
BIS Papers No 65 177
 
 

Debt management and optimal fiscal policy 
with long bonds1 

Elisa Faraglia,2 Albert Marcet3 and Andrew Scott4 

Abstract 

We study Ramsey optimal fiscal policy under incomplete markets in the case where the 
government issues only long bonds of maturity 1N  . We find that many features of optimal 
policy are sensitive to the introduction of long bonds, in particular tax variability and the 
long-run behaviour of debt. When government is indebted, it is optimal to respond to an 
adverse shock by promising to reduce taxes in the distant future as this achieves a cut in the 
cost of debt. Hence, debt management concerns override typical fiscal policy concerns such 
as tax-smoothing. In the case where the government leaves bonds in the market until 
maturity, we find two additional reasons why taxes are volatile due to debt management 
concerns: debt has to be brought to zero in the long run and there are N -period cycles. We 
formulate our equilibrium recursively applying the Lagrangean approach for recursive 
contracts. However even with this approach the dimension of the state vector is very large. 
To overcome this issue we propose a flexible numerical method, the “condensed PEA”, 
which substantially reduces the required state space. This technique has a wide range of 
applications. To explore issues of policy coordination and commitment we propose an 
alternative model where monetary and fiscal authorities are independent.  
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1. Introduction 

Table 1 shows the average maturity of outstanding government debt for a variety of countries 
and displays clear differences across nations. Any theory of debt management needs to 
explain the costs and benefits for fiscal policy of varying the average maturity in this manner. 
As the current European sovereign debt crisis emphasises, the maturity structure of 
government debt is a key variable. Deciding fiscal policy independently of funding conditions 
in the market is a doomed concept: taxes, public spending and fiscal deficits should all take 
into account the funding conditions in the market for bonds. Therefore debt management 
should not be subservient to fiscal policy and should not focus simply on “minimising costs”. 
Rather, fiscal policy and debt management should be studied jointly. 

Table 1 

Average maturity government debt 2010 

Country Average maturity (years) 

United Kingdom 13.7 

Denmark 7.9 

Greece 7.7 

Italy 7.2 

Austria 7 

France 6.9 

Ireland 6.8 

Spain 6.7 

Switzerland 6.7 

Portugal 6.5 

Czech Republic 6.4 

Sweden 6.4 

Germany 5.8 

Belgium 5.6 

Japan 5.4 

Netherlands 5.4 

Canada 5.2 

Poland 5.2 

Australia 5 

Norway 4.9 

United States 4.8 

Finland 4.3 

Hungary 3.3 

Sources: OECD; The Economist. 

 

A number of recent contributions have studied this interaction between debt management 
and taxation policy in a Ramsey equilibrium setting. Angeletos (2002), Barro (2003), Buera 
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and Nicolini (2004) use models of complete markets. Nosbusch (2008) explores a simplified 
model of incomplete markets and Lustig, Sleet and Yeltekin (2009) examine an incomplete 
market model with multiple maturities and nominal bonds. In this paper we build on our 
recommendations in Faraglia, Marcet and Scott (2010) and extend the setup of Aiyagari, 
Marcet, Sargent and Seppälä (2002), who studied optimal fiscal policy with incomplete 
markets and short bonds, to the case when bonds mature N  periods after having been 
issued. We describe the behaviour of optimal policy with long bonds and we show how to 
navigate computational problems. The equilibrium in our model shows some well known 
features of optimal fiscal policy under incomplete markets: the government tries to smooth 
taxes, taxes follow a near-martingale behaviour and debt is used as a buffer stock to spread 
tax increases over all periods after an unexpected adverse shock. We also find that if the 
government is indebted and an adverse shock occurs the government should promise to cut 
taxes in future periods, when the newly issued long bonds generate a payoff. These future 
tax cuts “twist” current long interest rates so as to reduce the burden of past debt. This 
means that a typical debt management concern, ie reducing the costs of debt, overrides a 
typical concern of fiscal policy, namely tax-smoothing. This promise to cut taxes is the reason 
that optimal policy is time-inconsistent: if the government could, it would renege on the 
promise to cut taxes. 

A further problem that arises only when dealing with long bonds is what decision to make 
about outstanding debt at the end of each period. Most of the literature assumes that the 
government buys back each period all previously issued debt and then reissues new bonds. 
This assumption is innocuous in models of complete markets, but matters under incomplete 
markets. Furthermore, as shown in Marchesi (2004), governments rarely buy back 
outstanding debt before redemption. To quote the UK Debt Management Office (2003), “the 
UK’s debt management approach is that debt once issued will not be redeemed before 
maturity”. For this reason we also study optimal policy when the government leaves long 
bonds in circulation until the time of maturity. We call this the “hold to redemption” case. In 
this case, at any moment in time the government has a full spectrum of outstanding debt with 
maturity until redemption of N , 1N   through to one year even though the government only 
ever issues N period debt. The maturity profile of government debt is therefore much more 
complex with long bonds and hold to redemption and this will potentially impact debt 
management and fiscal policy. We find that optimal tax policy is even more volatile in this 
case: the government promises to cut taxes permanently and there are N -period cycles in 
tax policy. 

Obtaining numerical simulations is not straightforward. A first difficulty lies in obtaining a 
recursive formulation of the model. To do so we extend the recursive contracts treatment of 
Aiyagari et al (2002). A second difficulty arises because the vector of state variables is 
typically of dimension 2 1N  . Hence it grows rapidly with maturity: many OECD countries 
issue 30-year bonds, and both France and the UK issue 50-year bonds. Solving a non-linear 
dynamic model with these many state variables is not feasible.5 

To reduce this computational complexity, we propose a new method, the “condensed PEA”, 
that reduces the dimensionality of the state vector while allowing, in principle, for arbitrary 
precision. We show how in the case of a 20-year bond the state space is effectively only four 
variables. We believe this computational method has wide applicability to other cases. 

The fact that the fiscal authority finds it optimal to twist interest rates to minimise funding costs 
raises issues of commitment and policy coordination. To assess this, we introduce a model 
where the fiscal authority is separate from the monetary authority setting interest rates. In this 

                                                 
5 Linearisation of the policy function is undesirable. First, because it turns out that non-linear terms in the policy 

function play a crucial role even near the steady state mean. Second, because of the presence of debt limits. 
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way the “twisting” of interest rates is not possible, since the fiscal authority takes interest rates 
as given. This setup provides a framework to understand the role of commitment in the 
Ramsey policy, and in the case with buyback it reduces the dimensionality of the state vector, 
as the usual co-state variables of optimal Ramsey policy are no longer present. We find that 
the second moments of the model are not highly dependent on maturity. In a calibrated 
example, allocations, interest rates and persistence of debt are similar across maturities and 
across the three models of policy considered. The main difference is the long-run level of 
debt, as longer maturities are associated with more debt. 

The structure of the paper is as follows. Section 2 outlines our main model, a Ramsey model 
with incomplete markets and long bonds when the government buys back all outstanding 
debt each period. Section 2 shows some properties of the model using analytic results. 
Section 3 studies numerical issues, introducing the condensed PEA and describing the 
behaviour of the model numerically. Section 4 studies the model of independent powers, 
whilst Section 5 considers the case of hold to redemption. A final section concludes. 

2. The model: analytic results 

Our benchmark model is of a Ramsey policy equilibrium, with perfect commitment and 
coordination of policy authorities, in which the government buys back all existing debt each 
period. In Sections 4 and 5 we relax these assumptions. 

The economy produces a single non-storable good with a technology 

1t t tc g x   , (1) 

for all t , where tx , tc  and tg represent leisure, private consumption and government 

expenditure respectively. The exogenous stochastic process tg  is the only source of 

uncertainty. The representative consumer has utility function: 

    0
0

t
t t

t
E u c v x





  (2) 

and is endowed with one unit of time that it allocates between leisure and labour and faces a 
proportional tax rate t  on labour income. The representative firm maximises profits, both 

consumers and firms act competitively by taking prices and taxes as given. Consumers, firms 
and government have full information, ie they observe all shocks up to the current period, 
and all variables dated t are chosen contingent on histories  0,...,t

tg g g . All agents have 

rational expectations. 

