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An option theoretic model for  
ultimate loss-given-default with systematic recovery risk  

and stochastic returns on defaulted debt 

Michael Jacobs, Jr1  

1. Introduction and Summary 

Loss-given-default (LGD),2 the loss severity on defaulted obligations, is a critical component 
of risk management, pricing and portfolio models of credit. This is among the three primary 
determinants of credit risk, the other two being the probability of default (PD) and exposure of 
default (EAD). However, LGD has not been as extensively studied, and is considered a much 
more daunting modeling challenge than other components, such as PD. Starting with the 
seminal work by Altman (1968), and after many years of actuarial tabulation by rating 
agencies, predictive modeling of PD is currently in a mature stage. The focus on PD is 
understandable, as traditionally credit models have focused on systematic components of 
credit risk which attract risk premia, and unlike PD, determinants of LGD have been ascribed 
to idiosyncratic borrower specific factors. However, now there is an ongoing debate about 
whether the risk premium on defaulted debt should reflect systematic risk, in particular 
whether the intuition that LGDs should rise in worse states of the world is correct, and how 
this could be refuted empirically given limited and noisy data (Carey and Gordy, 2007).  

The recent heightened focus on LGD is evidenced by the flurry of research into this relatively 
neglected area (Acharya et al [2007], Carey and Gordy [2007], Altman et al [2001, 2003, 
2005], Altman [2006], Gupton et al [2000, 2005], Araten et al [2004], Frye [2000 a,b,c, 2003], 
Jarrow [2001]). This has been motivated by the large number of defaults and near 
simultaneous decline in recovery values observed at the trough of the last credit cycle circa 
2000-2002, regulatory developments such as Basel II (BIS [2003, 2005, 2006], OCC et al 
[2007]) and the growth in credit markets. However, obstacles to better understanding and 
predicting LGD, including dearth of data and the lack of a coherent theoretical underpinning, 
have continued to challenge researchers. In this paper, we hope to contribute to this effort by 
synthesizing advances in financial theory to build a model of LGD that is consistent with a 
priori expectations and stylized facts, internally consistent and amenable to rigorous 
validation. In addition to answering the many questions that academics have, we further aim 
to provide a practical tool for risk managers, traders and regulators in the field of credit.  

LGD may be defined variously depending upon the institutional setting or modeling context, 
or the type of instrument (traded bonds vs. bank loans) versus the credit risk model (pricing 
debt instruments subject to the risk of default vs. expected losses or credit risk capital). In the 
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Office of the Comptroller of the Currency, One Independence Square, Suite 3144, Washington, DC 20024, 
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2  This is equivalent to one minus the recovery rate, or dollar recovery as a proportion of par, or EAD assuming 
all debt becomes due at default. We will speak in terms of LGD as opposed to recoveries with a view toward 
credit risk management applications.  
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case of bonds, one may look at the price of traded debt at either the initial credit event,3 the 
market values of instruments received at the resolution of distress4 (Keisman et al, 2000; 
Altman et al, 1996) or the actual cash-flows incurred during a workout.5 When looking at 
loans that may not be traded, the eventual loss per dollar of outstanding balance at default is 
relevant (Asarnow et al, 1995; Araten et al, 2004). There are two ways to measure the latter 
– the accounting LGD refers to nominal loss per dollar outstanding at default,6 while the 
economic LGD refers to the discounted cash flows to the time of default taking into 
consideration when cash was received. The former is used in setting reserves or a loan loss 
allowance, while the latter is an input into a regulatory or economic credit capital model.  

In this study we develop various theoretical models for ultimate loss-given-default in the 
Merton (1974) structural credit risk model framework. We consider an extension that allows 
for differential seniority within the capital structure, an independent recovery rate process, 
representing undiversifiable recovery risk, with stochastic drift. The comparative statics of 
this model are analyzed and compared to a baseline model, all of these in a framework that 
incorporates an optimal foreclosure threshold (Carey and Gordy, 2007). In the empirical 
exercise, we calibrate alternative models for ultimate LGD on bonds and loans having both 
trading prices at default and at resolution of default, utilizing an extensive sample of rated 
defaulted firms in the period 1987-2008 (Moody’s Ultimate Recovery Database™ - URD™), 
800 defaults (bankruptcies and out-of-court settlements of distress) that are largely 
representative of the US large corporate loss experience, for which we have the complete 
capital structures and can track the recoveries on all instruments to the time of default to the 
time of resolution. 

We find that parameter estimates vary significantly across models and recovery segments. 
estimated volatilities of the recovery rate processes, as well as of their random drifts, are 
found to increasing in seniority, in particular for bank loans as compared to bonds. We 
interpret this as reflecting greater risk in the ultimate recovery for higher ranked instruments 
having lower expected loss severities (or ELGDs). Analyzing the implications of our model for 
the quantification of downturn LGD, we find the later to be declining in expected LGD, higher 
for worse ranked instruments, increasing in the correlation between the process driving firm 
default and recovery on collateral, and increasing in the volatility of the systematic factor 
specific to the recovery rate process or the volatility of the drift in such. Finally, we validate 
the leading model derived herein in an out-of-time and out-of-sample bootstrap exercise, 
comparing it to a high-dimensional regression model, and to a non-parametric benchmark 
based upon the same data, where we find our model to compare favorably. We conclude that 
our model is worthy of consideration to risk managers, as well as supervisors concerned with 
advanced IRB under the Basel II capital accord.  

This paper is organized as follows. Section 2 reviews the literature, focusing on the treatment 
of LGD in theoretical credit models, both academic and practitioner. Section 3 presents the 
theoretical framework. Section 4 discusses comparative statics of the alternative models. 
Section 5 describes the econometric framework. Section 6 describes the data used in this 
study and presents the calibration analysis of structural model parameters. In Section 7 we 

                                                 
3  By default we mean either bankruptcy (Chapter 11) or other financial distress (payment default). In a banking 

context, this defined as synonymous with respect to non-accrual on a discretionary or non-discretionary basis. 
This is akin to the notion of default in Basel, but only proximate. 

4  Note that this may be either the value of pre-petition instruments received valued at emergence from 
bankruptcy, or the market values of new securities received in settlement of a bankruptcy proceeding or as the 
result of a distressed restructuring. 

5 Note that the former may viewed as a proxy to this, the pure economic notion. 
6  In the context of bank loans, this is the cumulative net charge-off as a percent of book balance at default (the 

net charge-off rate).  
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discuss the implications of our modeling framework for downturn LGD. In Section 8 we 
perform an out-of-sample validation of our model and two alternative benchmarks. Finally, 
Section 9 concludes and discusses directions for future research.  

2. Review of the literature 

In this section we will examine the way in which different types of theoretical credit risk 
models have treated LGD – assumptions, implications for estimation and application. Credit 
risk modeling was revolutionized by the approach of Merton (1974), who built a theoretical 
model in the option pricing paradigm of Black and Scholes (1973), which has come known to 
be the structural approach. Equity is modeled as a call option on the value of the firm, with 
the face value of zero coupon debt serving as the strike price, which is equivalent to 
shareholders buying a put option on the firm from creditors with this strike price. Given this 
capital structure, log-normal dynamics of the firm value and the absence of arbitrage, closed 
form solutions for the default probability and the spread on debt subject to default risk can be 
derived. The LGD can be shown to depend upon the parameters of the firm value process as 
is the PD, and moreover is directly related to the latter, in that the expected residual value to 
claimants is increasing (decreasing) in firm value (asset volatility or the level of 
indebtedness). Therefore, LGD is not independently modeled in this framework; this was 
addressed in much more recent versions of the structural framework (Frye [2000 a,b], Dev 
and Pykhtin [2002], Pykhtin [2003]). 

Extensions of Merton (1974) relaxed many of the simplifying assumptions of the initial 
structural approach. Complexity to the capital structure was added by Black and Cox (1976) 
and Geske (1977), with subordinated and interest-paying debt, respectively. The distinction 
between long- and short-term liabilities in Vasicek (1984) was the precursor to the KMV 
model. However, these models had limited practical applicability, the standard example being 
evidence of Jones, Mason and Rosenfeld (1984) that these models were unable to price 
investment-grade debt any better than a naïve model with no default risk. Further, empirical 
evidence in Franks and Touros (1989) showed that the adherence to absolute priority rules 
(APR) assumed by these models are often violated in practice, which implies that the 
mechanical negative relationship between expected asset value and LGD may not hold. 
Longstaff & Schwartz (1995) incorporate into this framework a stochastic term structure with 
a PD-interest rate correlation. Other extensions include Kim at al (1993) and Hull & White 
(2002), who examine the effect of coupons and the influence of options markets, 
respectively. 

