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Optimal active portfolio management  
and relative performance drivers: theory and evidence 

Roberto Violi1 

This paper addresses the optimal active versus passive portfolio mix in a straightforward 
extension of the Treynor and Black (T-B) classic model. Such a model allows fund managers 
to select the mix of active and passive portfolio that maximizes the (active) Sharpe ratio 
performance indicator. The T-B model, here adapted and made operational as a tool for 
performance measurement, enables one to identify the sources of fund management 
performance (selectivity vs market-timing). In addition, the combination of active and passive 
risk exposures is estimated and fund manager choice is tested against the hypothesis of 
optimal (active) portfolio design.  

The extended T-B model is applied to a sample of US dollar reserve management portfolios 
– owned by the ECB and managed by NCBs – invested in high-grade dollar denominated 
bonds. The best fund managers show statistically significant outperformance against the 
ECB-given benchmark. By far, market timing is the main driver. Positive (and statistically 
significant) selectivity appears to be very modest and relatively rare across fund managers. 
These results are not very surprising, in that low credit risk and highly liquid securities 
dominate portfolio selection, thus limiting the sources of profitable bond-picking activity. As 
far as the risk-return profile of the active portfolio is concerned, it appears that some of the 
best fund managers’ outperformance is realised by shorting the active portfolio (with respect 
to the benchmark composition). Thus, portfolios that would be inefficient (eg negative excess 
return) if held long can be turned into positive-alpha yielding portfolios if shorted. The ability 
to select long-vs-short active portfolio can be seen as an additional source of fund manager’s 
outperformance, beyond the skill in anticipating the return of the benchmark portfolio 
(market-timing contribution).  

The estimated measure of fund managers’ risk aversion turns out to be relatively high. This 
seems to be consistent with the fairly conservative risk-return profile of the benchmark 
portfolio. A relative measure of risk exposure (conditional Relative VaR) averaged across 
fund managers turns out to be in line with the actual risk budget limit assigned by the ECB. 
However, a fair amount of heterogeneity across fund managers is also found to be present. 
This is likely to signal a less-than-efficient use of their risk-budget by the fund managers – 
eg a deviation from the optimal level of relative risk accounted for by the model. At least in 
part, such variability might also be attributed to estimation errors. However, proper tests for 
RVaR statistics are sorely lacking in the risk management literature. Thus, the question 
remains open. This would warrant further investigation, which is left for future research.  

1.  Introduction  

The performance of an investment portfolio that is diversified across multiple asset classes 
can be thought of as being driven by three distinct decisions that its manager makes:  

(i)  long-term (strategic or policy) asset allocations; 

                                                 
1  Bank of Italy. 
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(ii)  temporary adjustments (ie tactical) to these strategic allocations in response to 
current market conditions (market timing); 

(iii)  the choice of a particular set of holdings to implement the investment in each asset 
class (security selection). 

The first of these performance components is commonly referred to as the passive portion of 
the portfolio, while the latter two collectively represent the active positions the manager 
adopts. Following the intuition of Treynor and Black (T-B,1973), I address the question of 
whether portfolio managers adopt an optimal active–passive risk allocation by seeing if they 
take full advantage of their alpha-generating capabilities or whether they “leave money on 
the table” by mixing their passive and active positions in a sub-optimal manner. I rely on a 
straightforward extension of the T-B model that allows to assess this issue in the context of 
the multi-asset class problem faced by fund managers who have the ability to make active 
decisions about broad market and sector exposures as well as for individual security 
positions.  

The essential insight into the T-B analysis is that the optimal combination of the active 
portfolio – which results from the application of security analysis to identify a limited number 
of undervalued assets – and a passive benchmark portfolio is itself a straightforward portfolio 
optimization problem. That is, T-B treats the active and passive portions of an investment 
portfolio as two separate “assets” and then calculates the mix of those assets that maximizes 
the reward-to-variability (Sharpe) ratio. It is then demonstrated that the investment allocation 
assigned to the active portfolio strategy increases with the level of alpha it is expected to 
produce (ie the active “benefit”), but decreases with the degree of unsystematic risk it 
imposes on the investment process (ie the active “cost”). This is an important insight 
because it suggests that taking more active risk in a portfolio will not necessarily lead to an 
increase in total risk; if, for instance, the manager’s active investment is negatively correlated 
with the passive component (eg an effective short position in an industry or sector 
benchmark) the overall risk in the portfolio might actually decline. 

Despite the importance of its insight, Kane et al. (2003) have noted that the T-B model has 
had a surprisingly low level of impact on the finance profession in the years since its 
publication. They attribute this neglect to the difficulty that investors have in forecasting 
active manager alphas with sufficient precision to use the T-B methodology as a means of 
establishing meaningful active and passive portfolio weights on an ex ante basis. However, 
this begs the question of whether the model offers a useful way of assessing ex post whether 
the proper active–passive allocation strategy was adopted by the portfolio manager. In other 
words, using the T-B model, did the fund manager construct an appropriate combination of 
active and passive exposures, given the alphas that were actually produced? In the 
subsequent sections, we explore the implications of the T-B model for designing optimal 
alpha-generating portfolio strategies and present an empirical analysis using a sample of US 
dollar reserve management portfolios owned by the European Central Bank (ECB) and 
managed on its behalf by national central banks (NCBs). These managed funds invest only 
in high grade government (or government-guaranteed) dollar denominated bonds.  

In order to address the issue of whether fund managers deploy the various risks in their 
portfolio in an optimal manner, it is first necessary to split the returns they produce into their 
passive and active components. We follow a standard methodology and decompose the 
returns of a managed portfolio into their three fundamental components:  

(i) strategic asset allocation policy (ie benchmark);  

(ii) tactical allocation (ie market timing); 

(iii) security selection. 
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Timing ability on the part of a fund manager is the ability to use superior information about 
the future realizations of common factors that affect bond market returns. Selectivity refers to 
the use of security-specific information. If common factors explain a significant part of the 
variance of bond returns, consistent with term structure studies such as Litterman and 
Scheinkman (1991), then a significant fraction of the potential (extra-) performance of bond 
funds might be attributed to timing. However, measuring the timing ability of bond funds is a 
subtle problem. Standard models of market timing ability rely on convexity in the relation 
between the fund's returns and the common factors. Unfortunately, the classical set-up does 
not control the non-linearity that are unrelated to bond fund managers’ timing ability.2 

Perhaps surprisingly, the amount of academic research on bond fund performance is small in 
comparison to the economic importance of bond markets and the size of managed funds 
invested in bonds. Large amounts of fixed-income assets are held in professionally managed 
portfolios, such as mutual funds, pension funds, trusts and insurance company accounts. 
Elton, Gruber and Blake (EGB, 1993, 1995) and Ferson, Henry and Kisgen (2006) study US 
bond mutual fund performance, concentrating on the funds’ risk-adjusted returns. They find 
that the average performance is slightly negative after costs, and largely driven by funds’ 
expenses. This might suggest that investors would be better off selecting low-cost passive 
funds, and EGB draw that conclusion. However, conceptually at least, performance may be 
decomposed into components, such as timing and selectivity. If investors place value on 
timing ability, for example a fund that can mitigate losses in down markets, they would be 
willing to pay for this insurance with lower average returns. Brown and Marshall (2001) 
develop an active style model and an attribution model for fixed income funds, isolating 
managers’ bets on interest rates and spreads. Comer, Boney and Kelly (2009) study timing 
ability in a sample of 84 high-quality corporate bond funds, 1994-2003, using variations on 
Sharpe’s (1992) style model. Aragon (2005) studies the timing ability of balanced funds for 
bond and stock indexes. 