Agents can only borrow and lend in the form of a zero-coupon, risk-free, N -period bond so 
that the government budget constraint is: 

 1, , 1 , ,1t N t N t t t N t N tg p b x p b       (3) 

where ,N tb  denotes the number of bonds the government issues at time t , each bond pays 

one unit of consumption good in N-periods of time with complete certainty. The price of an i -
period bond at time t  is itp . In this section, we assume that at the end of each period the 

government buys back the existing stock of debt and then reissues new debt of maturity N; 
these repurchases are reflected in the left side of the budget constraint (3). In addition, 

government debt has to remain within upper and lower limits M  and M  so ruling out Ponzi 
schemes eg 

. 1
N

N tM b M    (4) 
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The term N in this constraint reflects the value of the long bond at steady state, so that the 

limits M , M  appropriately refer to the value of debt and they are comparable across 
maturities.6 

We assume that, after purchasing a long bond, the household has only two options: one is to 
resell the government bond in the secondary market in the period immediately after having 
purchased it, the other possibility is to hold the bond until maturity. 7 Letting ,N ts  be the sales 

in the secondary market, the household’s problem is to choose stochastic processes 

 , , 0
, , ,t t N t N t t

c x s b



 to maximise (2) subject to the sequence of budget constraints: 

   , , 1, , , , 11 1t N t N t t t N t N t N t N N t Nc p b x p s b s            

with prices and taxes  , 1,, ,N t N t tp p   taken as given. The household also faces debt limits 

analogous to (4). We assume for simplicity that these limits are less stringent than those 
faced by the government so that, in equilibrium, the household’s problem always has an 
interior solution. 

The consumer’s first-order conditions of optimality are given by 

,

,

1x t
t

c t

v
u

   (5) 

 ,

,
,

N
t c t N

N t
c t

E u
p

u
   (6) 

 , 1

1,
,

N
t c t N

N t
c t

E u
p

u
  

   (7) 

2.1 The Ramsey problem 
We assume the government has full commitment to implementing the best sequence of 
(possibly time-inconsistent) taxes and government debt knowing equilibrium relationships 
between prices and allocations. Using (5), (6) and (7) to substitute for taxes and 
consumption, the Ramsey equilibrium can be found by solving  

 
    

   
,

0
, 0

1
, 1 , 1 , ,

max

s.t.

t N t

t
t tc b t

N N
t c t N N t t t c t N N t

E u c v x

E u b S E u b



 






   



 


 (8) 

and (4), and tx  implicitly defined by (1). 

To simplify the algebra we define    , , ,t c t x t t t c t tS u v c g u g    as the “discounted” surplus of 

the government and set up the Lagrangian 

                                                 
6 Obviously the actual value of debt is , ,N t N tp b , we substitute 

,N t
p  by its steady state value N  for simplicity, 

nothing much changes if the limits are in terms of , ,N t N tp b . 

7 We need to introduce secondary market sales ,N ts  in order to price the repurchase price of the bond. 
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  
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      

   
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where t  is the Lagrange multiplier associated with the government budget constraint and 

1,t  and 2,t  are the multipliers associated with the debt limits. 

The first-order conditions for the planner’s problem with respect to tc  and ,N tb  are 

  
 

, , , , , ,

, 1 , 0

c t x t t cc t t c t xx t t t x t

cc t t N t N N t N

u v u c u v c g v

u b



    

     

  
 (9) 

   , 1 , 2, 1,t c t N t t t c t N t tE u E u         (10) 

with 1 ... 0N     . 

These FOC help characterise some features of optimal fiscal policy with long bonds. 
Following the discussion in Aiyagari et al (2002), we see that in the case where debt limits 
are non-binding (10) says that t  is a risk-adjusted martingale with risk-adjustment measure 

,

,

c t N

u
t c t N

u

E


 
   

, indicating that in this model the presence of the state variable λ in the policy 

function imparts persistence in the variables of the model. The term  1 ,t t N t N N t ND b       
in (9) indicates that a feature of optimal fiscal policy will be that what happened in period 
t N  has a special impact on today’s taxes. Since we have , , 0c t x tu v   and zero taxes in 

the first best, a high tD  pulls the model away from the first best and zero taxes. If 0tD   it 

can be thought of as introducing a higher distortion in a given period. In periods when 1t Ng    

is very high, we have that the cost of the budget constraint is high, so 1t N    is high, and if the 

government is in debt 0tD   so that taxes should go down at t . Of course this is not a tight 

argument, as t  also responds to the shocks that have happened between t  and t N  and 

t  also plays a role in (9), but this argument is at the core of the interest rate twisting policy 

we identify below. In order to build up intuition for the role of commitment and to provide a 
tighter argument, we now show two examples that can be solved analytically. 

2.2 A model without uncertainty 

Assume now that government spending is constant, tg g . The only budget constraint of 

the government is then 

, 1
, 1 0

0 ,0

1
, 1 , 1

0

,orc tt N
t N
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t N
t N c N
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S b p
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
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





 (11) 

where 
,

t
t

c t

SS
u

  is the “non-discounted” surplus of the government. This shows that, for a 

given set of surpluses, the funding costs of initial debt 1 0Nb   can be reduced by 

manipulating consumption such that 1t Nc c   for all t N . As long as the elasticity of 
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consumption with respect to wages is positive, as occurs with most utility functions, this can 
be achieved by setting 

1

for all 1t

N

t N 
  

  


 (12) 

This achieves a reduction of , 1c Nu  , reducing the cost of outstanding debt. In other words, the 

long end of the yield curve needs to be twisted up.8 Interestingly, even though there are no 
fluctuations in the economy, (12) shows that optimal policy implies that the government 
desires to introduce variability in taxes. In other words, optimal policy violates tax-smoothing. 
This policy is clearly time-inconsistent: if the government is able to reoptimise by surprise at 
some period ´ 0, ´ 1t t N    it will then promise instead a cut in taxes in period ´ 1t N  . 

2.3 A model with uncertainty at 1t   

The previous subsection abstracted from uncertainty. We now introduce uncertainty into our 
model. In the interest of obtaining analytic results we assume uncertainty occurs only in the 
first period, ie g  is given by:9 



 

g

t

Fg
ttgg

~

2and0for

1

 

for some non-degenerate distribution gF . Since future consumption and ’s are known, the 

martingale condition implies , 1 ,c t N t t c t Nu u     and 

1 1t t    

It is clear that in the case of short bonds  1N   equilibrium implies tc  and t  constant for 

2t  , reflecting the fact that, even though markets are incomplete, the government smooths 
taxes after the shock is realised. 

For the case of long bonds when 1N  , the FOC with respect to consumption (9) is satisfied 
for  1 ,t t N t N N t ND b       

0 for 0 and 1,tD t t N N     (13) 

 1 0 , 1 0 1 ,0,N N N ND b D b       (14) 

Hence equilibrium satisfies 

 1* for 2 and , 1tc c g t t N N     (15) 

for a certain function *c . ie consumption is the same in all periods 2 and , 1t t N N   , 

although this level of constant consumption depends on the realisation of the shock 1g . 

Clearly, 1,N Nc c  also depend on the realisation of 1g . 

                                                 
8 This is, of course, a manifestation of the standard interest rate manipulation already noted by Lucas and 

Stokey (1983), except that in our case the twisting occurs in N  periods. 
9 Formally, this economy is very similar to that of Nosbusch (2008). 
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Therefore, there is more tax volatility than in the case of short bonds: taxes vary in periods 
1N   and N , even though by the time the economy arrives at these periods no more shocks 

have occurred for a long time. 

2.3.1 An analytic example 
To make this argument precise consider the utility function 

 11 1

1 1

c
tt

c

xc
B



 

 


 
  (16) 

for , , 0c B   . 

Result 1 Assume utility (16) and , 1 0Nb   . 

For a sufficiently high realisation of 1g  we have 

1

1 1

for all 1, 1,

,
t

N N

t t N N 
  

   


 

The inequalities are reversed if , 1 0Nb    or if the realisation of 1g  is sufficiently low. 

Proof 

Since 1 1t t    the FOC of optimality yield 

 
    1,

1
, 1

1
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t N t N t
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 

 
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 
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where 
  

, ,

11 1
cc t N t N

t
c

u b
F

B 


  
. 

Consider 1t  . For any long maturity 1N   we have that 1 0t N t N      when 1t   so that 

 
  

1,1

,1 1

1

1 1
c

x c

Bu
v B

 
 

 

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 (17) 

Therefore we can write 

 , ,1
1

, ,1

0 for 1c t c
t N t N t

x t x

u u
F t

v v
         (18) 

That 1t   for all 1t   and 1,t N N   follows from (15). 

