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Moving towards probability forecasting  
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Abstract 

This paper proposes an international collaboration between researchers in academia and 
policymaking institutions to stimulate and coordinate research on probability forecasting in 
macroeconomics, developing a toolbox for short-term prediction.  The toolbox should include 
time series models, methods for forecast combination, and techniques for probabilistic 
forecast evaluation in order to reduce the setup costs and risks to both individual researchers 
and policymaking organizations. A particular emphasis should be placed on replication 
studies with the toolbox so that central bankers can be sure that they are utilizing best 
practice techniques to produce probabilistic forecasts of events of interest. 
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Introduction 

Macroeconomic forecasts are imperfect. If a forecaster provides information about inflation 
next month, there is considerable inaccuracy implied. The inaccuracy stems (in part) from 
imprecise real-time measurements, latent variables, model uncertainty, parameter 
uncertainty, and the inherently unpredictable nature of the macroeconomy. Nevertheless, 
most central banks provide little information on forecast imprecision. Furthermore, the 
probabilities of outcomes that are economically substantive, although not the most likely, 
receive little attention. Put differently, conventional macroeconomic forecasting neglects the 
assessment of risk, and the probability of extreme events.   

The neglect of formal probabilistic forecasts for macroeconomic decision-making before the 
Global Financial Crisis (GFC) parallels the experience in another applied statistics field in the 
late 1990s. In December 1999, a storm called Lothar caused extensive damage across 
Europe; see MacKenzie (2003). Key meteorological institutes failed to offer timely storm 
warnings. The incident sparked the research and development of systems for producing 
probability forecasts. Ex post analysis using modern methods has shown that Lothar was 
highly likely to miss land. Contemporary forecasters were correct, from the perspective of the 
most likely outcome. There was, however, a significant probability that the storm would strike 
land, which the forecasters missed. That is, the state-of-the-art weather forecasting systems 
in the late 1990s—like those used by most macroeconomic policymakers today—did not 
generate accurate probabilities for extreme events. Even though the meteorological 
practitioners worked with (highly) non-linear specifications, insufficient attention was paid to 
probabilistic forecast verification. Moving beyond Gaussian predictive densities enhanced 
considerably the probability forecasting performance, without compromising point forecasting 
accuracy, or the theoretical structure of the models. 

The 2007 vintage workhorse macroeconomic policy models had little to say about the 
probability of extreme events. Even today, hardly any institutions produce forecasts for the 
probability of a recession, or the probability of deflation. Most policymakers limit their analysis 
to (near) linear Gaussian specifications, and communicate only the “most likely” scenario to 
the public. This approach masks quantifiable information of use to policymakers for both the 
formulation and communication of the policy stance from a risk management perspective. 

Related literature 

The academic work concerned with macroeconomic probability forecasting can be grouped 
into two distinct programs. The first concerns methods for probabilistic forecast evaluation; 
the second focuses on techniques for improving the accuracy of probabilistic forecasts. 

Although evaluations of probabilistic forecasts are common in applied statistics fields, 
forecast evaluation exercises published by central banks and other policymaking institutions 
restrict attention to point forecasting accuracy.  Some recent papers considering probabilistic 
forecast evaluation include Garratt, Lee, Pesaran and Shin (2003), Adolfson, Andersson, 
Lindé, Villani and Vredin (2007), Lahiri and Wang (2007), Garratt, Koop, Mise and Vahey 
(2009), Kryshko, Schorfheide and Sill (2010), Berge and Jorda (2011), Clark (2011), Diks, 
Panchenko and van Dijk (2011), Galbraith and van Norden (2011, 2012), Gneiting and 
Ranjan (2011), and Mitchell and Wallis (2011).  These papers typically use the forecast 
density relative to the outturn, or gauge performance in terms of predicting discrete events, 
such as a recession.  In meteorology and other applied statistics fields, it is common to link 
forecast evaluation explicitly to the relevant economic decision.  Berrocal, Raftery, Gneiting 
and Steed (2010) provide a recent example for a road maintenance problem.  Granger and 
Pesaran (2000) propose applications in economics. 
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The second program focuses on improving forecast accuracy. Most policymaking 
macroeconomic models are (approximately) linear Gaussian—with features that are difficult 
to reconcile with the theory and data; see, for example, the discussion by Robertson, 
Tallman and Whiteman (2005). A long tradition in macro-econometrics has emphasized the 
importance of non-linearities in macroeconomics. Morley (2009) provides a review of the 
literature; and recent examples include Paap, Segers and van Dijk (2009), Hamilton (2011), 
Arora, Little and McSharry (2012), De Livera, Hyndman and Snyder (2011) and Koop, Léon-
González and Strachan (2011). Methods for handling fat and asymmetric tails are common in 
financial econometrics; see, for example, Patton (2006). Copula models are widely exploited 
in other applied statistics fields as flexible tools to allow for non-linear dependence and non-
Gaussian error distributions. Examples include Clayton (1978), Li (2000), Lambert and 
Vandenhende (2002), and Danaher and Smith (2011).  