This paper is organised as follows. Section 2, I introduces a simple framework for identifying 
active vs passive asset allocation strategies; Section 3 illustrates the econometric 
implementation of performance decomposition, consistent with the active-passive asset 
allocation model; Section 4 discusses results obtained in the performance evaluation of 
NCBs’ dollar reserve management. 

2.  Optimal active–passive asset allocation mix: a simple framework 

Market-timing ability (timing) and security selection ability (selectivity) characterize active 
portfolio strategies. Like equity funds, bond funds engage in activities that may be viewed as 
selectivity or timing. Timing is closely related to asset allocation, where funds rebalance the 
portfolio among asset classes and cash. More specifically, managers may adjust the interest 
rate sensitivity (eg duration) of the portfolio to time changes in interest rates. They may vary 
the allocation to asset classes differing in credit risk or liquidity, and tune the portfolio’s 
exposure to other economic factors. Since these activities relate to anticipating market-wide 
factors, they can be classified as market timing. Selectivity means picking good securities 
within the asset classes. Bond funds may attempt to predict issue-specific supply and 
demand or changes in credit risks associated with particular bond issues; funds can also 
attempt to exploit liquidity differences across individual bonds. We define the market timing 
component (tactical allocation) as the return that is achieved by over- or underweighting the 
benchmark asset in an attempt to increase returns or reduce risk. Security selection is the 

                                                 
2  See Chen et al (2009) on the methodology that can be used to adjust for these potential biases. 
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excess return of the managed portfolio in a given asset class over the hypothetical return 
achievable by an investor who allocates resources in the benchmark according to the policy 
weights. Thus, portfolio’s total return of fund manager, i, in any period t can be expressed as 
the sum of its passive and active components or: 

A
ti

B
ti

P
ti RRR ,,,   (1) 

To formalize the evaluation process, assume that the total actual return RP (subscripts are 
suppressed for convenience) contains a passive benchmark component RB and an active 
component RA representing, without loss of generality, the collective impact of the timing and 
selection decisions the manager makes. In this simplification, the active component can be 
written as  

B
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P
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A
ti RRR ,,,    (2) 

Notice that a fund can achieve exposure to its benchmark either by investing directly in the 
indices composing RB or indirectly through the formation of the active portfolio that 
generates RP. Consequently, we can always think of this active portfolio itself as being a 
(trivial) combination obtained by investing 100% in the assets that deliver RP and 0% in the 
assets that delivers RB. It is important to realize, though, that this “all active” portfolio will 
have only indirect exposure to the benchmark through RP. The crucial insight into this setting 
is that by rescaling the existing positions in RP and RB, the portfolio manager can construct 
an alternative portfolio that has the same monetary commitment to the benchmark assets but 
achieved with a different combination of asset class and security exposures. For example, 
consider the new return: 
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The rate of return of portfolio is obtained as a weighted average of active and benchmark 
portfolio. The portfolio implied by the weighted return in Eq. (3) is the de facto result of a 
swap transaction between the existing active portfolio and the benchmark allocation. If, for 
instance, the actual investment weights in the original portfolio and in the benchmark are 
identical (ie in the absence of market timing), the resulting swap portfolio has the same asset 
allocation weights, but its exposure to the benchmark is achieved through different securities 
than those contained in the active portfolio delivering RP (see Appendix A1 for a detailed 
description). To implement such an exchange, a fund manager does not have to invest in 
asset classes with which it is not already familiar. To see this, consider the case of a portfolio 
comprising a single asset class, say European bonds. 

Suppose that the manager initially holds 100 million euro of European bonds in portfolio RP 
and then decides to revise his position by choosing an allocation of 110% in RP[λA = 1.1], 
while simultaneously shorting 10% of the benchmark. After this swap, the new portfolio will 
contain 110 million euro of this new bond position and will be short 10 million euro of the 
benchmark for European bonds (eg JPMorgan, GB EMU index). The net overall European 
bond position is still 100 million euro and so the exposure to this asset class is unaltered, 
although the actual securities held in the adjusted managed portfolio will be different. For the 
swap to be implementable in practice, it is important that it does not alter substantially the 
overall exposure to an asset class, since most (institutional) investors have policies limiting 
the variation of their actual portfolio weights around their benchmark weights (ie tactical 
ranges). Furthermore, the implementation of this swap does not necessarily require short 
selling the benchmark index; and it merely requires the sale of 10% of a combination of 
securities in a portfolio that is close to the index, while simultaneously investing proportionally 
the proceedings from this sale in those securities remaining in the portfolio. Hence, no new 
active management skills are required beyond those the manager already possesses. Since 
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by construction (cf Eq. 1) total return RP decomposes into the sum (RB + RA), Eq. (3) 
suggests that the passive component of the post-swap portfolio is  

RB(λA) = (1-λA) RB (1’) 

while the active component is  

RA(λA) = λA RA. (1’’) 

By extension, then, when λA > 1 the swap portfolio will have a higher emphasis on the active 
management component than did the manager’s original portfolio. In other words, choosing 
how much emphasis is best placed on active risk is equivalent to choosing how to best 
rescale the existing managed portfolio RP by swapping a fraction of it against the benchmark 
portfolio RB. It is important to note that although the implementation of such a strategy 
requires the actual portfolio to be scalable, it does not require any additional alpha-
generating abilities compared to the actual portfolio RP. 

Once we know the fraction of wealth, A
ti,  , invested in the swap of asset i at time t, we could 

recover the implied return of active portfolio by inverting expression (3), 
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With this background, the specific questions we would like to consider can be stated as 
follows:  

(i) For any particular fund manager, is it possible to measure its commitment to active 
portfolio strategies implied by the portfolio currently held?  

(ii) Can we say anything regarding the “optimality” of his/her commitment to active 
portfolio strategies?  

(iii) To what extent are active management skills used in a way that add value through 
the market timing or security selection return components? 

To answer questions concerning the optimality of the investment process, we need to identify 
fund manager’s objectives (eg preferences) and then solve for the parameter λA that 
maximizes those preferences. We will assume that the investor is best served by the portfolio 
position – eg fraction of wealth, λA, invested in the active portfolio strategy – that maximizes 
risk-adjusted returns relative to the benchmark: 
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and ψ represents the coefficient of investor’s risk aversion, namely the marginal substitution 
rate between the return and the variance. Solving the first order condition of the optimization 
problem (5) yields the following expression for the optimal fraction of wealth invested in the 
active strategy 
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In solving the first order condition, it’s useful to recall that Eq. (3) implies that the excess 
return over the benchmark is the product of the fraction of wealth, λA, invested in the active 
portfolio times the excess return over the benchmark earned by the active portfolio, 
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Therefore, we can assert that first and second moment of the investor’s excess return are 
related to those of the active portfolio strategy in the following way, 
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The optimal fraction of wealth invested in the active portfolio in eq. (6) trades off relative risk 
(benchmark tracking error) and return (in excess of the benchmark), taking into account the 
tolerance for risk parameter, 1/ψ. With a risk tolerance parameter equal to 1, our 
representative fund manager would maximise the expected (log) excess return (deviation 
from the benchmark) of its active portfolio strategy. However, it is not clear from eq (6) 
whether we can measure the optimal choice of active portfolio share, as it is not based on 
observable variables. In Appendix A3 we show how to relate the optimal active portfolio 
choice to observable variables (eg benchmark and portfolio returns), as we obtain, 
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where A̂  is the actual active portfolio share implied by the observed benchmark and 
portfolio return (see Eq. 12 below) and ̂  is the estimated risk aversion parameter. Thus, the 
(estimated) optimal portfolio share would be obtained by adjusting the (estimated) implied 
active portfolio share with the risk-return profile of the excess returns over the benchmark – 
namely, estimated first and second moment taking risk aversion into account. 