Now we show that 0tF   for 1,t N N  . Since 1, , 0B     we have that   11 0B     . 

Since ,1 ,1, 0c xu v   clearly (17) implies that   11 1 0c B    . Since we consider the case of 

initial government debt , 1 0Nb    this leads to ,0 0Nb   and since ,1 0ccu   we have 0tF   for 

1,t N N  . 

Since for 1t N   we have 1 0 0t N t N         it follows 

, 1 ,1
1

, 1 ,1

for all 1, 1,c N c
N t

x N x

u u
t t N N

v v
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


      . 
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Also, it is clear from (17) that high 1g  implies a high 1 . Since the martingale condition 

implies    , 1 0 0 ,t c N c NE u E u   for slightly high 1g  we have 1 0  . Therefore, for t N  and 

if 1g  was high enough we have 1 0 1 0t N t N          so that (18) implies 

, , 1 ,1
1 1

, , 1 ,1

, ,c N c N c
N N

x N x N x

u u u
v v v

  




    ■ 

Intuitively, in period 1t N   there is a tax cut for the same reasons as in Section 2.2. New in 
this section is the tax cut (for high 1g ) at t N . The intuition for this is clear: when an 
adverse shock to spending occurs at 1t   the government uses debt as a buffer stock so 
that ,1 ,0N Nb b , as this allows tax-smoothing by financing part of the adverse shock with 

higher future taxes. But since future surpluses are higher than expected, as the higher 
interest has to be serviced, the government can lower the cost of existing debt by 
announcing a tax cut in period N , since this will reduce the price 1,0Np   of period 1t   

outstanding bonds ,0Nb . The tax cut at t N  is a stochastic analog of the tax cut described in 

Section 2.2. 

2.3.2 Contradicting tax-smoothing 
The above result shows that in this model tax policy is subordinate to debt management. In 
models of optimal policy, the government usually desires to smooth taxes. Taxes would be 
constant in the above model if the government had access to complete markets. But we find 
that the government increases tax volatility in period N , long after the economy has received 
any shock. Therefore, government forfeits tax-smoothing in order to enhance a typical debt 
management concern, namely reducing the average cost of debt. 

Obviously this policy is time-inconsistent: if the government could unexpectedly reoptimise in 
period 2t   given its debt ,1Nb  it would renege on the promise to cut taxes in period N . 

Instead it would promise to lower taxes in period 1N  . 

It is clear from this discussion that what will matter for the policy function is the term 
 0 1 ,0N ND b   . Therefore it is the interaction between past  s and past b s that 

determines the size and the sign of today’s tax cut. A linear approximation to the policy 
function would fail to capture this feature of the model and it would be quite inaccurate. 

To summarise, we have proved that in the presence of an adverse shock to spending the 
government has to take three actions: (i) increase taxes permanently, (ii) increase debt, and 
(iii) announce a tax cut when the outstanding debt matures. Effects (i) and (ii) are well known 
in the literature of optimal taxation under incomplete markets, effect (iii) is clearly seen in this 
model with long bonds since the promise is made N  periods ahead. Obviously in the case of 
short maturity 1N   of Aiyagari et al, the effect of 1D  would be felt in deciding optimally 1 , 

but this effect would be confounded with the fact that 1g  is stochastic, so effect (iii) is harder 
to see in a model with short bonds. 

3. Optimal policy: simulation results 

We now turn to the case where tg  is stochastic in all periods. As is well known, analytic 

solutions for this type of model are infeasible, so we utilise numerical results. The objective is 

to compute a stochastic process  ,, ,t t N tc b  that solves the FOC of the Ramsey planner, 

namely (8), (9) and (10). First we obtain a recursive formulation that makes computation 
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possible, then we describe a method for reducing the dimensionality of the state space and 
finally we discuss the behaviour of the economy. 

3.1 Recursive formulation 
Using the recursive contract approach of Marcet and Marimon (2011), the Lagrangean can 
be rewritten as: 

     

   
0 , 1 ,

0

1, , 2, ,

t
t t t t c t t N t N N t N

t

N N
t N t t N t

L E u c v x S u b

M b b M

   

   



   


    

   


 (19) 

for 1 ... 0N     . 

Assuming tg  is a Markov process, as suggested by the form of this Lagrangean, Corollary 

3.1 in Marcet and Marimon (2011) implies the solution satisfies the recursive structure10 

 
,

1 , 1 ,

1 , 1

, ,..., , ,...,

... 0, given

N t

t t t t N N t N t N

t

N N

b
F g b b

c
b

  

 

   

  

 
   
  

  

 

for a time-invariant policy function F . This allows for a simpler recursive formulation than the 
promised utility approach, as the co-state variables   do not have to be restricted to belong 
to the set of feasible continuation variables. 

The state vector in this recursive formulation has dimension 2 1N  . It is unlikely that further 
reductions in this dimension can be achieved purely by theoretical results. In order to 
overcome the problem of dimensionality, some authors model long bonds as perpetuities 
with decaying coupon payments where the rates of decay mimic differences in maturity 
(Woodford (2001), Broner, Lorenzoni and Schmulker (2007), Arellano and Ramanarayanan 
(2008)). One justification for assuming a decaying payoff is that it mimics a bond portfolio 
with fixed shares that decay with maturity. However, since our goal is to build a model of debt 
management where the object is precisely to study the appropriate portfolio weights, the 
assumption of fixed portfolio weights would be inappropriate. Further, although modelling 
bond payoffs in this way would yield smaller state space vectors, it is contrary to the structure 
of most government portfolios, where most of the payoff occurs at the time of maturity, as in 
this model. 

3.2 The condensed PEA 
We wish to find non-linear solutions, first, because the debt limits are likely to be occasionally 
binding if we want to keep debt at levels similar to those observed in the real world, second, 
because per our discussion at the end of Section 2.3, a linear approximation of the policy 
function F  will miss key aspects of optimal policy. Since bonds of maturity 10, 30 or 50N   
years are not uncommon a non-linear approach rapidly becomes intractable for a state 

                                                 
10 In this model it is possible to reduce the state space even further by recognising that the only relevant state 

variables are N lags of  1, t tt N ts b     . We do not exploit this feature of the model as it is very specific to 

this version of the model. For example, the no buyback case of Section 5 needs all state variables. 
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vector of dimension 2 1N  . To overcome this difficulty, we introduce a solution method 
based on the parameterised expectation algorithm of den Haan and Marcet (1990). This 
allows us to reduce the dimensionality of the policy function actually solved for while keeping 
an accurate solution. Using PEA is useful because it does capture the relevant non-linearities 
described in Section 2.3 even if the expectations are parameterised as linear functions and 
because it allows for a natural space reduction method that we call “condensed PEA”. 

This method goes as follows. Denote the state vector as  1 , 1 ,, ,..., , ,...,t t t t N N t N t NX g b b     . 

The idea is that, even though theoretically all elements of tX  are necessary in determining 

decision variables at t , it is unlikely that in the steady state distribution each and every one 
of these variables plays a substantial role in determining the solution. For us, most likely 
some function of these lags will be sufficient to summarise the features from the past that 
need to be remembered by the government in order to take an optimal decision. In the 
context of PEA this can be expressed in the following way. 

One of the expectations requiring approximation is 

 c,t+NE ut  (20) 

appearing in (10). This expectation is a function, in principle, of all elements in tX , but it is 

likely that in practice a few linear combinations of tX may be sufficient to predict ,c t Nu   . 

There are two reasons for this. First, the very structure of the model suggests that elements 
of tX are very highly correlated with each other, suggesting that a few linear combinations of 

tX have as much predictive power as the whole vector. Another way of saying this is that it is 

enough to project any variable on the principal components of tX . Other methods available 

for reducing the dimensionality of state vectors have emphasised this aspect. The second 
reason is that some principal components of tX may be irrelevant in predicting ,c t Nu   in 

equilibrium and, therefore, they can be left out of the approximated conditional expectation. 
So the goal is to include only linear combinations of tX  that have some predictive power for 

,c t Nu  , the remaining linear combinations can be understood as appearing in the conditional 

expectation with a coefficient of zero. 