Partly in response to this, a series of extensions ensued, the so-called “second generation” 
of structural form credit risk models (Altman, 2003). The distinguishing characteristic of this 
class of models is the relaxation of the assumption that default can only occur at the maturity 
of debt – now default occurs at any point between debt issuance and maturity when the firm 
value process hits a threshold level. The implication is that LGD is exogenous relative to the 
asset value process, defined by a fixed (or exogenous stochastic) fraction of outstanding 
debt value. This approach can be traced to the barrier option framework as applied to risky 
debt of Black and Cox (1976).  

All structural models suffer from several common deficiencies. First, reliance upon an 
unobservable asset value process makes calibration to market prices problematic, inviting 
model risk. Second, the limitation of assuming a continuous diffusion for the state process 
implies that the time of default is perfectly predictable (Duffie and Lando, 2001). Finally, the 
inability to model spread or downgrade risk distorts the measurement of credit risk. This gave 
rise to the reduced form approach to credit risk modeling (Duffie and Singleton, 1999), which 
instead of conditioning on the dynamics of the firm, posit exogenous stochastic processes for 
PD and LGD. These models include (to name a few) Litterman & Iben (1991), Madan & Unal 
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(1995), Jarrow & Turnbull (1995), Lando (1998) and Duffie (1998). The primitives 
determining the price of credit risk are the term structure of interest rates (or short rate), and 
a default intensity and an LGD process. The latter may be correlated with PD, but it is 
exogenously specified, with the link of either of these to the asset value (or latent state 
process) not formally specified. However, the available empirical evidence (Duffie and 
Singleton, 1999) has revealed these models deficient in generating realistic term structures 
of credit spreads for investment and speculative grade bonds simultaneously. A hybrid 
reduced – structural form approach of Zhou (2001), which models firm value as a jump 
diffusion process, has had more empirical success, especially in generating a realistic 
negative relationship between LGD and PD (Altman et al, 2006). 

The fundamental difference between reduced and structural form models is the 
unpredictability of defaults: PD is non-zero over any finite time interval, and the default 
intensity is typically a jump process (eg Poisson), so that default cannot be foretold given 
information available the instant prior. However, these models can differ in how LGD is 
treated. The recovery of treasury assumption of Jarrow & Turnbull (1995) assumes that an 
exogenous fraction of an otherwise equivalent default-free bond is recovered at default. 
Duffie and Singleton (1999) introduce the recovery of market value assumption, which 
replaces the default-free bond by a defaultable bond of identical characteristics to the bond 
that defaulted, so that LGD is a stochastically varying fraction of market value of such bond 
the instant before default. This model yields closed form expressions for defaultable bond 
prices and can accommodate the correlation between PD and LGD; in particular, these 
stochastic parameters can be made to depend on common systematic or firm specific 
factors. Finally, the recovery of face value assumption (Duffie [1998], Jarrow et al [1997]) 
assumes that LGD is a fixed (or seniority specific) fraction of par, which allows the use of 
rating agency estimates of LGD and transition matrices to price risky bonds.  

It is worth mentioning the treatment of LGD in credit models that attempt to quantify 
unexpected losses analogously to the value-at-risk (VaR) market risk models, so-called 
credit VaR models (Creditmetrics™ [Gupton et al, 1997], KMV CreditPortfolioManager™ 
[Vasicek, 1984], CreditRisk+™ [Credit Suisse Financial Products, 1997], 
CreditPortfolioView™ [Wilson, 1998]). These models are widely employed by financial 
institutions to determine expected credit losses as well as economic capital (or unexpected 
losses) on credit portfolios. The main output of these models is a probability distribution 
function for future credit losses over some given horizon, typically generated by simulation of 
analytical approximations, as it is modeled as highly non-normal (asymmetrical and fat-
tailed). Characteristics of the credit portfolio serving as inputs are LGDs, PDs, EADs, default 
correlations and rating transition probabilities. Such models can incorporate credit migrations 
(mark-to-market mode - MTM), or consider the binary default vs. survival scenario (default 
mode - DM), the principal difference being that in addition an estimated transition matrix 
needs to be supplied in the former case. Similarly to the reduced form models of single name 
default, LGD is exogenous, but potentially stochastic. While the marketed vendor models 
may treat LGD as stochastic (eg a draw from a beta distribution that is parameterized by 
expected moments of LGD), there are some more elaborate proprietary models that can 
allow LGD to be correlated with PD.  

We conclude our discussion of theoretical credit risk models and the treatment of LGD by 
considering recent approaches, which are capable of capturing more realistic dynamics, 
sometimes called “hybrid models”. These include Frye (2000a, 2000b), Jarrow (2001), 
Bakshi et al (2001), Jarrow et al (2003), Pykhtin (2003) and Carey & Gordy (2007). Such 
models are motivated by the conditional approach to credit risk modeling, credited to Finger 
(1999) and Gordy (2000), in which a single systematic factor derives defaults. In this more 
general setting, they share in common the feature that dependence upon a set of systematic 
factors can induce an endogenous correlation between PD & LGD. In the model of Frye 
(2000a, 2000b), the mechanism that induces this dependence is the influence of systematic 
factors upon the value of loan collateral, leading to a lower recoveries (and higher loss 
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severity) in periods where default rates rise (since asset values of obligors also depend upon 
the same factors). In a reduced form setting, Jarrow (2001) introduced a model of 
co-dependent LGD and PD implicit in debt and equity prices.7  

3. Theoretical model 

The model that we propose is an extension of Black and Cox (1976). The baseline mode 
features perpetual corporate debt, a continuous and a positive foreclosure boundary. The 
former assumption removes the time dependence of the value of debt, thereby simplifying 
the solution and comparative statics. The latter assumption allows us to study the 
endogenous determination of the foreclosure boundary by the bank, as in Carey and Gordy 
(2007). We extend the latter model by allowing the coupon on the loan to follow a stochastic 
process, accounting for the effect of illiquidity. Note that in this framework, we assume no 
restriction on asset sales, so that we do not consider strategic bankruptcy, as in Leland 
(1994) and Leland and Toft (1996). 

Let us assume a firm financed by equity and debt, normalized such that the total value of 
perpetual debt is 1, divided such that there is a single loan with face value  and a single 
class of bonds with a face value of 1  . The loan is senior to that bond, and potentially has 
covenants which permit foreclosure. The loan is entitled to a continuous coupon at a rate c, 
which in the baseline model we take as a constant, but may evolve randomly. Equity 
receives a continuous dividend, having a constant and a variable component, which we 
denote as tV  , where tV  is the value of the firm’s assets at time t. We impose the 

restriction that 0 r c   , where r is the constant risk-free rate. The asset value of the firm, 
net of coupons and dividends, follows a geometric Brownian motion with constant volatility :  

t
t

t t

dV C
r dt dZ

V V
 

 
    
    (3.1) 

Where in (3.1) we denote the fixed cash outflows per unit time as: 

 1C c         (3.2) 

Where in (3.2),   and  are the continuous coupon rate on the bond and dividend yield on 
equity, respectively. Default occurs at time t and is resolved after a fixed interval  , at which 
point dividend payments cease, but the loan coupon continues to accrue through the 

settlement period. At the point of emergence, loan holders receive   exp , tc V  


 , or the 

minimum of the legal claim or the value of the firm at emergence. We can value the loan at 
resolution, under risk neutral measure, using the standard Merton (1974) formula. Denote the 
total legal claim at default by: 

   exp 1D c    
.
 (3.3) 

This follows from the assumption that the coupon c on the loan with face value   continues 
to accrue at the contractual rate throughout the resolution period , whereas the bond with 
face value 1   does not. 