A number of recent papers in macroeconomics have proposed using mixtures or forecast 
density combinations to enhance performance by approximating non-linear and non-
Gaussian processes. Key contributions with forecast density combinations include (among 
others) Geweke and Amisano (2011), Jore, Mitchell and Vahey (2010), Gneiting and 
Thorarinsdottir (2010), Waggoner and Zha (2010), Billio, Casarin, Ravazzolo and van Dijk 
(2011), Bjørnland, Gerdrup, Jore, Smith and Thorsrud (2011), and Garratt, Mitchell, Vahey 
and Wakerly (2011). These papers build on earlier macroeconomic research on forecast 
combinations by, for example, Hendry and Clements (2004), Wallis (2005), Mitchell and Hall 
(2005) and Kapetanios, Labhard and Price (2008). Timmermann (2006) provides a review of 
forecast combination; and Clements and Harvey (2011) discuss combining probabilistic 
forecasts. Aastveit, Gerdrup, Jore and Thorsrud (2011) consider intra-month probability 
forecasts, generalizing the more traditional point forecasting approach of, for example, 
Giannone, Reichlin and Small (2008), Lombadi and Maier (2011) and Kuzin, Marcellino and 
Schumacher (2011). Faust and Wright (2011) and Kozicki and Tinsley (2012) discuss the 
scope for survey evidence to improve timely forecasting. Giordani, Kohn and van Dijk (2007) 
and Maheu and Gordon (2008) provide examples based on mixtures. 

Probabilistic forecasting in practice at central banks 

Despite the extant body of literature devoted to probability macroeconomic forecasting, only 
a handful of central banks have pursued the approach, including the Bank of England.  
Norges Bank has a short-term forecasting system based on probability forecasting; see 
Bjørnland, Gerdrup, Jore, Smith and Thorsrud (2011). Furthermore, finance ministries, 
independent fiscal watchdogs and data agencies pay little attention to probabilities (with the 
UK’s Office for Budget Responsibility a notable exception).  

Uptake has been slow for three main reasons.  First, given the techniques for probability 
forecasting and evaluation are relatively new to economists, very little exposure occurs at the 
graduate or undergraduate level. This leaves practitioners to learn unfamiliar techniques  
on-the-job by replicating papers after they appear in journals. Inefficiencies arise because the 
methods are computationally burdensome, with the code sometimes idiosyncratic or 
unobtainable. 

Second, with the research frontier of macroeconomic forecasting constantly shifting, it is risky 
for a policy-oriented organization to invest in the new technology. Recently developed 
techniques for probability forecasting and evaluation are often based on long runs of 
US data, and in some cases, performance is less impressive with other datasets. 

Third, the existing macroeconomic literature says little about extreme event predictability, 
despite the recent financial crisis. The default policymakers’ modeling framework, grounded 
on assumptions of linear dependence and Gaussian errors, hinders progress in this regard. 
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A proposal  

These challenges slowing the uptake by central banks and other policymaking institutions 
could be considerably eased by the existence of a probability forecasting toolbox. Such a 
toolbox might include macro-econometric models, data, methods for forecast combination 
and probabilistic forecast evaluation tools suitable for short-term macroeconomic prediction. 
International collaboration between researchers in academia and central banks could 
stimulate and coordinate research on probability forecasting around such a toolbox. The 
toolbox itself could substantially reduce the setup costs and risks faced by both individual 
researchers and central banks in adopting probability forecasting techniques, not least by 
greatly facilitating replication analysis. 

Conclusion 

In this short paper, we have argued that central bankers should switch to probability 
forecasting. The recent financial crisis has changed the nature of macroeconomic 
forecasting. It no longer suffices to claim that a forecasting system is adequate if it matches 
the point forecasting accuracy of a simple autoregressive benchmark. To close the gap 
between the extant academic literature and policymaking practice, and to foster further 
research in probability forecasting, requires a bold collaborative step. Our proposal to 
accelerate research into probability forecasting methods and practice involves pooling 
knowledge and resources across central banks and academia through the construction of a 
toolbox for short-term macroeconomic prediction. Such a step would spread the cost and risk 
of developing the new technology amongst many. 
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