3.  Decomposing fund manager relative performance  

We can now provide some structure regarding the evolution over time of the active portfolio 
strategy. More specifically, we assume that the Active Portfolio return can be described by 
the following model: 
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where (αt, βt, γt) are (time-varying) coefficients representing the security selection component 
of Active Portfolio return, its exposure to benchmark (return) risk and the market timing 
contribution to the active portfolio return, based on the market timing factor, Xt. The residual 
term, t , captures return risk beyond those embedded in the benchmark return. As for the 

Benchmark Portfolio return, we assume that 
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The residual risk term of the active portfolio, t , is supposed to be uncorrelated with the 

benchmark return. Other than that, we only assume that benchmark return has a well defined 
probability distribution, with finite mean and variance  tBtB ,, ,    . The stochastic rate of 

return of the active portfolio has a clear CAPM-like structure, augmented by a market-timing 
measure. If the benchmark portfolio were an efficient portfolio (in the mean variance sense), 
Eq. (7) would be consistent with a CAPM interpretation (Sharpe, 1994, market model). As we 
include a measure of market timing in our active return model, we rely on the Treynor and 
Mazuy (1966) and Hendriksson and Merton (1981) definition, in order to capture the fund 
manager’s timing ability. More specifically we add to the standard CAPM bivariate regression 
the following extra market factor, Xt , with  
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 0,B
tt RMAXX    (8) 

for Hendriksson and Merton (1981) and  

 2B
tt RX   (8’) 

for Treynor and Mazuy (1966).  

Both measures (8)-(8’) are consistent with the ability of a fund manager to time the 
benchmark (market) returns. If fund managers are able to forecast benchmark portfolio 
returns, they will increase their proportion of the benchmark exposure when is high but will 
decrease it during a period of low returns on the benchmark portfolio.  

The quadratic form of benchmark return in Eq. (8’) can capture a manager’s ability to 
forecast a market trend. For that reason, parameter γt represents not only a manager’s timing 
ability but also the nonlinearity of benchmark realized returns. However, alpha performance 
measures can be misevaluated if realized returns are nonlinear at the benchmark. Although 
a significant timing coefficient can indicate the possibility of a misevaluated alpha measure, 
we cannot be totally sure about the source of the signal. In a recent paper, Goetzmann et al. 
(2007) revealed that a good timing measure can also be the outcome of performance 
manipulation (eg return smoothing) when assets are illiquid and subject to (for example) 
mark-to-model valuation. This paper only supposes that a significant timing coefficient from 
Treynor and Mazuy (1966)’s model indicates the presence of genuine timing ability, while 
neglecting performance manipulation issues. 

In order to proceed with the implementation, it’s useful to recall eq. (3) showing that the 
excess return over the benchmark is the product of the fraction of wealth invested in the 
active portfolio times the excess return earned by the Active portfolio over the benchmark. 
Replacing eq (3’) in eq. (7) and subtracting the benchmark return, we get 
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It is clear from Eq. (9) that the excess return over the benchmark for the actual portfolio is 
controlled by same drivers determining the active portfolio return, scaled by the fraction of 
wealth , λA, invested in it: 

1) security selection component: t
A
t  ; 

2) market-timing component: tt
A
t X ; 

3) exposure to benchmark (return) risk:   B
tt

A
t R1 ; 

4) residual risk: t
A

t ελ . 

3.1  Implementing fund manager performance measurement  

For the sake of econometric implementation convenience, Eq. (9) is rewritten in the following 
reduced-form determination,  
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Parameters entering the set of Eqs. (10) , 

 P
tttt gba ,,,,   (10’) 
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are easily amenable to standard econometric estimation technique, as we observe both 
benchmark and fund manager’s portfolio returns. However we would still be in need of an 
identification procedure to measure the fraction of wealth, λA, invested in the active portfolio, 
in order to recover the (hidden active performance) parameters of interest,  

 tttt
A
t ,,,,,    (10’’) 

Chen et al. (2009) derive an interesting generalisation of model (10) that incorporates the 
non-linear benchmark, replacing the market portfolio in the classical market-timing regression 
of Treynor and Mazuy (1966). Fund managers are assumed to time the market risk factors 
by anticipating their impact on the benchmark returns. Such impact may take a non-linear 
shape.3  

Our identification strategy focuses on the level of risk determination for the active portfolio 
(eg its variance). The adopted key assumption relates the variance of the active portfolio to 
the variance of the benchmark portfolio by a coefficient, t , assumed to be known in 

advance to the fund manager, 

2
,

22
,   tBttA    (11) 

For the sake of simplicity, we set the value of t  equal 1 in equation (11), as if the fund 

manager would be choosing its active portfolio under the constraint of matching the risk of 
the benchmark portfolio. As a result, the variance of the active portfolio coincides with the 
variance of the benchmark return, 

2
,

2
,    tBtA     (11’) 

We believe that there would not be much gain in relaxing risk constraint (11’) by choosing 
different levels of (predetermined) deviation – albeit small – from the benchmark risk. In 
appendix A2 we prove that under the constraint (11’), the implied share of active portfolio 
share based on observable returns is given by  
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Having estimated the unknown parameters (10’) and (12), we can compute parameters 
(10’’), 
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For the sake of simplicity, and in common with the classical market-timing models,4 we 
maintain the hypothesis that returns can be represented by a static ordinary least squares 
(OLS) model with constant parameters, 

                                                 
3  One of the non linear forms considered in Chen et al. (2009) paper is a quadratic function, which has an 

interesting interpretation in terms of systematic coskewness. Asset-pricing models featuring systematic 
coskewness are developed, for example, by Kraus and Litzenberger (1976). Equation (10) would in fact be 
equivalent to the quadratic “characteristic line” used by Kraus and Litzenberger. Under their interpretation the 
coefficient on the squared factor changes does not measure market timing, but measures the systematic 
coskewness risk. Thus, a fund's return can bear a convex relation to a factor because it holds assets with 
coskewness risk. 

4  Cf Jensen (1968), Treynor and Mazuy (1966) and Henriksson and Merton (1981). 
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 OLS
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According to Jensen (1966), a>0 is a measure of (positive) abnormal performance, namely it 
captures the fund manager’s ability to forecast extra-returns in excess of the exposure to 
market risk. Treynor and Mazuy (1966) argue that g>0 indicates market-timing ability. The 
logic is that when the market is up, the successful market-timing fund manager will be up by 
a disproportionate amount. When the market is down, it will be down by a lesser amount. All 
this makes sense from the perspective of the Capital Asset Pricing Model (CAPM, Sharpe, 
1964). Under that model’s assumptions there is two-fund separation and all investors hold 
the market portfolio and cash.  