                                                 
7  Jarrow (2001) also has the advantage of isolating the liquidity premium embedded in defaultable bond 

spreads.  
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Thus far we have assumed that the senior bank creditors foreclose on the bank when the 
value of assets is Vt, where t is the time of default. However, this is not realistic, as firm value 
fluctuates throughout the bankruptcy or workout period, and we can think that there will be 
some foreclosure boundary (denoted  ) below which foreclosure is effectuated. 
Furthermore, in most cases there exists a covenant boundary, above which foreclosure 
cannot occur, but below which it may occur as the borrower is in violation of a contractual 
provision. For the time being, let us ignore the latter complication, and focus on the optimal 
choice of  by the bank. In the general case of time dependency in the loan valuation 

equation  | , , ,tF V r   , following Black and Cox (1976), we have to solve a second-order 

partial differential equation. Following Carey and Gordy (2007), we modify this such that the 
value of the loan at the threshold is not a constant, but simply equal to the recovery value of 
the loan at the default time. Second, we remove the time dependency in the value of the 
perpetual debt. It is shown in Carey and Gordy (2007) that under these assumptions, so long 

as there are positive and fixed cash flows to claimants other than the bank,  1 0    or 

0  , then there exists a finite and positive solution * , the optimal foreclosure boundary. 

We model undiversifiable recovery risk by introducing a separate process for recovery on 
debt, tR . This can be interpreted as the state of collateral underlying the loan or bond. tR  is a 

geometric Brownian process that depends upon the Brownian motion that drives the return 
on the firm’s assets tZ , an independent Brownian motion tW and a random instantaneous 

mean t :  

t
t t t

t

dR
dt dZ dW

R
    

  
(3.6) 

 t t td dt dB      
  

(3.7) 

Where the volatility parameter   represents the sensitivity of recovery to the source of 
uncertainty driving asset returns (or the “systematic factor”), implying that the instantaneous 

correlation between asset returns and recovery is given by 
1 t t

t
t t

dA dR
Corr

dt A R


 
  

 
. On 

the other hand, the volatility parameter  represents the sensitivity of recovery to a source of 
uncertainty that is particular to the return on collateral, also considered a “systematic factor”, 
but independent of the asset return process. The third source of recovery uncertainty is given 
by (3.7), where we model the instantaneous drift on the recovery by an Orhnstein-Uhlenbeck 
mean-reverting process, with   the speed of mean-reversion,   the long-run mean,   the 

constant diffusion term, and tB  is a standard Weiner process having instantaneous 

correlation with the source of randomness in the recovery process, given heuristically by 

 1 ,t t tCorr dB dW
dt

  . The motivation behind this specification is the overwhelming 

evidence that the mean LGD is stochastic.  

Economic LGD on the loan is given by following expectation under physical measure: 

 , | , , , , , , ,P
t tLGD R c           

   
2 2exp

1 min exp , exp
2t t t t t

c
E c R Z W 

       
  

     
                
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     exp

ˆ1 , | exp , , ,t
t t t

c
B R c 

 
     




 
  

(3.8) 

Where the modified option theoretic function  B   is given by: 

         ' 'ˆ, | exp , , , expt t t t tB R c R d c d              
  

(3.9) 

having arguments to the Gaussian distribution function  
2

21
2

z u

u

z e du






   : 

 
' 21 1 ˆlog

exp 2ˆ
t

t

R
d

c 


  
  

                  

(3.10) 

A well-known result (Bjerksund, 1991) is that the maturity-dependent volatility ˆ  is given by: 

   
2

22 2 2 2 2 2
2

2 1ˆ 2 1 1
2

e e 



   


   

             
    

 
     

                        

 

 (3.11) 

The recovery to the bondholders is the expectation of the minimum of the positive part of the 

difference in the recovery and face value of the loan  exptR c  


    and the face value of 

the bond B, which is structurally identical to a compound option valuation problem (Geske, 
1977):  

 , , | , , , , , , , ,P
B t t tLGD V R c             

   
2 2exp ,

1 min ,max exp exp , ,0
2t t t t tE B R Z W c

B


   

         

                        

 

 (3.12) 

where 
2 2

,exp
2t t t t tR R Z W

    
      

  
     

  
 is the value of recovery on the 

collateral at the time of resolution. We can easily write down the closed-form solution for the 
LGD on the bond according to the well-known formula for a compound option, where here 

the “outer option” is a put, and the “inner option” is a call. Let *R  be the critical level of 
recovery such that the holder of the loan is just breaking even: 

   *exp 1 , | , , , , , , ,P
tc LGD R c             

  
(3.13)  

where   is the time-to-resolution for the loan, which we assume to be prior to that for the 

bond, B  . Then the solution is given by: 

     exp
, | , , , , , , , , , 1 , | , , , , , , , , ,bP

B t t B t t BLGD R c R c
B  


                   


  

 

 
(3.14)  

 , | , , , , , , , , ,t t BR c              
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     2 2exp , ; , ; expt t
B B

B a b R a b c a 


    
     

   
                 

   
 (3.15) 

2
*

1 1 ˆlog
2ˆ

t
t

R
a

R  
 

  
 

         
      

(3.16) 

21 1 ˆlog
2ˆ

t
B t

B

R
b

B 


  
 

         
      

(3.17) 

Where  2 , ; XYX Y   is the bivariate normal distribution function for Brownian increments 

the correlation parameter is given by X
XY

Y

T

T
   for respective “expiry times” XT  and YT for 

X and Y, respectively. Note that this assumption, which is realistic in that we observe in the 
data that on average earlier default on the bond even if the emerges from bankruptcy or 
resolve a default at a single time (which in addition is random), is matter of necessity in the 

log-normal setting in that the bivariate normal distribution is not defined for 1XY




   in 

the case that X YT T     

We can extend this framework to arbitrary tranches of debt, such as for a subordinated issue, 
in which case we follow the same procedure in order to arrive at an expression that involves 
trivariate cumulative normal distributions. In general, a debt issue that is subordinated to the 
dth degree results in a pricing formula that is a linear combination of d+1 variate Gaussian 
distributions. These formulae become cumbersome very quickly, so for the sake of brevity 
we refer the interested reader to Haug (2006) for further details.  

4. Comparitive statics  

In this section we discuss and analyze the sensitivity of ultimate LGD in to various key 
parameters. In Figures 1 through 5 we examine the sensitivity of the ultimate LGD in the two-
factor model of Section 3, incorporating the optimal foreclosure boundary. In Figure 1, we 
look at the ultimate LGD on the bond and the loan for three different settings of the factor 
loading of the recovery rate process on the systematic factor in the firm value processes 
(   = 0.05, 0.45 and 0.9), while fixing other parameters at “reasonable” values motivated by 

prior literature (drift in recovery = 0.08, face value of loan  = 0.5, coupon rate on loan 
c = 0.06, LGD side volatility  = 0.3, volatility of recovery return drift process  = 0.5, speed 
of mean reversion in LGD return  = 0.5, correlation between LGD side systematic factor 
and random factor in recovery rate drift  =0.3, and time-to-resolution  =1). We observe that 
ultimate LGD is monotonically decreasing at increasing rate in value of the firm at default, 
that this increasing in the correlation between the PD and LGD side systematic factors, and 
that this is also uniformly higher for bonds than for loans. In Figure 2 we show the ultimate 
LGD as a function of the volatility in the recovery rate process attributable to the LGD side 
systematic factor  , fixing firm value at default at tV = 0.5. We observe that ultimate LGD 

increases at an increasing rate in this parameter, that for higher correlation between firm 
asset value and recovery value return the LGD is higher and increases at a faster rate, and 
that for bonds these curves lie above and increase at a faster rate. In Figure 3 we show the 
ultimate LGD as a function of the volatility   in the recovery rate process attributable to the 
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PD side systematic factor, fixing LGD side volatility = 0.5, for different firm values at default 

at  0.3,0.5,0.8tV  . We observe that ultimate LGD increases at an increasing rate in this 

parameter, that for lower firm asset values the LGD is higher but increases at a slower rate, 
and that for bonds these curves lie above and increase at a lower rate. In Figure 4 we show 
the ultimate LGD as a function of the volatility   of the stochastic drift in the recovery rate 
process, for three different settings of the factor loading of the recovery rate process on the 
systematic factor in the firm value processes (  = 0.05, 0.45 and 0.9). We observe that 
ultimate LGD in this parameter decreases at a decreasing rate, although the sensitivity is not 
great (especially for loans), and that as expected the curves lie above for greater PD-LGD 
correlation and for bonds as compared to loans. Finally, in Figure 5 we fix 0.3  and vary 
 , the coefficient of mean reversion in the drift process for the recovery rate, and observe 
that ultimate LGD is increasing in this parameter, at a decreasing rate and having a 
discontinuity for these parameter settings; and as expected, for higher levels of default and 
recovery correlation, or for bonds as compared to loans, the curves lie everywhere above.  
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Figure 1: Ultimate Loss-Given-Default vs. Value of Firm at Default