More precisely, we partition the state vector into two parts: a subset of n  state 

variables   core
t tX X , where 2n N n   is small and an omitted subset of state variables 

     out core
t t tX X X   of dimension 1 2N n  . We first solve the model including only core

tX  

in the parameterised expectations. If the error  , ,t N c t N t c t Nu E u      found using just these 

core variables is unpredictable with out
tX  we would claim the solution with core variables is 

the correct one. If out
tX  can predict this error, we then find the linear combination of out

tX  that 

has the highest predictive power for t N  . We add this linear combination to the set of state 

variables, solve the model again with this sole additional state variable, check if outX  can 
predict t N   and so on. 

Formally, given the set of core variables we define the condensed PEA as follows.11,12 

                                                 
11 This definition assumes we are interested in the steady state distribution. Of course, it could be modified in the 

usual way to take transitions into account. 



188 BIS Papers No 65
 
 

Step 1 Parameterise the expectation as 

    1
, 1, core

t c t N tE u X     (21) 

Find values for 1 1nR  , denoted 1,f , that satisfy the usual PEA fixed point ie 

where the series generated by   1,1, core f
tX   causes this to be the best 

parameterised expectation. This solution is of course based on a restricted set of 
state variables. It is therefore necessary to check if the omission of outX  affects the 
approximate solution. The next step orthogonalises the information in out

tX , which 

will be helpful in arriving at a well conditioned fixed point problem in Step 4. 

Step 2 Using a long-run simulation, run a regression of each element of out
tX  on the core 

variables. 

Letting ,
out
i tX  be the i −th element, we run the regression 

  1 1
, ,1,out core

i t t i i tX X b u    

1 2 2N n
ib R    and calculate the residuals 

 ,1 1
, , 1,res out core

i t i t t iX X X b   . (22) 

It is clear that ,1resX  adds the same information to coreX  as outX , but ,1resX  has the 
advantage that it is orthogonal to coreX . 

Step 3 Using a long-run simulation find 1 1nR   such that 

 21 1 ,1
,

1

argmin
T

core res
c t N t t

t
u X X


  



      (23) 

If 1  is close to zero the solution with only coreX is sufficiently accurate and we can 
stop here. Otherwise go to 

Step 4 Apply PEA adding ,1 1res
tX   as a state variable, ie parameterising the conditional 

expectation as 

   ,1 1 2
, ,core res

t c t N t tE u X X    
 

where 2 2nR  . Find a fixed point 2,f  for this parameterised expectation. Since 
1,f  is a fixed point, since core

tX  and ,1res
tX  are orthogonal and since the linear 

combination 1  has high predictive power, it makes sense to use as initial condition 
for the iterations of the fixed point 

 

1,
2,

2 1 1

f
f

n



 

 
  
 

 

                                                                                                                                                      

12 For convenience we describe these steps with reference only to the expectation  ,c t NtE u  . In practice the 

expectations  , 1c t N ttE u    and  , 1c t NtE u    appearing in the FOC also need to be parameterised 

concurrently and the steps need to be applied jointly to all conditional expectations. 
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Go to Step 2 with  1 ,1,core res
t tX X  in the role of core

tX , find a new linear combination 

etc. 

Two remarks end this subsection. In the presence of many state variables, it has been 
customary in dynamic economic models to try each state variable in order. The idea is to add 
state variables one by one until the next variable does not much change the solution found. 
For example, if many lags are needed, we add the first lag, then the second lag, and so on. 
If, at some step, the solution changes very little, it is claimed that the solution is sufficiently 
accurate. But it is easy to find reasons why this argument may fail. For instance, perhaps the 
variables further down the list are more relevant.13 This is the case, by the way, in our model, 
where state variable t N   and ,N t Nb   play a key role in determining the solution at t . Or it can 

be that all the remaining variables together make a difference but they do not make a 
difference one by one. Our method gives a chance to all these variables to make a difference 
in the solution. It is therefore more efficient in finding relevant state variables, as Step 3 
indicates automatically if they are needed and which of them are to be introduced. 

The whole argument in this section is made for linear conditional expectations, as in (21). Of 
course the same idea works for higher-order terms. In order to check the accuracy for higher-
order terms, one can use the condensed PEA with the higher-order polynomial terms, ie one 
can check if linear combinations of, say, quadratic and cubic terms of tX  have predictive 

power in Step 2, include these in out
tX  and go through Steps 2 to 4 above. 

The variables included in core
tX  are not the only ones influencing the solution. Due to the 

nature of PEA, past variables can have an effect even if they are excluded from the 

parameterised expectation. For example, even if we find a solution  1 , 1, ,core
t t N t tX b g    that 

excludes t N   and ,N t Nb   from the parameterised expectation these state variables will 

influence the solution at t  through their presence in (9). 

3.3 Solving the model with condensed PEA 
The utility function (16) was convenient for obtaining the analytic results of Section 2.3. In 
this section we use a utility function more commonly used in DSGE models: 

1 21 1

1 21 1
t tc x 


 

 


 

 

We choose 0.98  , 1 1   and 2 2  . The choice of discount factor implies that we think of 
a period as one year. We set   such that if the government’s deficit equals zero in the non-
stochastic steady state, agents work a fraction of leisure of 30% of the time endowment. For 
the stochastic shock g, we assume the following truncated AR(1) process: 

 
 

 

1

1

1

if 1 *

if 1 *

1 * otherwise

t t

t t t

t t

g g g g
g g g g g

g g

  
  

  







    


    
   

 

                                                 
13 For another example, incomplete market models with a large number of agents need as state variable all the 

moments of the distribution of agents, which is an infinite number of state variables. Usually these models are 
solved first by using the first moment as a state variable, and checking that, if the second moment is added, 
nothing much changes. But it could be, of course, that the third or fourth moment are the relevant ones, 
especially since the actual distribution of wealth is so skewed. 
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We assume   25*,44.1,0~ 2 gNt , with an upper bound g  equal to 35% and a lower 

bound 15%g   of average GDP and 0.95  . M  is set equal to 90% of average GDP and 

M M  . 

We choose  1 , 1, ,core
t t N t tX b g    hence  , 2 , 2,..., , ,...,out

t N t N t N t t NX b b      . To test if 

sufficient variables are included for an accurate solution in Step 3 we use as our tolerance 
statistic: 

2 2

2

augR R
dist

R


  

where 2R  and 2
augR  denote the goodness of fit of the original regression based on the 

condensed PEA and augmented with the linear combination of residuals respectively. We 
use for tolerance criterion 0.0001dist  . Table 2 summarises the number of linear 
combinations needed for each maturity whilst Table 3 gives details and shows the number of 
linear combinations needed for each approximations and the 2R  and dist . 

 

Table 2 

Holding-to-redemption model: 
linear combinations introduced with condensed PEA 

Number of linear combinations 
N  2 1N   

  
Nuc  

1Nuc 
  

1 3 – – – 

2 5 0 1 0 

5 11 0 1 0 

10 21 0 1 0 

15 31 1 1 0 

20 41 1 1 1 

Note: recall that N  denotes maturity and 2 1N   is the dimension of the state vector. In all cases coreX  has 

three variables. “# of linear comb” refers to how many linear combinations of outX  had to be added to satisfy 

the accuracy criterion. We denote each expectation to be approximated by 
, 1t c t N t

E u


 
    

  , 

,
N

uc t c t N
E u

 
   

   and 
1

, 1
N

uc t c t N
E u



 
    

  . 

 

The advantages of the condensed PEA are readily apparent. In nearly half the cases the 
core variables are sufficient to solve the model and, at most, only one linear combination of 
omitted variables is required to improve accuracy. Clearly the condensed PEA can be used 
to solve models with large state spaces with relatively small computational cost, since the 
state vector is in principle of dimension 41 but utilising a dimension of 4 is sufficient. Whilst 
we have focused on a case of optimal fiscal policy and debt management, this methodology 
clearly has much broader applicability. 
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Table 3 

Benchmark model: accuracy measures in condensed PEA 

Adding 1 linear comb Adding 1 linear comb 
N  

  
Nuc  

1Nuc 
    

Nuc  
1Nuc 

  

2 # lin comb in 0 0 0 0 1 0 

 2
augR  0.9208 0.7533 0.8669 0.9209 0.7535 0.8669 

 dist 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 

5 # lin comb in 0 0 0 0 1 0 

 2
augR  0.9069 0.5022 0.5751 0.9070 0.5026 0.5754 

 dist 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 

10 # lin comb in 0 0 0 0 1 0 

 2
augR  0.8911 0.2630 0.2991 0.8909 0.2632 0.2993 

 dist 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 

15 # lin comb in 0 0 0 1 1 0 

 2
augR  0.8814 0.1422 0.1609 0.8831 0.1446 0.1635 

 dist 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 

20 # lin comb in 0 0 0 1 1 1 

 2
augR  0.8751 0.0788 0.0886 0.8771 0.0807 0.0907 

 dist 0.0002 0.0003 0.0002 0.0000 0.0000 0.0000 

Note: see Note of previous Table. 2
augR  and dist are defined in Section 3.3. 