Can this approach still be valid for managed bond portfolios? Two-fund separation is 
generally limited to single-factor term structure models, and there is no central role for a 
"market portfolio" of bonds in most fixed income models. In practice, however, bond funds 
are managed to a “benchmark” portfolio that defines its investment style. Is it reasonable to 
assume that loadings (13) are really constant? After all, fund managers trade frequently in 
the hope of generating superior returns. This trading naturally generates time-varying 
loadings, as witnessed by the role played by a time-varying, λA

t in eq. (10). Moreover, 
expected market returns and fund managers’ betas and gammas embedded in the active 
portfolio can change over time. If they are correlated, a constant coefficient (unconditional) 
model such as (13) would be misspecified.  

Ferson and Schadt (1996), Christopherson et al. (1998), Mamaysky et al. (2007), Chen et al. 
(2009) propose a specific version of equation (10) to address such concerns. In essence, 
they introduce a conditional version of the market timing model of Treynor and Mazuy (1966) 
controlling for public information. These models generate time-varying loadings which can be 
forecasted by information signals observed by fund managers. While we would agree that a 
conditional model is likely to fit the data better than an unconditional model, in practice we 
retain our constant loadings assumption. As discussed in Section 4, we are going to apply 
eq. to a relatively short sample of daily data (one year). In this specific instance, the 
unconditional model may still provide a decent approximation of active portfolio strategy. 
However, in order to check the robustness of the unconditional (OLS) model estimates, we 
also test a GARCH(1,1) return model with heteroskedastic variance (see Appendix A4 for 
details)  

 
)1,1(,,,,

GARCH

A
tgba   (13’) 

4.  Euro-area NCBs fund managers: measuring US dollar reserves 
active performance  

We test our active portfolio model (10) on the euro-area US dollar reserve fund managers. 
Nine national central banks (NCBs) are managing dollar-denominated bond funds on behalf 
of the ECB against a common benchmark. In the investment mandate, risk management and 
benchmark composition are strictly under the ECB’s decision-making power. Fund managers 
can pursue active portfolio strategies only within narrow margins of discretion. The general 
guidelines of investment set strict risk limits – relatively short duration for the benchmark 
portfolio (below two years), a fairly tight tracking error volatility for benchmark deviations and 
a limited dose of credit risk are allowed.  

Parameter estimates of model (10) – with parameters lists (13) and (13’) according to the 
estimation method – for each fund manager are reported in Table 1. We do not report the 
NCB names for confidentiality reasons. The fund manager list is ordered according to the 
best performance (highest relative return; Table 2a). Daily (log) return data for each fund 
manager and benchmark (log) return for the year 2009 (1° January to 31 December; 
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365 observations) are used.5 The same sample is again considered for the computation of 
statistical indicators and performance measurement. 

Reported parameter values reflect three different estimation methods: 

1) Standard OLS (homoskedastic residuals assumption); 

2) Robust OLS, (non-gaussian returns; homoskedastic residuals assumption); 

3) Maximum-Likelihood (ML), GARCH(1,1) model (heteroskedastic residuals 
assumption); 

Method 1) and 2) assume constant residual variance,    2
 . Method 3) include a GARCH(1,1) 

variance equation model to correct for residuals heteroskedasticity (see Appendix A4 for 
details). Parameters testing report t-Student statistics, standard as well as with Newey-West 
adjustment procedure. Coefficient of Determination, R2, and autocorrelation of residuals test 
(Durbin-Watson; DW) are also reported. 

The best fund managers – ranked according to table 2a by benchmark return out-
performance – do show statistically significant parameters. In particular, the market timing 
performance parameter, g, is positive and significant for seven (out of nine) fund managers. 
The market portfolio parameter, b, is positive and significant for three fund managers; two of 
them are also the top performers in the ranking (the third one is found at the bottom). 
Moreover, there are three other fund managers that display statistically significant, b, with 
negative sign, however. In this case a negative exposure to market portfolio subtracts from 
fund performance, since the return of the benchmark turns out to be positive in the sample.  

Selectivity appears to be very modest. The Jensen-α parameter, a, is statically significant (at 
5% level) for one fund manager only (the third best performer in the ranking). The level of 
estimated residual autocorrelation (DW statistics) is confined to a range [1.73-2.35] 
consistent with absence (or modest level) of autocorrelation. The coefficient of determination, 
R2, based on OLS estimates, is generally low, below 10% for eight out of nine fund 
managers. More often than not, this is strongly related to the heteroskedasticity of residuals: 
in seven out of nine cases R2 coefficient jumps to well above 0.5 if the GARCH(1,1) 
estimates are considered. Changes in residuals volatility should capture risk factors 
dynamics beyond market portfolio risk (benchmark return) and market-timing risk (non linear 
or volatility risk implied by the benchmark portfolio). Such changes may reflect predictable, 
but unobserved (by the econometrician) adjustments in the active portfolio allocation 
selected by the fund manager (cf Eq. 12’, normalised residuals). These portfolio adjustments 
may be driven by the dynamics of the risk-return trade-off (eg price-of-risk) faced by active 
fund managers. The implications of such important risk dynamics are not pursued further 
here, as they would require a more sophisticated identification strategy – this can be an 
interesting topic to investigate in future research. These considerations, as long as they are 
confined to residual risk, do not matter for performance decomposition, as we will see in a 
moment.  

Table 2b reports the performance decomposition results based on the following ex-post 
identity derived from Eqs. (12-12’) 

   
  

onContributi
GAMMA
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BETA

B
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turnExcess
Holding
Total

BP gTbTaTT 22

Re
Period 

ˆˆˆˆˆˆˆ  

 (14) 

                                                 
5  Non-working day returns are linearly interpolated.  
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where T is the number of observations in the sample of return data.6 Parameter estimates 
entering Eq. (14) are given by, 
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Also, we can derive the decomposition of excess returns for the active portfolio by scaling the 
trading portfolio performance by the (estimated) share of wealth committed to active portfolio 
strategy,  

    
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 (15) 

Table 2b reports the computed performance decomposition obtained by plugging OLS 
(robust) estimates (see table, 1) in Eq. (14’). The OLS (robust) parameters, albeit with some 
relatively minor exceptions, do not differ much from the equivalent GARCH(1,1) estimates. 
Finally, table 2c reports the trading portfolio performance statistics for all fund managers – 
along with the benchmark return – separating actual vs active portfolio return statistics. Our 
main findings regarding performance decomposition can be summarised as follows: 

1) Fund managers get most of their extra performance – about 60–80% of the total 
excess return – from market-timing ability (“Gamma” risk);  

2) Selectivity (Jensen-α contribution) provides an, admittedly limited, boost to 
performance for few fund managers; such contribution is likely to be statistically 
insignificant (see my previous comments on the estimates of parameter a);  

3) Exposure to “market-portfolio” (benchmark return) risk never materially contributes 
to extra-performance (“Beta” risk);  

4) The implied (estimated) share of wealth allocated to active portfolio strategies varies 
substantially across fund managers, with no evident systematic pattern with regard 
to performance results.  

It can be argued that conclusions 1)-2)-3) are broadly in line with the existing evidence about 
bond portfolio management performance. I therefore prefer to elaborate more on the fourth 
set of results.  