Stochastic Collateral & Drift Merton Model
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Figure 2: Ultimate Loss-Given-Default vs. Sensitivity of Recovery Process to LGD Side Systematic Factor

Stochastic Collateral & Drift Merton Model
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Figure 3: Ultimate Loss-Given-Default vs. Sensitivity of Recovery Process to PD Side Systematic Factor

Stochastic Collateral & Drift Merton Model
beta

L
G

D
(b

e
ta

|v
=

{.
3

,.5
,.8

}.
a

lp
h

a
=

.0
8

,la
m

=
.5

,c
=

.0
6

,e
ta

=
.3

,k
a

p
=

.5
,k

ce
=

.3
,ta

u
=

1
)

Loan-V=0.3

Loan-V=0.5

Loan-V=0.8

Bond-V=0.3

Bond-V=0.5

Bond-V=0.8

 
 

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4: Ultimate Loss-Given-Default vs. Volatility in the Drift of the Recovery Rate Process

Stochastic Collateral & Drift Merton Model
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Figure 5: Ultimate Loss-Given-Default vs. Mean-Reversion Recovery Drift Process 

Stochastic Collateral & Drift Merton Model
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5. Empirical analysis: calibration of models  

In this section we describe our strategy for estimating parameters of the different models for 
LGD by full-information maximum likelihood (FIML.) This involves a consideration of the LGD 
implied in the market at time of default D

it  for the ith instrument in recovery segment s, 

denoted 
, , D

ii s t
LGD . This is the expected, discounted ultimate loss-given-default 

, , E
ii s t

LGD  at 

time of emergence E
it as given by any of our models m,  , ,

P
s m s mLGD θ  over the resolution 

period , ,
E D

i s i st t :  

 
 

, ,

, ,
, ,, ,

,1

E
i

D E D
i i s i s

P
t i s t P

s m s mi s t t tD
i s

E LGD
LGD LGD

r


 
  


θ

  (5.1) 

where ,s mθ is the parameter vector for segment s under model m, expectation is taken with 

respect to physical measure P, discounting is at risk adjusted rate appropriate to the 

instrument ,
D

i sr and it is assumed that the time-to-resolution , ,
E D
i s i st t  is known.  

In order to account for the fact that we cannot observe expected recovery prices ex ante, as 
only by coincidence would they coincide with expectations, we invoke market rationality to 
postulate that for a segment homogenous with respect to recovery risk the difference 
between expected and average realized recoveries should be small. We formulate this by 
defining the normalized forecast error as:  

 , , , ,
,

, ,, ,

E
i

D
i

P
s m s m i s t

i s E D
i s i si s t

LGD LGD

LGD t t





 

θ


  (5.2) 

This is the forecast error as a proportion of the LGD implied by the market at default (a “unit-
free” measure of recovery uncertainty) and the square root of the time-to-resolution. This is a 
mechanism to control for the likely increase in uncertainty with time-to-resolution, which 
effectively puts more weight on longer resolutions, increasing the estimate of the loss-
severity. The idea behind this is that more information is revealed as the emergence point is 
approached, hence a decrease in risk. Alternatively, we can analyze 

 , , , ,
,

, ,

E
i

D
i

P
s m s m i s t

i s

i s t

LGD LGD

LGD





θ
 , the forecast error that is non-time adjusted, and argue that 

its standard error is proportional to , ,
E D
i s i st t , which is consistent with an economy in which 

information is revealed uniformly and independently through time (Miu and Ozdemir, 2005). 
Assuming that the errors ,i s in (5.2) are standard normal,8 we may use full-information 
maximum likelihood (FIML), by maximizing the log-likelihood (LL) function:  

                                                 
8  If the errors are i.i.d and from symmetric distributions, then we can still obtain consistent estimates through 

ML, which has the interpretations as the quasi-ML estimator. 
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  (5.3) 

This turns out to be equivalent to minimizing the squared normalized forecast errors: 

  
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, , , , 2
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  (5.4)  

We may derive a measure of uncertainty of our estimate by the ML standard errors from the 
Hessian matrix evaluated at the optimum:  

,
,

, ,

1
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s m

s m

s m s m

T
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θ

θ θ

Σ
θ θ

  (5.5) 

6. Data and estimation results  

We summarize basic characteristics of our data-set in Tables 1 and 2, and the maximum 
likelihood estimates are shown in Table 3. These are based upon our analysis of defaulted 
bonds and loans in the Moody’s Ultimate Recovery (MURD™) database release as of 
August, 2009. This contains the market values of defaulted instruments at or near the time of 
default,9 as well as the values of such pre-petition instruments (or of instruments received in 
settlement) at the time of default resolution. This database is largely representative of the 
U.S. large-corporate loss experience, from the mid-1980’s to the present, including most of 
the major corporate bankruptcies occurring in this period. 

Table 1 shows summary statistics of various quantities of interest according to instrument 
type (bank loan, bond, term loan or revolver) and default type (bankruptcy under Chapter 11 
or out-of-court renegotiation). First, we take the annualized return or yield on defaulted debt 
from the date of default (bankruptcy filing or distressed renegotiation date) to the date of 
resolution (settlement of renegotiation or emergence from Chapter 11), henceforth 
abbreviated as “RDD”. Second, the trading price at default implied LGD (“TLGD”), or par 
minus the trading price of defaulted debt at the time of default (average 30-45 days after 
default) as a percent of par. Third, our measure of ultimate loss severity, the dollar loss-
given-default on the debt instrument at emergence from bankruptcy or time of final 
settlement (“ULGD”), computed as par minus either values of pre-petition or settlement 
instruments at resolution. We also summarize two additional variables in Table 1, the total 
instrument outstanding at default, and the time in years from the instrument default date to 
the time of ultimate recovery. 

                                                 
9  This an average of trading prices from 30 to 45 days following the default event. A set of dealers is polled 

every day and the minimum /maximum quote is thrown out. This is done by experts at Moody’s. 
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The preponderance of this sample is made up of bankruptcies as opposed to out-of-court 
settlements, 1,322 out of a total of 1,398 instruments. We note that out-of-court settlements 
have lower LGDs by either the trading or ultimate measures, 37.7% and 33.8%, as compared 
to Chapter 11’s, 55.7% and 51.6%, respectively; and the heavy weight of bankruptcies are 
reflected in how close the latter are to the overall averages, 54.7% and 50.6% for TLGD and 
ULGD, respectively. Interestingly, not only do distressed renegotiations have lower loss 
severities, but such debt performs better over the default period than bankruptcies, RDD of 
37.3% as compared to 28.1%, as compared to an overall RDD of 28.6%. We also note that 
the TLGD is higher than the ULGD by around 5% across default and instrument types, 
55.7% (37.7%) as compared to 51.6% (33.8%) for bankruptcies (renegotiations). We also 
see that loans have better recoveries by both measures as well higher returns on defaulted 
debt, respective average TLGD, ULGD and RDD 52.5%, 49.3% and 32.2%. I 

In Table 2 we summarize ULGD, TLGD and RDD by major collateral categories and seniority 
classes. We observe for this sample that either LGD measure appears to weakly exhibit the 
usual decreasing pattern observed in the literature with respect to higher seniority class, but 
this relationship is not consistent with respect to collateral categories. On the other hand, 
while also not monotonic, we a somewhat stronger relationship for RDD, as these tend to be 
higher for either better secured or more highly ranked instruments. We have average TLGD 
(ULGD) of 53.3% (49.3%), 51.6% (35.0%), 56.0% (38.0%), 58.5% (36.5%) and 65.8% 
(33.5%) for Revolving Credit/Term Loan, Senior Secured Bonds, Senior Unsecured Bonds, 
Senior Subordinated Bonds and Junior Subordinated Bonds, respectively. The 
corresponding averages of RDD in descending order of seniority class are 32.2%, 36.6%, 
23.8%, 33.2% and 15.6% - an overall decreasing albeit non-monotonic pattern. On the other 
hand, for this particular sample and segmentation of collateral codes, we fail to see much of 
a rank ordering as we might have expected. We have average TLGD (ULGD) of 66.5% 
(65.0%), 41.6% (32.9%), 50.6% (47.6%), 61.6% (48.6%), 59.3% (59.4%) and 57.4% 
(51.46%) for Cash, Accounts Receivables & Guarantees, Inventory/Most Assets & 
Equipment, All Assets & Real Estate, Non-Current Assets & Capital Stock, PPE/Second Lien 
and Unsecured/Other Illiquid Collateral, respectively. Even just focusing upon the split 
between secured and unsecured, we fail to see much (any) of a difference in TLGD (ULGD), 
57.58% vs. 53.40% (37.69% vs. 36.13%), respectively. The corresponding averages of RDD 
in descending order of collateral quality are: 22.6%, 33.2%, 33.8%, 46.2%, 29.0% and 24.1% 
- a humped shaped pattern. However, RDD is higher for secured as compared to unsecured, 
34.5% vs. 3.6%, respectively. 
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Table 1 