 

3.4 Optimal policy: the impact of maturity 

3.4.1 Interest rate twisting 
We compute the policy functions14 and display the implied response functions of key 
variables to an unexpected shock in tg  in Figures 1 and 2. The vertical axis is in units of 

each of the variables and expresses deviations from the value that would occur for the given 
initial condition if ss

tg g . 

Figure 1 is for the case when the government has zero debt on impact. It shows minor 
differences between long and short bonds. As usual in models of incomplete markets, it is 
optimal to use debt as a buffer stock so that debt displays considerable persistence. 

                                                 
14 Since debt is very persistent, to ensure we visit all possible realisations in the long-run simulations of PEA we 

initialise the model at nine different initial conditions, simulate it for 5,000 periods for each initial condition, 
doing this 1,000 times per initial condition, and compute conditional expectations discarding the first 
500 observations for each simulation.  
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Figure1 

Responses to a shock in tg , 
benchmark model maturities 1 and 10: , 1 0Nb    

 

Figure 2 shows the same impulse response functions when we assume the government is 
indebted on impact, more precisely , 1 0.5 * N

N tb y    where *y  is steady state output. 



BIS Papers No 65 193
 
 

Figure 2 

Responses to a positive shock in tg , 

benchmark model maturities 1 and 10: , 1

0.5 *
N N

yb
   

 

We see that with long bonds of maturity 10N   there is a blip in taxes at the time of maturity 
of the outstanding bonds. This is a reflection of the promise to cut taxes with the aim to twist 
interest rates as discussed in Section 2.3, only now the interest rate twisting occurs each 
period there is an adverse shock. 
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3.4.2 Optimal policy with short bonds 
This discussion helps to elucidate the role of commitment in the model of short-term bonds 
as in Aiyagari et al (2002). Consider the case where the government is indebted when an 
adverse shock occurs, as in Figure 2. As we explained in Section 2.3, optimal policy is to 
increase current taxes but promise a tax cut in 1N   periods. In the case of long bonds, the 
promised tax cut is clearly distinct from the current increase in taxes. But in the case of short 
bonds 1N   the two effects are confounded as they happen in the same period.  

Figure 3 

Responses to a positive shock in tg ,  
benchmark model maturities 1, 5, 10 and 20: 

Taxes: , 1

0.5 *
N N

yb
   

 

Taxes: , 1

0.5 *
N N

yb
    

 

This is clearly seen in the response of taxes depicted in Figure 3 for maturities 1,5,10,20N  . 
Given our previous discussion, it is clear why the blip in taxes keeps moving to the left as we 
decrease the maturity until the blip simply reduces the reaction of taxes on impact at 1N  . 
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Therefore optimal policy for short bonds is to increase taxes on impact but less than would 
be done if considerations of interest rate twisting were absent.  

In the case where the government has assets, the blip in taxes goes upwards, as the 
government desires to increase the value of assets. This is shown in the response of taxes 
for the case of assets shown in Figure 3. So, comparing the dashed lines in the response of 
taxes in Figures 3, it is clear that, for short bonds, the increase in taxes on impact if the 
government initially has assets is much larger than if the government is indebted. 

3.4.3 The level of debt, persistence 
Table 4 shows second moments for the economy at steady state distribution for different 
maturities. Most of the moments differ only to the second or third decimal place across 
maturities. The main exceptions are the levels of debt and deficit: the government on 
average holds assets but less under longer maturity. The value of assets when bonds are of 
20 years halves the average debt for short bonds. 

 

Table 4 

Second moments, steady state 
Model: Benchmark model 

 N  c  y    Deficit NR  N NMV p b    

mean 1 52.60 70.11 0.243 0.42 2.02 –24.68 0.057 

 5 52.58 70.08 0.245 0.32 2.02 –19.21 0.058 

 10 52.56 70.06 0.246 0.25 2.03 –16.28 0.058 

 20 52.54 70.05 0.247 0.17 2.03 –12.46 0.059 

std 1 3.49 0.35 0.044 1.46 0.5 27.26 0.013 

 5 3.48 0.37 0.043 1.57 0.4 30.96 0.013 

 10 3.48 0.38 0.044 1.59 0.3 31.97 0.013 

 20 3.48 0.39 0.044 1.66 0.2 32.84 0.014 

Note: to provide a more interpretable quantity we report annualised interest rates instead of bond prices, 

namely 
1

1 100N
N N

R p


 
     
  
 

 . 

 

The intuition for the lower level of assets as maturity grows is as follows. It is well known that 
in models of optimal policy with incomplete markets, if the government has the same 
discount factor as agents, the government accumulates assets in the long run. More 
precisely, it is easy to extend the results in Aiyagari et (2002) Section III for the case of a 
linear utility of consumption  u c c  to prove that government assets go to a very high level. 

Therefore it is not surprising that all steady states for debt have a negative mean. On the 
other hand it is also well known that, with long bonds, fiscal insurance recommends that the 
government issues long bonds. As argued in Angeletos (2002) and Buera and Nicolini 
(2004), governments should issue long bonds in a model without capital accumulation 
because long interest rates are higher when the government runs deficits, so that issuing 
long bonds provides fiscal insurance. Nosbusch (2008) argues that the same tendency for 
issuing long debt is present in an incomplete markets model. For the same reason, if a 
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government accumulates debt in long bonds, the implied volatility of taxes will be higher. It is 
therefore not surprising that long-run debt is lower for longer maturities, as holding long 
bonds causes taxes to be more volatile. In other words, accumulating assets of long maturity 
is detrimental to fiscal insurance. This is not the case with short bonds, as they provide fiscal 
insurance when issued. Therefore the level of assets is lower for longer maturities. 

Given that average asset holdings are lower, it is natural that average primary deficits are 
lower for higher N , since the value of assets is equal to the expected present value of 
primary deficits also under incomplete markets. For this reason, also, taxes are higher in 
steady state for higher N . 

Another way of examining the impact of varying the average maturity of debt is to see 
whether this influences how close to the complete market outcome these incomplete market 
models can get. Marcet and Scott (2009) show that measures of relative persistence are a 
good way of assessing the extent of market incompleteness and so Figure 4 shows for 
various variables the measure: 

 
 1

t t kk
y

t t

Var y y
P

kVar y y








. 

Figure 4 

k-variances, benchmark model maturities 2, 5, 10 and 20: 
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The closer to 0 this measure, the less persistence the variable shows, whereas the closer to 
1 the measure, the more the variable shows unit root persistence. Although the long bond 
model shows less persistence, suggesting that, in the case of persistent government 
expenditure shocks, the issuance of longer bonds helps provide more fiscal insurance, the 
difference between the two cases are minor. Given that taxes are distortionary, we are not in 
a Modigliani-Miller world and how the government finances its expenditure can affect the real 
economy. However, the fact that the differences across maturities are so small is perhaps 
not surprising. With the government only issuing one type of bond in each case and the yield 
curve showing broadly similar behaviour at different maturities, the tax-smoothing properties 
of debt issuance are achieved mainly through the role of debt as a buffer rather than through 
fiscal insurance. Further, we are at this point following the rest of the literature in assuming 
that every period the government buys back all existing debt and then reissues. So, although 
the government is issuing 10-period bonds, it always buys them back after a year. Thus, it is 
effectively always borrowing through one-period debt, reducing the distinction between 
one-period and 10-period bonds. We shall return to this issue in a later section. 