Eq. (12) allows one to estimate the share of wealth allocated to active portfolio reported in 
table (2b; last column). These (estimated) values are plugged into Eq. (15) to simulate the 
active portfolio return statistics reported in table (2c; cf Active row). It is interesting to point 

                                                 

6  Regression parameter estimates imply, 0ˆ
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out that the two highest ranking fund performances take a short position in the active 
portfolio. In essence, these fund managers are investing all their money in the benchmark 
portfolio while selling their active portfolio (-0.51 and -0.36 dollar per dollar of invested 
wealth) to “buy with the proceeds” additional exposure to the benchmark portfolio. To be 
sure, their active portfolio strategy is expected to underperform the benchmark! Thus, fund 
managers can also profit from “inefficient” active strategies – with expected return lower than 
the benchmark (for given, identical “benchmark” and “active” portfolio risk) – if they are 
prepared to short them. On the other hand, there are fund managers – with supposedly more 
promising active portfolio strategies (ranking third, sixth and eight) – that are doing exactly 
the opposite: they are shorting the benchmark to finance with the proceeds additional 
exposure to their active strategy. In this case, their allocated share to their active strategy 
has to be larger than one (2.03, 1.50 and 1.31, respectively). Only three fund managers (out 
of nine) avoid leveraging their portfolio one way or the other; all of them end up in the middle 
of the performance ranking.  

Computing the share of active portfolio based on the assumption of optimal portfolio mix 
(eq. 6”) does not change the broad qualitative pattern of selected strategies (Table 3; 
cf column 4 vs 3). What is really changing drastically is the (absolute) level of wealth invested 
(or sold) in the active portfolio strategy. Only the worst performing fund manager happens to 
fully reverse its shorting strategy, eg from selling the active to selling the benchmark portfolio. 
As shown in Eq. (6”), the factor of proportionality to get the optimal allocation is given by the 
product of risk-tolerance parameter (the reciprocal of risk aversion) and the (estimated) risk-
return ratio for the mixed (actual) portfolio,  

2ˆ
ˆ

ˆ
1

BP

BP

B 






  (16) 

As reported in Table 3, the estimated (active) risk-return ratio is typically much larger than the 
(estimated) measure of risk aversion (cf col. 5 and 6), partly because the relative risk measure 
is by and large fairly small (only few basis points; cf standard deviation of excess return 
reported in cols 8–9). Hence, it should not come as a surprise that the estimated (uniform 
across fund managers) risk aversion parameter turns out to be relatively high (eg 11.71), as it 
is forced to reflect a fairly conservative benchmark portfolio risk-return profile.  

As a robustness check, I also compute an implied measure of relative (conditional) VaR 
(RVaR). The average RVaR value is reckoned at around 0.50% annualised – with one 
notable exception (outlier). This is close to the actual risk budget limit assigned to NCB fund 
managers by the ECB risk management function. The (theoretical) optimal RVaR measure, 
computed under the assumption of a single value of risk aversion, B̂ , should be identical 
across fund managers. In practice, a fair amount of heterogeneity across fund managers 
seems to be present. The estimated RVaR has a range of variation between [0.24%–0.64%] 
(excluding the single outlier) across fund managers. Such variability is likely to be a signal of 
a less-than-efficient use of their risk budgets – eg an unexplained deviation from the optimal 
level of relative risk. At least in part, such variability might possibly be attributed to model 
estimation errors. To separate out the uncertainty due to sampling errors in estimating the 
RVaR measure, one would need to design a proper test for the RVaR statistics, so that a 
confidence interval for such a test is obtained. This is an area largely unexplored by the risk 
management literature and therefore further investigation is warranted. Since this statistical 
issues is well beyond the scope of this paper, it is left for future research.  
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5.  Concluding remarks 

The question of whether fund managers adopt an optimal active-passive risk allocation is 
addressed using in a straightforward extension of the T-B model. The essential insight into 
the T-B analysis is that the optimal combination of the active portfolio and a passive 
benchmark portfolio is itself a straightforward portfolio optimization problem. The T-B model 
allows fund managers to select the mix of active and passive portfolio that maximizes the 
(active) Sharpe-ratio performance indicator. The investment allocation assigned to the active 
portfolio strategy increases with the level of alpha (excess return over the benchmark 
portfolio) and decreases with the degree of unsystematic risk of the invested portfolio. The 
T-B model is here adapted and made operational as a tool for performance measurement. 
More specifically, the sources of fund management performance are isolated (selectivity vs 
market timing); the combination of active and passive risk exposures are estimated; 
individual fund manager portfolio choice (eg the active vs passive mix) and the related risk 
budget absorption are tested against the hypothesis of optimal design for the alpha-
generating portfolio strategy.  

The T-B model is applied to a sample of US dollar reserve management portfolios (owned by 
the ECB) invested in high grade dollar denominated bonds. Model parameters are estimated 
using standard OLS and GARCH(1,1) technique on daily portfolio returns for each fund 
managers. A performance decomposition, based on the well known selectivity and market-
timing factors, is computed for each fund manager. The best fund managers show 
statistically significant outperformance against the benchmark. By far, market timing is its 
main driver. Selectivity appears to be very modest. These results are not very surprising after 
all, in that low credit risk and highly liquid securities dominate portfolio selection. Thus, very 
few opportunities are probably available to fund managers looking for (systematically) 
profitable bond-picking activity.  

As far as the risk-return profile of the active portfolio is concerned, it appears that some of 
the best fund managers outperformance is realised by shorting the active portfolio with 
respect to the benchmark composition. Such portfolios are (rightly) shorted, because their 
equivalent long position would imply a negative (expected) excess return. Thus, long 
portfolios that are inefficient with respect to the their benchmark (negative excess return) can 
be turned into positive-alpha yielding portfolios provided that they are shorted. The long vs 
short choice of active portfolio requires a certain degree of fund manager ability in predicting 
the sign of excess returns. This ability can be seen as an additional source of fund 
manager’s outperformance, beyond the skill in anticipating the returns of the benchmark 
portfolio (market timing contribution).  

Based on the model parameters estimates, I derive a measure of risk aversion (uniform 
across fund managers), consistent with the optimal active portfolio choice hypothesis. Such 
measure of risk turns out to be relatively high, as it is forced to reflect a fairly conservative 
benchmark portfolio risk-return profile. I also compute an implied measure of relative risk 
exposure, based on the concept of conditional Relative VaR (RVaR). The implied average 
level of RVaR (0.50% annualised) is close to the actual risk budget limit assigned to fund 
managers. However, a fair amount of heterogeneity across fund managers is found to be 
present, as the range of variation of (optimal implied) RVaR measures is material. Such 
variability across fund managers is a likely signal of inefficient use of their risk budget – eg a 
deviation from the optimal level of relative risk. At least in part, such variability could also be 
attributed to model estimation errors. To separate out the uncertainty due to sampling errors 
in estimating the RVaRs, one would need to design a proper test for the RVaR statistics, so 
that a confidence interval for such a test is obtained. This is an area largely unexplored by 
the risk management literature and therefore requires further investigation. For this reason it 
is left for future research. 
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Table 1 

Parameter Estimates: ERp = a + (b-1)*Rb + g*Rb^2 + other risks Parameter Estimates: ERp = a + (b-1)*Rb + g*Rb^2 + other risks 
FUND 