Characteristics of loss-given-default and return on  
defaulted debt observations by default and instrument type  

(Moody's Ultimate Recovery Database 1987-2009) 

Bankruptcy Out-of-Court Total 

  
Count Average 

Standard 
Error of 

the Mean
Count Average

Standard 
Error of 

the Mean
Count Average 

Standard 
Error of 

the Mean

Return on 
Defaulted Debt1 28.32% 3.47% 45.11% 19.57% 29.19% 3.44%

LGD at Default2 55.97% 0.96% 38.98% 3.29% 55.08% 0.93%

Discounted LGD3 51.43% 1.15% 33.89% 3.05% 50.52% 1.10%

Time-to-
Resolution4 1.7263 0.0433 0.0665 0.0333 1.6398 0.0425

B
on

ds
 a

nd
 T

er
m

 L
oa

ns
 

Principal at 
Default5 

1072 

207'581 9'043

59 

416'751 65'675

1131 

218'493 9'323

Return on 
Defaulted Debt1 25.44% 3.75% 44.22% 21.90% 26.44% 3.74%

LGD at Default2 57.03% 1.97% 37.02% 5.40% 55.96% 1.88%

Discounted LGD3 52.44% 1.30% 30.96% 3.00% 51.30% 1.25%

Time-to-
Resolution4 1.8274 0.0486 0.0828 0.0415 1.7346 0.0424

B
on

ds
 

Principal at 
Default5 

837 

214'893 11'148

47 

432'061 72'727

884 

226'439 11'347

Return on 
Defaulted Debt1 26.93% 7.74% 10.32% 4.61% 25.88% 7.26%

LGD at Default2 54.37% 1.96% 33.35% 8.10% 53.03% 1.93%

Discounted LGD3 52.03% 2.31% 33.33% 7.63% 50.84% 2.23%

Time-to-
Resolution4 1.4089 0.0798 0.0027 0.0000 1.3194 0.0776

R
ev

ol
ve

rs
 

Principal at 
Default5 

250 

205'028 19'378

17 

246'163 78'208

267 

207'647 18'786

Return on 
Defaulted Debt1 32.57% 5.71%

26.161
% 

18.872
% 32.21% 5.49%

LGD at Default2 53.31% 9.90% 38.86% 7.22% 52.50% 3.21%

Discounted LGD3 50.00% 1.68% 38.31% 5.79% 49.34% 2.25%

Time-to-
Resolution4 1.3884 0.0605 0.0027 0.0000 1.3102 0.0816

Lo
an

s 

Principal at 
Default5 

485 

193'647 11'336

29 

291'939 78'628

514 

199'192 16'088
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Table 1 (cont) 

Characteristics of loss-given-default and return on  
defaulted debt observations by default and instrument type  

(Moody's Ultimate Recovery Database 1987-2009) 

Bankruptcy Out-of-Court Total 

  Count Average

Standard 
Error of 

the Mean Count Average

Standard 
Error of 

the Mean Count Average

Standard 
Error of 

the Mean

Return on 
Defaulted Debt1 28.05% 3.17% 37.33% 15.29% 28.56% 3.11%

LGD at Default2 55.66% 0.86% 37.72% 3.12% 54.69% 0.84%

Discounted LGD3 51.55% 1.03% 33.76% 2.89% 50.58% 0.99%

Time-to-
Resolution4 1.6663 0.0384 0.0522 0.0260 1.5786 0.0376

T
ot

al
 

Principal at 
Default5 

1322 

207'099 8'194

76 

378'593 54'302

1398 

216'422 8'351

1  Annualized return or yield on defaulted debt from the date of default (bankruptcy filing or 
distressed renegotiation date) to the date of resolution (settlement of renegotiation or emergence 
from Chapter 11).    2  Par minus the price of defaulted debt at the time of default (average 30-45 
days after default) as a percent of par.    3  The ultimate dollar loss-given-default on the defaulted 
debt instrument = 1 - (total recovery at emergence from bankruptcy or time of final settlement)/ 
(outstanding at default). Alternatively, this can be expressed as (outstanding at default - total 
ultimate loss)/(outstanding at default).    4  The total instrument outstanding at default.    5  The time 
in years from the instrument default date to the time of ultimate recovery. 
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Table 2 

Loss-given-default by seniority ranks and collateral types  

(Moody's Ultimate Recovery Database 1987-2009) 

Collateral Type 

Cash, 
Accounts 

Receivables 
& 

Guarantees 

Inventory, 
Most 

Assets & 
Equipment 

All Assets 
& Real 
Estate 

Non-
Current 

Assets & 
Capital 
Stock 

PPE & 
Second 

Lien 

Unsecured 
& Other 
Illiquid 

Collateral

Total 
Unsecured 

Total 
Secured 

Total 
Collateral

Count 39 8 367 38 29 33 32 482 514 

Average  66.81% 46.60% 51.95% 59.94% 55.02% 45.63% 46.25% 53.79% 53.31% 
LGD at 
Default1 Standard 

Error  4.44% 11.79% 1.70% 5.27% 6.08% 5.07% 5.20% 1.47% 1.42% 

Average  64.38% 56.03% 48.58% 50.62% 56.53% 30.70% 31.78% 50.51% 49.34% 
Ultimate 
LGD2 Standard 

Error  5.09% 13.85% 1.91% 6.10% 6.88% 6.17% 5.20% 1.47% 1.42% 

Average  22.57% -5.80% 33.49% 35.68% 46.07% 22.39% 19.77% 33.03% 32.21% 

R
ev

ol
vi

ng
 C

re
di

t 
/ T

er
m

 L
oa

n 

Return on 
Defaulted 
Debt3 

Standard 
Error 18.20% 30.27% 6.89% 15.01% 27.64% 8.12% 7.93% 5.83% 5.49% 

Count 2 38 41 35 7 142 3 139 142 

Average  61.50% 40.19% 36.02% 62.99% 61.24% 51.67% 50.73% 51.59% 51.57% 
LGD at 
Default1 Standard 

Error  36.50% 5.50% 5.03% 4.71% 11.63% 2.48% 23.79% 2.76% 2.74% 

Average  76.81% 23.87% 36.67% 46.70% 60.32% 49.68% 50.15% 34.88% 35.04% 
Ultimate 
LGD2 Standard 

Error  19.39% 3.90% 5.61% 5.71% 12.68% 3.19% 28.95% 2.96% 2.94% 

Average  23.86% 47.53% 35.03% 55.99% 14.33% 17.44% -27.66% 38.02% 36.63% S
en
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r 
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Return on 
Defaulted 
Debt3 

Standard 
Error 40.63% 7.18% 22.04% 20.10% 27.41% 6.34% 36.65% 9.05% 8.92% 

Count 0 0 1 0 1 459 452 9 461 

Average  0.00% 0.00% 85.00% N/A 80.00% 55.83% 55.94% 56.63% 55.96% 
LGD at 
Default1 Standard 

Error  N/A N/A N/A N/A N/A 1.42% 1.43% 10.36% 1.42% 

Average  0.00% 0.00% 78.76% N/A 74.25% 48.33% 38.14% 32.03% 38.00% 
Ultimate 
LGD2 Standard 

Error  N/A N/A N/A N/A N/A 1.78% 1.79% 10.68% 1.77% 

Average  0.00% 0.00% 86.47% n 119.64% 23.40% 23.71% 25.62% 23.75% S
en

io
r 

U
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ed
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Return on 
Defaulted 
Debt3 

Standard 
Error N/A N/A N/A N/A N/A 4.80% 4.86% 22.61% 4.78% 

Count 0 0 1 0 1 159 158 3 161 

Average  0.00% N/A 85.00% N/A 90.50% 58.09% 57.98% 83.46% 58.48% 
LGD at 
Default1 Standard 

