with structural information offer an 
interesting alternative which needs to be further explored 

Examples of these methods explored in this paper are VARs with long-run restrictions 
suggested by economic theory. Their advantages include an absence of arbitrary dynamic 
assumptions, straightforward estimation, and an ability to estimate both current and expected future 
output gaps. On the other hand, it is not always clear which variables have to be included in the VAR 
and work to date suggests that the estimated output gaps have wide confidence intervals comparable 
to those of other methods. More work is needed to evaluate the extension of these methods to 
VARMA models. It might also be of interest to explore VARs with time-varying parameters (as is 
proposed by Evans (1992)) in order to deal with possible non-linearities in structural or dynamic 
relationships. 

The VAR-based methods considered in this paper impose relatively little economic 
structure on the data and allow the dynamics properties of the estimated output gaps to be 
data-determined. This is an advantage insofar as economic theory provides little guidance on what the 
dynamics should be. Of course, one has to assume that the estimated VAR includes the information 
relevant for the identification of the output gap. 

On the other hand, there might be instances when practitioners would want to impose 
more economic structure on their estimation of the output gap by incorporating more economic 
relationships. To some extent, this could be accommodated in the VAR (or VARMA or VECM) 
framework. Many types of economic or statistical restrictions have been discussed in the literature 
including bayesian priors and cointegration relationships. Such restrictions could be used to ensure 
that the estimated output gap is broadly compatible with some structural model of interest. 
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However, the TOFU approach might provide a better framework for those interested in 
imposing detailed economic relationships on the data (such as a specific Phillips curve or a NAIRU 
equation). One advantage of  using detailed economic structure is that the derived measures of 
potential output can then be embedded in a model that is consistent with that structure. As noted 
briefly in van Norden (1995), extensions of the TOFU approach to multiple detailed structural 
relationships appears to be straightforward, although this remains to be explored in detail. It should be 
kept in mind, however, that the usefulness of TOFU output gaps would depend on the validity of the 
economic structure imposed on the data and that economics provides very few non controversial 
structural relationships. 

In our view, the VAR-based and TOFU approaches deserve further research, while our 
findings suggest that one should avoid univariate methods and move away from arbitrary smoothing 
methods wherever practicable. Variants of the VAR-based and TOFU approaches could be considered 
and their usefulness in terms of monitoring and projecting inflation evaluated. 
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Comments on: "Measurement of the output gap: a discussion of 
recent research done at the Bank of Canada" 
by Pierre St-Amant and Simon van Norden 

by Florence Béranger and Gabriele Galati 

This is a very interesting and well-written survey paper on different methods to estimate 
the output gap. The authors compare three approaches to measuring potential output and the output 
gap - a mechanical approach based on univariate dynamics, a pragmatic approach that augments 
univariate dynamics with structural relationships, and an approach that combines multivariate 
dynamics with long-run restrictions based on economic theory. 

The discussion of the mechanical approach in the first section of the paper focuses on the 
popular univariate Hodrick-Prescott (HP) filter and its shortcomings. The HP filter seems ill suited as 
a tool for policy makers because it suffers from end-of-sample problems that make measures of the 
current output gap very unreliable and, moreover, it cannot be  used to provide forecasts of future 
output gaps, which are of great interest for policy makers. Another limitation of the HP is that it 
associates the output gap with business cycle frequencies in the data. Instead, these may reflect the 
(transitional) dynamics of shocks to potential output. Also, the HP filter method produces spurious 
cyclicality when it is applied to integrated or near-integrated data. Finally, it performs poorly in 
identifying the cyclical component of time series - like those of most macroeconomic variables - that 
have a spectrum or pseudo-spectrum with typical Granger shape. 

The paper then describes methods that augment univariate dynamics with structural 
relationships by  adding the residuals of a structural economic relationship to the minimisation 
problem of the HP filter. These methods are more pragmatic but, at the same time, there are no 
guidelines on how to calibrate the structural relationships. They also fail to solve the end-of-sample 
problems and usually provide only very imprecise estimates of potential output and the output gap. 
The authors further describe a method (the TOFU) based on Maximum Likelihood estimates of the 
inverse of a simple structural relationship, but it is hard to get a clear sense of how well this method 
can perform in practice. 