MANAGER a b-1 g 
Estimation 

Method 
DW R^2 

FUND 
MANAGER a b-1 g 

Estimation 
Method 

DW R^2 

I 0.0004 0.0088 0.1013 OLS 2.3465 0.0432 V 0.0002 -0.0162 0.0424 OLS 2.0568 0.0335 

  1.1175 1.6726 3.5401 (t-Stat)      0.5071 -3.2806 1.5828 (t-Stat)     

  1.3841 1.2045 3.039 (t-Stat-NW)      0.6899 -1.3434 1.1272 (t-Stat-NW)     

  0.0001 0.0233 0.1121 Robust   0.0994   0.0001 -0.0012 0.0604 Robust   0.0136 

  0.357 6.7573 6.0147 (t-Stat)      0.6405 -0.4668 4.3686 (t-Stat)     

  5.04E-04 0.014187 0.096683 GARCH   0.7929   0.000301 0.004349 0.015882 GARCH   0.7733 

  1.4431 3.1267 3.9738 (t-Stat)       0.9332 1.4734 1.0134 (t-Stat)     

II -0.0003 0.0241 0.2351 OLS 2.2178 0.1311 VI -0.0004 -0.0804 0.185 OLS 1.7275 0.0302 

  -0.5563 3.4662 6.2402 (t-Stat)       -0.2458 -3.3007 1.4098 (t-Stat)     

  -0.5966 2.1021 3.0557 (t-Stat-NW)       -0.265 -1.8918 1.0688 (t-Stat-NW)     

  -0.0003 0.0218 0.1467 Robust   0.0648   8.4E-07 2.95E-05 -4.6E-05 Robust   0.0000 

  -1.0329 5.4013 6.7126 (t-Stat)       0.0033 0.0081 -0.0024 (t-Stat)     

  -1.58E-04 0.020769 0.24891 GARCH   0.6842   0.00129 0.028739 -0.041485 GARCH   0.0569 

  -0.3298 4.158 13.6675 (t-Stat)       3.8272 8.7015 -2.9574 (t-Stat)     

III 0.0007 -0.0022 0.0022 OLS 2.1455 5.64E-04 VII 0.0001 -0.0089 0.0625 OLS 1.9707 0.0431 

  1.95 -0.4496 0.0826 (t-Stat)       0.2385 -2.5491 3.3204 (t-Stat)     

  2.1857 -0.2679 0.0476 (t-Stat-NW)       0.2351 -1.1093 1.3569 (t-Stat-NW)     

  0.0005 -0.0016 0.0435 Robust   0.0072   0.0001 -0.0078 0.052 Robust   0.0309 

  1.7309 -0.4428 2.2694 (t-Stat)       0.5812 -3.2811 4.0617 (t-Stat)     

  7.43E-04 -0.00078 0.000208 GARCH   0.8524   6.52E-05 -0.008736 0.062266 GARCH   0.8217 

  1.9171 -0.2025 0.0114 (t-Stat)       0.2266 -4.3444 6.7314 (t-Stat)     

IV 0.0001 -0.012 0.1068 OLS 1.9159 0.0536 VIII 0.0001 -0.01 0.0135 OLS 2.1627 0.004 

  0.2252 -2.4278 3.9965 (t-Stat)       0.0913 -1.1899 0.2958 (t-Stat)     

  0.2262 -1.9979 3.2689 (t-Stat-NW)       0.1022 -0.7111 0.1523 (t-Stat-NW)     

  0.0001 -0.0094 0.0974 Robust   0.0417   -1.8E-05 -0.0155 0.0198 Robust   0.0095 

  0.3632 -3.0046 5.7386 (t-Stat)       -0.046 -2.8549 0.6735 (t-Stat)     

  -9.84E-07 -0.00964 0.1011 GARCH   0.3622   5.11E-04 -0.008439 0.015619 GARCH   0.8428 

  -0.003 -2.7588 4.4604 (t-Stat)       0.72 -1.5506 0.649 (t-Stat)     

 IX -0.0002 0.033 0.0267 OLS 2.0432 0.3053 

         -1.0517 12.3008 1.8364 (t-Stat)     

         -0.989 4.8458 0.5739 (t-Stat-NW)     

         0.000001 0.0371 -0.0251 Robust   0.3666 

         0.0113 25.5755 -3.192 (t-Stat)     

         -0.00018 0.045263 0.022803 GARCH   0.5422 

         -1.2107 40.7129 5.3379 (t-Stat)     

       ERp = Rp - Rb  ; Rp = Absolute Return ; Rb = Benchmark Return 
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Table 2a (annual returns; in percent) 

RANKING FUND 
MANAGER 

ABSOLUTE 
RETURN  

RELATIVE 
RETURN  

1. I 0.8459 0.3882 
2. II 0.7959 0.3382 
3. III 0.7396 0.2819 
4. IV 0.7083 0.2506 
5. V 0.6198 0.1621 
6. VI 0.5930 0.1353 
7. VII 0.5672 0.1095 
8. VIII 0.5342 0.0765 
9. IX 0.4431 -0.0146 
- BNCHMRK 0.4577 - 

 

Table 2b (annual relative returns; basis points)   
Performance 
Decomposition   RANKING 

FUND 
MANAGER 

Alfa Beta Gamma Total 

Active Portfolio 
Share 

1. I 4.7 1.5 27.9 34.2 -0.511 
2. II -23.1 2.1 53.1 32.1 -0.365 
3. III 18.2 -0.1 8.4 26.6 2.029 
4. IV 3.3 -0.5 18.4 21.2 0.443 
5. V 4.0 -0.1 9.6 13.5 0.291 
6. VI 12.2 0.0 0.0 12.2 1.500 
7. VII 2.8 -0.4 7.4 9.8 0.285 
8. VIII -0.2 -1.4 7.6 6.0 1.305 
9. IX 0.0 0.9 -2.3 -1.4 -0.056 

 
 

Table 2c (daily returns; basis points)    
Trading Portfolio: Daily Performance Statistics (bps) 

RANKING 
FUND 

MANAGER Mean Median St-dev Skewness Kurtosis  
1. I 0.2212 0.0673 7.0611 0.3156 5.7436  
8. I (ACTIVE) -0.0559 0.0677 6.9538 -0.1102 3.7592  
2. II 0.2154 0.0708 7.2098 0.5244 6.7584  
9. II (ACTIVE) -0.1133 0.065 6.9538 -0.481 3.1649  
3. III 0.2004 0.0698 6.9697 0.1704 5.5243  
5. IIII (ACTIVE) 0.1634 0.0645 6.9538 0.1698 5.2977  
4. IV 0.1857 0.0691 6.9132 0.3282 5.6375  
1. IV (ACTIVE) 0.259 0.0678 6.9538 0.5277 6.368  
5. V 0.1644 0.065 6.8765 0.2293 5.6593  
2. V (ACTIVE) 0.2542 0.0674 6.9538 0.3517 6.8619  
6. VI 0.147 0.0619 6.9489 0.0918 5.0259  
6. VI (ACTIVE) 0.1363 0.0684 6.9538 0.2069 5.8908  
7. VII 0.1627 0.0695 6.9141 0.2572 5.7319  
3. VII (ACTIVE) 0.2508 0.0647 6.9538 0.4438 7.4773  