Error  N/A N/A N/A N/A N/A 2.48% 2.50% 4.58% 2.47% 

Average  N/A N/A 74.72% N/A 97.74% 54.51% 36.50% 40.47% 36.46% 
Ultimate 
LGD2 Standard 

Error  N/A N/A N/A N/A N/A 2.89% 2.90% 23.36% 2.87% 

Average  0.00% N/A 57.45% N/A -45.98% 33.57% 31.01% 150.30% 33.23% 
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Return on 
Defaulted 
Debt3 

Standard 
Error N/A N/A N/A N/A N/A 10.44% 10.18% 147.62% 10.32% 
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Table 2 (cont) 

Loss-given-default by seniority ranks and collateral types  

(Moody's Ultimate Recovery Database 1987-2009) 

Collateral Type 

Cash, 
Accounts 

Receivables 
& 

Guarantees 

Inventory, 
Most 

Assets & 
Equipment

All Assets 
& Real 
Estate 

Non-
Current 

Assets & 
Capital 
Stock 

PPE & 
Second 

Lien 

Unsecured 
& Other 
Illiquid 

Collateral 

Total 
Unsecured 

Total 
Secured 

Total 
Collateral

Count 0 1 0 0 0 119 117 3 120 

Average  N/A 27.33% 0.00% N/A N/A 66.15% 66.58% 37.42% 65.81% 
LGD at 
Default1 Standard 

Error  N/A N/A N/A N/A N/A 2.50% 2.48% 22.25% 2.50% 

Average  N/A 20.15% 0.00% N/A N/A 65.36% 33.62% 32.77% 33.54% 
Ultimate 
LGD2 Standard 

Error  N/A N/A N/A N/A N/A 3.06% 3.11% 18.92% 3.06% 

Average  N/A 72.13% 0.00% N/A N/A 15.11% 15.74% 9.49% 15.59% 

Ju
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Return on 
Defaulted 
Debt3 

Standard 
Error N/A N/A N/A N/A N/A 10.93% 11.11% 31.36% 10.85% 

Count 41 28 407 79 66 777 762 636 1398 

Average  66.53% 41.57% 50.55% 61.56% 59.31% 57.41% 57.58% 53.40% 55.66% 
LGD at 
Default1 Standard 

Error  4.41% 6.18% 1.63% 3.39% 3.86% 1.09% 1.10% 1.28% 0.84% 

Average  64.98% 32.93% 47.60% 48.58% 59.43% 51.46% 37.69% 36.13% 36.99% 
Ultimate 
LGD2 Standard 

Error  4.90% 5.99% 1.82% 3.99% 4.28% 1.35% 1.37% 1.43% 0.99% 

Average  22.63% 33.17% 33.82% 46.22% 28.96% 24.12% 34.46% 23.63% 28.56% 

T
ot
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Return on 
Defaulted 
Debt3 

Standard 
Error 17.36% 11.74% 6.56% 12.02% 13.90% 3.94% 3.97% 4.89% 3.11% 

1  Par minus the price of defaulted debt at the time of default (average 30-45 days after default) as a percent of par.    2  The 
ultimate dollar loss-given-default on the defaulted debt instrument = 1 - (total recovery at emergence from bankruptcy or time 
of final settlement)/(outstanding at default). Alternatively, this can be expressed as (outstanding at default - total ultimate 
loss)/(outstanding at default).    3  Annualized return or yield on defaulted debt from the date of default (bankruptcy filing or 
distressed renegotiation date) to the date of resolution (settlement of renegotiation or emergence from Chapter 11). 

 

In Table 3 we present the full-information maximum likelihood estimation (FIML) results of 
the leading model for ultimate LGD derived in this paper, the two-factor structural model of 
ultimate loss-given-default, with systematic recovery risk and random drift (2FSM-SR&RD) 
on the recovery process.10 The model is estimated along with the optimal foreclosure 
boundary constraint.  

We first discuss the MLE point estimates of the parameters governing the firm value process 
and default risk, or the “PD-side”. Regarding the parameter , which is the volatility of the 
firm-value process governing default, we observe that estimates are decreasing in seniority 
class, ranging from 9.1% to 4.3% from subordinated bonds to senior loans. As standard 
errors range in 1% to 2%, increasing in seniority rank, these differences across seniority 
classes and models are generally statistically significant. Regarding the MLE point estimates 
of the parameter  , which is the drift of the firm-value process governing default, we 
observe estimates are increasing in seniority class, ranging from 9.6% to 18.6% from 
subordinated bonds to loans, respectively. 

                                                 
10  Estimates for the baseline Merton structural model (BMSM) and for the Merton structural model with 

stochastic drift (MSM-SD) are available upon request.  
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Table 3 

Full information maximum likelihood estimation of option theoretic two-factor structural model of ultimate loss-given-default  
with optimal foreclosure boundary, systematic recovery risk and random drift in the recovery process 

(Moody's Ultimate Recovery Database 1987-2009) 

Recovery Segment Parameter σ1 μ2 β3 ν4 σR5  πRβ6 πRν7 (βσ)0.5 κα8 α9 ηα10 ς11 

Est. 4.32% 18.63% 18.16% 36.83% 41.06% 19.55% 80.45% 12.82% 3.96% 37.08% 48.85% 20.88% 
Revolving Credit / Term Loan 

Std. Err. 0.5474% 0.9177% 0.7310% 1.3719%    0.4190% 0.0755% 4.2546% 3.2125% 0.9215% 

Est. 5.47% 16.99% 16.54% 30.41% 34.62% 22.83% 77.17% 11.64% 4.40% 33.66% 44.43% 18.99% 
Senior Secured Bonds 

Std. Err. 0.5314% 0.8613% 0.6008% 1.3104%    0.7448% 0.0602% 3.5085% 2.6903% 0.8297% 

Est. 6.82% 14.16% 13.82% 24.38% 28.02% 24.30% 75.70% 9.71% 5.50% 28.07% 37.04% 15.83% 
Senior Unsecured Bonds 

Std. Err. 0.5993% 1.0813% 1.3913% 1.9947%    0.6165% 0.0281% 2.8868% 2.2441% 0.6504% 

Est. 8.19% 11.33% 12.02% 17.35% 21.11% 32.43% 67.57% 7.76% 4.42% 22.45% 29.68% 12.69% 
Senior Subordinated Bonds 

Std. Err. 0.6216% 1.0087% 1.0482% 1.0389%    0.9775% 0.0181% 2.0056% 2.0132% 1.0016% 

Est. 9.05% 9.60% 10.24% 12.37% 16.06% 40.66% 59.34% 5.97% 3.34% 18.80% 18.69% 9.43% 

S
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Subordinated Bonds 
Std. Err. 0.6192% 1.0721% 1.0128% 1.0771%    0.9142% 0.0106% 2.0488% 2.0014% 1.0142% 

Value Log-Likelihood Function -371.09 

Degrees of Freedon 1391 

P-Value of Likelihood Ratio Statistic  4.69E-03 

Area Under ROC Curve 93.14% 

Komogorov-Smirnov Stat. (P-Val.) 2.14E-08 

McFadden Pseudo R-Squared 72.11% 
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Hoshmer-Lemeshow Chi-Squared (P-Values) 0.63 

1  The volatility of the firm-value process governing default.    2  The drift of the firm-value process governing default.    3  The sensitivity of the recovery-rate process to the systematic governing 
default in (or the component of volatility in the recovery process due to PD-side systematic risk).    4  The sensitivity of the recovery-rate process to the systematic governing collateral value (or the 
component of volatility in the recovery process due to LGD-side systematic risk).    5  The total volatility of the recovery rate process: sqrt(β2+ν2).    6  Component of total recovery variance 
attributable to PD-side (asset value) uncertainty: β2/(β2+ν2).    7  Component of total recovery variance attributable to LGD-side (collateral value) uncertainty: ν2/(β2+ν2).    8  The speed of the mean-
reversion in the random drift in the recovery rate process.    9  The long-run mean of the random drift in the recovery arte process.    10  The volatility of the random drift in the recovery rate 
process.    11  The correlation of the random processes in drift of and the level of the recovery rate process. 
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These too are statistically significant across seniorities. The fact that we are observing 
different estimates of a single firm value process across seniorities is evidence that models 
which attribute identical default risk across different instrument types are misspecified – in 
fact, we are measuring lower default risk (i.e., lower asset value volatility and greater drift in 
firm-value) in loans and senior secured bonds as compared to unsecured and subordinated 
bonds.  