4. Independent powers 

In Sections 2 and 3, we found that full commitment implied a tight connection between 
interest rate policy, debt management and tax policy: when government is in debt and 
spending is high the government promises a tax cut in 1N   periods, knowing that this will 
increase future consumption and thus increase long interest rates in the current period. The 
reader may think that this optimal policy is not relevant for the “real world” for at least two 
reasons. First, as different authorities influence interest rates and fiscal policy, it is unlikely 
that they will coordinate in the way described above and, second, it is unlikely that 
governments can commit to a tax cut in the distant future and actually carry through with the 
promise. Some papers in the literature react to this type of criticism by writing down models 
where government policy is discretionary. But the assumption that the government has no 
possibility of committing is also problematic, as governments frequently do things for the very 
reason they have previously committed to do so.  

For these reasons, we change the way policy is decided in this model. We relax the 
assumption of perfect coordination and assume the presence of a third agent, a monetary 
authority that fixes interest rates in every period. The fiscal authority now takes interest rates 
as given and implements optimal policy given these interest rates. We examine an 
equilibrium where the two policy powers play a dynamic Markov Nash equilibrium with 
respect to the strategy of the other policy power and they both play Stackelberg leaders with 
respect to the consumer. More precisely, the fiscal authority chooses taxes and debt given a 
sequence for interest rates, while the monetary authority simply chooses interest rates that 
clear the market and the fiscal authority maximises the utility of agents. This assumption 
sidesteps the issues of commitment, because there is now no room for interest rate twisting 
on the part of the fiscal authority. It is easy to think of models where, even if the monetary 
authority is independent, it can not deviate too much from the equilibrium interest rates of the 
flexible price model. Therefore we take a limit case and assume that the monetary authority 
simply sets in equilibrium interest rates as: 

 ,

,
,

N
t c t N

N t
c t

E u
p

u
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given agents’ consumption. Now the fiscal authority will not be able to manipulate interest 
rates, so it will lose any interest in making promises to cut future taxes. To solve this model 
we are looking for an interest rate policy function 2 2: R R   such that if long interest rates 
at t  are given by 

   1 1
, , 1 , 1, ,N t N t t N tp p g b 

    (25) 

then (24) holds and with the fiscal authority maximising consumer utility in the knowledge of 
all market equilibrium conditions but, taking the stochastic process for interest rates as given, 
it chooses a bond policy such that (25) holds. For the fiscal authority, the problem now is a 
standard dynamic programming one and as a result the state space now only consists of the 
variables , 1N tb   and tg . An advantage of this model is that there is no reason now for longer 

lags to enter this state vector, as past Lagrange multipliers do not play a role. Therefore, this 
separation of powers approach is an alternative way to reducing the state space and 
simplifying the model’s solution. 

In this case of independent powers, the Lagrangian of the Ramsey planner becomes 

   
   

0 , , , 1 , 1
0

1, , 2, ,

t
t t t t N t N t N t N t

t

N N
t N t t N t

L E u c v x S p b p b

M b b M

 

   



 


      

   


 (26) 

The first-order condition with respect to consumption is 

c,t x,t t cc,t t c,t xx,t t t x,t cc,t t N,t N,t N 1,t N,t 1u v (u c u v (c g ) v ) u (p b p b ) 0             

and using the government’s budget constraint gives 

    ,
, , , , , , ,

,

1 1 0x t
c t x t t cc t t c t xx t t t x t cc t t t t

c t

v
u v u c u v c g v u g x

u
 

  
                

 (27) 

To see the impact of independent powers, we calibrate the model as in Section 3 and 
consider the case 10N  . Figure 5 compares the impulse responses to a one standard 
deviation shock to the innovation in the level of government spending when the government 
has debt between independent powers and the benchmark model of Section 3. As can be 
seen, the model of independent powers does not show the blip in taxes at maturity. In this 
case, debt management is subservient to tax-smoothing and is aimed at lowering the 
variance of deficits. 

To better understand the magnitude of the interest twisting channel, we can compare our 
independent powers model with our earlier benchmark model. We simulated the model at 
different time horizons 40T  , 200T   and 5000T   discarding the first 500 periods. We 
calculated the standard deviation of taxes for each realisation and we averaged it across 
simulations. We repeat the same exercise for N 2,  5,  10,  15,  20 . Figure 6 shows the 
results. 

In shorter sample periods, the effect of twisting interest rates in connection with initial period 
debt is significant and provides a higher level of tax volatility in the benchmark model. 
Naturally, as we increase the sample size the initial period effect diminishes. 

The second moments of the model in this section are shown in Table 5. They are extremely 
similar to those of the benchmark model in Table 4. We have essentially a very similar 
amount of bond issuance, debt persistence, tax-smoothing etc, the only difference being that 
the interest rate twisting adds some tax volatility, but this volatility shows up only in second 
moments with short samples as shown in Figure 6. We conclude that the model of 
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independent powers may be a good model to have in the toolkit as it retains many of the 
interesting features of the Ramsey models, it has the same steady state moments, it avoids 
the technicalities arising from the very large state vector and it avoids discussion on the role 
to commitment at very long horizons. There are, however, issues of tax volatility showing up 
in small samples where the two models differ. 

Figure 5 

Responses to a positive shock in tg ,  
benchmark and independent power model 

Maturity 10: , 1

0.5 *
N N

yb
   
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Figure 6 

Tax volatility at different horizons: benchmark  
and independent powers model 
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Table 5 

Second moments, steady state 
Model: Independent powers 

 N  c  y    deficit NR  N NMV p b    

mean 1 52.60 70.10 0.244 0.41 2.02 –23.54 0.057 

 5 52.58 70.08 0.245 0.32 2.02 –19.49 0.058 

 10 52.56 70.07 0.246 0.26 2.03 –16.40 0.058 

 20 52.54 70.05 0.247 0.17 2.03 –12.31 0.059 

std 1 3.49 0.34 0.044 1.43 0.5 27.88 0.013 

 5 3.48 0.36 0.044 1.51 0.4 31.11 0.013 

 10 3.48 0.37 0.044 1.54 0.3 32.20 0.013 

 20 3.49 0.37 0.044 1.56 0.2 33.20 0.014 

5. Hold to redemption 

With long bonds, the government has a choice to make at the end of every period. It can buy 
back the N  period bonds issued last period, as assumed in Sections 2 and 3. Alternatively it 
can leave some or all of the outstanding bonds in circulation until they mature at their 
specified redemption date. In models of complete markets, whether or not there is buyback in 
each period is immaterial: all prices and allocations remain unchanged. But in this paper 
there are two reasons why the outcome is different. The first reason is that the stream of 
payoffs generated by each policy is quite different from the point of view of the government: 
with buyback the bond pays the random payoff 1, 1N tp    next period; if the bond is left in 

circulation until maturity the bond pays 1 with certainty at t N . As is well known, under 
incomplete markets not only the present value of payoffs of an asset are relevant; the timing 
of payoffs also matters. A second reason for the differences is that the possibilities for 
governments to twist interest rates are different. 

In Section 2 we made the extreme assumption that the government each period buys back 
the whole stock of outstanding bonds issued last period. As shown in Marchesi (2004), it is 
normal practice for governments not to buy back debt – debt is issued and it is paid off at 
maturity. In this section, we assume that bonds are left to mature to their redemption date. In 
the case of buyback there are only N -period bonds outstanding. In the case of holding to 
redemption, there exist bonds at all maturities between 1 and N even though the government 
only issues N  period bonds. Although we model the implications of holding to redemption, 
an explanation for why no buyback is standard practice15 is considered beyond the scope of 
this paper. 

In this section, we set up a model where debt managers do not buy back debt at the end of 
each period, show how full commitment gives rise to a different kind of interest rate twisting, 

                                                 
15 Conversations with debt managers suggest some combination of transaction costs, a desire to create liquid 

secondary markets at most maturities or worries over refinancing risk. For simplicity we rule out a third 
possibility – that governments choose to buy back only a certain proportion of outstanding debt. 
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outline how to use condensed PEA to solve for optimal fiscal policy and we show the 
behaviour of the model. Since we follow closely the analysis of Sections 2 and 3 we omit 
some details and focus on the differences. 

The economy is as before except that the government budget constraint is now 

 , , ,1HTR HTR
N t N t t t N t N tb x g p b      (28) 

so that the payment obligations of the government at t are the amount of bonds issued at 
t N . 