The most innovative and, in our view, interesting part of the paper describes methods of 
multivariate dynamics based on structural relationships. These methods use VAR models that 
incorporate long-run restrictions based on economic theory following the methodology of Blanchard 
and Quah (1989). Within this category the authors distinguish three methods: the long-run restrictions 
on output method (LRRO) which defines potential output as the permanent component of output and 
the output gap as that part of output which is due to purely transitory shocks (it should be  noted that 
the authors are careful in avoiding the tricky issue of how to interpret permanent and transitory shocks 
in terms of demand and supply shocks); the Multivariate Beveridge-Nelson (MBN) method which 
defines potential output as the level of output that is reached after all transitory dynamics have worked 
themselves out; and the method proposed by Cochrane (CO) which derives identifying restrictions for 
a bivariate VAR model from the permanent income hypothesis. Most of the third section is devoted to 
a comparison of these three methods. The authors show that the LRRO outperforms the MBN and the 
CO methods because it lets the data determine the shape of the diffusion process of permanent shocks; 
i.e. it does not impose restrictions on the short-run dynamics of the permanent component of output or 
assume that output follows a random walk with drift.1 In our discussion we will, therefore, focus on 
the LRRO method, noting some of the main advantages of this method and the problems and issues 

1 For the CO method this is true when consumption follows a random walk. 



that it entails. It should be stressed, though, that the authors are aware of all these problems and 
issues, which makes their paper an excellent guide to empirical work on estimating the output gap. 

A main advantage of the LRRO method is that it uses economic theory to derive 
restrictions on the VAR models that pin down the estimates of the output gap. An important issue 
concerns the choice of variables that are included in the VAR model. In order to capture the main 
features of real output in Canada, the authors include four variables in their VAR model - the growth 
rate of real output, the first difference of inflation, the unemployment rate and the first difference of  
the real interest rate. We can, however, think of alternative specifications, for example Blanchard and 
Quah's bivariate VAR model with output and unemployment, or a model that includes only output 
and inflation. It is important, therefore, to motivate the choice of variables. Figure 1 shows how the 
estimates of the output gap can be sensitive to the specification of the underlying model. It compares 
an estimate of the output gap for Canada derived from the four-variable model used in the paper with 
an estimate derived from a bivariate model with the growth rate of output and the first difference of  
inflation. The two measures of the output gap look quite different and have a correlation coefficient of  
only 0.34.2 

Figure 1 : Output gap estimates from 2-variable and 4-variable 
VAR models and t he  HP filter method 

SVAR with 2 variables SVAR with 4 variables • • • Hodrick-Prescott 
(dy and d2p) (dy, d2p,dr and u) 

Another advantage of the LRRO method is that it is flexible with respect to the properties 
of the variables used in the model. As  the authors state, "the assumptions on the level of integration 
are not part of the methodology per se" and "changing these assumptions could have a significant 
impact on the results". The degree of  differencing to be used for variables other than output (which 
should be  1(1)) is, however, a tricky issue. The authors assume that both the real interest rate and the 
inflation rate have unit roots, but if these series have almost but not exactly unit roots, important 
information on the short-run dynamics of output may be lost by  differencing them3. W e  can get a 
sense of whether we  over-difference and lose important information by  comparing the impulse 

2 The correlation coefficient rises however to 0.75 when both models are estimated using the level of inflation. Figure 1 
reports also the HP filter estimate of the output gap. 

3 The estimates would still be consistent if the series are not differenced. 
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response functions of the bivariate and the four-variable models. Figure 2 shows that the output gap 
derived from the bivariate model looks very different depending on whether we  difference inflation. 
The two series have a correlation coefficient of only 0.47. In the authors' four-variable model, 
however, it does not matter that much whether inflation and the interest rate are differenced or not 
(Figure 3). 

Figure 2 : Output gap estimates in t he  2-variable model with 
inflation and the  first difference of inflation 

SVAR with 2 variables SVAR with 2 variables • • • Hodrick-Prescott 
(dy, dp) (dy, d2p) 

Figure 3 : Output gap estimates in t he  4-variable model with 
inflation and the  first difference of inflation 
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Finally, an advantage of the LRRO method over the mechanical approaches is that it 
provides estimates of the current as well as of the expected future output gap. However, these 
estimates are generally very uncertain. There is a trade-off in choosing the number of lags in a VAR 
model between keeping it low to reduce the uncertainty of the estimates and keeping it high to avoid 
the bias in the estimation of the structural components. Still, Figure 15 in the paper shows several 
episodes where the LRRO output gap estimate for Canada is significantly different from zero in 
several instances. The authors also find that their results are robust to using 6 or 10 lags instead of 8. 
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