A key result regards the magnitudes and composition of the components of recovery volatility 
across maturities inferred from the model calibration. The MLE point estimates of the 
parameter  , the sensitivity of the recovery-rate process to the systematic factor governing 
default (or due to PD-side systematic risk), increases in seniority class, from 10.2% for 
subordinated bonds to 18.2% senior bank loans. On the other hand, estimates of the 
parameter , the sensitivity of the recovery-rate process to the systematic factor governing 
collateral value (or due to LGD-side systematic risk), are greater than   across seniorities, 
and similarly increases in from 12.4% for subordinated bonds to 36.8% for bank loans. This 
monotonic increase in both   and   as we move up in the hierarchy of the capital structure 
from lower to higher ranked instruments has the interpretation of a greater sensitivity in the 
recovery rate process attributable to both systematic risks, implying that total recovery 

volatility 2 2
R     increases from higher to lower ELGD instruments, from 16.1% for 

subordinated bonds to 41.1% for senior loans. However, we see that the proportion of the 
total recovery volatility attributable to systematic risk in collateral (firm) value, or the LGD 
(PD) side, is increasing (decreasing) in seniority from 59.3% to 80.5% (40.7% to 19.6%) from 
subordinated bonds to senior bank loans. Therefore, more senior instruments not only exhibit 
greater recovery volatility than less senior instruments, but a larger component of this 
volatility is driven by the collateral rather than the asset value process.  

The next set of results concern the random drift in the recovery rate process. The MLE point 
estimates of the parameter  , the speed of the mean-reversion in, is hump-shaped in 

seniority class, ranging from 3.3% subordinated bonds, to 5.5% for senior unsecured bonds, 
to 4.0% for loans, respectively. Estimates of the parameter , the long-run mean of the 
random drift in the recovery rate process, increase in seniority class from 18.8% for 
subordinated bonds to 37.1% for senior bank loans. This monotonic increase in  as we 
move from lower to higher ranked instruments has the interpretation of greater expected 
return of the recovery rate process inferred from lower ELGD (or greater expected recovery) 
instruments as we move up in the hierarchy of the capital structure. We see that the volatility 
of the random drift in the recovery rate process  , increases in seniority class, ranging from 

18.7% to 48.9% from subordinated bonds to senior loans, respectively. The monotonic 
increase in   as we move from lower to higher ranked instruments has the interpretation of 

greater volatility in expected return of the recovery rate process inferred from lower ELGD (or 
greater expected recovery) instruments as we move up in the hierarchy of the capital 
structure. Finally, estimates of the parameter , the correlation of the random processes in 
drift of and the level of the recovery rate process, increases in seniority class from 9.4% for 
subordinated bonds to 20.9% for senior bank loans.  

Finally with respect to parameter estimates, regarding the MLE point estimates of the 

correlation between the default and recovery rate processes   in the 2FSM-SR&RD, we 

observe estimates are increasing in seniority class, ranging from 6.0% to 12.8% from 
subordinated bonds to loans, respectively. 

We conclude this section by discussing the quality of the estimates and model performance 
measures. Across seniority classes, parameter estimates are all statistically significant, and 
the magnitudes of such estimates are in general distinguishable across segments at 
conventional significance levels. The likelihood ratio statistic indicates that we can reject the 
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null hypothesis that all parameter estimates are equal to zero across all ELGD segments, a 
p-value of 4.7e-3. We also show various diagnostics that assess in-sample fit, which show 
that the model performs well-in sample. The area under receiver operating characteristic 
curve (AUROC) of 93.1% is high by commonly accepted standards, indicating a good ability 
of the model to discriminate between high and low LGD defaulted instruments. Another test 
of discriminatory ability of the models is the Kolmogorov-Smirnov (KS) statistic, the very 
small p-value 2.1e-8 indicating adequate separation in the distributions of the low and high 
LGD instruments in the model.11 We also show two tests of predictive accuracy, which is the 
ability of the model to accurately quantify a level of LGD. The McFadden psuedo r-squared 
(MPR2) is high by commonly accepted standards, 72.1%, indicating a high rank-order 
correlation between model and realized LGDs of defaulted instruments. Another test of 
predictive accuracy of the models is the Hoshmer-Lemeshow (HL) statistic, high p-values of 
0.63 indicating high accuracy of the model to forecast cardinal LGD.  

7. Downturn LGD  

In this section we explore the implications of our model with respect to downturn LGD in the 
2FSM-SR&RD. This is a critical component of the quantification process in the Basel II 
advanced IRB framework for regulatory capital. The Final Rule (FR) in the U.S. (OCC et al, 
2007) requires banks that either wish, or are required, to qualify for treatment under the 
advanced approach to estimate a downturn LGD. We paraphrase the FR, this is an LGD 
estimated during an historical reference period during which default rates are elevated within 
an institution’s loan portfolio.  

In Figures 6 through 8 we plot the ratios of the downturn LGD to the expected LGD. This is 
derived by conditioning on the 99.9th quantile of the PD side systematic factor in the 2FSM-
SR&RD. We show this for loans and bonds, as well as for different settings of key 

parameters (  ,  or  ) in each plot, with other parameters set to the MLE estimates. 

We observe that the LGD mark-up for downturn is monotonically declining in ELGD, which is 
indicative of lower tail risk in recovery for lower ELGD instruments. It is also greater than 
unity in all cases, and approaches 1 as ELGD approaches 1. This multiple is higher for 

bonds than for loans, as well as for either higher PD-LGD correlation  , collateral 

specific volatility  or volatility in the drift of the recovery rate drift process  ; although these 
differences narrow for higher ELGD. For example, in Figure 6, we see that for loans having 

ELGD of 15% and  = 10% (=20%), the ratio of downturn to ELGD is about 2 (2.5); but 
for ELGD of 50%, this is about 1.5 (1.6); and for ELGD of 80%, this about 1.2 (1.3). And for 

bonds having ELGD of 15% and  = 10% (=20%), the ratio of downturn to ELGD is about 
2.5 (23); but for ELGD of 50%, this is about 2 (2.2) ; and for ELGD of 80%, this is about 1.6 
(1.7).  

                                                 
11  In these tests we take the median LGD to be the cut-off that distinguishes between a high and low realized 

LGD. 
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8. Model validation  

In this final section we validate our preferred model, the 2FSM-SR&RD. In particular, we 
implement an out-of-sample and out-of-time analysis, on a rolling annual cohort basis for the 
final nine years of our sample. Furthermore, we augment this by resampling on both the 
training and prediction samples, a non-parametric bootstrap (Efron [1979], Efron and 
Tibshirani [1986], Davison and Hinkley [1997]). The procedure is as follows: the first training 
(or estimation) sample is established as the cohorts defaulting in the 10 years 1987-1996, 
and the first prediction (or validation) sample is established as the 1997 cohort. Then we 
resample 100,000 times with replacement from the training sample the 1987-1996 cohorts 
and for the prediction sample 1997 cohort, and then based upon the fitted model in the 
former we evaluate the model based upon the latter. Then we augment the training sample 
with the 1997 cohort, and establish the 1998 cohort as the prediction sample, and repeat 
this. This is continued until we have left the 2008 cohort as the holdout. Finally, to form our 
final holdout sample, we pool all of our out-of-sample resampled prediction cohorts, the 
12 years running from 1997 to 2008. We then analyze the distributional properties (such as 
median, dispersion and shape) of the two key diagnostic statistics: the Spearman rank-order 
correlation for discriminatory (or classification) accuracy, and the Hoshmer-Lemeshow 
Chi-Squared (HLCQ) P-values for predictive accuracy, or calibration. 
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Figure 6: Ratio of Ultimate Downturn to Expected LGD vs. ELGD at 99.9th Percentile of PD-Side Systematic Factor Z

Stochastic Collateral & Drift Merton Model (Parameters Set to MLE Estimates for Loans & Bonds)
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Figure 7: Ratio of Ultimate Downturn to Expected LGD vs. ELGD at 99.9th Percentile of PD-Side Systematic Factor Z

Stochastic Collateral & Drift Merton Model (Parameters Set to MLE Estimates for Loans & Bonds)
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Figure 8: Ratio of Ultimate Downturn to Expected LGD vs. ELGD at 99.9th Percentile of PD-Side Systematic Factor Z