We include the debt limits 

,
1

N
HTR i
N t

i
M b M



   (29) 

Again, this limit mimics the value of the newly issued debt at steady state prices: if the 
government issued Nb  bonds at all periods it would have Nb  units of bonds of maturities 

1,2,...,N  outstanding so the total value of debt at steady state would be
1

N
i HTR

N
i

b

 . The 

budget constraint of the household’s problem changes in a parallel way. 

5.1 Optimal policy with maturing debt 
Substituting in equilibrium bond prices and wages net of taxes (28) becomes 

 , . , , ,. . HTR N HTR
N t N c t t t c t N N ts t b u s E u b    (30) 

The Ramsey problem is now to maximise utility (2) over choices of  ,, HTR
t N tc b  subject to this 

constraint and the debt limits (29) for all t . The Lagrangian becomes 
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   


 

where t  is the Lagrange multiplier associated with (30), 1,t  and 2,t  are the ones 

associated with the debt limits and 
1 1

1 1

,
N N

HTR i HTR i

i i
M M M M 

 

 

   
    

   
  . 

The first-order conditions with respect to tc  and ,
HTR
N tb  are 

    , , , , , , , , 0HTR
c t x t t cc t t c t xx t t t x t cc t t N t N t Nu v u c u v c g v u b             (31) 

   , , 2, 1,t c t N t N t t c t N t tE u E u         (32) 

With 1 M... 0     . 
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In short, these FOC have two differences relative to the buyback case: in equation (31) we 
now have t N t( )    instead of t N t N 1( )     and we now have t N   instead of 1t   in the 

martingale condition (32)16. 

5.2 No uncertainty and hold to redemption 

Let us now consider the no uncertainty case when tg g . Proceeding in an analogous way 

to the case of Section 2.2 we could write the implementability constraint as 

,
, ,0

0 1,0

N
c tt HTR

t N i N i
t ic

u
S b p

u




 
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  , or (33) 

, ,
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N
t HTR N i

t N i c N i
t i

S b u 



 

 

   (34) 

for 0, 1tp  . Bonds issued in periods 1, 2,...,.i N     appropriately appear in the right side of 

the above constraint, as what matters now is the total value of debt initially. 

Let us consider the problem of maximising utility when (34) is the sole implementability 
constraint. If the government is in debt with , 0HTR

N ib    for all 1,...,i N  it is clear that in this 

case interest rate twisting will involve changing interest rates in the first 1N   periods hence 
the government will promise to cut taxes in all periods between 0,..., 1t N  . The FOC for 
consumption indicates that the tax cut will be larger for periods 0,..., 1t N   where the 

maturing debt ,
HTR
N t Nb   is larger. Therefore tax cuts now last N  periods. For t N  consumption 

and taxes are constant. 

But assuming that (34) is the sole implementability constraint as we did in the previous 
paragraph is not correct for our model. It would be correct in a slightly different model, where 
the debt limits would be in terms of the total value of debt, for example, if debt limits would be  

, ,
1

N
MV HTR MV

N t i N i t
i

M b p M 


   (35) 

Take for simplicity the case 2N  . It is clear that the optimal allocation described in the 
previous paragraph can be implemented for bond issuances satisfying 

, 1
, 2 , 1

0,

c tHTR HTR j
N t N t t j

jc t

u
b b S
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 




  


   for all 0,1,...t  . Given initial conditions this provides a 

difference equation on Nb  that satisfies the period- t  budget constraint (30) and the value of 

debt limits if HTMM  and HTMM  were sufficiently large in absolute value. 

But, for our model, (34) is not sufficient for an equilibrium. This is perhaps surprising, as we 
think that without uncertainty and one asset one can always complete the markets for 
sufficiently high debt limits. To see this point, notice that for the optimal allocation described 
above the surplus is constant, equal to a level, say S , for all t N . The bonds that would 

satisfy the period t  budget constraint satisfy , 2 , 1 1
HTR HTR
N t N t

Sb b
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


 for all , 1,...t N N  . This 

path for bonds would satisfy the difference equation 

                                                 
16 In the case of hold to redemption, the assumption of independent powers would not simplify the analysis in 

terms of reducing the state space. One would still need N  lags of Nb  as state variables. 
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, , 1 , 1,...
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
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 (36) 

which in general is an unstable difference equation in ,
HTR
N tb . Normally the values of ,

HTR
N tb  

satisfying this equation will explode geometrically to plus and minus infinity, alternating sign. 
The sequence that is compatible with the non-explosive wealth of the government implies 
that the debt limits (29) are violated. Therefore, (34) is not sufficient for an equilibrium. 

The intuition that one asset completes the markets for no uncertainty if the debt limits are 
sufficiently loose is only correct if the debt limits are in terms of the value of debt, but not in 
terms of the actual asset issued. Bond issuance each period in absolute value goes to 
infinity, constant wealth is only achieved because of the alternation in signs of HTR

tb  each 

period. Of course, one modelling solution would be to assume that debt limits are in terms of 
the value of debt as in (35), but we believe limits on bonds as in (29) are the more relevant 
constraint. After all the bond markets are extremely concerned with gross issuance of bonds 
each period. 

This argument shows that, with long bonds, we can not use (34) as the only implementability 
condition; we need to keep the budget constraint (30) in all periods in the analysis. The 
following result shows the actual behaviour of optimal policy. Essentially, we show that 
optimal policy induces higher tax volatility for two reasons: (i) there are cycles of length N , 
(ii) interest rate twisting is permanent, and the reduction in taxes lasts N  periods. 

Result 2. Assume , 0HTR
N ib    for all 1,...,i N . Optimal policy for the model in this section is 

that there are cycles of order N in taxes and in bonds. More precisely 

,...,2 1for all 1,2,...i tN i i N N t       

and 

, , 0,..., 1, for all 1,2,...HTR HTR
N i N tN ib b i N t     

Assume further the standard utility function where higher   (in a complete markets case) 
would imply lower taxes, as for example happens with the utility (16), then 

0,..., 1i N i i N      

Furthermore, if 2, 2 2, 1
HTR HTRb b   then 0 1   

Proof 
Consider the case 2N  . It is clear from the martingale condition (32) that 

0 for all 0, event t t    

1 for all 1, oddt t t    

Therefore 
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 (37) 

notice the only difference between even and odd is in the Lagrange multiplier  . This proves 

2 2

3 3

, for all 2, even

, for all 3, odd
t t

t t

c c t t
c c t t

 
 

  
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 (38) 

The budget constraint (30) can be rolled forward as follows 
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Using debt limits we conclude 
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This combined with (38) implies 
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The only statement left to prove are the tax cuts in periods 0,1t  . For periods 0,1t   we 
have 
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Notice that the difference with (37) for 1t   is the presence of the terms ,0 0 2, 2
HTR

ccu b   and 

,1 1 2, 1
HTR

ccu b  . These are clearly negative, implying that for the considered utility functions we 

have 

2 0

3 1

 
 




 

The statement in the last line follows immediately from the last FOC written. ■ 

These results could be easily extended to the case of uncertainty only in period 1t   as in 
Section 2.3.1, to show that if an adverse shock to g  occurs taxes are lowered for the next 

1N   periods and there is a cycle of order N . 

5.3 Numerical solutions 
To write the model recursively, we observe that the Lagrangean can be rewritten as 
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 (39) 

for 1 ... 0N     . In a recursive formulation we would have the 2 1N   states 

1 , 1 ,,..., , ,..., ,HTR HTR
t t N N t N t N tb b g        just as before. We use condensed PEA again. The FOC show 

that this problem is easier to solve as there are only two expectations to approximate, 

 ,t c t N t NE u   , and  ,t c t NE u  . We choose the core  ,, ,core HTR
t t N N t N tX b g   . We keep the 

same tolerance level as in the model with buyback. Table 6 summarises the number of linear 
combinations we needed to approximate our expectations. Relative to Section 3.3, the 
required state space is larger – in some cases two linear combinations of residuals are 
needed. Effectively this just means a total of five state variables is enough. The condensed 
PEA still dramatically reduces the state space and it makes feasible the computation of a 
non-linear solution. 
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Table 6 

Holding-to-redemption model 

# lin. comb. in 

N  2 1N   

  Nuc  

1 3 – – 

2 5 0 0 

5 11 0 0 

10 21 2 2 

15 31 2 2 

20 41 2 2 

Note: same as in Table 2 except we denote expectations to be approximated by 
,t c t N t N

E u


 
    

  , 

 ,uc t c t N
N

E u   . 