8. VIII 0.1384 0.0683 6.9747 0.1806 6.2984  

7. VIII (ACTIVE) 0.1359 0.0669 6.9538 0.1792 6.038  
9. IX (ACTIVE) 0.1237 0.0672 7.195 0.206 5.6805  
4. IX (ACTIVE) 0.1954 0.0717 6.9538 -0.2685 6.7898  

- BNCHMRK 0.1275 0.0648 6.9538 0.1685 5.0573  
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Table 3          

RANKING 
FUND 

MANAGER 

Active 
Portfolio 
Share: 

Implied (1) 

Active 
Portfolio 
Share: 

Optimal (2) 

Active 
Risk-

Return 
Ratio (3) 

Risk 
Aversion 

Parameter 
(benchmar

k-based 
Estimate) 

Informatio
n-Ratio 

(daily rate)

Relative 
Return 

Standard 
deviation 

(daily; 
bps) 

Relative 
Return 

Standard 
Deviation  
(annual 

rate; 
percentage 

points)  

Implied  
RVaR 

Constraint 
(annual 

rate; 
percentage 
points) (4) 

1. I -0.51 -80.48 1844.37 11.71 0.1315 0.7128 0.14% 0.43% 

2. II -0.36 -28.30 908.08 11.71 0.0893 0.9839 0.19% 0.58% 

3. III 2.03 295.55 1705.68 11.71 0.1115 0.6538 0.12% 0.39% 

4. IV 0.44 49.15 1299.51 11.71 0.0870 0.6692 0.13% 0.39% 

5. V 0.29 20.87 838.59 11.71 0.0556 0.6633 0.13% 0.39% 

6. VI 1.50 0.98 7.64 11.71 0.0039 5.0509 0.96% 2.90% 

7. VII 0.29 38.98 1600.67 11.71 0.0751 0.4689 0.09% 0.28% 

8. VIII 1.31 9.78 87.76 11.71 0.0098 1.1145 0.21% 0.64% 

9. IX -0.06 1.00 -210.46 11.71 -0.0089 0.4249 0.08% 0.24% 

            

(1) 'Implied' equal 'Optimal' Share if Active Risk-Return Ratio (column 5) equal Risk Aversion Parameter    

(2) Computed under the assumption of exact benchmark-based risk aversion estimate (cf column 6)   

(3) Active Risk-Return Ratio equal Risk Aversion Parameter if 'Implied' equal 'Optimal' Share of Active Portfolio   

(4) 'Implied' equal 'Optimal' Active Portfolio Share. Multiplier κ is set at 3 (time conversion factor √365)       
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Appendix 

A1.  Relative asset allocation: active vs benchmark portfolio  

Let us consider a typical investment mandate. A fund manager is assigned the task to beat a 
benchmark portfolio over a specified time horizon. The benchmark portfolio, as specified in 
the mandate, should be attainable and investable. Depending on his expertise, the portfolio 
manager can overweight certain asset classes and/or securities and by the same token 
underweight others, thus building a zero-investment active portfolio. The composition of this 
active portfolio reflects the selection bets made by the portfolio manager. 

Let us assume that there are {i=1,N } asset classes/securities to invest our portfolio. Its 
shares at time t can be represented as a vector of portfolio holdings adding up to 1: 
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Our fund manager confronts a known Benchmark Portfolio, B, with a given structure, 
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In constructing her Managed Portfolio, P (eq, a1.1), our fund manager separates her active 
investment strategies in two related steps. In her first step she tries to construct an Active 
Portfolio, A, which in her view differs from the benchmark in various desirable ways  
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In her second step, she has to decide how much wealth she would commit to her Active 
Portfolio, A, in building her managed portfolio P. More specifically she has to set aside a 

fraction, A
t , of her total wealth (equal to 1) to be invested in portfolio A and the remaining 

fraction, A
t1 , in the benchmark holdings. Thus, her Managed Portfolio has the following 

structure: 
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  (a1.4) 

Thus, her managed portfolio, P, turns out to be a combination of both active and passive 

portfolios, with exposure to the active component regulated by the amount, A
t  ,  

We can rewrite Eq. (a1.4) highlighting the Managed Portfolio deviations from the benchmark 
holdings, 
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The left-hand-side holdings in Eq. (a1.5) can be observed directly by inspecting our fund 
manager’s allocation, whereas the right-hand side decomposition is not known, unless we 
were to know in detail the two steps procedure highlighted above, namely the Active Portfolio 

holdings, A
t , as well the associated fraction of wealth, A

t , selection process. However, we 

can argue that if we happen to know the fraction of wealth invested in the Active Portfolio, we 
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can easily recover the implied holdings of the Active Portfolio by inverting Eq. (a1.5) as 
follows 

 B
t

P
tA

t

B
t

A
t 


 

1
  (a1.6) 

Our suggested two steps procedure may sound a bit contrived. Why bother paying attention 
to the decomposition suggested by the right-hand side of Eq. (a1.5) if what ultimately matters 
are only the bets (deviations from the benchmarks holdings) laid out in its left-hand side ? As 
investors, we are interested in the fund manager ability of selecting portfolio that can beat the 
benchmark. However, we can infer from decomposition (a1.5) that there perhaps be a wider 
range of active strategies than we have thought enabling us to achieve the extra-
performance target. To appreciate such implication, let us transform decomposition (a1.5) in 
its return equivalent format (recall Eq. 3’ in the main text) 
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t

A
t

A
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P
t RRRR    (a1.7) 

Eq. (a1.7) suggests that, in principle, any active strategies (Portfolio A) can be used in order 
to beat the benchmark, provided that the share of wealth allocated to it (exposure) has the 
appropriate sign – long or short – depending upon the its expected performance relative to 
the benchmark. In brief, if the fund manager is convinced that her active Portfolio, A, can 

beat the benchmark, she would certainly want to be long portfolio A ( 0A
t ). Conversely, 

she may well come across an active portfolio, A, which (she believes) would very likely 
underperform the benchmark. Such underperforming (active) portfolio can equally provide a 
perfectly good foundation for a successful active strategy, if the appropriate short exposure 

( 0A
t ) is chosen. Thus, the set of active strategies (portfolios A) seems much wider than 

we tend to believe. It all hinges upon the fund manager ability to assess the risk return profile 
of her selected Active Portfolio, A, vs the returns of the benchmark In the following 
paragraphs we illustrate several identification procedure for the share of wealth allocated to 

active strategies, A
t ,based on a the risk of the active portfolio, A.  