Stochastic Collateral & Drift Merton Model (Parameters Set to MLE Estimates for Loans & Bonds)
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Before discussing the results, we briefly describe the two alternative frameworks for 
predicting ultimate LGD that are to be compared to the 2FSM-SR&RD developed in this 
paper. First, we implement a full-information maximum likelihood simultaneous equation 
regression model (FIMLE-SEM) for ultimate LGD, which is an econometric model built upon 
observations in URD at both the instrument and obligor level. FIMLE is used to model the 
endogeneity of the relationship between LGD at the firm and instrument levels in an internally 
consistent manner. This technique enables us to build a model that can help us understand 
some of the structural determinants of LGD, and potentially improve our forecasts of LGD. 
This model contains 199 observations from the URD™ with variables: long-term debt to 
market value of equity, book value of assets quantile, intangibles to book value of assets, 
interest coverage ratio, free cash flow to book value of assets, net income to net sales, 
number of major creditor classes, percent secured debt, Altman Z-Score, debt vintage (time 
since issued), Moody’s 12-month trailing speculative grade default rate, industry dummy, 
filing district dummy and a pre-packaged bankruptcy dummy. Detailed discussion of the 
results can be found in Jacobs and Karagozoglu (2011). The second alternative model we 
consider addresses the problem of non-parametrically estimating a regression relationship, in 
which there are several independent variables and in which the dependent variable is 
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bounded, as an application to the distribution of LGD. Standard non-parametric estimators of 
unknown probability distribution functions, whether or not conditional or not, utilize the 
Gaussian kernel (Silverman (1982), Hardle and Linton (1994) and Pagan and Ullah (1999)). 
It is well known that there exists a boundary bias with a Gaussian kernel, which assigns non-
zero density outside the support on the dependent variable, when smoothing near the 
boundary. Chen (1999) has proposed a beta kernel density estimator (BKDE) defined on the 
unit interval [0,1], having the appealing properties of flexible functional form, a bounded 
support, simplicity of estimation, non-negativity and an optimal rate of convergence 4/5n  in 
finite samples. Furthermore, even if the true density is unbounded at the boundaries, the 
BKDE remains consistent (Bouezmarni and Rolin, 2001), which is important in the context of 
LGD, as there are point masses (observation clustered at 0% and 100%) in empirical 
applications. We extend the BKDE (Renault and Scalliet, 2004) to a generalized beta kernel 
conditional density estimator (GBKDE), in which the density is a function of several 
independent variables, which affect the smoothing through the dependency of the beta 
distribution parameters upon these variables.  Detailed derivation of this model can be found 
in Jacobs and Karagozoglu (2007), who also present a “horse-race” as herein between 
GBKDE the FIMLE-SEM.   

Results of the model validation are shown in Table 4 and Figures 9-10. We see that while all 
models perform decently out-of-sample in terms of rank ordering capability, FIMLE-SEM 
performs the best (median = 83.2%), the GBKDE the worst (median = 72.0%), and our 
2FSM-SR&RD in the middle (median = 79.1%). It is also evident from the table and figures 
that the better performing models are also less dispersed and exhibit less multi-modality. 
However, the structural model is closer in performance to the regression model by the 
distribution of the Pearson correlation, and indeed there is a lot of overlap in these. 
Unfortunately, the out-of-sample predictive accuracy is not as encouraging for any of the 
models, as in a sizable proportion of the runs we can reject adequacy of fit (ie p-values 
indicating rejection of the null of that the model fits the data it at conventional levels). The 
rank ordering of model performance is the same as for the Pearson statistics: FIMLE-SEM 
performs the best (median = 24.8%), the GBKDE the worst (median = 13.2%), and our 
2FSM-SR&RD in the middle (median = 23.9%); and the structural model developed herein is 
comparable in out-of-sample predictive accuracy to the high-dimensional regression model. 
We conclude that while all models are challenged in predicting cardinal levels of ultimate 
LGD out-of-sample, it is remarkable that a relatively parsimonious structural model of 
ultimate LGD can perform so closely to a highly parameterized econometric model. 



 

280 BIS Papers No 58
 

 

Table 4 

Bootstrapped1 out-of-sample and out-of-time classification and predictive accuracy 
model comparison analysis of alternative models for ultimate loss-given-default  

(Moody's Ultimate Recovery Database 1987-2009) 

  Test 
Statistic 

Model GBKDE4 2FSM-SR&RD5 FIMLE-SEM6 

Median 0.7198 0.7910 0.8316 

Standard Deviation 0.1995 0.1170 0.1054 

5th Percentile 0.4206 0.5136 0.5803 

Spearman 
Rank-Order 
Correlation2 

95th Percentile 0.9095 0.9563 0.9987 

Median 0.1318 0.2385 0.2482 

Standard Deviation 0.0720 0.0428 0.0338 

5th Percentile 0.0159 0.0386 0.0408 
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Hoshmer-
Lemeshow 
Chi-
Squared 
(P-Values)3 95th Percentile 0.2941 0.5547 0.5784 

1  In each run, observations are sampled randomly with replacement from the training and prediction samples, the 
model is estimated in the training sample and observations are classified in the prediction period, and this is 
repeated 100,000 times.    2  The correlation between the ranks of the predicted and realizations, a measure of the 
discriminatory accuracy of the model.    3  A normalized average deviation between empirical frequencies and 
average modelled probabilities across deciles of risk, ranked according to modelled probabilities, a measure of 
model fit or predictive accuracy of the model.    4  Generalized beta kernel conditional density estimator 
model.    5  Two-factor structural Merton systematic recovery and random drift model.    6  Full-information 
maximum likelihood simultaneous equation regression model.  199 observations with variables: long-term debt to 
market value of equity, book value of assets quantile, intangibles to book value of assets, interest coverage ratio, 
free cash flow to book value of assets, net income to net sales, number of major creditor classes, percent secured 
debt, Altman Z-Score, debt vintage (time since issued), Moody’s 12-month trailing speculative grade default rate, 
industry dummy, filing district dummy and prepackaged bankruptcy dummy. 
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Fig. 9 - Densities of Pearson Correlations for LGD Prediction
100,000 Repetitions Out-of-Sample and Out-of-Time 1997-2008

Simulataneous Equation Regression Model
2-Factor Merton Structural Model
Non-parametric Beta Kernel Density Model
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Fig.10 - Densities of Hoshmer-Lemeshow P-Values for LGD Prediction
100,000 Repetitions Out-of-Sample and Out-of-Time 1997-2008
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9. Conclusions and directions for future research 

In this study, we have developed a theoretical model for ultimate loss-given-default, having 
many intuitive and realistic features, in the structural credit risk modeling framework. Our 
extension admits differential seniority within the capital structure, an independent process 
representing a source of undiversifiable recovery risk with a stochastic drift, and an optimal 
foreclosure threshold. We have analyzed the comparative statics of this model and 
compared these to a baseline structural model. In the empirical analysis we calibrated 
alternative models for ultimate LGD on bonds and loans, having both trading prices at default 
and at resolution of default, utilizing an extensive sample of agency-rated defaulted firms in 
the Moody’s URD™. These 800 defaults are largely representative of the US large corporate 
loss experience, for which we have the complete capital structures, and can track the 
recoveries on all instruments to the time of default to the time of resolution. 

We demonstrated that parameter estimates vary significantly across models and recovery 
segments, finding that the estimated volatilities of the recovery rate processes and their 
random drifts are increasing in seniority; in particular, for first-lien bank loans as compared to 
senior secured or unsecured bonds. We argued that this as reflects the inherently greater 
risk in the ultimate recovery for higher ranked instruments having lower expected loss 
severities. In an exercise highly relevant to requirements for the quantification of a downturn 
LGD for advanced IRB under Basel II, we analyzed the implications of our model for this 
purpose, finding the later to be declining for higher expected LGD, higher for lower ranked 
instruments, and increasing in the correlation between the process driving firm default and 
recovery on collateral. Finally, we validated our leading model derived herein in an out-of-
sample bootstrapping exercise, comparing it to two alternatives, a high-dimensional 
regression model and a non-parametric benchmark, both based upon the same URD data. 
We found our model to compare favorably in this exercise.  

We conclude that our model is worthy of consideration to risk managers, as well as 
supervisors concerned with advanced IRB under the Basel II capital accord. It can be a 
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valuable benchmark for internally developed models for ultimate LGD, as this model can be 
calibrated to LGD observed at default (either market prices or model forecasts, if defaulted 
instruments non-marketable) and to ultimate LGD measured from workout recoveries. Risk 
managers can use our model as an input into internal credit capital models.  
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