 

Figure 7 shows the impulse response functions for a 10-period bond under hold to 
redemption with the same calibration as in the previous sections. We compare the policy with 
the case of a one- and 10-period bond and buyback. The figure is for the case when the 
government initially has no debt, so it is comparable to Figure 1. We see from the impulse 
response functions for tax rates that varying the maturity of the bond does affect optimal 
policy, even for initial zero debt. 

In the buyback case of Sections 2 and 3, when initial debt is zero, , 1 0Nb   , Figure 1 showed 

that the government does not promise a cut in taxes. Only when the government is in debt 

, 1 0Nb    (or has assets), as in Figures 2 or 3, did we observe the promise to cut (increase) 

taxes in 1N   periods. Figure 7, however, shows that, even in the case of zero initial debt, 
taxes show fluctuations. Taxes increase on impact: the response is decreasing for 1N   
periods, then it jumps at the time of maturity to start going back down after that and so on. 
The positive but decreasing response for the first 1N   periods is standard in optimal 
taxation models with serially correlated shocks. It would also occur under complete markets: 
the higher tg  on impact indicates that tg  will also be higher in the next periods, and this 

generates higher taxes for the next few periods for the utility function considered. The jump 
in the response function at lag N  is a reflection of the fact that there are cycles of order N , 
as suggested by Result 2 and as can be seen directly from the martingale condition (32). 
Strictly speaking   is not a risk-adjusted martingale but one can say that it is a risk-adjusted 
martingale of cycle N 17. The initial high and decreasing response echoes N  periods later. 
This is because a high tg  bumps up t  so it is optimal to set higher t N   and so on. Even if 

t Ng   may be close to its mean, the effect of today’s shock on t N   drives taxes back up at N  

lags and the cycle starts again. 

                                                 

17 Formally, we could say that letting for 0,1,..., 1i
t i tN i N     , each i

t  is a risk-adjusted martingale. 
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Figure 7 

Responses to a positive shock in tg , 
benchmark and holding-to-redemption model 

Maturity 10: , 1 , 1... 0HTR HTR
N Nb b     
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The intuitive reason that there are cycles of order N  is the following. One could think of 
writing the budget constraints under incomplete markets in discounted form as 

,
, ,

0 1,

for all
N

c t jj HTR
t j N t i N i t

j ic t

u
S b p t

u





  
 

   (40) 

These discounted constraints hold in all periods if and only if the period− t  budget constraints 
(30) hold. But, as should be clear from the proof of Result 2, this is not a very relevant 
condition: even if (40) holds we would easily violate the debt limits (29), since solutions of 
this equation for Nb  given a sequence of surpluses usually generates an unstable solution 
for issued bonds. 

We could instead write the budget constraints as follows: 

,
,

0 ,

, for allc t NjjN HTR
t Nj N t N

j c t

u
S b t

u





 


   

These are also necessary and sufficient for (30), with the advantage that they guarantee that 
if we use these conditions to solve for the Nb ’s given surpluses, bonds do not go to infinity. 
These conditions show that what is relevant is the link between today’s issued bonds and the 
surpluses in ,2 ,3 ,...N N N  periods from now. If today we have a bad shock and we issue N  
period bonds, when these bonds mature N  periods from now there will be a need for higher 
taxes and a higher deficit, so .N t Nb   will increase. Hence there will be a need for higher taxes 

and higher deficits in 2N  periods and so on. Therefore it is reasonable that there is a cycle of 
period N  and that optimal policy has the shape displayed in Figure 7. The optimal response 
to an unexpected shock is to promise future taxes that in part accommodate the additional 
debt servicing in the periods when today’s debt will have to be repaid.  

Result 2 suggests that taxes in the first 1N   periods should be lower if the government is in 
debt. This suggests that optimal policy will be to lower taxes during the first cycle of N  
periods relative to later cycles. An additional role of commitment is indeed to promise a cut in 
taxes during the first cycle relative to the cycles later down the line. This is why, in Figure 9, 
which looks at the case of initial debt, the main difference to Figure 7 is that the second peak 
in taxes is lower than the first peak, while the opposite is true in Figure 7. 

 

Table 7 

Holding-to-redemption model with different maturities 

 Maturity c  y    deficit NR  MV    

average 1 52.60 70.11 0.243 0.43 2.02 –24.69 0.057 

 5 52.57 70.07 0.246 0.28 2.02 –17.43 0.058 

 10 52.55 70.05 0.247 0.22 2.03 –14.53 0.058 

 20 52.54 70.05 0.247 0.19 2.03 –12.77 0.059 

std 1 3.49 0.35 0.044 1.46 0.5 27.26 0.013 

 5 3.47 0.40 0.044 1.67 0.4 32.26 0.014 

 10 3.48 0.41 0.044 1.72 0.3 33.98 0.014 

 20 3.50 0.41 0.046 1.71 0.2 33.81 0.015 

 

Table 7 shows summary statistics for the model with no buyback and bonds of varying 
maturities. The results are exceptionally similar to the case of buyback. Because debt is held 



BIS Papers No 65 209
 
 

to maturity each period, the government now issues fewer bonds per period. As in the no 
buyback case the short sample second moments do show more volatility of tax rates, as 
shown in Figure 8. 

Figure 8 

Tax volatility at different horizons benchmark  
and holding-to-redemption model 
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Figure 9 

Responses to a positive shock in tg , 
benchmark and holding-to-redemption model 
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6. Conclusions 

This paper has had two interrelated aims. The first has been to study optimal fiscal policy 
when governments issue bonds of long maturity. The second has been to propose a general 
method for solving models with a large state space – the condensed PEA. 

A number of additional considerations arise when governments issue long-term bonds. If the 
government inherits debt, it has an incentive to twist interest rates to minimise costs of 
funding debt. This is achieved by violating tax-smoothing and promising a tax cut in 1N   
periods, when existing bonds mature. A typical debt management concern, namely lowering 
the cost of debt, therefore shapes the path of fiscal policy. This suggests that it is important 
to consider debt management and fiscal policy jointly. 

The model with long bonds helps to clarify the role of commitment in models of fiscal policy 
and incomplete markets. In the case of short bonds, the change in taxes needed to adjust to 
a shock and the promise to cut taxes at time of maturity are conjoined; what is observed is 
that taxes increase on impact much less if the government is in debt. 

In the case of long bonds these two effects are separated. The commitment to cut future 
taxes is time-inconsistent and also leads to a potentially very large state space of dimension 
2 1N  . Using the condensed PEA enables us to solve this model accurately with a much 
reduced state space allowing for the computation of non-linear numerical solutions. 

We also propose an alternative model of government policy, where a central bank 
determines interest rates and a fiscal authority separately decides on debt and taxes. This 
model of independent powers is of interest per se, as policy authorities may not be able to 
coordinate as much as is required to implement the full commitment solution. Also, it does 
not display policies where promises that will be implemented very far in the future matter for 
today’s solution. As such it serves to highlight the role of commitment and to look at a 
solution in which the state space is not enormous. 

We started with the case usually considered in the literature where government buys back 
the existing stock of debt each period. To get closer to actual practice we study the case 
where government bonds are left in circulation until maturity. This model gives rise to even 
more tax volatility due to debt management concerns: promises to cut taxes for interest 
twisting purposes are now permanent and policy creates N −period cycles, giving rise to 
even more tax volatility. 

There is little quantitative difference in fiscal policy or economic allocations at steady state 
second moments as the maturity of debt is varied, justifying the observation in Table 1 that 
similar countries may have very different average maturity of debt. The main difference is in 
the steady state level of debt: longer maturities imply lower asset accumulation because long 
bonds provide a volatile deficit if the government holds assets. However, for second 
moments computed with short-run moments we do find more tax volatility with long bonds. 

A number of further issues remain. We have throughout this paper assumed the government 
can issue only one bond and has varied its maturity. In order to fully understand debt 
management, we need to consider the case when the government can issue several bonds 
of different maturity and choose the optimal portfolio. Another important issue is to consider 
why governments do not buy back debt – presumably because of concerns over transaction 
costs. We have abstracted from crucial elements of actual debt management practice such 
as refinancing risk, rollover risk, transaction costs, default etc. We hope the methodologies of 
this paper will enable us to provide a detailed study of optimal debt management and to 
introduce some of these features in the analysis. 
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