A2.  Identifying the implied share of active portfolio return  

To derive the implied share invested in the Active Portfolio one need to multiply both side of 

constraint (11) by the square of the fraction of wealth,  2A , invested in the active portfolio,  
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The left-hand side of eq. (a2.1) can be rewritten using the definition laid out in Eq. (3’): 
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Eq. (a2.2) now depends entirely upon observable variables – benchmark and fund 

manager’s returns – and the unknown value, A
t . It is convenient to develop the variance on 

the left-hand in eq. (a2.2), 
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and equate the right-hand side of eq. (a2.2)- and (a2.3). As the term    B
t

A
t RVAR

2
  cancels 

out, we are left with the following equation, 
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which can be solved in the unknown share, A , as, 
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QED 

A3.  Solving for the optimal active portfolio share 

The first order condition of the optimization problem (5) is given by 

02A   BABA   (a3.1) 

which can be solved as  
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We can obtain an estimate of the optimal active portfolio share based on observable returns 
by manipulating the right-hand side of (a3.2) as follows (recall Eq. 6’ of the main text) 
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where A̂ is the implied value of the share of active investment according to the definition 
give in the main text (Eq. 3, with subscripts dropped) 

 BAABP RRRR  ̂   (a3.3’) 

Notice that in Eq. (a3.3) the optimal share, A
*  ,coincides with the implied share, A̂ , if (and 

only if) the level of risk aversion equates the risk-return ratio of the managed portfolio, P, 
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The level of risk aversion guiding fund manager risk control can be discussed in the standard 
portfolio management delegation framework, where the difference between the return on the 
managed portfolio (P) and the return on the benchmark portfolio (B) – eg tracking error – is 
subject to certain constraints. In order to control the active portfolio risk, investment 
mandates normally include a constraint on the Tracking Error Volatility (TEV), namely a limit 
on the maximum amount of risk borne by the investor in deviating from the benchmark. 
Typically, such risk constraint employs a Relative Value-at-Risk (RVaR) indicator as a TEV 
measure, 

0  ,    BPVaR   (a3.5) 

where υ sets an upper bound on the TEV. Without a too great loss of generality, we assume 
that the relative VaR measure, VaRP-B, is proportional to the standard deviation of the return 
differential, σP-B 
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where κ is a given multiplicative factor, depending upon the degree of confidence associated 
to the VaR measure as well as the shape of the return differential distribution. For a 99% 
confidence level and a Gaussian (daily) excess return distribution (with zero mean), κ would 
equal 2.3.  

Combining (a3.5) and (a3.6), we get a measure of the maximum allowed size of the active 
portfolio share under a TEV constraint, 
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In order to implement the allowed (maximum) size of active investment, A
 , in eq. (a3.7) as 

an optimal strategy, A
*  , 

AA
*    (a3.7’) 

The corresponding risk aversion parameter entering Eq. (a3.2) should be set as, 
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where IRP-B is the managed portfolio excess return information ratio, which fulfils the 
following property, 
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Moreover, we can ask the question whether we can find the appropriate level of (maximum) 
TEV, so that implied and optimal (TEV constraint) active strategy would yield the same share 
of active investment, eg  

*    (a3.10) 

Recalling Eqs. (a3.4) and (a3.8), we can find the desired level of TEV fulfilling the 
assumption (a3.10), 

    BPBP IR*   (a3.11) 

Under conditions (a3.4), (a3.10), (a.3.3) implies that the optimal (RVaR constrained) share of 
active portfolio allocation is equal to the implied value,  
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Eqs. (a3.12), (a3.11) and (a3.4) yield the “observationally equivalent” estimate of the optimal 
active portfolio share under RVaR constraint, with the associated risk aversion and 
(maximum) TEV estimates, 

 **, ,,  
A
   (a3.13) 

We also test a different identification strategy following a performance measurement 
methodology explained in Goetzmann et al. (2007). Their proposal is centred around the 
concept of Manipulation-Proof Performance Measures. (MPPMs). They show that if the 
benchmark portfolio return RB has a (log)-normal distribution, then the coefficient of (relative) 
risk aversion entering the computation of MPPMs should be selected so that, 
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where rf measures the risk-free rate of return. Since MPPMs ae typically associated with 
some benchmark portfolio, in the absence of any private information the MPPM should score 
the chosen benchmark highly.  

Goetzmann et al. (2007) show that this would be the implication of eq. (a3.4) in computing 
their suggested MPPMs. What does it mean for a measure to be manipulation-free? 
Intuitively, if a manager has no private information and markets are efficient, then holding 
some benchmark portfolio, possibly levered, should maximize the measure’s expected value. 
The benchmark portfolio might coincide with the market-portfolio, but in some contexts other 
benchmarks could be appropriate. Static manipulation is the tilting of the portfolio away from 
the (levered) benchmark even when there is no informational reason to do so. Dynamic 
manipulation is altering the portfolio over time based on past performance rather than on new 
information. A good performance measure penalises uninformed manipulation of both types 
in ranking fund managers’ returns. Substituting the benchmark-based risk aversion measure 
(a3.14) into the optimal active portfolio share (eq. a3.3), we obtain,  
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A4.  GARCH model for residual risk in the active portfolio 

The error terms in the least-square model (10)-(13) are assumed to be homoskedastic (the 
same variance at any given data point). Sample data in which the variances of the error 
terms are not equal – the error terms may reasonably be expected to be larger for some 
points or ranges of the data than for others – are said to suffer from heteroskedasticity. The 
standard warning is that in the presence of heteroskedasticity, the regression coefficients for 
an ordinary least squares regression are still unbiased, but the standard errors and 
confidence intervals estimated by conventional procedures will be too narrow, giving a false 
sense of precision. Instead of considering this as a problem to be corrected, ARCH /GARCH 
models treat heteroskedasticity as a variance to be modelled. As a result, not only are the 
deficiencies of least squares corrected, but a prediction is computed for the variance of each 
error term. The ARCH/GARCH models, which stand for autoregressive conditional 
heteroskedasticity and generalized autoregressive conditional heteroskedasticity, are 
designed to deal with just this set of issues.  

The GARCH(1,1) is probably the simplest and most robust of the family of volatility models. 
Since we are dealing with a relatively short sample (one year of daily data), higher order 
models – which would include additional lags – are unlikely to add much value. The GARCH 
model for variance looks like this (omitting superscript A): 

    2
1

2
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2
,

2
,   ttt    (a4.1) 

where 2
,t  defines the variance of the residuals of model (10). I estimate the constants 

parameters   ;;2
, . Updating Eq, (4.1) simply requires knowing the previous forecast, 

2
1, t , and (squared) residual term, 2

1, t . The weights are   ,,1   and the long run 

average variance is given by    12
, . This latter is just the unconditional variance. 

Thus, the GARCH(1,1) model is mean reverting and conditionally heteroskedastic, but have 
a constant unconditional variance. It should be noted that this only works if , and only really 

makes sense if the weights are positive, requiring   0;;2
,   .  

Parameters in eqs. (10) and (a4.1) are jointly estimated using Maximum Likelihood under the 
assumption of constant coefficients (eg using parameters’ list, 13’). The GARCH(1,1) 
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estimates are included in Table1. Reported standard errors are computed using the robust 
method of Bollerslev-Wooldridge. The coefficients in the variance equation are omitted here 
to save space and are available upon request from the author. The variance coefficients 
always sum up to a number less than one which is required in order to have a mean 
reverting variance process. In certain cases the sum is very close to one, therefore this 
process only mean reverts slowly. Standard Errors and p-values for parameters’ list (13’) are 
reported in Table 1.  

The standardized residuals are examined for autocorrelation. In most cases, the 
autocorrelation is dramatically reduced from that observed in the portfolio returns 
themselves. Applying the same test for autocorrelation, we find the p-values are about 0.5 or 
more indicating that we can always accept the hypothesis of “no residual ARCH”. As a result, 
we obtain a larger R2 (coefficient of determination) statistics than standard OLS estimates, as 
the unanticipated residual variance component is drastically reduced by GARCH(1,1) 
variance prediction model. 
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